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1. Introduction

In the last century, electrical machines have been the subject of a huge development. New 

concepts in design and control allow expanding their applications in different fields. They 
are considered important components in many industrial applications as: power systems, 

manufactories, power plants, electrical vehicles, and home appliances.

There are several types of electrical machines; we can find synchronous machines, induction 
machines, direct current (DC) machines, reluctance synchronous machines, transformers, etc. 

(Figure 1).

The electrical machines are incorporated into the process of energy conversion in the genera-

tion, transmission, and consumption of electric power. In a power station, turbine generator 

converts the energy coming from the combustion of coal, natural gas, etc. into electric energy 

Figure 1. Different types of electrical machines.
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that is transmitted to consumers: motors whose mechanical energy drive machines in indus-

try, homes, traffics, etc.

Most applications are interested in rotating electrical machines. The rotating electrical machine 
can operate, without constructional changes, as a motor or generator, since the energy direc-

tion of an electrical machine is reversible (Figure 2).

Electrical machines can be classified according to the torque producing mechanism and their 
magnetic interactions. The first class based on the torque producing mechanism machines is 
classified into two types, one is alignment torque producing machines such as DC machines, 
induction, and synchronous machines and the second is the reluctance torque producing 
machine, for example, switched reluctance machines. The second class based on the mag-

netic interactions machines is classified as inductive-interactive type machines, for example, 
induction machines, synchronous machines, and DC machines, and variable reluctance type 

machines, for example, switched reluctance machines [1].

The electrical drive systems were developed based on the use of electrical machines. The 
majority of all drive systems are electrical drives with growing tendency. Electrical drive 

systems do not have a power density as high as pneumatic or hydraulic systems. Electrical 

motors are bulky and heavy in comparison to these competitors.

Electrical drives are considered for three reasons superior to other drive systems, such as 

pneumatic and hydraulic systems:

• Cleanliness of the energy supply

• Dynamics of control

• High efficiency of electromechanical power conversion

Figure 2. Conversion energy in electrical machines.
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The main part of these systems is electrical rotating machine. With the advent of power elec-

tronics, new possibilities appear for electrical machines with variable speed. Their technical 
performance and economical design opened a new philosophy of drive applications.

The control of electrical power today is possible within short time for megawatts. It can be 
controlled so fast than any other form of energy.

The energy conversion between electrical and mechanical power is performed by the electri-
cal machine in both directions.

Electrical machines can be used for different ranges of speed. It can be used as motor particu-

larly in traction, electrical vehicles, etc. or as generators in power station, wind turbines, etc.

2. Design

The electrical machines are usually manufactured through mass-production techniques; their 
performances can be affected by manufacturing processes and different operational condi-
tions (e.g., temperature). As a requirement of quality control, a robust design process is often 
applied to minimize the influence of uncertainties on the machine performance.

However, the conventional computer simulation cannot reflect the influences of the environmen-

tal uncertainties directly. The input data of the numerical model are usually the geometries of the 
modeled device, the material properties, and the uncertainties in both must be taken into account. 

While most of the works in the robust design of electromagnetic devices focus on the uncertain-

ties in the geometries [2–4], only a few efforts have been conducted on the influences of the mate-

rial uncertainties. In electromagnetic field computing, the nonlinear behavior of the constitutive 
laws of ferromagnetic materials is usually obtained by B-H curves. For ferromagnetic materials, 

[5] constructed a stochastic material model using the uncertainties of the measured points to 

characterize a nonlinear B-H curve. In [6], a global sensitivity analysis was applied to study the 

variance of the predicted behavior of a turbo-alternator with respect to material uncertainties.

All the above stochastic material models have formed a solid foundation for the study of 

material uncertainties in the electromagnetic design. A robust design system can then be 

implemented for the analysis and design of electrical machines in order to minimize the 

effects of manufacturing errors in both iron and permanent magnets [7].

There are some general design methods, which can be applied in terms of different disci-
plines/domains: electromagnetic design, thermal design, structural design, multi-physics 

design, material design, and manufacturing process design.

Electromagnetic design: The principle of operation of electrical machines is based on the elec-

tromagnetic theory. Electromagnetic design is based on the calculation of magnetic field and 
its distribution in the electrical machines, which allowed to compute some basic electromag-

netic parameters including winding inductance and the evaluation of some performances, 

such as electromagnetic force, power loss, and efficiency. To obtain the magnetic field, there 
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are three main kinds of analysis methods, analytical method, magnetic circuit method, and 

finite element method (FEM) [8–10, 14, 15]. Meanwhile, power losses and efficiency are two 
important performance indexes for electrical machines.

Thermal design and structural design: these methods can be applied after the accomplish-

ment of the electromagnetic design. The thermal design method aim is to compute the tem-

perature distribution in the machine based on the heat obtained from the electromagnetic 

analysis. There are popular methods for the thermal analysis of electrical machines. They 
are computational fluid dynamics (CFD), FEM, and nodal method. Structural design aims to 
consider the stress and deformation of the machine under the electromagnetic and thermal 

analyses. Structural design can be conducted based on FEM as well [12, 13].

Multi-physics design: It aims to calculate the electromagnetic characteristics, temperature 

distribution, structural stress, vibration noise, and coupled performances of electrical 

machines based on a uniform model [8, 9, 10, 11]. The FEM has been widely employed as a 
powerful tool for the multi-physics design and analysis of electrical machines. It can be used 

to analyze the coupled field in machines, such as electromagnetic structure and thermal 
structure.

Material design: The type of material is important for the electromagnetic, thermal, and struc-

tural designs of electrical machines. Nowadays, new developed magnetic materials like soft 

magnetic composite (SMC), amorphous and grain-oriented silicon steel show better charac-

teristics, such as high saturation flux density, low specific losses, and low manufacturing cost. 
They can be employed to design motors with new topologies, higher efficiency, and/or low 
manufacturing cost [16, 17].

