77 research outputs found

    Artificial intelligence-powered expert system model for identifying fall armyworm infestation in maize (Zea mays L.)

    Get PDF
    Maize (Zea mays L) is one of the most saleable cereal crops grown worldwide and a dominant staple food in many developing countries. The severe outbreak of fall armyworm in maize causes massive yield loss. Modern technologies, including smartphones, can assist in detecting recognising the fall armyworm infestation in maize. The objective of this study was to develop an automated Artificial Intelligence Powered Expert System (AIPES) for identifying fall armyworm infestation in maize. In addition, it put forward a deep learning-based model that is trained on photographs of healthy and fall armyworm infested leaves, cobs and tassels from a dataset and furnished an application that will be detecting maize fall armyworm infestation using Convolutional Neural Network (CNN) architecture and Mobile Net V 2 framework model. The study developed an Artificial Intelligence (AI) based maize fall armyworm infestation detection system using a DCNN (Deep Convolutional Neural Network) to support maize cultivating farmers. The model executed the objective by accurately identifying the fall armyworm infested maize plant and also classified them vis-c-vis the healthier crop. The deep learning models were trained to detect and recognise fall armyworm infection using more than 11000 images of fall armyworm infested leaves, cobs, and tassels. The created application (AIPES for identifying fall armyworm infestation in maize) using CNN detected and recognised the fall armyworm infestation in maize with a 100 per cent training accuracy rate and 87 per cent validation accuracy. So, the detection of maize fall armyworm and the treatment of fall armyworm-infested maize could lead to a higher maize crop yield.      

    Techniques of deep learning and image processing in plant leaf disease detection: a review

    Get PDF
    Computer vision techniques are an emerging trend today. Digital image processing is gaining popularity because of the significant upsurge in the usage of digital images over the internet. Digital image processing is a practice that can help in designing sophisticated high-end machines, which can hold the ophthalmic functionality of the human eye. In agriculture, leaf examination is important for disease identification and fair warning for any deficiency within the plant. Many prominent plant species are facing extinction because of a lack of knowledge. A proper realization of computer vision techniques aid in extracting a significant amount of information from leaf image. This necessitates the requirement of an automatic leaf disease detection method to diagnose disease occurrences and severity, for timely crop management, by spraying pesticides. This study focuses on techniques of digital image processing and machine learning rendered in plant leaf disease detection, which has great potential in precision agriculture. To support this study, techniques exercised by various researchers in recent years are tabulated

    A Survey on the State of Art Approaches for Disease Detection in Plants

    Get PDF
    Agriculture is the main factor for economy and contributes to GDP. The growth of the economy of many countries is based on agriculture. As a result, the yield factor, quality and volume of agricultural products, play a critical role in economic development. Plant diseases and pests have become a major determinant of crop yields throughout the years, as such illnesses in plants offer a serious threat and impediment to higher yields or production in the agriculture industry. As a result, From the outset, it becomes the major duty to correctly monitor the plants, to detect diseases thoroughly, and to determine methods of controlling or monitoring these plant diseases pests in order to achieve a higher rate of production growth and minimal crop damage. Using machine vision, deep learning methods and tools for extracting and classifying features, It could be possible to build a reliable disease detection system. Numerous researchers have created and deployed various ways for detecting plant diseases and pests. The potential of these methods has been examined in this work

    Artificial intelligence-based solutions for coffee leaf disease classification

    Get PDF
    Coffee is one of the most widely consumed beverages and the quantity and quality of coffee beans depend significantly on the health and condition of coffee plants, particularly their leaves. The automation of coffee leaf disease classification using AI is an essential need, providing not only economic benefits but also contributing to environmental conservation and creating better conditions for sustainable coffee cultivation. Through the application of AI, early disease detection is facilitated, thereby reducing pest and disease control costs, minimizing crop losses, increasing coffee productivity and product quality, and promoting environmental preservation. Many studies have proposed AI algorithms for coffee disease classification. However, numerous algorithms employ classical algorithms, while some utilize deep learning, the current state-of-the-art in computer vision. The challenge lies in the fact that when using deep learning, a substantial amount of data is required for training. The design of deep learning architectures to enhance model accuracy while still working with a small training dataset remains an area of ongoing research. In this study, we propose deep learning-based method for coffee leaf disease classification. We propose the combination of different deep convolutional neural networks to further improve overall classification performance. Early and late fusion have been conducted to evaluate the effectiveness of the pre-trained model. Our experimental results demonstrate that the ensemble method outperforms single-model approaches, achieving high accuracy and precision in BRACOL coffee disease leaf

