Western University Scholarship@Western

Masters of Clinical Anatomy Projects

Anatomy and Cell Biology Department

4-30-2015

Evaluation of User Performance in Simulation-Based Diagnostic Cerebral Angiography Training

Oleksiy Zaika Western University, ozaika@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/mcap Part of the Anatomy Commons

Citation of this paper:

Zaika, Oleksiy, "Evaluation of User Performance in Simulation-Based Diagnostic Cerebral Angiography Training" (2015). *Masters of Clinical Anatomy Projects*. 3. https://ir.lib.uwo.ca/mcap/3

Evaluation of User Performance in Simulation-Based Diagnostic Cerebral Angiography Training

by

Oleksiy Zaika

Graduate Program in Clinical Anatomy

A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Clinical Anatomy

The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada

© Oleksiy Zaika 2015

Abstract

Simulation of anatomically complex procedures, such as angiography, is becoming more practical, however, computer-based modules require extensive research to assess their effectiveness. We organized two training schemas – alternating cases and consistent cases – and hypothesized that the alternating practice cases would be beneficial to test performance. Eight residents (4 radiology/4 neurosurgery) and 8 anatomy graduate students were trained on the SimbionixTM simulator in order to assess skill acquisition in diagnostic cerebral angiography over 8 sessions. We found that participants improve on total procedure time and total fluoroscopy time (p<0.05), but not on contrast injected or roadmaps created. There were no significant differences between alternating and consistent training types. Additional work needs to be done with higher sample numbers and visuospatial scores as criteria.

Keywords

Angiography, aneurysm, simulation, medicine, radiology, neurosurgery, training, simulationbased medical education

Co-Authorship Statement

The written material in this book is the original work of the author. Oleksiy Zaika contributed to the following aspects of this work: participant recruitment, data collection, data analysis, and authorship of this thesis.

Dr. Sandrine de Ribaupierre developed the original research question and played an integral role in the progression of this study. She was involved in editing conference submissions and contributed her expertise in the field of simulation.

Dr. Ngan Nguyen played a key role in developing research design, research material, and participant recruitment. Her groundwork with this simulator made this thesis possible.

Dr. Roy Eagleson contributed guidance towards new ideas, edited conference abstracts, and assisted with technical work.

Dr. Mel Boulton contributed clinical authentication of methods and provided Angio suite preparation.

Acknowledgments (if any)

I would like to extend a thank you to my supervisory committee, Dr. Sandrine de Ribaupierre (Primary Supervisor), Dr. Roy Eagleson (Co-Supervisor), Dr. Tim Wilson (Graduate Affairs Committee Member), and Ngan Nguyen (Advisor), for their continued support through the course of my research.

I would also like to recognize individual contributions and roles that were key to this research:

- Dr. Sandrine de Ribaupierre and Dr. Roy Eagleson, my supervisors, for their project conception, research guidance, and support
- Dr. Mel Boulton, our clinical advisor, for providing crucial input into procedure instruction design and clinical training
- Dr. Ngan Nguyen for providing technical simulator training, instruction outlines and assessments used in the study
- Dr. Tim Wilson, my GAC Member, for his advice, support through the research process, constructive feedback after meetings and encouragement
- Clinical Anatomy graduate students that participated in the study, supported me throughout this research and provided me with constructive feedback
- Neurosurgery and radiology residents who volunteered their time to participate in this study, especially when scheduling flexibility and travel were necessary
- Tyler Beveridge for his valuable contribution in statistical data analysis and support throughout the research process
- Lead Labranche for her assistance in mental rotation test interpretation
- SimbionixTM support team for their technical assistance

Table of Contents

A	bstract	ii
Co	o-Authorship Statement	iii
A	cknowledgments (if any)	iv
Li	ist of Tables (where applicable)	viii
Li	ist of Figures (where applicable)	ix
Li	ist of Appendices (where applicable)	xi
1	Introduction	1
	1.1 Changes in Medicine	1
2	Simulation	2
	2.1 Simulation Development	2
	2.2 Types of Simulation	
	2.3 Benefits of Simulation	5
	2.4 Limitation of Simulation	6
	2.5 Simulation of Endovascular Procedures	6
3	Angiography	6
	3.1 Aneurysms	7
	3.1.1 Prevalence & Detection	8
	3.1.2 Treatment	9
	3.2 Angiography Complications	10
	3.3 Angiography risks	10
4	Endovascular Training	10
	4.1 Endovascular Simulation	11
5	Methods	11
	5.1 Participants	11

	5.2	Assess	sments	. 12
	5.3	Group	ing	. 12
		5.3.1	Alternating vs. Consistent	. 13
		5.3.2	High MRT vs. low MRT	. 14
	5.4	Sessio	ns	. 15
	5.5	Simula	ator	. 15
6	Res	ults		. 19
	6.1	Anator	my Assessment	. 19
	6.2	Total I	Procedure Time	. 19
		6.2.1	Overall Performance	. 19
		6.2.2	Intersession Comparison	. 20
		6.2.3	Alternating vs. Consistent Training	. 21
	6.3	Total I	Fluoroscopy Time	. 22
		6.3.1	Overall Performance	. 22
		6.3.2	Intersession Comparison	. 24
		6.3.3	Alternating vs. Consistent Training	. 24
		6.3.4	Total Procedure Time and Fluoroscopy Correlation	. 25
	6.4	Total (Contrast Injected	. 26
		6.4.1	Overall Performance	. 26
		6.4.2	Intersession Comparison	. 28
		6.4.3	Alternating vs. Consistent Training	. 28
		6.4.4	Total Contrast Injected Correlations	. 29
	6.5	Total I	Roadmaps	. 31
		6.5.1	Overall Performance	. 31
		6.5.2	Intersession Comparison	. 32
		6.5.3	Alternating vs. Simple Training	. 33

	6.6 Low MRT vs. High MRT	. 33
7	Discussion	. 35
	7.1 Performance Across Metrics	. 36
	7.2 Performance Between Sessions	. 37
	7.3 Performance Between Alternating and Consistent Groups	. 37
	7.4 Limitations	. 38
	7.5 Future Direction	. 38
8	Conclusions	. 40
A	ppendices	. 47

List of Tables (where applicable)

Table 1: Total procedure time for all participants across all sessions	20
Table 2: Total fluoroscopy time of all individuals across all sessions	23
Table 3: Total contrast injected of all individuals across all sessions	27
Table 4: Number of roadmaps created by all participants across all sessions	32

List of Figures (where applicable)

Figure 1: Common locations of intracranial aneurysms	8
Figure 2: Session layout for the alternating and consistent practice groups	. 14
Figure 3 Simbionix ANGIO Mentor simulator with a visible control panel	. 16
Figure 4 Catheter (left) and guidewire (right) running through the catheter	. 16
Figure 5: Computer with main display (left) and fluoroscopic monitor (right) and pedals for fluoroscopy, roadmaps and DSA (bottom)	
Figure 6: Total procedure time for all participants over 8 sessions	. 20
Figure 7: Total procedure time between alternating and consistent training groups	. 22
Figure 8: Average total fluoroscopy time across all sessions	. 24
Figure 9: Total fluoroscopy time between alternating and consistent groups across all sessions	. 25
Figure 10: Correlation between total procedure time and total fluoroscopy time	. 26
Figure 11: Average amount of contrast injected across all sessions	. 27
Figure 12: Total contrast injected between alternating and consistent groups across all sessions	. 29
Figure 13: Correlation between total procedure time and contrast injected	. 30
Figure 14: Correlation between total fluoroscopy time and contrast injected	. 31
Figure 15: Average number of roadmaps created at every session	. 32
Figure 16: Number of roadmaps created between alternating and consistent groups	. 33
Figure 17: Distribution of different MRT scores between training groups	. 34

Figure 18: Total procedure times between low and high MRT groups	35	
Figure 19: Anatomical Errors can be graphically represented to assess performance	39	

List of Appendices (where applicable)

Appendix A: Copyright permission for use of material provided by Massachusetts Medical
Society
Appendix B: Statistical analysis from total procedure time between alternating and consistent groups
Appendix C: Statistical analysis from total procedure time between low and high MRT participants
Appendix D: Statistical analysis of total fluoroscopy time between alternating and consistent
training groups
Appendix E: Statistical analysis of correlation between total procedure time and total fluoroscopy time
Appendix F: Statistical analysis of total contrast injected between alternating and consistent
groups
Appendix G: Statistical analysis of total procedure time, total fluoroscopy time, and contrast injected correlations
Appendix H: Statistical analysis of number of roadmaps created between alternating and consistent groups
Appendix I: Independent samples t-test assessing the MRT values between alternating and consistent groups

1 Introduction

1.1 Changes in Medicine

The issue of surgical training was first discussed in a presidential address in 1907, when Dr. Dudley Allen stressed that the ideal surgeon "should limit his personal service strictly to those fields in which he is the master..." Since then surgical internship has taken a few forms. At that point, the surgical training system was strictly pyramidal, borrowed from the German medical system, where only about half of the residents coming into the program received the full four-year education in surgery (Pellegrini, 2006). Edward Churchil, who stipulated that "half a surgical training is about as useful as half a billiard ball", famously criticized this system. It was him who introduced the currently used 'rectangular' system, which takes in fewer residents, but provides all with the necessary four-year education. Interestingly, he also advocated for a flexible curriculum to accommodate for individual training needs, however, to this day the rectangular system persists with only minor modifications and a 'frozen-curriculum' (Pellegrini, 2006).

