2,447 research outputs found

    ERP: An Efficient and Reliable Protocol for Emergency Message Dissemination in Vehicular Ad Hoc Networks

    Get PDF
    Many safety-related applications in Vehicular Ad Hoc Networks require fast and reliable emergency message dissemination through multi-hop broadcast. However, the conventional broadcast mechanism is neither efficient nor reliable because it results in serious contention and collisions, which is usually referred to as the broadcast storm problem. In this paper, we propose ERP, a two-phase broadcast protocol that improves both efficiency and reliability. The first phase, a “fast-propagation phase”, is designed to improve efficiency. We explicitly designate forwarders to relay the message and thus ensure both collision free and quick propagation. The second phase, a “loss recovery phase”, enhances reliability. In this phase, nodes overhear the message and repeatedly broadcast it for the benefit of nodes which have not received the message in the first phase. We analytically show that using a density-aware power control mechanism in the second phase can efficiently improve the recovery rate. We also demonstrate how to find the optimal transmission power. Simulation results illustrate that our protocol outperforms probabilistic forwarding, which is currently the most widely studied solution, by a factor of 2 to 3.USAROUT-BattelleOpe

    Hybrid-Vehfog: A Robust Approach for Reliable Dissemination of Critical Messages in Connected Vehicles

    Full text link
    Vehicular Ad-hoc Networks (VANET) enable efficient communication between vehicles with the aim of improving road safety. However, the growing number of vehicles in dense regions and obstacle shadowing regions like Manhattan and other downtown areas leads to frequent disconnection problems resulting in disrupted radio wave propagation between vehicles. To address this issue and to transmit critical messages between vehicles and drones deployed from service vehicles to overcome road incidents and obstacles, we proposed a hybrid technique based on fog computing called Hybrid-Vehfog to disseminate messages in obstacle shadowing regions, and multi-hop technique to disseminate messages in non-obstacle shadowing regions. Our proposed algorithm dynamically adapts to changes in an environment and benefits in efficiency with robust drone deployment capability as needed. Performance of Hybrid-Vehfog is carried out in Network Simulator (NS-2) and Simulation of Urban Mobility (SUMO) simulators. The results showed that Hybrid-Vehfog outperformed Cloud-assisted Message Downlink Dissemination Scheme (CMDS), Cross-Layer Broadcast Protocol (CLBP), PEer-to-Peer protocol for Allocated REsource (PrEPARE), Fog-Named Data Networking (NDN) with mobility, and flooding schemes at all vehicle densities and simulation times

    CMD: A Multi-Channel Coordination Scheme for Emergency Message Dissemination in IEEE 1609.4

    Full text link
    In the IEEE 1609.4 legacy standard for multi-channel communications in vehicular ad hoc networks(VANETs), the control channel (CCH) is dedicated to broadcast safety messages while the service channels (SCH's) are dedicated to transmit infotainment service content. However, the SCH can be used as an alternative to transmit high priority safety messages in the event that they are invoked during the service channel interval (SCHI). This implies that there is a need to transmit safety messages across multiple available utilized channels to ensure that all vehicles receive the safety message. Transmission across multiple SCH's using the legacy IEEE 1609.4 requires multiple channel switching and therefore introduces further end-to-end delays. Given that safety messaging is a life critical application, it is important that optimal end-to-end delay performance is derived in multi-channel VANET scenarios to ensure reliable safety message dissemination. To tackle this challenge, three primary contributions are in this article: first, a channel coordinator selection approach based on the least average separation distance (LAD) to the vehicles that expect to tune to other SCH's and operates during the control channel interval (CCHI) is proposed. Second, a model to determine the optimal time intervals in which CMD operates during the CCHI is proposed. Third, a contention back-off mechanism for safety message transmission during the SCHI is proposed. Computer simulations and mathematical analysis show that CMD performs better than the legacy IEEE 1609.4 and a selected state-of-the-art multi-channel message dissemination schemes in terms of end-to-end delay and packet reception ratio.Comment: 15 pages, 10 figures, 7 table

