2,167 research outputs found

    Congestion Control for Streaming Media

    Get PDF
    The Internet has assumed the role of the underlying communication network for applications such as file transfer, electronic mail, Web browsing and multimedia streaming. Multimedia streaming, in particular, is growing with the growth in power and connectivity of today\u27s computers. These Internet applications have a variety of network service requirements and traffic characteristics, which presents new challenges to the single best-effort service of today\u27s Internet. TCP, the de facto Internet transport protocol, has been successful in satisfying the needs of traditional Internet applications, but fails to satisfy the increasingly popular delay sensitive multimedia applications. Streaming applications often use UDP without a proper congestion avoidance mechanisms, threatening the well-being of the Internet. This dissertation presents an IP router traffic management mechanism, referred to as Crimson, that can be seamlessly deployed in the current Internet to protect well-behaving traffic from misbehaving traffic and support Quality of Service (QoS) requirements of delay sensitive multimedia applications as well as traditional Internet applications. In addition, as a means to enhance Internet support for multimedia streaming, this dissertation report presents design and evaluation of a TCP-Friendly and streaming-friendly transport protocol called the Multimedia Transport Protocol (MTP). Through a simulation study this report shows the Crimson network efficiently handles network congestion and minimizes queuing delay while providing affordable fairness protection from misbehaving flows over a wide range of traffic conditions. In addition, our results show that MTP offers streaming performance comparable to that provided by UDP, while doing so under a TCP-Friendly rate

    Novel Control Strategies for Parallel-Connected Inverters in AC Microgrids

    Get PDF

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    Theories and Models for Internet Quality of Service

    Get PDF
    We survey recent advances in theories and models for Internet Quality of Service (QoS). We start with the theory of network calculus, which lays the foundation for support of deterministic performance guarantees in networks, and illustrate its applications to integrated services, differentiated services, and streaming media playback delays. We also present mechanisms and architecture for scalable support of guaranteed services in the Internet, based on the concept of a stateless core. Methods for scalable control operations are also briefly discussed. We then turn our attention to statistical performance guarantees, and describe several new probabilistic results that can be used for a statistical dimensioning of differentiated services. Lastly, we review recent proposals and results in supporting performance guarantees in a best effort context. These include models for elastic throughput guarantees based on TCP performance modeling, techniques for some quality of service differentiation without access control, and methods that allow an application to control the performance it receives, in the absence of network support

    Advances in Internet Quality of Service

    Get PDF
    We describe recent advances in theories and architecture that support performance guarantees needed for quality of service networks. We start with deterministic computations and give applications to integrated services, differentiated services, and playback delays. We review the methods used for obtaining a scalable integrated services support, based on the concept of a stateless core. New probabilistic results that can be used for a statistical dimensioning of differentiated services are explained; some are based on classical queuing theory, while others capitalize on the deterministic results. Then we discuss performance guarantees in a best effort context; we review: methods to provide some quality of service in a pure best effort environment; methods to provide some quality of service differentiation without access control, and methods that allow an application to control the performance it receives, in the absence of network support