The residency model has retained its core goals and has only recently reached a pivot point where new educational techniques are beginning to be explored and implemented (Pellegrini, 2006). Technological developments and pedagogical research are establishing themselves as influential cornerstones in the movement to provide appropriate complementary training to medical residents.

One of the pivoting forces in the evolution of the medical education system is the increasingly open understanding and discussion of the shortcomings of the traditional training methods used in medicine. The current apprenticeship model raises a few concerns:

- Patient safety, as the trainees often have their first attempts conducting the procedure on the patient (Nelson et al., 2014), and extend the overall procedure time when present (Babineau et al., 2004).
- Limited variety and complexity of cases within rotations (Nelson et al., 2014),

• And high expense (Janne d'Othée, Langdon, Bell, & Bettmann, 2006), and

Providing expert training comes at a steep cost, both timely and financially, and the medical system has been looking at ways to lessen the stress it causes. Many specialties have turned to new technologies, such as computer simulation, in order to supplant some of the drawbacks of traditional methods. Simulation of invasive procedures has gained popularity in medical education, advancing from primitive cadaveric dissection to modern 3-D modeling instruments equipped with genuine haptic feedback. With increasing use of computer simulation and subsequent development of the technology (Malone et al., 2010), it is getting cheaper to provide crucial training to medical students, however, computer-based training modules require extensive research to verify their genuine representation of medical procedures. Some specialties, such as neurosurgery, perform invasive procedures that require especially detailed and accurate representation in simulators, and, as a result, have lagged technologically behind other specialties (Spiotta & Schlenk, 2011).

Implementing new learning tools and simulators also introduces inquiries into developing efficient, validated protocols. Since simulators can provide an endless number of emulated patients and symptoms (Hoffman & Vu, 1997), education using this growing database should be verified and standardized for efficiency and effectiveness. The degree to which novices are exposed to various clinical cases can have an impact on how natural the learning environment is and how quickly material and skills can be internalized.

2 Simulation

2.1 Simulation Development

Simulation has been defined as the imitation of the operation of a real-world process or system over time (Perkins, 2007). The use of simulation as an educational tool is deeply engrained in history; in fact many primitive forms of simulation can be overlooked as such due to their contrasting simplicity over how simulation is recognized in present day. The military has been perhaps the most famous practical implementer of original simulation, recreating chess-like warfare scenarios in order to generate a risk/benefit analysis (Bradley, 2006; Perkins, 2007). Although military uses for simulation are the cornerstone for its progression, other fields have also taken advantage of the benefits of simulation for centuries.

In medicine, dissection of body organs and tissues, a form of simulation, was studied in sacrificed animals since the 3rd century and in human cadavers since the 13th century (Frati et al., 2006). It is these processes that have given rise to modern cadaveric dissections that are being used to educate not only gross-level anatomy, but also procedural skills for various medical specialists. Training of endovascular skills has been aided with the use of synthetic models, anesthetised animals and human cadavers (Neequaye et al., 2007)

Advancements in the modern military also brought developments in the field of simulation to closely linked fields, such as aviation. Military aviation has perhaps been the leader in simulation throughout the 20th century. During World War II, military training needs spurred the development of simulation modules that would eventually become the highly central and mature virtual reality training suites that are used to train current pilots (Rosen, 2008). Although these new systems are increasingly expensive, they prove to ultimately be cost-effective (Strachan, 2000).

It is clear the industries that involve a high amount of risk, such as the military and aviation, are the industries that are pioneers in the field of simulation (Ziv, Small, & Wolpe, 2000) due to its increasing value. Other fields have taken notice and have used simulation for planning, risk reduction and control (Ziv et al., 2000) - transportation, legal proceedings, professional sports, homicide investigation training, and construction (Ziv et al., 2000).

The medical field, which includes a high amount of risk, has been stimulated into incorporating modern simulation methods into training due to advances in medical care, shifts in tolerance towards error and injury reduction (Ziv et al., 2000) and progression towards cost-reducing methods.

2.2 Types of Simulation

A variety of forms of simulation are used for training purposes in medicine. The simplest of methods utilize manikins and cadaveric specimens for psychomotor skill and basic cognitive education (Ziv et al., 2000). Manikins, for example, are established in First Aid training as a low-cost, realistic solution to providing effective skill acquisition in life support manoeuvres. Cadaveric models are another simple method of simulation, commonly used to teach anatomy and various clinical procedures, such as breast examinations and anaesthesia administration (Ziv et al., 2000). However, these models can be expensive for the amount of use they provide, can be limited in availability and vary in quality based on fixation techniques used (Ziv et al., 2000).

Standardized patients are also a form of simulation, however, unlike models that teach technical skills, they are used to train communication skills with patients. These s have become some of the most widely studied methods of simulation in medicine (Barrows, 1993) and have become a necessary component of medical curricula.

With the technology that is being developed today, it is possible to train skills in virtual environments. Virtual reality (VR) systems allow trainees to interact with a 3D digital world in a human-computer interface (Gorman, Meier, & Krummel, 1999). Through the use of hand tracking devices, motion suits, and haptic feedback mechanisms, VR allows for complete immersion into the environment, facilitating the acquisition of skills (Greenleaf, 1996). With new technologies being developed continuously, this method is become more immersive and clinically relevant as a training tool.

A category of computer-driven task/procedural trainers is also growing rapidly (Ziv et al., 2000). These systems use realistic, interactive cues, such as hapsis and auodiovisual cues, to guide the user through a variety of computer-driven clinical scenarios (Perkins, 2007). A famous example of this form of simulation is the Harvey Cardiology Patient Simulator, which presents cardiovascular training scenarios, has shown to improve efficacy over traditional methods of teaching alone (Issenberg et al., 1999).

2.3 Benefits of Simulation

The benefits of simulation can sometimes be difficult to prove with the variety of applications that are available (Gaba, 2004). One of the reasons behind this challenge is some aspects of simulation rely on long term cumulative synergies, applied in a consistent manner, to exhibit benefits (Gaba, 2004). However, there are still many strong supporting arguments.

Not only do trainees find that simulation is useful in achieving learning objectives, they find cross-training to benefit interspecialty collaboration and skill transfer (Nelson et al., 2014). Simulation Based Medical Education (SBME) also complements traditional training approaches, such as bedside teaching, problem-based learning and lectures (Ziv, Ben-David & Ziv, 2005). SBME provides opportunity to learn from mistakes through an error management system. This not only creates technical enrichment for mechanical skills learning, but complements the strive for excellence that is promoted in medicine (Ziv, Ben-David & Ziv, 2005).

Simulation training provides the opportunity to train mechanical skills on rare, but vital cases that the trainees may not otherwise see in their training, a condition that is viable in fields such as critical resuscitation (Smith et al., 2010). The difficulty of cases can also be graded in order to facilitate learning (Pellegrini, 2006; Spiotta et al., 2012) and can be taught complementary to apprenticeship experience.

A central component of simulation-based medical education is arguably error management (Ziv, Ben-David, & Ziv, 2005). Not only does simulation have implications in error analysis and error correction (Ziv et al., 2000), but it allows for learning from errors in a risk-free environment (Lopreiato & Sawyer, 2015). As a result, practicing high-risk procedures without psychological stress can benefit long term retention and transfer of skills (Kahol et al., 2010).

Simulation has also been shown to promote the development of decision-making skills and reflective learning and debriefing (Ziv et al., 2000), all of which are crucial components of professional maturity.

2.4 Limitation of Simulation

A simulator requires a significant initial expense that some facilities could not justify, especially if the audience and training modalities are limited (Ziv et al., 2000). As well, there is a need for technical and professional support in order to maintain the efficacy of the machine (Nelson et al., 2014).

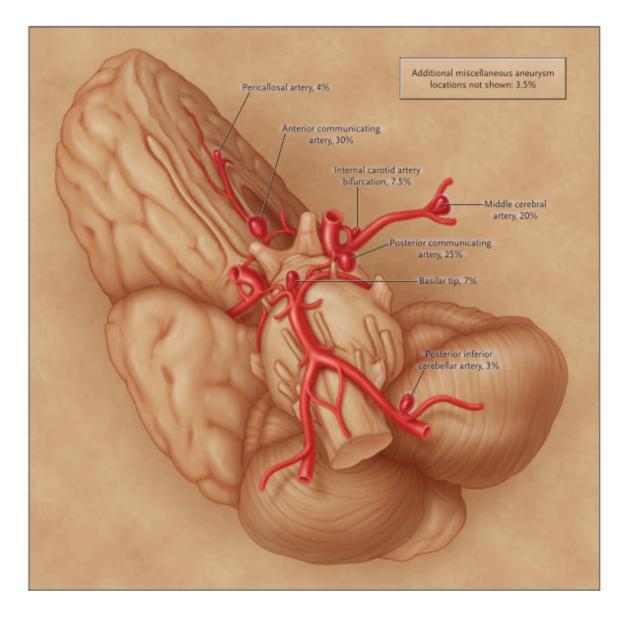
Simulation equipment needs large studies with qualified professionals in order to validated as an appropriate teaching method.