    Routing And Communication Path Mapping In VANETS

    Get PDF
    Vehicular ad-hoc network (VANET) has quickly become an important aspect of the intelligent transport system (ITS), which is a combination of information technology, and transport works to improve efficiency and safety through data gathering and dissemination. However, transmitting data over an ad-hoc network comes with several issues such as broadcast storms, hidden terminal problems and unreliability; these greatly reduce the efficiency of the network and hence the purpose for which it was developed. We therefore propose a system of utilising information gathered externally from the node or through the various layers of the network into the access layer of the ETSI communication stack for routing to improve the overall efficiency of data delivery, reduce hidden terminals and increase reliability. We divide route into segments and design a set of metric system to select a controlling node as well as procedure for data transfer. Furthermore we propose a system for faster data delivery based on priority of data and density of nodes from route information while developing a map to show the communication situation of an area. These metrics and algorithms will be simulated in further research using the NS-3 environment to demonstrate the effectiveness

    A Simple and Robust Dissemination Protocol for VANETs

    Get PDF
    Several promising applications for Vehicular Ad-hoc Networks (VANETs) exist. For most of these applications, the communication among vehicles is envisioned to be based on the broadcasting of messages. This is due to the inherent highly mobile environment and importance of these messages to vehicles nearby. To deal with broadcast communication, dissemination protocols must be defined in such a way as to (i) prevent the so-called broadcast storm problem in dense networks and (ii) deal with disconnected networks in sparse topologies. In this paper, we present a Simple and Robust Dissemination (SRD) protocol that deals with these requirements in both sparse and dense networks. Its novelty lies in its simplicity and robustness. Simplicity is achieved by considering only two states (cluster tail and non- tail) for a vehicle. Robustness is achieved by assigning message delivery responsibility to multiple vehicles in sparse networks. Our simulation results show that SRD achieves high delivery ratio and low end-to-end delay under diverse traffic conditions

    Network parameters impact on dynamic transmission power control in vehicular ad hoc networks

    Get PDF
    International audienceIn vehicular ad hoc networks, the dynamic change in transmission power is very effective to increase the throughput of the wireless vehicular network and decrease the delay of the message communication between vehicular nodes on the highway. Whenever an event occurs on the highway, the reliability of the communication in the vehicular network becomes so vital so that event created messages should reach to all the moving network nodes. It becomes necessary that there should be no interference from outside of the network and all the neighbor nodes should lie in the transmission range of the reference vehicular node. Transmission range is directly proportional to the transmission power the moving node. If the transmission power will be high, the interference increases that can cause higher delay in message reception at receiver end, hence the performance of the network decreased. In this paper, it is analyzed that how transmission power can be controlled by considering other different parameter of the network such as; density, distance between moving nodes, different types of messages dissemination with their priority, selection of an antenna also affects the transmission power. The dynamic control of transmission power in VANET serves also for the optimization of the resources where it needs, can be decreased and increased depending on the circumstances of the network. Different applications and events of different types also cause changes in transmission power to enhance the reachability. The analysis in this paper is comprised of density, distance with single hop and multi hop message broadcasting based dynamic transmission power control as well as antenna selection and applications based. Some summarized tables are produced according to the respective parameters of the vehicular network. At the end some valuable observations are made and discussed in detail

    SDDV: scalable data dissemination in vehicular ad hoc networks

    Get PDF
    An important challenge in the domain of vehicular ad hoc networks (VANET) is the scalability of data dissemination. Under dense traffic conditions, the large number of communicating vehicles can easily result in a congested wireless channel. In that situation, delays and packet losses increase to a level where the VANET cannot be applied for road safety applications anymore. This paper introduces scalable data dissemination in vehicular ad hoc networks (SDDV), a holistic solution to this problem. It is composed of several techniques spread across the different layers of the protocol stack. Simulation results are presented that illustrate the severity of the scalability problem when applying common state-of-the-art techniques and parameters. Starting from such a baseline solution, optimization techniques are gradually added to SDDV until the scalability problem is entirely solved. Besides the performance evaluation based on simulations, the paper ends with an evaluation of the final SDDV configuration on real hardware. Experiments including 110 nodes are performed on the iMinds w-iLab.t wireless lab. The results of these experiments confirm the results obtained in the corresponding simulations
    • 

    corecore