33 research outputs found

    Оценка моделей представления данных в системах обнаружения и распознавания объектов

    Get PDF
    В статье предложена классификация моделей представления данных в системах обнаружения и распознавания объектов визуальной сцены для решения практических задач. Впервые предложен комплекс критериев для оценки моделей представления данных. Приведены области применения рассмотренных методов.У статті запропоновано класифікацію моделей подання даних в системах знаходження та розпізнавання об’єктів візуальних сцен для вирішення практичних задач. Вперше запропоновано комплекс критеріїв для оцінки моделей подання даних. Наведено галузі застосування оглянутих методів.The data representation models classification in visual scene object detection and recognition systems is introduced. The criteria complex for data representation model evaluation is developed. The application domains for reviewed methods are adduced

    Algorithm of dynamic programming for optimization of the global matching between two contours defined by ordered points

    Get PDF
    This paper presents a new assignment algorithm with order restriction. Our optimization algorithm was developed using dynamic programming. It was implemented and tested to determine the best global matching that preserves the order of the points that define two contours to be matched. In the experimental tests done, we used the affinity matrix obtained via the method proposed by Shapiro, based on geometric modeling and modal matching. \newline The proposed algorithm revealed an optimum performance, when compared with classic assignment algorithms: Hungarian Method, Simplex for Flow Problems and LAPm. Indeed, the quality of the matching improved when compared with these three algorithms, due to the disappearance of crossed matching, which is allowed by the conventional assignment algorithms. Moreover, the computational cost of this algorithm is much lower than the ones of other three, leading to enhanced execution times

    A Sensor System for Detection of Hull Surface Defects

    Get PDF
    This paper presents a sensor system for detecting defects in ship hull surfaces. The sensor was developed to enable a robotic system to perform grit blasting operations on ship hulls. To achieve this, the proposed sensor system captures images with the help of a camera and processes them in real time using a new defect detection method based on thresholding techniques. What makes this method different is its efficiency in the automatic detection of defects from images recorded in variable lighting conditions. The sensor system was tested under real conditions at a Spanish shipyard, with excellent results

    Imaging Services on the Grid as a Product Line: Requirements and Architecture

    Get PDF
    International audienceSOA is now the reference architecture for medical imaging processing on the grid. Imaging services must be composed in workfows to implement the processing chains, but the need to handle end-to-end qualities of service hampered both the provision of services and their composition. This paper analyses the variability of functional and non functional aspects of this domain and proposes a first architecture in which services are organized within a product line architecture and metamodels help in structuring necessary information

    Computer analysis of objects’ movement in image sequences: methods and applications

    Get PDF
    Computer analysis of objects’ movement in image sequences is a very complex problem, considering that it usually involves tasks for automatic detection, matching, tracking, motion analysis and deformation estimation. In spite of its complexity, this computational analysis has a wide range of important applications; for instance, in surveillance systems, clinical analysis of human gait, objects recognition, pose estimation and deformation analysis. Due to the extent of the purposes, several difficulties arise, such as the simultaneous tracking of manifold objects, their possible temporary occlusion or definitive disappearance from the image scene, changes of the viewpoints considered in images acquisition or of the illumination conditions, or even nonrigid deformations that objects may suffer in image sequences. In this paper, we present an overview of several methods that may be considered to analyze objects’ movement; namely, for their segmentation, tracking and matching in images, and for estimation of the deformation involved between images.This paper was partially done in the scope of project “Segmentation, Tracking and Motion Analysis of Deformable (2D/3D) Objects using Physical Principles”, with reference POSC/EEA-SRI/55386/2004, financially supported by FCT -Fundação para a Ciência e a Tecnologia from Portugal. The fourth, fifth and seventh authors would like to thank also the support of their PhD grants from FCT with references SFRH/BD/29012/2006, SFRH/BD/28817/2006 and SFRH/BD/12834/2003, respectively

    Gebiss: an ImageJ plugin for the specification of ground truth and the performance evaluation of 3D segmentation algorithms.