2.5 Simulation of Endovascular Procedures

It has been shown that using virtual reality systems, computed tomography angiography, magnetic resonance angiography and 3-D imaging can be beneficial to familiarize the trainee with patient anatomy and facilitate surgical planning (Spiotta & Schlenk, 2011) in a variety of situations (Hoffman & Vu, 1997). A simulated surgical ecosystem can provide a zero-risk learning environment, which, through simplified procedures, can effectively establish skills in trainees – the more realistic the simulator, the more transferrable the skills (Spiotta et al., 2012).

3 Angiography

Cerebral angiography is the study of blood vessels of the brain and neck using an imagine technique, such as x-ray or CT. A catheter is guided under fluoroscopy, a contrast is injected, and vessel competency is assessed through rapid sequence films (Frizzel, 1998). Diagnostic angiographic images are obtained through digital subtraction images. The process of digital subtraction angiography, or DSA, involves taking a mask image of the


relevant anatomy without contrast and subtracting from it the image of the anatomy with the contrast injected. This technique reveals important vascular detail without irrelevant extravascular anatomy (Cowling, 2006).

Early angiographical procedures were performed through surgical exposure of the cervical arteries, however, with development of new techniques (such as Seldinger), and tools, the transfemoral route, a puncture of the femoral artery, below the inguinal ligament, was introduced (Cowling, 2006). With the introduction of specialized tools, such as catheters and radiographic equipment, angiography assumed a vital role in diagnostic medicine (Cowling, 2006).

The boom of the use of angiography in Europe 1930, after the development of proper contrast formulas, did not migrate over to North American medical practice until much later, mostly due to the potential risks of cannulating the external carotid artery and dangers associated with contrasts used at that time (Cohen et al., 2013). Currently, angiography uses iodine-containing contrast mediums which only have minor side effects.

3.1 Aneurysms

Aneurysms are pathological dilations of the arterial wall that form around areas of high wear and tear, such as points of bifurcation in the Circle of Willis (Brisman, Song, & Newell, 2006). Figure 1 shows the common locations aneurysms are found.

Figure 1: Common locations of intracranial aneurysms

"Reproduced with permission from (Brisman et al., 2006), Copyright Massachusetts Medical Society, **Appendix A**

3.1.1 Prevalence & Detection

The prevalence of intercranial aneurysms is about 1-5% of the adult population with about 1 in 10 000 haemorrhaging in the subarachnoid space (Ingall, Whisnant, Wiebers & O'Fallon, 1989; Wibers et al., 2003), Cerebral aneurysms often exist without any presentation which makes their diagnosis much more difficult. Aneurysms smaller than 1cm have a very low risk of rupture in patients without SAH history (Wiebers et al., 1998). It is estimated that 50-80% of all aneurysms won't rupture (Brisman et al., 2006) Symptoms other than rupture are unlikely, but when they do present they can cause nerve entrapment and ischemia, resulting in a symptomatic presentation (Friedman et al., 2001). Entrapments are most likely to happen around cranial nerves II (CN II) and III (CN III), resulting in loss of visual acuity (CN II), normal eye and eyelid movement (CNIII), and pupil constriction (CN III) (Friedman et al., 2001). However, these aneurysms were fairly large, mostly ranging between 5-8mm (Friedman et al., 2001).

If an acute haemorrhage has occurred, an aneurysm can produce a severe and sudden 'thunderclap' headache (Witham & Kaufmann, 2000). These warning headaches are followed by a subarachnoid haemorrhage (SAH) in 5% to 60% of patients (Jakobsson, 1996). Previous SAH lead to 11 times the chance of rupture (Wiebers et al., 1998), with 2-4% of hemorrhages bleeding again 24 hours after the initial episode and 15-20% bleeding within the first two weeks. SAH has a 30-day mortality rate of 45%, with 30% of survivors suffering from moderate-to-severe disability (Johnston, Selvin, & Gress, 1998). If these symptoms arise, a CT scan is done, which will show if there is bleeding. However, CT scan does not show the source of the bleed, and angiography of the region would need to be done (Brain Aneurysm Foundation).

3.1.2 Treatment

Diagnosis of aneurysms was only the first goal in the development of proper interventional techniques. Medical practice went through an array of techniques to treat aneurysms, from ligation of the ICA to forced embolization of blood inside the dome of the aneurysm (Cohen et al., 2013). A more direct approach of wrapping the aneurysm using muscle from the thigh in the 1930s developed into a dominant technique of clipping the neck of the aneurysm (Cohen et al., 2013). Presently, thanks to Guglielmi's development of platinum detachable coils in late 20th century, aneurysms can be treated without transcranial surgical approaches (Cohen et al., 2013). These endovascular treatments are found to be more effective at treating unruptured aneurysms than surgical clipping (Higashida et al., 2007)

3.2 Angiography Complications

Cerebral angiography has a low complication rate with only 0.5% (Willinsky et al., 2003) of patients suffering from any form of permanent damage post-operatively. Death is quite uncommon, having an incidence of 0.14%, and usually associate with a risk factor (Kaufmann et al., 2007). Infection rate is almost-nonexistent, with 0.1% of patients developing a local injection-site infection (Kelkar, Brett Fleming, Walters, & Harrigan, 2013).

3.3 Angiography risks

One of the risks behind the use of diagnostic angiography is patient radiation exposure. X-ray beams are absorbed by tissues either entirely or partially, providing contrast between tissues. The x-ray beams can create direct cellular damage, however, if exposure is low, this damage has potential to be repaired by repair mechanisms in the body (Hetault et al., 2015). If a threshold of radiation exposure is reached, clinical consequences, such as skin injury, may follow, correlating to the amount of exposure (Hetault et al., 2015).

4 Endovascular Training

Endovascular training typically consists of a 24- to 48-month, based heavily on clinical experience (Mitha, Almekhlafi, Janjua, Albuquerque, & McDougall, 2013). Early in the training process,

Cost of angiography suite procedures averaged at 690\$/hour, (Janne d'Othée et al., 2006)

4.1 Endovascular Simulation

Endovascular simulators have gained popularity over the last 15 years and grown to be supplied by a variety of companies. VIST simulator from Mentico, has been tested in a variety of carotid stenting and interventional scenarios with varying results. VIST is always beneficial to novices learning the procedures (Dayal et al., 2004; Hsu et al., 2004; Berry, Lystig, Reznick, & Lönn, 2006), however it is not very helpful to experienced interventionalists (Dayal et al., 2004). Practicing on the simulator has not always helped with improving procedure time, with some showing progress (Patel et al., 2006) while others didn't (Berry et al., 2006), however, there seems to be consistency in improving fluoroscopy time (Berry et al., 2006). VIST has also been effective in improving the amount of contrast injected (Patel et al., 2006).

A very similar simulator, but one that contains more updated haptic feedback mechanisms, ANGIO Mentor from Simbionix, has been shown to be an effective tool for psychomotor skill learning in both cardiac stenting and diagnostic cerebral angiography simulation (Spiotta, Rasmussen, Masaryk, Benzel, & Schlenk, 2011). Work on the simulator has been shown to exhibit that residents perform diagnostic cerebral angiography with more erroneous actions than fellows, even though fellows saw improvement on the simulator with the residents (Spiotta et al., 2011). Practicing on the simulator has also been shown to reduce total procedure time and fluoroscopy time (Lee et al., 2009; Spiotta et al., 2011). The amount of contrast injected, however, has not been shown to significantly change with practice on the simulator (Lee et al., 2009)

Although both VIST and ANGIO Mentor have been proven to have face and construct validity, device specific differences still exist(Dawson, Meyer, Lee, & Pevec, 2007).

5 Methods

5.1 Participants

Participants were selected from three main eligible pools at the University of Western Ontario – the Clinical Anatomy program graduate students, neurosurgery residents, and radiology residents. These pools were used to establish homogeneity in overall vascular anatomy competence and relevance to the participants' fields of study. A total of 16 participants were recruited; 8 graduate students, 4 neurosurgery residents, and 4 radiology residents. The participants did not receive any compensation for this study.

5.2 Assessments

Participants were provided with a vascular anatomy e-learning module, for which they had free time, and were informed of a quiz that would take place immediately following the module. A 10-question, untimed, multiple choice vascular anatomy quiz was then administered and an 80% or higher grade point score was required in order to proceed with the rest of the study.

Upon completion of the anatomy tutorial and quiz, participants were asked to complete two Vandenberg and Kuse mental rotations tests (Vandenberg & Kuse, 1978) on the computer. They were provided with sample questions at the beginning of the test to help understand the task, and were subsequently given two tests of 12 questions each. The subjects were given 3 minutes to complete each test, after which the software automatically ended the test.

All anatomy testing material and the use of MRT tests were established by Dr. Ngan Nguyen.

5.3 Grouping

The study design consisted of two groups that received different cases to practice on before they were tested. Inclusion into groups was sorted based on date of acceptance into the study, with the first participant joining the first group, the second participant joining the second group, the third participant joining the first group and so on. The groups were also controlled to have the same number of graduate students and residents in each. This was done to control for any unforeseen biases that may be present in one of the participants academic backgrounds.