    Detection of Disease on Corn Plants Using Convolutional Neural Network Methods

    Get PDF
    Deep Learning is still an interesting issue and is still widely studied. In this study Deep Learning was used for the diagnosis of corn plant disease using the Convolutional Neural Network (CNN) method, with a total dataset of 3.854 images of diseases in corn plants, which consisted of three types of corn diseases namely Common Rust, Gray Leaf Spot, and Northern Leaf Blight. With an accuracy of 99%, in detecting disease in corn plants

    Plant Disease Diagnosing Based on Deep Learning Techniques: A Survey and Research Challenges

    Get PDF
    Agriculture crops are highly significant for the sustenance of human life and act as an essential source for national income development worldwide. Plant diseases and pests are considered one of the most imperative factors influencing food production, quality, and minimize losses in production. Farmers are currently facing difficulty in identifying various plant diseases and pests, which are important to prevent plant diseases effectively in a complicated environment. The recent development of deep learning techniques has found use in the diagnosis of plant diseases and pests, providing a robust tool with highly accurate results. In this context, this paper presents a comprehensive review of the literature that aims to identify the state of the art of the use of convolutional neural networks (CNNs) in the process of diagnosing and identification of plant pest and diseases. In addition, it presents some issues that are facing the models performance, and also indicates gaps that should be addressed in the future. In this regard, we review studies with various methods that addressed plant disease detection, dataset characteristics, the crops, and pathogens. Moreover, it discusses the commonly employed five-step methodology for plant disease recognition, involving data acquisition, preprocessing, segmentation, feature extraction, and classification. It discusses various deep learning architecture-based solutions that have a faster convergence rate of plant disease recognition. From this review, it is possible to understand the innovative trends regarding the use of CNN’s algorithms in the plant diseases diagnosis and to recognize the gaps that need the attention of the research community

    A Review on Advances in Automated Plant Disease Detection

    Get PDF
    Plant diseases cause major yield and economic losses. To detect plant disease at early stages, selecting appropriate techniques is imperative as it affects the cost, diagnosis time, and accuracy. This research gives a comprehensive review of various plant disease detection methods based on the images used and processing algorithms applied. It systematically analyzes various traditional machine learning and deep learning algorithms used for processing visible and spectral range images, and comparatively evaluates the work done in literature in terms of datasets used, various image processing techniques employed, models utilized, and efficiency achieved. The study discusses the benefits and restrictions of each method along with the challenges to be addressed for rapid and accurate plant disease detection. Results show that for plant disease detection, deep learning outperforms traditional machine learning algorithms while visible range images are more widely used compared to spectral images

    Automatic Recognition of Tea Diseases Based on Deep Learning

    Get PDF
    With the rapid development of intelligent agriculture and precision agriculture, computer image processing technology has been widely used to solve various problems in the agricultural field. In particular, the advantages of convolutional neural networks (CNNs) in image classification have also been widely used in the automatic recognition and classification of plant diseases. In this paper, a deep convolutional neural network named LeafNet capable of recognizing the seven types of diseases from tea leaf disease images was established, with an accuracy of up to 90.23%, aiming to provide timely and accurate diagnostic services in the remote and topographic tea plantation in China. At the same time, the traditional machine learning algorithm is applied for comparative analysis, which extracts the dense scale-invariant feature transform (DSIFT) of the image and constructs the bag of visual word (BOVW) model to express the image based on the DSIFT descriptor. The support vector machines (SVMs) and multilayer perceptron (MLP) were used to identify tea leaf diseases, with an accuracy of 60.91 and 70.94%, respectively
    • …
    corecore