    Get PDF
    Background: Image segmentation is a crucial step in quantitative microscopy that helps to define regions of tissues, cells or subcellular compartments. Depending on the degree of user interactions, segmentation methods can be divided into manual, automated or semi-automated approaches. 3D image stacks usually require automated methods due to their large number of optical sections. However, certain applications benefit from manual or semi-automated approaches. Scenarios include the quantification of 3D images with poor signal-to-noise ratios or the generation of so-called ground truth segmentations that are used to evaluate the accuracy of automated segmentation methods. Results: We have developed Gebiss; an ImageJ plugin for the interactive segmentation, visualisation and quantification of 3D microscopic image stacks. We integrated a variety of existing plugins for threshold-based segmentation and volume visualisation. Conclusions: We demonstrate the application of Gebiss to the segmentation of nuclei in live Drosophila embryos and the quantification of neurodegeneration in Drosophila larval brains. Gebiss was developed as a cross-platform ImageJ plugin and is freely available on the web at http://imaging.bii.a-star.edu.sg/projects/gebiss

    Identification of pore spaces in 3D CT soil images using a PFCM partitional clustering

    Get PDF
    Recent advances in non-destructive imaging techniques, such as X-ray computed tomography (CT), make it possible to analyse pore space features from the direct visualisation from soil structures. A quantitative characterisation of the three-dimensional solid-pore architecture is important to understand soil mechanics, as they relate to the control of biological, chemical, and physical processes across scales. This analysis technique therefore offers an opportunity to better interpret soil strata, as new and relevant information can be obtained. In this work, we propose an approach to automatically identify the pore structure of a set of 200-2D images that represent slices of an original 3D CT image of a soil sample, which can be accomplished through non-linear enhancement of the pixel grey levels and an image segmentation based on a PFCM (Possibilistic Fuzzy C-Means) algorithm. Once the solids and pore spaces have been identified, the set of 200-2D images is then used to reconstruct an approximation of the soil sample by projecting only the pore spaces. This reconstruction shows the structure of the soil and its pores, which become more bounded, less bounded, or unbounded with changes in depth. If the soil sample image quality is sufficiently favourable in terms of contrast, noise and sharpness, the pore identification is less complicated, and the PFCM clustering algorithm can be used without additional processing; otherwise, images require pre-processing before using this algorithm. Promising results were obtained with four soil samples, the first of which was used to show the algorithm validity and the additional three were used to demonstrate the robustness of our proposal. The methodology we present here can better detect the solid soil and pore spaces on CT images, enabling the generation of better 2D?3D representations of pore structures from segmented 2D images

    Fuzzy Image Segmentation based upon Hierarchical Clustering

    Get PDF
    In this paper we introduce the concept of Fuzzy Image Segmentation, providing an algorithm to build fuzzy boundaries based on the existing relations between the fuzzy boundary set problem and the (crisp) hierarchical image segmentation problem. In particular, since a crisp image segmentation can be characterized in terms of the set of edges that separates the adjacent regions of the segmentation, from these edges we introduce the concept of fuzzy image segmentation. Hence,each fuzzy image segmentation is characterized by means of a fuzzy set over the set of edges, which can be then understood as the fuzzy boundary of the image. Some computational experiences are included in order to show the obtained fuzzy boundaries of some digital images

    Simulation of Ground-Truth Validation Data Via Physically- and Statistically-Based Warps

    Full text link
    Abstract. The problem of scarcity of ground-truth expert delineations of medi-cal image data is a serious one that impedes the training and validation of medi-cal image analysis techniques. We develop an algorithm for the automatic generation of large databases of annotated images from a single reference data-set. We provide a web-based interface through which the users can upload a reference data set (an image and its corresponding segmentation and landmark points), provide custom setting of parameters, and, following server-side com-putations, generate and download an arbitrary number of novel ground-truth data, including segmentations, displacement vector fields, intensity non-uniformity maps, and point correspondences. To produce realistic simulated data, we use variational (statistically-based) and vibrational (physically-based) spatial deformations, nonlinear radiometric warps mimicking imaging non-homogeneity, and additive random noise with different underlying distributions. We outline the algorithmic details, present sample results, and provide the web address to readers for immediate evaluation and usage
    corecore