5.3.1 Alternating vs. Consistent

The two groups that participants were divided into were the alternating practice group and the consistent practice group. The alternating practice group received different cases to train with on odd and even sessions. On the odd sessions, alternating group participants performed diagnostic angiography on the left internal carotid artery (L-ICA). On the even sessions, the alternating group participants performed diagnostic angiography on the right posterior inferior cerebellar artery (R-PICA). In contrast, the consistent group always practiced diagnostic angiography on an aneurysm in the L-ICA. In every session, after practicing, all participants were tested on the diagnostic angiography of an aneurysm in the right middle cerebral artery (R-MCA). Therefore, all participants received the same amount of practice and were all tested on the same case. Refer to Figure 1 for visual representation of the group layout.

Figure 2: Session layout for the alternating and consistent practice groups

5.3.2 High MRT vs. low MRT

Subjects were assessed for visuospatial ability using the Mental Rotations Test. A score on a scale of 0-24 was received and individuals were assigned to a score group. Scores that fell into the top and bottom quartiles were a suggested criteria for identifying low and high visuospatial individuals (Wanzel et al., 2002), however, the power from this

segregation would be too low, and an adapted formula was used. Instead of using quartiles, the bottom and top thirds were used as low and high visuospatial individuals. This provided enough power for statistical analysis, but also isolated the medium scoring group from the calculation. As a result, scores 0-9.5 were low MRT, 10-15 medium MRT, and 15.5+ were high MRT scores.

5.4 Sessions

Participants were allowed free time on the practice case, as long as they were following the provided instructions. Participants were also allowed to ask questions about the procedure at this time. Performance parameters were recorded by the simulator, but were not used in data collection in this study.

Immediately following the practice case, participants commenced the test case. A video was recorded from behind the participant, zoomed in on the fluoroscopy screen, during the participant's performance on the test case. The participants were not given any advice by the assessor during this period. The simulator logged all the data that was later retrieved for analysis.

When both the practice and test cases were completed, session performance was discussed with the participants. This was done to ensure that all participants had a uniform understanding of criteria used for assessing procedural competence, such as procedure time, fluoroscopy time, contrast injected and roadmaps used.

5.5 Simulator

The simulator is a long, portable hardware that contains a force feedback system to simulate the location of endovascular tools (Figure 3). External instruments, such as guidewires and catheters (Figure 4), can be inserted into a simulated vascular system that is displayed on the fluoroscopy monitor. The simulator control panel at the centre of the device contains joysticks for patient table and fluoroscopic C-Arm manipulation, fluoroscopic zoom, and roadmap management.

Figure 3 Simbionix ANGIO Mentor simulator with a visible control panel

Catheter and guidewire can be inserted into the force feedback capable system within the encolsure. The endovascular tools can be seen in Figure 4.

Figure 4 Catheter (left) and guidewire (right) running through the catheter

Two displays were used to provide the trainee with patient, tool and fluoroscopic information. The computer interpreted all data from the simulation console and displayed patient table, tools, injections, C-Arm positions and patient files on the built in screen and fluoroscopic images and vitals on the added monitor (Figure 5).

Figure 5: Computer with main display (left) and fluoroscopic monitor (right) and pedals for fluoroscopy, roadmaps and DSA (bottom)

Under the table, 3 pedals were available for x-raying, creating roadmaps and performing digital subtraction angiography (DSA)(Figure 5). An example of procedural setup can be seen in Figure 6.

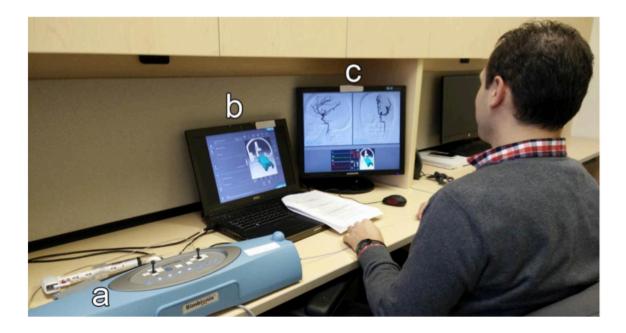


Figure 6: A participant completes a practice scenario using the simulation console (A), main patient screen (B), fluoroscopy screen (C), and pedals (not pictured).

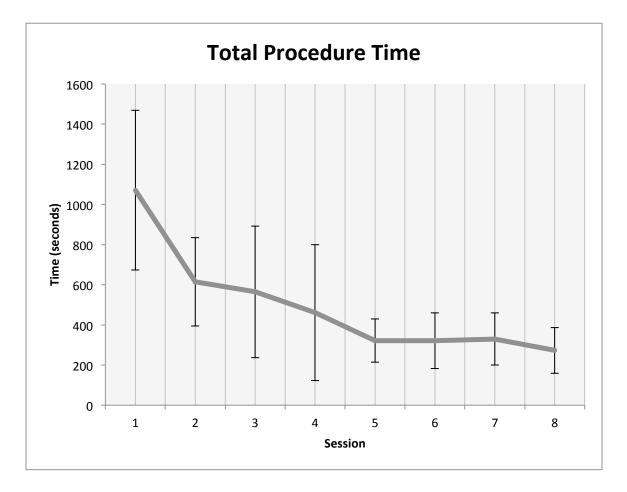
6 Results

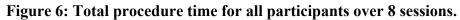
Participants were encouraged to come in once a week, however, since some of the participants were medical residents, scheduling issues were inevitable. As a result, one of the participants was not able to complete enough sessions for data collection. A total of 15 data sets were collected from 15 participants - 8 clinical anatomy graduate students, 4 radiology residents, and 3 neurosurgery residents.

6.1 Anatomy Assessment

All subjects successfully completed the anatomy assessment, scoring at least 80% on the required multiple-choice questions.

6.2 Total Procedure Time

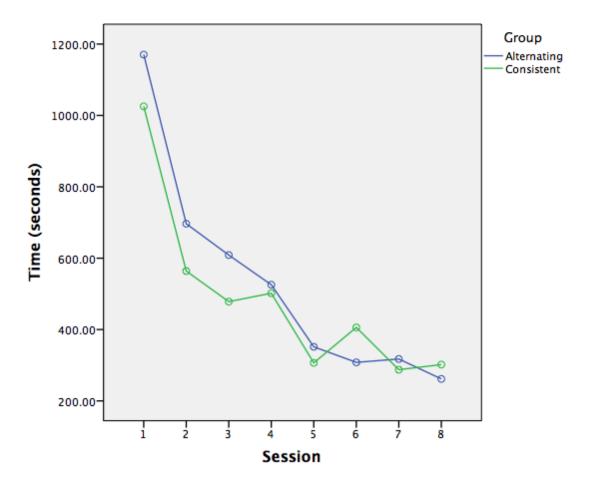

6.2.1 Overall Performance


A significant decrease in total procedure time was observed from the initial session to the 8th session in all groups. A two-way repeated measures ANOVA revealed a significant decrease (p<0.05) in the time it took to complete the procedure, averaging from 1071 seconds on the first session to 272 seconds on the 8th session. An overview of the total procedure times can be seen in Table 1 and a graph of average performance can be observed in Figure 6. Full statistical analysis can be found in **Error! Reference source not found.**

Total Procedure Time in Seconds										
Group	Participant	1	2	3	4	5	6	7	8	
alt	1	840	708	390	296	277	227	313	276	
alt	2	1031	551	559	771	314	427	318	300	
sim	3	1213	605	384	302	331	244	225	164	
sim	4	1206	687	519	1349	522	514	404	603	
sim	5	937	723	742	219	144	324	345	360	
alt	6	826	327	384	202	290	191	208	232	

sim	7	1345	401	408	395	317	659	311	206
alt	8	1615	1094	571	330	411	260	352	263
sim	9	1168	662	1412	398	313	286	608	
sim	10	426	404	338	244	219	289	152	176
alt	11	1532	946	731	341	258	201	550	179
alt	12	1540	803	1140	1029	466	435	396	237
alt	13	1278	448	317	592				
sim	14	904	416	344	273	450	257	245	290
sim	15	206	439	230	179	193	183	191	260

Table 1: Total procedure time for all participants across all sessions


6.2.2 Intersession Comparison

Pairwise comparisons revealed a statistical difference between sessions 1 and 5 (p = 0.026), 1 and 6 (p = 0.018), and 1 and 7 (p = 0.028). However, no significant differences

were found between sessions 5, 6, 7, and 8. This could indicate that a plateau effect for procedure time may set in after the 4th training session in a generalized training protocol.