    Integrating Autonomous Load Controllers in Power Systems

    Get PDF
    Elektriske energisystemer undergår radikale forandringer, fordi et presserende behov for at nedsætte drivhusgasudledningen forudsætter en mere effektiv udnyttelse af energiressourcerne og en overgang til mere vedvarende energi. Nye vedvarende energikilder som vind og sol har et stort potentiale, men er karakteriseret ved en fluktuerende produktion, som kun delvist er forudsigelig. Styring af forbrug er allerede brugt i begrænset omfang for at forbedre leveringssikkerhed og effektiviteten af energisystemet. I energisystemer med en høj andel fluktuerende vedvarende energikilder kan intelligent styring af forbruget spille en stor rolle i balanceringen af systemet. Det store antal og den geografiske spredning af forbruget gør koordinering af forbrugets respons en udfordring. Nye kommunikationsteknologier har reduceret omkostningerne til at forbinde apparater og lover et ”Internet of Things" (”Tingenes internet") i fremtiden, hvor apparater er fuldt forbundet til en globalt datanetværk. Strenge realtids- og pålidelighedskrav til elsystemet har motiveret forskning i nye styrings arkitekturer velegnet til sådan et stort og komplekst system. Denne afhandling har fokus på et mellemstadie i evolutionen fra dagens passive belastninger mod et ”Internet of Things". Mere præcist udgøres dette mellemstadie af autonome apparater med sensorer, aktautorer, og software til at kontrollere lokale processer, men uden et digital kommunikationsinterface. Dearkitekturer der er undersøgt i denne afhandling er ret nye, så fokus ligger på gennemførlighed og system modelleringer. Tidligere forskning har foreslået brug af frekvensfølsomme autonome belastninger til at levere primær frekvensreserve. Denne forudgående forskning har fokuseret på effekten af autonome belastninger på et højt abstraktionsniveau i store energisystemer. Analyser på dette høj niveau analyser ignorerer en væsentlig forskel mellem konventionel frekvensereserve og frekvensfølsom belastning, nemlig effekten af reduceret belastningsmangfoldighed på frekvensresponsen. For at adressere denne mangel udførte man tidsdomænemodeller af frekvensfølsomme belastninger for at tage højde for den variation i frekvens responsen, som stammer fra variationen i belastningerne. Eksperimenter og analyser har afsløret potentielle ulemper ved høj andel af frekvensfølsom belastning: tidsafhængigheder i processer, som begrænser frekvensresponsen og overskridelse af spændingskrav i elforsyningsnettet. For at håndtere disse ulemper er to strategier fremlagt, som hver for sig tilføjer værdifulde tjenester udover at de forhindrer de førnævnte problemer. Den første strategi for at håndtere tidsafhængigheder er at drive et synkront netområde på ikke-nominelle frekvenser i diskrete domæner. Det begrænser uønsket skift af tilstand i de frekvensfølsomme belastninger og fungerer som direkte kontrol af den pågældende belastning. Store synkrone maskiner kan kun langsomt ændre frekvensens setpunkt, hvilket begrænser takten, hvorved kontrol kommandoer kan blive sendt. Derimod har energikilder, der er forbundet igennem effektelektronik, mulighed for at ændre frekvenssetpunkt meget hurtigt og kan skabe en strøm af kommandoer som kan tolkes med eksisterende kommunikations protokoller. Den anden strategi er at forene en spændingsfølsom styring med en frekvensfølsom styring, og på den måde direkte undgå uønskede spændinger. Denne spændingsfølsomme styring kan også blive brugt alene, uden den frekvensfølsomme del, for at stabilisere spænding og reducere behovet for netforstærkninger alle steder hvor lavere spænding falder sammen med højere forbrug. En frekvensfølsom styring er udviklet, implementeret, og testet under realistiske forhold. Resultaterne viste en stor potentiel ressource, i nogen tilfælde større end gennemsnittet af effektforbruget. Nøjagtigheden af belastningsmodeller var verificeret ved hjælp af måledata. En spændingsfølsom styring var udviklet, implementeret og testet under laboratorieforhold, og dens opførsel var simuleret i repræsentative energisystemer. Problemerne forårsaget af udbredt anvendelse af frekvensfølsomme belastninger var simuleret, og afværgelsesstrategier anvendt. For at underbygge gennemførligheden af det fremlagte frekvensbaserede belastningskontrolsystem er analyser af eksisterende energisystemer blevet gennemført med henvisninger til tekniske standarder, specifikationer og endeligt data indsamlet fra systemer i drift. Resultaterne viser, at frekvens- og spændingsfølsomme autonome belastninger er leveringsdygtige alternativer til konventionel frekvens- og spændingsregulerende teknikker. Når de bruges sammen, komplementerer de hinanden. I systemer, hvor operatøren har mulighed for at regulere frekvensen centralt, kan de direkte kontrollere de ellers autonome frekvensfølsomme apparater. Derudover, i systemer, hvor frekvens reguleringsressourcer tillader hurtigt skift af frekvenssetpunkt, for eksempel micro-grids, kan energikilder blive brugt som sender i et lavhastigheds-envejs- kommunikationssystem.Electric energy systems stand