771 research outputs found

    Sensorless Control of Surface-Mount Permanent-Magnet Synchronous Motors Based on a Nonlinear Observer

    No full text
    International audienceA nonlinear observer for surface-mount permanent-magnet synchronous motors (SPMSMs) was recently proposed by Ortega et al.(LSS, Gif-sur-Yvette Cedex, France, LSS Internal Rep., Jan. 2009). The nonlinear observer generates the position estimate hat(theta) via the estimates of sin theta and cos theta. In contrast to Luenberger-type observers, it does not require speed information, thus eliminating the complexity associated with speed estimation errors. Further, it is simple to implement. In this study, the nonlinear observer performance is verified experimentally. To obtain speed estimates from the position information, a proportional-integral (PI) tracking controller speed estimator was utilized. The results are good with and without loads, above 10 r/min

    Direct Torque Control of Permanent Magnet Synchronous Motors

    Get PDF

    Application of Optimal Switching Using Adaptive Dynamic Programming in Power Electronics

    Get PDF
    In this dissertation, optimal switching in switched systems using adaptive dynamic programming (ADP) is presented. Two applications in power electronics, namely single-phase inverter control and permanent magnet synchronous motor (PMSM) control are studied using ADP. In both applications, the objective of the control problem is to design an optimal switching controller, which is also relatively robust to parameter uncertainties and disturbances in the system. An inverter is used to convert the direct current (DC) voltage to an alternating current (AC) voltage. The control scheme of the single-phase inverter uses a single function approximator, called critic, to evaluate the optimal cost and determine the optimal switching. After offline training of the critic, which is a function of system states and elapsed time, the resulting optimal weights are used in online control, to get a smooth output AC voltage in a feedback form. Simulations show the desirable performance of this controller with linear and nonlinear load and its relative robustness to parameter uncertainty and disturbances. Furthermore, the proposed controller is upgraded so that the inverter is suitable for single-phase variable frequency drives. Finally, as one of the few studies in the field of adaptive dynamic programming (ADP), the proposed controllers are implemented on a physical prototype to show the performance in practice. The torque control of PMSMs has become an interesting topic recently. A new approach based on ADP is proposed to control the torque, and consequently the speed of a PMSM when an unknown load torque is applied on it. The proposed controller achieves a fast transient response, low ripples and small steady-state error. The control algorithm uses two neural networks, called critic and actor. The former is utilized to evaluate the cost and the latter is used to generate control signals. The training is done once offline and the calculated optimal weights of actor network are used in online control to achieve fast and accurate torque control of PMSMs. This algorithm is compared with field-oriented control (FOC) and direct torque control based on space vector modulation (DTC-SVM). Simulations and experimental results show that the proposed algorithm provides desirable results under both accurate and uncertain modeled dynamics

    Speed control of an SPMSM using a tracking differentiator-PID controller scheme with a genetic algorithm

    Get PDF
    In this paper, a tracking differentiator-proportional integral and derivative (TD-PID) control scheme is proposed to control the speed of a surface mount permanent magnet synchronous motor (SPMSM). The TD is used to generate the necessary transient profile for both the reference and the output speed, which are compared with each other to produce the error signals that feed into the PID controller. In addition to the TD unit parameters, the PID controller’s parameters are tuned to achieve the optimum new multi-objective performance index, comprised of the integral of the time absolute error (ITAE), the absolute square of the control energy signal (USQR), and the absolute value of the control energy signal (UABS) and utilizing a genetic algorithm (GA). A nonlinear model of the SPMSM is considered in the design and the performance of the proposed TD-PID scheme was validated by comparing its performance with that of a traditional PI controller in a MATLAB environment. Different case studies were tested to show the effectiveness of the proposed scheme, results including peak overshoot, energy consumption, control signal chatter, and 30% improvement in the OPI, with variable reference speeds, load torque, and parameters uncertainties. Illustrate the proposed scheme's success compared with PI controller

    Genetic algorithm optimized robust nonlinear observer for a wind turbine system based on permanent magnet synchronous generator

    Get PDF
    © 2022 ISA. Published by Elsevier Ltd. All rights reserved. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1016/j.isatra.2022.02.004This paper presents an optimal control scheme for a Permanent Magnet Synchronous Generator (PMSG) coupled to a wind turbine operating without a position sensor. This sensorless scheme includes two observers: The first observer uses the flux to estimate the speed. However, an increase in the temperature or a degradation of the permanent magnet characteristics will result in a demagnetization of the machine causing a drop in the flux. The second observer is therefore used to estimate these changes in the flux from the speed and guaranties the stability of the system. This structure leads to a better exchange of information between the two observers, eliminates the problem of encoder and compensates for the demagnetization problem. To improve the precision of the speed estimator, the gain of the non-linear observer is optimized using Genetic Algorithm (GA) and the speed is obtained from a modified Phase Locked Loop (PLL) method using an optimized Sliding Mode Controller (SMC). Furthermore, to enhance the convergence speed of this observer scheme and improve the performance of the system a Fast Super Twisting Sliding Mode Control (FSTSMC) is introduced to reinforce the SMC strategy. A series of simulations are presented to show the effectiveness and robustness of proposed observer scheme.Peer reviewe