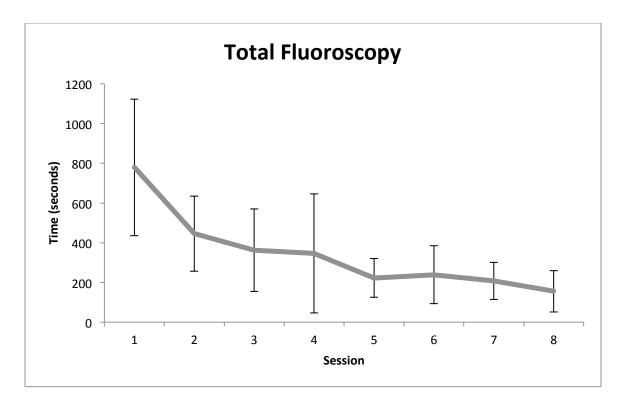
6.2.3 Alternating vs. Consistent Training

Although all individuals improved in procedure time, there was no statistical significance found between the alternating and the consistent training groups (p = 0.718) when no other factors were considered. The current group numbers were too low for the observed variance, and thus resulted in low power (π = 0.061). Performance of the alternating and simple training groups can be seen in Figure 7. Full statistical analysis can be found in **Error! Reference source not found.**

Total Procedure Time Between Alternating and Consistent Training Groups

Figure 7: Total procedure time between alternating and consistent training groups

6.3 Total Fluoroscopy Time

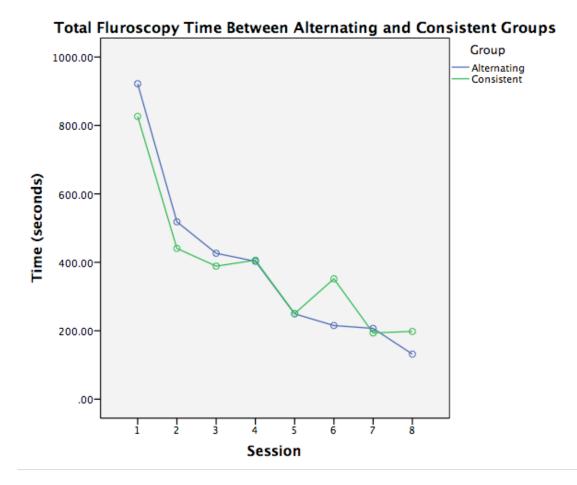

6.3.1 Overall Performance

A two-way repeated measures ANOVA was completed and revealed a very significant (p = 0.01) decrease in fluoroscopy time from the first session to the 8th session. The average amount of fluoroscopy that was used reduced from 779 seconds to 156 seconds. The improved time on the last session was only 19.96% of the first sessions, marking a 5-fold improvement in the amount of fluoroscopy used and the amount of radiation the patient

would potentially be exposed to. An overview of all fluoroscopy times can be seen in Table 2: Total fluoroscopy time of all individuals across all sessions**Error! Reference source not found.**

	Total Fluoroscopy Time in Seconds								
Group	Participant	1	2	3	4	5	6	7	8
alt	1	608	494	200	189	178	131	231	129
alt	2	878	431	346	636	242	378	245	201
sim	3	1020	537	281	209	266	205	184	113
sim	4	973	478	368	1160	439	471	305	436
sim	5	717	584	673	171	108	250	195	249
alt	6	710	168	204	143	245	102	97	109
sim	7	1193	310	333	352	274	572	219	138
alt	8	1196	928	436	224	209	197	203	113
sim	9	440	388	310	242	198	182	444	
sim	10	230	294	289	139	164	261	65	54
alt	11	1009	612	454	194	72	59	169	14
alt	12	1218	571	946	823	373	268	258	106
alt	13	883	306	232	396				
sim	14	444	245	179	177	207	147	144	159
sim	15	164	338	182	134	143	122	146	200

Table 2: Total fluoroscopy time of all individuals across all sessions


Figure 8: Average total fluoroscopy time across all sessions

6.3.2 Intersession Comparison

A pairwise comparison showed a significant correlation (p<0.05) between sessions 1 and 6, 1 and 7, and 1 and 8.

6.3.3 Alternating vs. Consistent Training

Upon comparing alternating and consistent training groups, it was found that there was no significant difference (p=0.984) between the two groups in total fluoroscopy time. A two-way repeated measures ANOVA revealed that the power was too low (π = 0.05) with the amount of variance that the data contained. Performance of the alternating and consistent training groups can be seen in the Figure 9. Full statistical analysis can be found in **Error! Reference source not found.**

Figure 9: Total fluoroscopy time between alternating and consistent groups across all sessions

6.3.4 Total Procedure Time and Fluoroscopy Correlation

A comparison between the procedure time and fluoroscopy time was made and a strong correlation was found between them (p<0.05, r=0.928). A scatterplot representing their relationship can be found in Figure 10. This association was expected, but the strength of the relationship creates an interesting insight into predicting fluoroscopy times based on procedure times. Full statistical analysis can be found in **Error! Reference source not found.**

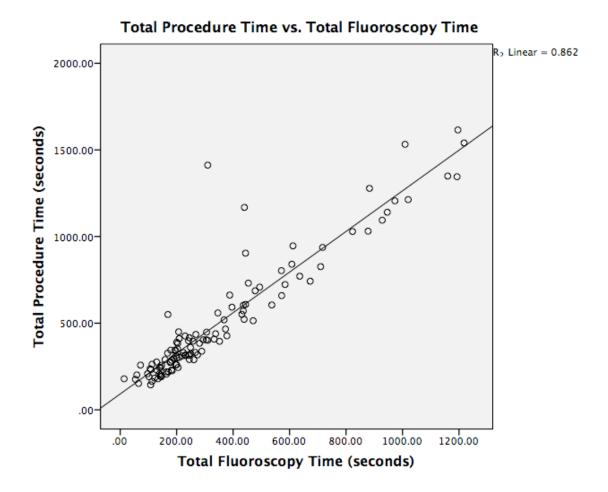


Figure 10: Correlation between total procedure time and total fluoroscopy time

6.4 Total Contrast Injected

6.4.1 Overall Performance

Over the 8 sessions, no significant difference in performance was seen (p=0.17). The mean amount of contrast injected in a session reduced from 75.3 mL on the first session to 38.8 mL on the 8th session, however, these values were not significantly different. Table 3 represents the contrast injection values for every participant at every session. The average contrast values for every session can be seen in Figure 11. Full statistical analysis can be found in **Error! Reference source not found.**

	Total Contrast Injected											
Group	Participant	1	2	3	4	5	6	7	8			
alt	1	40	48	40	40	32	56	32	32			
alt	2	56	40	72	48	32	56	48	40			
sim	3	56	24	32	32	48	32	32	48			
sim	4	56	48	80	104	40	32	64	64			
sim	5	88	32	32	24	24	48	64	32			
alt	6	48	56	48	32	32	32	32	32			
sim	7	40	32	32	32	32	48	40	32			
alt	8	80	32	32	32	64	32	32	32			
sim	9	136	248	184	160	104	40	48				
sim	10	48	48	32	32	48	32	32	40			
alt	11	184	56	64	32	48	32	88	24			
alt	12	96	48	40	48	32	24	48	32			
alt	13	56	48	56	48							
sim	14	80	24	32	40	56	40	40	48			
sim	15	72	80	40	24	24	24	40	48			

Table 3: Total contrast injected of all individuals across all sessions

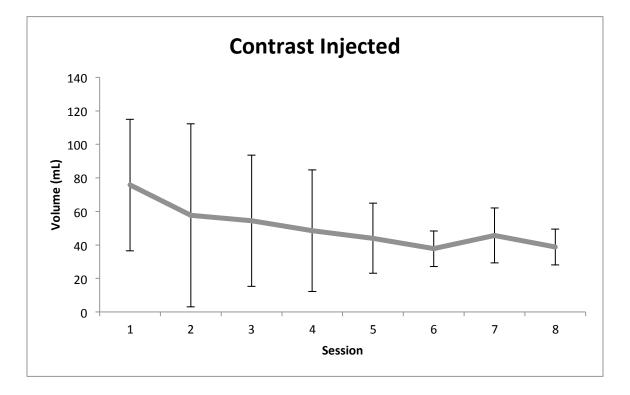
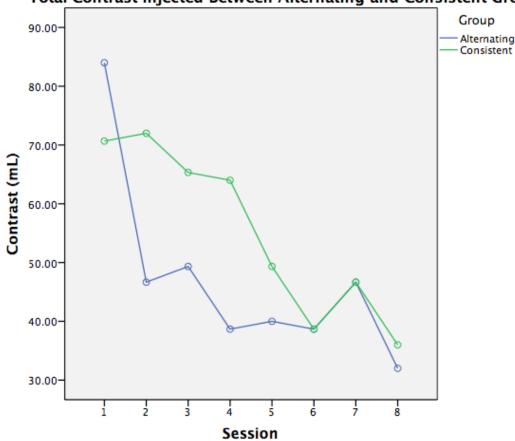


Figure 11: Average amount of contrast injected across all sessions

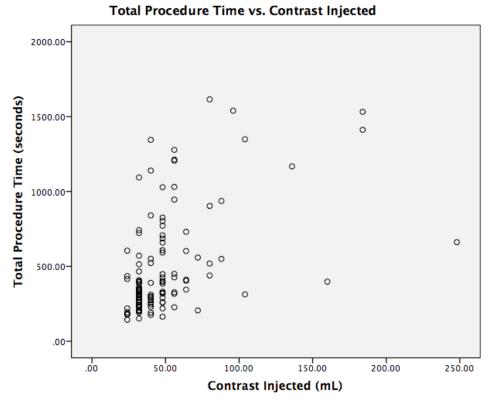

6.4.2 Intersession Comparison

Pairwise comparisons showed that there were no statistical differences (p>0.05) between sessions. Sessions 1 and 2 were not statistically different from each other, but had better significance (p=0.08) than the other intersession comparisons. This data may be showing only an initial learning boost of contrast management from the first session to the second, which is not helpful in subsequent sessions.

The data also exhibited a fair amount of kurtosis and this was not normally distributed, unlike total procedure time and total fluoroscopy time.