on the brink of radical change as the urgent need to reduce greenhouse gas emissions pushes more efficient utilization of energy resources and the adoption of renewable energy sources. New renewable sources such as wind and solar have a large potential, but they are characterized by variable generation that is only partly predictable. Managing loads is already used in limited circumstances to improve security and efficiency of the power system. In power systems with a large penetration of variable generation, load management has large role to play in adapting consumption to the fluctuating production. The large number and geographic dispersion of loads make coordinating their behavior challenging. New telecommunication technology has reduced the cost of linking devices, promising a future "Internet of Things" where loads are fully networked. Strict real-time constraints and reliability constraints in power systems are motivating research into new control architectures suitable for such a large and complex system. The focus of this thesis is on an intermediate stage of evolution between today's largely passive loads and a future "Internet of Things". Specifically, this intermediate stage is autonomous devices with sensors, actuators, and software to control local processes but without digital communications interfaces. The architectures explored in this thesis are newly emergent, so the focus is on feasibility and system modeling. Earlier research has proposed using autonomous load controllers to provide primary frequency reserves. This previous research has mainly focused on the effect of autonomous loads at a high level of abstraction, in large-scale power systems. High-level analysis ignores a significant difference between conventional frequency reserves and frequency-sensitive loads, namely the effects of reduced load diversity on the frequency response. To address this shortfall, time-domain models of the frequency-sensitive loads were constructed that include the variation of frequency response resulting from changes in load diversity. Experiments and analysis have revealed potential drawbacks of high penetrations of autonomous frequency-sensitive loads: time constraints on the underlying processes which reduce the frequency response, and violations of voltage constraints in the distribution systems arising from synchronized loads. Addressing these drawbacks, two mitigation strategies are proposed, each of which add valuable services in addition to preventing the above mentioned problems. The first strategy to address time constraints is to operate a synchronous power system at off-nominal frequencies in discrete domains, thus limiting unintended state changes of frequency-sensitive loads. The effect of operating in discrete frequency domains is to dispatch frequency-sensitive loads. Large synchronous machines can only change their frequency setpoint slowly, greatly limiting the rate of change of dispatch symbols. However, energy sources interfaced with power electronics can change their frequency setpoint very rapidly, creating a stream of symbols that can be decoded with conventional telecommunication protocols. The second strategy is to merge a voltage-sensitive control loop into the frequency-sensitive controller to directly avoid violations of voltage constraints. This voltage-sensitive controller can also operate alone, without the frequency-sensitive controller, to provide voltage regulation service and increase load diversity in any distribution network where lower voltage level corresponds to higher load.The frequency-sensitive load controller has been designed, implemented, and tested in real-life settings. Its performance demonstrated a large potential resource, in some cases greater than the average power consumption. The accuracy of load models was validated by comparison with field data. A voltage-sensitive controller was designed, implemented in an embedded system, and tested in laboratory settings. The voltage-sensitive controller was also implemented in a software simulation environment and tested in representative distribution systems. The problems anticipated by large-scale deployment of frequency-sensitive loads were simulated, and mitigation strategies were applied. To support the feasibility of the proposed frequency dispatch system, analysis of existing power systems was conducted using existing technical norms, specifications, and data collected from operating power systems. The results shows that frequency-sensitive and voltage-sensitive autonomous load are viable alternatives to conventional frequency and voltage control devices. When used in combination, they complement each other. In systems where the operator has centrally dispatchable resources to regulate frequency, these resources can be used to dispatch otherwise autonomous frequency-sensitive loads. Moreover, where centrally dispatchable frequency regulation resources can rapidly change operating points, such as in a micro-grid, the energy sources can be used as transmitters for a ultra-low-bandwidth uni-directional power line communication system