Manufacturing process design: Manufacturing method design is also important in the design 

stage of electrical machines, which will influence their manufacturing quality and actual per-

formances in operation. To obtain the best performances, some designs have complex struc-

tures which can be difficult for manufacturing.

With a good knowledge of the magnetic characteristics and manufacturing methods, we can 
fully exploit all the performances of the designed motors. A good motor design should be 

done in terms of both output performances and manufacturing abilities [18].

3. Optimization

Optimization is a very popular term in modern design of electrical machines and devices due 

to the competition in the world markets, increased cost of electrical energy, and pressures for 

its conservation.

Optimization helps designers to push the existing invisible design boundaries while using 

available materials and technology. The objective of the optimization process is usually to 
minimize either the initial cost of the machine or its lifetime cost including the cost of lost 

energy. Other objectives such as mass minimization or efficiency maximization may also be 
appropriate in some situations [19, 20].

Optimization and Control of Electrical Machines6



This can be explained and understood through the words of Miller [21]: “To a WISE engineer, 
optimal design means a compromise between conflicting factors, often producing an imper-

fect result from optimistic aspirations.”

Most of the metaheuristic techniques can be used to solve global optimization problems with 
nonlinear constraint by using metaheuristic algorithms; there is a high possibility to deter-

mine a near optimal solution, which can be considered by designer and engineering as a 

global optimum [22].

One of the most promising algorithms from the class of evolutionary algorithms widely used 

in the field of electric machines is Differential Evolution (DE) [22–24] first introduced by Price 
and Storn [25] in 1995. The algorithm was later improved and named Generalized Differential 
Evolution (GDE) (extended DE for constrained multi-objective optimization) by Lampinen 
and Zelinka [25, 26].

Variety of other algorithms is used in electric machine design optimization: Genetic Algorithm 
(GA) [27, 28], Particle Swarm Optimization (PSO) [29, 30], Simulated Annealing (SA) [31], etc. 

Authors in [32] compared GA, SA, and DE on the design optimization of permanent mag-

net motor and authors in [32] compared DE, GA, and PSO on the design optimization of 
microstrip antennas. Both groups agree that the DE performance is the best. In [33, 34], PSO 
and GA were compared and PSO was found computationally more effective with slightly 
better objective function value reached. In [35], it is shown how PSO performs better than GA 
so some authors decided to use hybrid GA-PSO method [36, 37].

4. Control of electrical machines

The control of electrical machines has been the subject of great progress, due to the develop-

ment and advancement in the field of power electronic devices, digital signal processing, the 
informatics tools, and advanced control techniques.

The energy conversion between electrical and mechanical power is performed by the electri-
cal machine in both directions. The control of this energy is very important. In the case of 
motors, we control the electric power consumed, and in the case of generator, we control 

the electric power generated. The control of electrical machines can be expanded to other 
variables as speed, voltages, currents, flux, torque, etc. Figure 3 shows the control structure 

of electrical machines.

Figure 3. Control structure of electrical machines.
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The electrical drive systems are based mostly on electrical machines. These machines can be 
designed to operate at different speeds: high, medium, and low speed. According to these 
benefits, the use of electrical machines with variable speed is very important in the field of 
power station, wind turbine, electrical vehicles, etc.

The electrical machines with high speed is in continuous evolution for a number of applica-

tions, including aero engine spools, electrical turbo-compounding systems, electrical spindles 

for milling cutters and grinding, helicopter and racing engines, turbochargers, fuel pumps, 
etc. These applications have typical operational speeds of over 10,000 r/min.

In the control design, we follow the next steps:

• Modeling: The plant can be described in the form of some mathematical equations. These 
equations constitute the mathematical model of the plant. A plant model should produce 
the same output response as the plant for the same inputs.

• Controller design: The controller is designed to meet the performance requirements for the 
plant model.

• Implementation: The implementation can be done using a digital computer. Its efficiency 
depends on the type of computer available, the type of interface devices between the com-

puter and the plant, software tools, etc.

Figure 4 shows different steps of control design.

Figure 4. The steps of control design.
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The control of these machines is very complicated. We need to represent them by mathemati-
cal models. Their models are defined by coupled and nonlinear equation systems.

Some mathematical transformations can be used to simplify the form of these models as Park 
transformation, Clark transformation, etc. The analytic approach of these equations is very 
complicated. To solve these systems of equations, the numerical methods are recommended.

Following the obtained models many strategies of controls were developed such as vector 

control, direct torque control, direct power control, etc., and these strategies aim to give more 
flexibility to the control systems.

New techniques of control were developed based on the powerful control theory and artificial 
intelligence tools. Many control techniques were studied and applied to electrical machine, 
which we can find variable structure control, model reference adaptive control, adaptive pole 
placement control, predictive control, backstepping control, etc. The use of artificial intel-
ligence techniques has been the subject of many recent researches. The most famous are the 
fuzzy logic control, the neuronal control, the neuro fuzzy control, etc. In the literature, we can 

find many researches on these topics.

In [38], a model reference adaptive control-based estimated algorithm was proposed for online 

multi-parameter identification. In [39], MRAS observer was designed for the field oriented 
control of DFIG. Authors in [40] give an overview of model predictive control for induction 

motor drives. In [41], cascaded nonlinear predictive control was proposed for the control of 

induction motor. Backstepping controller was proposed in [42] for induction machine. An 

adaptive backstepping sliding mode controller was presented in [43]. A fuzzy logic controller 

was developed for a switched reluctance motor in [44].
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