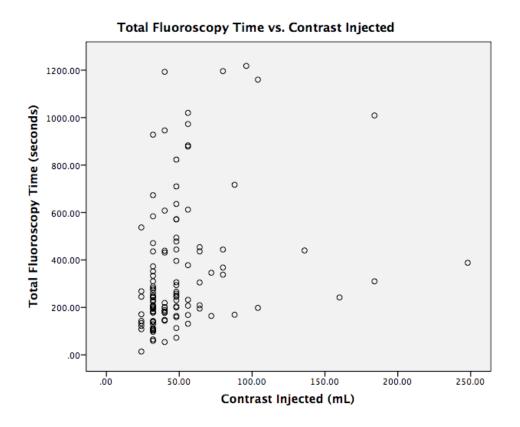
6.4.3 Alternating vs. Consistent Training

There was no significant difference found between the alternating and consistent training groups (p=0.378). The observed power π =0.125) was too low to be sensitive enough to detect change in performance between the groups. At the variance that was recorded between the groups, a higher number of participants were needed. Figure 12 shows the relationship between the alternating and consistent training groups. Full statistical analysis is available in **Error! Reference source not found.**



Total Contrast Injected Between Alternating and Consistent Groups

Figure 12: Total contrast injected between alternating and consistent groups across all sessions

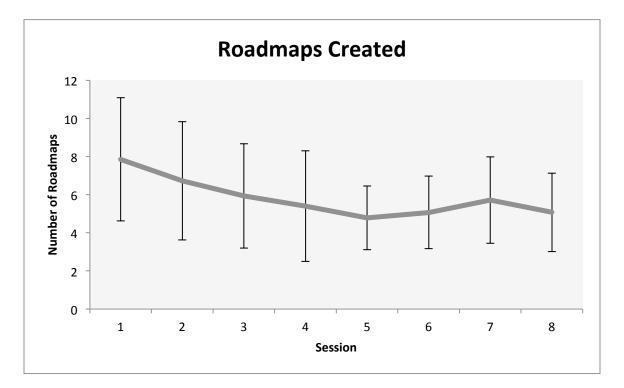

6.4.4 Total Contrast Injected Correlations

It was found that there was no correlation between total contrast injected and procedure time. Total contrast injected had a correlation of 0.481 (p<0.01) with total procedure time and a correlation of 0.283 (p<0.05) with total fluoroscopy time. The relationship between total contrast injected and total procedure time can be seen in Figure 13and the relationship between total contrast time and total fluoroscopy time can be seen in Figure

14. Full statistical analysis can be found in **Error! Reference source not found.**

Figure 13: Correlation between total procedure time and contrast injected

6.5 Total Roadmaps

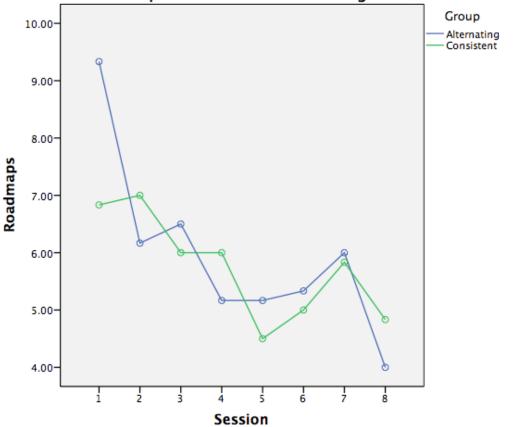

6.5.1 Overall Performance

A two-way repeated measures ANOVA revealed no statistical difference between sessions (p=0.096). The mean of the number of roadmaps decreased from 7.86 roadmaps in the first session to 5.08 roadmaps, however, these results had low power (π =0.49). Table 4 outlines the number of roadmaps that were created by each participant by session, followed by Figure 15, which shows the combined performance of all groups between sessions. Full statistical analysis can be found in **Error! Reference source not found.**

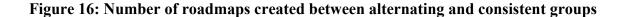
	Roadmaps Created										
Group	Participant										
alt	1	6	8	3	6	4	5	4	4		
alt	2	7	5	10	7	4	10	7	5		
sim	3	9	3	4	4	5	4	4	5		
sim	4	6	11	11	15	6	4	8	11		

sim	5	9	4	4	3	3	5	6	4
alt	6	5	7	7	5	4	5	4	4
sim	7	6	4	4	4	4	8	7	4
alt	8	9	4	4	4	8	4	4	4
sim	9	4	10	9	6	4	4	6	
sim	10	7	10	4	4	5	5	4	5
alt	11	14	7	10	5	7	5	12	3
alt	12	15	6	5	4	4	3	5	4
alt	13	5	6	6	6				
sim	14	8	3	4	5	7	6	5	6
sim	15		13	4	3	2	3	4	7

Table 4: Number of roadmaps created by all participants across all sessions


Figure 15: Average number of roadmaps created at every session

6.5.2 Intersession Comparison


Pairwise comparisons between individual sessions revealed no significant differences. Full statistical analysis can be viewed in **Error! Reference source not found.**

6.5.3 Alternating vs. Simple Training

A two-way repeated measures ANOVA was done and no significant differences (p=0.742) were found between the alternating and consistent training groups. The power (π =0.059) was too low to differentiate between changes in performance between groups. Figure 16 shows the relationship between the two groups. Full statistical analysis can be viewed in **Error! Reference source not found.**

Numer of Roadmaps Used Between Alternating and Consistent Groups

6.6 Low MRT vs. High MRT

Subjects that had a low MRT score and those that had a high MRT score were compared for differences in performance. A two-way repeated measures ANOVA revealed that the subjects with high MRT performed significantly better than subjects with low MRT (p =

0.007). This correlation could have accounted for lack of significant difference between alternating and consistent training groups since each group had different ratios of high MRT and low MRT individuals (

Figure 17). **Figure 18** shows the difference in performance between the different MRT groups.

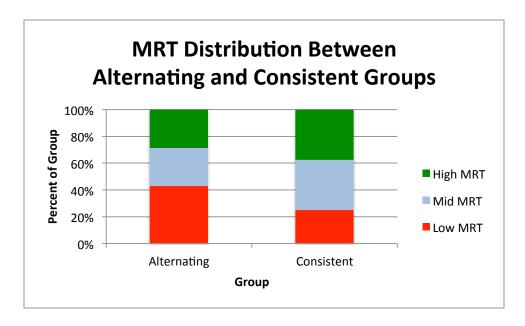


Figure 17: Distribution of different MRT scores between training groups

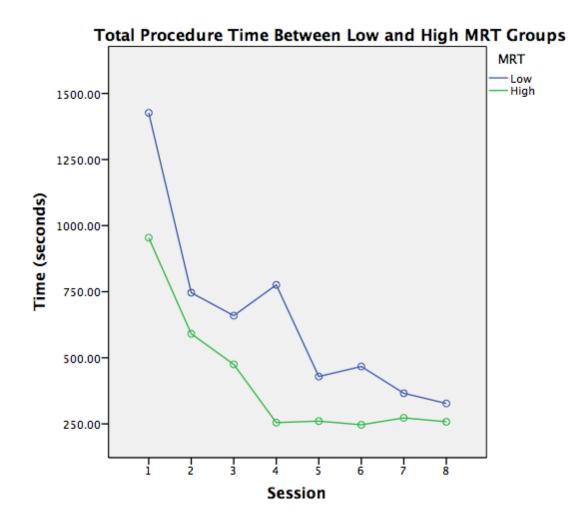


Figure 18: Total procedure times between low and high MRT groups

An independent variables t-test was done and no significance (p=0.533) was found between the alternating and consistent group MRT scores, however, the power was too low (π =0.12). The trend seems to indicate that there is a difference in performance between the MRT groups, however, this needs to be confirmed with a bigger sample size. The statistical analysis can be found in Appendix I.

7 Discussion

The purpose of this study was to analyze the relationship between training scenarios in cerebral angiography training. We aimed to establish a significant performance difference

in individuals that received alternating cases of training on the endovascular simulator compared to the individuals that always practiced on the same case.

Contrary to our hypothesis, we found that the alternating training did not significantly improve the performance on the test scenario over the consistent training paradigm. I will address a variety of factors that may have played a role in diluting some of the data that we have collected.

7.1 Performance Across Metrics

On average, all participants significantly improved in total procedure time and fluoroscopy time. This was an expected result since other studies have also seen this trend using ANGIO Mentor (Lee et al., 2009; Spiotta et al., 2011) as well as other endovascular simulators (Berry et al., 2006; Patel et al., 2006). The total procedure time improvement also contradicts a Berry et al., (2006) study that showed that endovascular training did not significantly help with procedure time.

As participants learned to use fluoroscopy more effectively, they also affected their total procedure time. The correlation analysis exemplified that both procedure time and fluoroscopy were strongly correlated. This alludes to an important consideration: if this trend is also true in the angio suite, can procedure times be used to assess average fluoroscopy use by interventionalists and predict future fluoroscopy use?

Findings in procedure time and fluoroscopy time improvements indicate that the simulator is a good tool to train more efficient mechanical manipulation of tools. However, findings in the other two parameters, contrast and roadmaps, did not yield the same results.