    Vector Control Drive Of Permanent Magnet Synchronous Motor Based Dsspace DS1103 Implementation

    Get PDF
    This paper presented a vector controlled drives of permanent Magnet Synchronous Motor (PMSM) by using Proportional-Integral (PI) Speed controller based dSPACE implementation. The concept of vector control is applied to PMSM to obtain linear dynamics similar to that of a DC motor. The model consist of two control loops, hysteresis current controller is used for inner loop current control and PI controller for outer loop speed control. PI speed controller selected due to simplicity compare to fuzzy, neutral etc. to make sure dSPACE DS1103 successfully implemented. The PMSM vector control algorithm for a theoretical basic has been verified by experimental results and created a rapid control prototype environment by using MATLAB/ Simulink and the DS1103 DSP of dSPACE

    Hybrid sensorless control of PMSM in full speed range using HFI and back-EMF

    Get PDF
    The permanent magnet synchronous motors (PMSM) are more and more used because of their high performance compared with other AC motors. The present paper proposes a hybrid controller which consists of a high frequency injection estimator and a back-electromotive-force observer in full speed range for the sensorless control of PMSM. The aim objective of the study to prevent speed overshot in startup time of the motor and provides a better dynamic response in transient and permanent states using this structure. A hybrid algorithm is applied to realize a smooth transition from low to high speed. At standstill and very low speed region, HF injection technique is used to detect the rotor initial position. In this first step study, the position estimation is derived from a HF current injection by using only one filter. When the rotor speed goes up to a certain value where back-EMF can provide adequate information, a back-EMF observer will dominate. Thanks to this structure, the mechanical sensor can be engaged using the best estimates and the developed control method is fast, simple, and flexible. The effectiveness, superiority, and performance of the proposed control method and extensive simulation results are provided on a 1 kW permanent magnet synchronous motor drive, demonstrating the expected performances

    Modern Control Approaches for a Wind Energy Conversion System based on a Permanent Magnet Synchronous Generator (PMSG) Fed by a Matrix Converter

    Get PDF
    This “paper proposes a super-twisting adaptive Control Approaches for a Wind Energy Conversion System Based on a Permanent Magnet Synchronous Generator (PMSG) Fed by a matrix sliding mode for tracking the maximum power point of wind energy conversion systems using permanent magnet synchronous generators (PMSGs). As the adaptive control algorithm employed retains the robustness properties of classical wind energy conversion system control methods when perturbations and parameter uncertainties are present, it can be considered an effective solution; at the same time, it reduces chattering by adjusting gain and generating second-order adaptive control methods. The Egyptian power system (EPS), a three-zone interconnected microgrid (MG), and a single machine linked to the grid are only a few examples of the power systems for which this article introduces the concept of direct adaptive control (SMIB).The goal of our work is to maximize the captured power by solving a multi-input multi-output tracking control problem. In the presence of variations in stator resistance, stator inductance, and magnetic flux linkage, simulation results are presented using real wind speed data and discussed for the proposed controller and four other sliding mode control solutions for the same problem. The proposed controller achieves the best trade-off between tracking performance and chattering reduction among the five considered solutions: compared to a standard sliding mode control algorithm, it reduces chattering by two to five orders of magnitude, and steadystate errors on PMSG rotor velocity by one order of magnitude”. The purpose of this article is to examine wind turbine control system techniques and controller trends related to permanent magnet synchronous generators. The article presents an overview of the most popular control strategies for PMSG wind power conversion systems. There are several kinds of nonlinear sliding modes, such as direct power, backstepping, and predictive currents. To determine the performance of each control under variable wind conditions, a description of each control is presented, followed by a simulation performed in MATLAB /Simulink. This simulation evaluates the performance of each control in terms of reference tracking, response times, stability, and signal quality. Finally, this work was concluded with a comparison of the four controls to gain a better understanding of their effects. “Moreover, it reduces the above-mentioned steady-state error by four orders of magnitude compared to a previously-proposed linear quadratic regulator based integral sliding mode control law.  A dynamic model is simulated under both variable step and random wind speeds using the DEV-C++ software, and the results are plotted using MATLAB. The obtained results demonstrate the robustness of the proposed controller in spite of the presence of different uncertainties when compared to the classical direct torque control technique
    • …
    corecore