767 research outputs found

    Application of virtual and mixed reality for 3D visualization in intracranial aneurysm surgery planning: a systematic review

    Full text link
    BACKGROUND Precise preoperative anatomical visualization and understanding of an intracranial aneurysm (IA) are fundamental for surgical planning and increased intraoperative confidence. Application of virtual reality (VR) and mixed reality (MR), thus three-dimensional (3D) visualization of IAs could be significant in surgical planning. Authors provide an up-to-date overview of VR and MR applied to IA surgery, with specific focus on tailoring of the surgical treatment. METHODS A systematic analysis of the literature was performed in accordance with the PRISMA guidelines. Pubmed, and Embase were searched to identify studies reporting use of MR and VR 3D visualization in IA surgery during the last 25 years. Type and number of IAs, category of input scan, visualization techniques (screen, glasses or head set), inclusion of haptic feedback, tested population (residents, fellows, attending neurosurgeons), and aim of the study (surgical planning/rehearsal, neurosurgical training, methodological validation) were noted. RESULTS Twenty-eight studies were included. Eighteen studies (64.3%) applied VR, and 10 (35.7%) used MR. A positive impact on surgical planning was documented by 19 studies (67.9%): 17 studies (60.7%) chose the tailoring of the surgical approach as primary outcome of the analysis. A more precise anatomical visualization and understanding with VR and MR was endorsed by all included studies (100%). CONCLUSION Application of VR and MR to perioperative 3D visualization of IAs allowed an improved understanding of the patient-specific anatomy and surgical preparation. This review describes a tendency to utilize mostly VR-platforms, with the primary goals of a more accurate anatomical understanding, surgical planning and rehearsal

    Evaluation of User Performance in Simulation-Based Diagnostic Cerebral Angiography Training

    Get PDF
    Simulation of anatomically complex procedures, such as angiography, is becoming more practical, however, computer-based modules require extensive research to assess their effectiveness. We organized two training schemas – alternating cases and consistent cases – and hypothesized that the alternating practice cases would be beneficial to test performance. Eight residents (4 radiology/4 neurosurgery) and 8 anatomy graduate students were trained on the Simbionix™ simulator in order to assess skill acquisition in diagnostic cerebral angiography over 8 sessions. We found that participants improve on total procedure time and total fluoroscopy time (p\u3c0.05), but not on contrast injected or roadmaps created. There were no significant differences between alternating and consistent training types. Additional work needs to be done with higher sample numbers and visuospatial scores as criteria

    Immersive Visualization in Biomedical Computational Fluid Dynamics and Didactic Teaching and Learning

    Get PDF
    Virtual reality (VR) can stimulate active learning, critical thinking, decision making and improved performance. It requires a medium to show virtual content, which is called a virtual environment (VE). The MARquette Visualization Lab (MARVL) is an example of a VE. Robust processes and workflows that allow for the creation of content for use within MARVL further increases the userbase for this valuable resource. A workflow was created to display biomedical computational fluid dynamics (CFD) and complementary data in a wide range of VE’s. This allows a researcher to study the simulation in its natural three-dimensional (3D) morphology. In addition, it is an exciting way to extract more information from CFD results by taking advantage of improved depth cues, a larger display canvas, custom interactivity, and an immersive approach that surrounds the researcher. The CFD to VR workflow was designed to be basic enough for a novice user. It is also used as a tool to foster collaboration between engineers and clinicians. The workflow aimed to support results from common CFD software packages and across clinical research areas. ParaView, Blender and Unity were used in the workflow to take standard CFD files and process them for viewing in VR. Designated scripts were written to automate the steps implemented in each software package. The workflow was successfully completed across multiple biomedical vessels, scales and applications including: the aorta with application to congenital cardiovascular disease, the Circle of Willis with respect to cerebral aneurysms, and the airway for surgical treatment planning. The workflow was completed by novice users in approximately an hour. Bringing VR further into didactic teaching within academia allows students to be fully immersed in their respective subject matter, thereby increasing the students’ sense of presence, understanding and enthusiasm. MARVL is a space for collaborative learning that also offers an immersive, virtual experience. A workflow was created to view PowerPoint presentations in 3D using MARVL. A resulting Immersive PowerPoint workflow used PowerPoint, Unity and other open-source software packages to display the PowerPoint presentations in 3D. The Immersive PowerPoint workflow can be completed in under thirty minutes

    Patient-specific virtual reality simulation : a patient-tailored approach of endovascular aneurysm repair

    Get PDF

    In silico assessment of biomedical products: the conundrum of rare but not so rare events in two case studies

    Get PDF
    In silico clinical trials, defined as “The use of individualized computer simulation in the development or regulatory evaluation of a medicinal product, medical device, or medical intervention,” have been proposed as a possible strategy to reduce the regulatory costs of innovation and the time to market for biomedical products. We review some of the the literature on this topic, focusing in particular on those applications where the current practice is recognized as inadequate, as for example, the detection of unexpected severe adverse events too rare to be detected in a clinical trial, but still likely enough to be of concern. We then describe with more details two case studies, two successful applications of in silico clinical trial approaches, one relative to the University of Virginia/Padova simulator that the Food and Drug Administration has accepted as possible replacement for animal testing in the preclinical assessment of artificial pancreas technologies, and the second, an investigation of the probability of cardiac lead fracture, where a Bayesian network was used to combine in vivo and in silico observations, suggesting a whole new strategy of in silico-augmented clinical trials, to be used to increase the numerosity where recruitment is impossible, or to explore patients’ phenotypes that are unlikely to appear in the trial cohort, but are still frequent enough to be of concern
    corecore