No significant differences were found between total contrast injected and roadmaps created. Skewed normality distributions and low power, indicate that there were not enough participants tested in order to be able to detect a difference in these values. However, even though contrast and roadmaps could not be statistically improved in 8 sessions, the results were consistent with contrast usage data from other endovascular work (Lee et al., 2009).

A possible reason behind the lack of effects in contrast and roadmap use is that they encompass a separate domain than that of procedure and fluoroscopy time. Procedure and fluoroscopy seem to be heavily dependent on motor skills (aka. How quickly can I access a visualized vessel) whereas contrast and roadmaps use rely on mental anatomic schemas (aka. Can I visualize where the target vessels are).

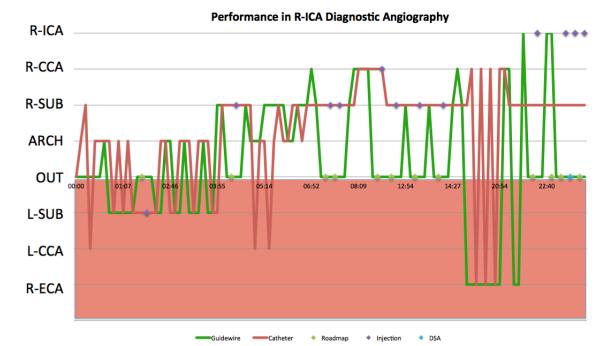
7.2 Performance Between Sessions

Comparing the performance between sessions, we were able to see where the most significant learning takes place. When comparing total procedure times with the first session, the significance was found in sessions 6-8 (session 5 had moderate significance, p=0.053), indicating that 5-6 sessions are needed in order to ensure a significant amount of improvement has taken place. This can be an important metric for future studies assessing endovascular simulator performance. No significant differences were found between sessions 6, 7 and 8. This could indicate that a learning plateau is in effect beginning at the 6th session. Since significant effects were only seen in procedure time and fluoroscopy time, we can only speculate about the contrast and roadmap usage. Considering the mental anatomy schema model, it is possible that the roadmap and contrast usage would start improving around the plateau period, as spatial anatomical queries are being recognized.

7.3 Performance Between Alternating and Consistent Groups

We found no significant differences between the alternating and the consistent training groups on any of the criteria that were used to assess performance. The most likely hypothesis is that the number of participants was too low to detect a difference between the two groups. Assessing the amount of variance that is present at the first session, about 50 participants would be needed to provide the power for statistically significant results.

However, we can speculate on some visual differences that were observed on the graphs. On all the parameters that were observed (Figure 7, Figure 9, Figure 12, Figure 16), the alternating group always had worse performance on the first session. However, by the last session, all performance in the alternating group was exceeding that of the simple group, albeit non-significantly. With a higher number of participants, it would be interesting to observe if the pattern holds true for the rate of improvement in the alternating training group. With the data currently available, there is a trend towards alternating group improving more throughout the sessions than the consistent group.


Dividing the total procedure time performance into MRT groups provided significant results and insight into a potential confound at the group sizes we currently have. Individuals who scored in the high MRT group performed significantly better than individuals with a low MRT score. This indicated that if the alternating and consistent groups do not have the same ratio of low and high MRT scorers, the effect of different training paradigms may be clouded. In fact, the training groups did not have an equal distribution of MRT scores. Alternating training group consisted of 42% low MRT scorers and 29% high MRT scorers, compared to 25% low MRT and 38 high MRT scorers in the simple training group. If the MRT distributions were equal among the training groups, perhaps an effect would've been seen. A statistical analysis of the alternating and consistent training group MRT scores revealed no significant difference, however, with a low power, it is hard to conclude that the MRT was properly represented in both alternating and consistent groups. This signifies an important MRT criterion for accepting participants into a simulation based training paradigm.

7.4 Limitations

One of the biggest limitations in the study was the small sample size. The amount of variance that was present across all performance metrics limited the analysis of the difference in training groups.

7.5 Future Direction

One of the biggest advantages of using simulation-based training is applying the controlled learning environment towards error reduction. Changes in tolerance of errors are creating an especially large requirement for assessing step-by-step performance during and after procedures. Simulators can provide specialists with vital quantitative information that could otherwise be missed in a clinical scenario.

ANGIO Mentor records a wide array of values that could be used to assess diverse forms of errors committed by trainees. Location data is an example of easily comprehensive

information that could be retroactively accessed to assess where spatial anatomical errors are being made.

Figure 19 represents a participant's tool location through the progression of the test case. These, with the use of a developed algorithm, automatically generated graphs can used to visually represent where a trainee is making mistakes. Y-values below the x-axis are representing vascular regions that would be incorrect to access in this particular scenario. For example, the participant in Figure 19 has mistakenly accessed the left subclavian artery with both the guidewire and catheter as they are attempting to find and access the brachiocephalic trunk at 1-4 minutes, the left common carotid artery briefly at 5 minutes, and the right external carotid artery at 16-20 minutes. This information can used to provide the learner with targeted training to resolve these spatial/anatomical errors.

Figure 19: Anatomical Errors can be graphically represented to assess performance

It would be wise to also compare performance of fellows who have previously received endovascular simulation training against those who haven't in an endovascular fellowship program. This would establish a correlation between simulator use and real clinical performance in the angio suite.

8 Conclusions

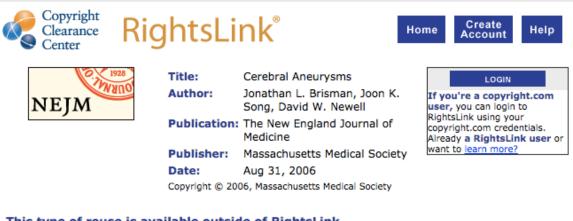
Endovascular simulators, such as the Simbionix ANGIO Mentor, have gained popularity due to their affordable application in clinical skill acquisition, risk free task training with realistic feedback systems, and error analysis prospects. We have shown that the ANGIO Mentor is an effective learning tool for reducing procedure and fluoroscopy times in novices, however, we did not satisfy our hypothesis in the benefits of alternating training. Further studies need to be completed to assess these conditions.

References

- Babineau, T. J., Becker, J., Gibbons, G., Sentovich, S., Hess, D., Robertson, S., & Stone, M. (2004). The "cost" of operative training for surgical residents. Archives of Surgery (Chicago, Ill.: 1960), 139(4), 366-370. doi:10.1001/archsurg.139.4.366
- Barrows, H. S. (1993). An overview of the uses of standardized patients for teaching and evaluating clinical skills. AAMC. In *Academic medicine : journal of the Association* of American Medical Colleges (Vol. 68, pp. 443–451; discussion 451–453). http://doi.org/10.1097/00001888-199306000-00002
- Berry, M., Lystig, T., Reznick, R., & Lönn, L. (2006). Assessment of a virtual interventional simulator trainer. *Journal of Endovascular Therapy : An Official Journal of the International Society of Endovascular Specialists*, 13(2), 237–243. http://doi.org/10.1583/05-1729.1
- Brisman, J. L., Song, J. K., & Newell, D. W. (2006). Cerebral aneurysms. *The New England Journal of Medicine*, 355(25), 2704–2705; author reply 2705.
- Dawson, D. L., Meyer, J., Lee, E. S., & Pevec, W. C. (2007). Training with simulation improves residents' endovascular procedure skills. *Journal of Vascular Surgery*, 45, 149–154. http://doi.org/10.1016/j.jvs.2006.09.003
- Dayal, R., Faries, P. L., Lin, S. C., Bernheim, J., Hollenbeck, S., Derubertis, B., ... Kent, K. C. (2004). Computer simulation as a component of catheter-based training. *Journal of Vascular Surgery*, 40(6), 1112–1117. http://doi.org/10.1016/j.jvs.2004.09.028
- Frati, P., Frati, A., Salvati, M., Marinozzi, S., Frati, R., Angeletti, L. R., ... Delfini, R. (2006). Neuroanatomy and cadaver dissection in Italy: History, medicolegal issues, and neurosurgical perspectives. *Journal of Neurosurgery*, 105, 789–796. http://doi.org/10.3171/jns.2006.105.5.789

- Friedman, J. A., Piepgras, D. G., Pichelmann, M. A., Hansen, K. K., Brown, R. D., & Wiebers, D. O. (2001). Small cerebral aneurysms presenting with symptoms other than rupture. *Neurology*, 57, 1212–1216. doi:10.1212/WNL.57.7.1212
- Frizzel, J. (1998). Angiography, 98(9), 98–100.
- Gaba, D. M. (2004). The future vision of simulation in health care. *Quality & Safety in Health Care*, *13 Suppl 1*, i2–i10. http://doi.org/10.1136/qshc.2004.009878
- Gorman, P. J., Meier, a H., & Krummel, T. M. (1999). Simulation and virtual reality in surgical education: real or unreal? *Archives of Surgery*, 134, 1203–1208. http://doi.org/10.1001/archsurg.134.11.1203
- Greenleaf, W. J. (1996). Developing the tools for practical VR applications. *IEEE Engineering in Medicine and Biology Magazine*. http://doi.org/10.1109/51.486714
- Higashida, R. T., Lahue, B. J., Torbey, M. T., Hopkins, L. N., Leip, E., & Hanley, D. F. (2007). Treatment of unruptured intracranial aneurysms: A nationwide assessment of effectiveness. *American Journal of Neuroradiology*, 28, 146–151. doi:10.1016/S0098-1672(08)70222-4
- Hoffman, H., Vu, D. (1997) Virtual reality: Teaching tool of the twenty-first century? Acad Med. 72:1076-1081
- Hsu, J. H., Younan, D., Pandalai, S., Gillespie, B. T., Jain, R. a., Schippert, D. W., ...
 Illig, K. a. (2004). Use of computer simulation for determining endovascular skill
 levels in a carotid stenting model. *Journal of Vascular Surgery*, 40, 1118–1125.
 http://doi.org/10.1016/j.jvs.2004.08.026
- Ingall, T. J., Whisnant, J. P., Wiebers, D. O., & O'Fallon, W. M. (1989). Has there been a decline in subarachnoid hemorrhage mortality? *Stroke; a Journal of Cerebral Circulation*, 20, 718–724. doi:10.1161/01.STR.20.6.718