    Gestion flexible des ressources dans les réseaux de nouvelle génération avec SDN

    Get PDF
    Abstract : 5G and beyond-5G/6G are expected to shape the future economic growth of multiple vertical industries by providing the network infrastructure required to enable innovation and new business models. They have the potential to offer a wide spectrum of services, namely higher data rates, ultra-low latency, and high reliability. To achieve their promises, 5G and beyond-5G/6G rely on software-defined networking (SDN), edge computing, and radio access network (RAN) slicing technologies. In this thesis, we aim to use SDN as a key enabler to enhance resource management in next-generation networks. SDN allows programmable management of edge computing resources and dynamic orchestration of RAN slicing. However, achieving efficient performance based on SDN capabilities is a challenging task due to the permanent fluctuations of traffic in next-generation networks and the diversified quality of service requirements of emerging applications. Toward our objective, we address the load balancing problem in distributed SDN architectures, and we optimize the RAN slicing of communication and computation resources in the edge of the network. In the first part of this thesis, we present a proactive approach to balance the load in a distributed SDN control plane using the data plane component migration mechanism. First, we propose prediction models that forecast the load of SDN controllers in the long term. By using these models, we can preemptively detect whether the load will be unbalanced in the control plane and, thus, schedule migration operations in advance. Second, we improve the migration operation performance by optimizing the tradeoff between a load balancing factor and the cost of migration operations. This proactive load balancing approach not only avoids SDN controllers from being overloaded, but also allows a judicious selection of which data plane component should be migrated and where the migration should happen. In the second part of this thesis, we propose two RAN slicing schemes that efficiently allocate the communication and the computation resources in the edge of the network. The first RAN slicing scheme performs the allocation of radio resource blocks (RBs) to end-users in two time-scales, namely in a large time-scale and in a small time-scale. In the large time-scale, an SDN controller allocates to each base station a number of RBs from a shared radio RBs pool, according to its requirements in terms of delay and data rate. In the short time-scale, each base station assigns its available resources to its end-users and requests, if needed, additional resources from adjacent base stations. The second RAN slicing scheme jointly allocates the RBs and computation resources available in edge computing servers based on an open RAN architecture. We develop, for the proposed RAN slicing schemes, reinforcement learning and deep reinforcement learning algorithms to dynamically allocate RAN resources.La 5G et au-delà de la 5G/6G sont censées dessiner la future croissance économique de multiples industries verticales en fournissant l'infrastructure réseau nécessaire pour permettre l'innovation et la création de nouveaux modèles économiques. Elles permettent d'offrir un large spectre de services, à savoir des débits de données plus élevés, une latence ultra-faible et une fiabilité élevée. Pour tenir leurs promesses, la 5G et au-delà de la-5G/6G s'appuient sur le réseau défini par logiciel (SDN), l’informatique en périphérie et le découpage du réseau d'accès (RAN). Dans cette thèse, nous visons à utiliser le SDN en tant qu'outil clé pour améliorer la gestion des ressources dans les réseaux de nouvelle génération. Le SDN permet une gestion programmable des ressources informatiques en périphérie et une orchestration dynamique de découpage du RAN. Cependant, atteindre une performance efficace en se basant sur le SDN est une tâche difficile due aux fluctuations permanentes du trafic dans les réseaux de nouvelle génération et aux exigences de qualité de service diversifiées des applications émergentes. Pour atteindre notre objectif, nous abordons le problème de l'équilibrage de charge dans les architectures SDN distribuées, et nous optimisons le découpage du RAN des ressources de communication et de calcul à la périphérie du réseau. Dans la première partie de cette thèse, nous présentons une approche proactive pour équilibrer la charge dans un plan de contrôle SDN distribué en utilisant le mécanisme de migration des composants du plan de données. Tout d'abord, nous proposons des modèles pour prédire la charge des contrôleurs SDN à long terme. En utilisant ces modèles, nous pouvons détecter de manière préemptive si la charge sera déséquilibrée dans le plan de contrôle et, ainsi, programmer des opérations de migration à l'avance. Ensuite, nous améliorons les performances des opérations de migration en optimisant le compromis entre un facteur d'équilibrage de charge et le coût des opérations de migration. Cette approche proactive d'équilibrage de charge permet non seulement d'éviter la surcharge des contrôleurs SDN, mais aussi de choisir judicieusement le composant du plan de données à migrer et l'endroit où la migration devrait avoir lieu. Dans la deuxième partie de cette thèse, nous proposons deux mécanismes de découpage du RAN qui allouent efficacement les ressources de communication et de calcul à la périphérie des réseaux. Le premier mécanisme de découpage du RAN effectue l'allocation des blocs de ressources radio (RBs) aux utilisateurs finaux en deux échelles de temps, à savoir dans une échelle de temps large et dans une échelle de temps courte. Dans l’échelle de temps large, un contrôleur SDN attribue à chaque station de base un certain nombre de RB à partir d'un pool de RB radio partagé, en fonction de ses besoins en termes de délai et de débit. Dans l’échelle de temps courte, chaque station de base attribue ses ressources disponibles à ses utilisateurs finaux et demande, si nécessaire, des ressources supplémentaires aux stations de base adjacentes. Le deuxième mécanisme de découpage du RAN alloue conjointement les RB et les ressources de calcul disponibles dans les serveurs de l’informatique en périphérie en se basant sur une architecture RAN ouverte. Nous développons, pour les mécanismes de découpage du RAN proposés, des algorithmes d'apprentissage par renforcement et d'apprentissage par renforcement profond pour allouer dynamiquement les ressources du RAN
    • …
    corecore