- Issenberg, S. B., McGaghie, W. C., Hart, I. R., Mayer, J. W., Felner, J. M., Petrusa, E. R., ... Ewy, G. A. (1999). Simulation technology for health care professional skills training and assessment. *JAMA : The Journal of the American Medical Association*, 282(9), 861–866. http://doi.org/10.1001/jama.282.9.861
- Jakobsson, K. E., Säveland, H., Hillman, J., Edner, G., Zygmunt, S., Brandt, L., & Pellettieri, L. (1996). Warning leak and management outcome in aneurysmal subarachnoid hemorrhage. *Journal of Neurosurgery*, 85, 995–999. doi:10.3171/jns.1996.85.6.0995
- Johnston, S. C., Selvin, S., & Gress, D. R. (1998). The burden, trends, and demographics of mortality from subarachnoid hemorrhage. *Neurology*, 50(5), 1413–1418. http://doi.org/10.1212/WNL.50.5.1413
- Kahol, K., Ashby, A., Smith, M., & Ferrara, J. J. (2010). Quantitative evaluation of retention of surgical skills learned in simulation. In *Journal of Surgical Education* (Vol. 67, pp. 421–426). http://doi.org/10.1016/j.jsurg.2010.05.005
- Kaufmann, T. J., Huston, 3., John, Mandrekar, J. N., Schleck, C. D., Thielen, K. R., & Kallmes, D. F. (2007). Complications of diagnostic cerebral angiography: Evaluation of 19,826 consecutive patients. Radiology, 243(3), 812-819. doi:10.1148/radiol.2433060536
- Kelkar, P. S., Brett Fleming, J., Walters, B. C., & Harrigan, M. R. (2013). Infection risk in neurointervention and cerebral angiography. Neurosurgery, 72(3), 327–331. doi:10.1227/NEU.0b013e31827d0ff7
- Lee, J. T., Qiu, M., Teshome, M., Raghavan, S. S., Tedesco, M. M., & Dalman, R. L. (2009). The Utility of Endovascular Simulation to Improve Technical Performance and Stimulate Continued Interest of Preclinical Medical Students in Vascular Surgery. *Journal of Surgical Education*, 66(6), 367–373. http://doi.org/10.1016/j.jsurg.2009.06.002


- Malone, H. R., Syed, O. N., Downes, M. S., D'Ambrosio, A. L., Quest, D. O., Kaiser, M.G. Simulation in neurosurgery: A review of computer-based simulation environments and their surgical applications. Neurosurgery. 2010;67:1105-1116
- Neequaye, S. K., Aggarwal, R., Van Herzeele, I., Darzi, A., & Cheshire, N. J. (2007). Endovascular skills training and assessment. *Journal of Vascular Surgery*, 46, 1055– 1064. http://doi.org/10.1016/j.jvs.2007.05.041
- Nelson, K., Bagnall, A., Nesbit, C., Davey, P., & Mafeld, S. (2014). Developing crossspecialty endovascular simulation training, 411–415.
- Patel, A. D., Gallagher, A. G., Nicholson, W. J., & Cates, C. U. (2006). Learning Curves and Reliability Measures for Virtual Reality Simulation in the Performance Assessment of Carotid Angiography. *Journal of the American College of Cardiology*, 47(9), 1796–1802. http://doi.org/10.1016/j.jacc.2005.12.053
- Pellegrini, C. a. (2006). Surgical education in the United States: navigating the white waters. Annals of Surgery, 244(3), 335–342. doi:10.1097/01.sla.0000234800.08200.6c
- Perkins, G. D. (2007). Simulation in resuscitation training. Resuscitation, 73, 202–211. doi:10.1016/j.resuscitation.2007.01.005
- Rosen, K. R. (2008). The history of medical simulation. Journal of Critical Care, 23, 157–166. doi:10.1016/j.jcrc.2007.12.004
- Smith, C. C., Huang, G. C., Newman, L. R., Clardy, P. F., Feller-Kopman, D., Cho, M., ... Schwartzstein, R. M. (2010). Simulation training and its effect on long-term resident performance in central venous catheterization. *Simulation in Healthcare : Journal of the Society for Simulation in Healthcare*, 5(3), 146–151. http://doi.org/10.1097/SIH.0b013e3181dd9672

- Spiotta, A. M., Rasmussen, P. A., Masaryk, T. J., Benzel, E. C., & Schlenk, R. (2013). Simulated diagnostic cerebral angiography in neurosurgical training: A pilot program. Journal of Neurointerventional Surgery, 5(4), 376.
- Spiotta, A. M., Schlenk, R.P. (2011). Simulation in neurosurgical residency training: a new paradigm. CNS Quarterly. Retreived from http://simbionix.com/wpcontent/uploads/2011/01/CNSquarterly.pdf
- Strachan IW. Technology leaps all around propel advances in simulators. National defense: the business and technology magazine Web site. Available at: http://www.nationaldefensemagazine.org/ index.cfm; 2000
- Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of threedimensional spatial visualization. *Perceptual and Motor Skills*, 47(2), 599–604. http://doi.org/10.2466/pms.1978.47.2.599
- Wanzel, K. R., Hamstra, S. J., Anastakis, D. J., Matsumoto, E. D., & Cusimano, M. D. (2002). Effect of visual-spatial ability on learning of spatially-complex surgical skills. *Lancet*, 359(9302), 230–231. http://doi.org/10.1016/S0140-6736(02)07441-X
- Wiebers, D. O., Whisnant, J. P., Huston, J., Meissner, I., Brown, R. D., Piepgras, D. G., ... Torner, J. C. (2003). Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. *Lancet*, 362, 103–110. doi:10.1016/S0140-6736(03)13860-3
- Willinsky, R. a, Taylor, S. M., TerBrugge, K., Farb, R. I., Tomlinson, G., & Montanera,
 W. (2003). Neurologic complications of cerebral angiography: prospective analysis of 2,899 procedures and review of the literature. Radiology, 227(January 1996), 522–528. doi:10.1148/radiol.2272012071
- Witham, T. F., & Kaufmann, A. M. Unruptured cerebral aneurysm producing a thunderclap headache., 18 The American journal of emergency medicine 88–90 (2000). doi:10.1016/S0735-6757(00)90058-5

Ziv, A., Small, S. D., & Wolpe, P. R. (2000). Patient safety and simulation-based medical education. *Medical Teacher*, 22(5), 489–495. http://doi.org/10.1080/01421590050110777

Appendices

Appendix A: Copyright permission for use of material provided by Massachusetts Medical Society

This type of reuse is available outside of RightsLink

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

For permission for this type of reuse, please visit http://www.nejm.org/page/about-nejm/permissions

Copyright © 2015 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions.

47

Appendix B: Statistical analysis from total procedure time between alternating and consistent groups

Source		Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^a
group	Sphericity Assumed	42504.200	1	42504.200	.150	.718	.036	.150	.061
	Greenhouse-Geisser	42504.200	1.000	42504.200	.150	.718	.036	.150	.061
	Huynh-Feldt	42504.200	1.000	42504.200	.150	.718	.036	.150	.061
	Lower-bound	42504.200	1.000	42504.200	.150	.718	.036	.150	.061
Error(group)	Sphericity Assumed	1133123.68	4	283280.919					
	Greenhouse-Geisser	1133123.68	4.000	283280.919					
	Huynh-Feldt	1133123.68	4.000	283280.919					
	Lower-bound	1133123.68	4.000	283280.919					
session_number	Sphericity Assumed	5125124.80	7	732160.686	16.704	.000	.807	116.928	1.000
	Greenhouse-Geisser	5125124.80	2.146	2388028.61	16.704	.001	.807	35.850	.994
	Huynh-Feldt	5125124.80	4.710	1088218.03	16.704	.000	.807	78.670	1.000
	Lower-bound	5125124.80	1.000	5125124.80	16.704	.015	.807	16.704	.857
Error(session_number)	Sphericity Assumed	1227283.33	28	43831.547					
	Greenhouse-Geisser	1227283.33	8.585	142961.772					
	Huynh-Feldt	1227283.33	18.839	65147.284					
	Lower-bound	1227283.33	4.000	306820.831					

Multivariate Tests

	Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^b
Pillai's trace	.036	.150 ^a	1.000	4.000	.718	.036	.150	.061
Wilks' lambda	.964	.150 ^a	1.000	4.000	.718	.036	.150	.061
Hotelling's trace	.038	.150 ^a	1.000	4.000	.718	.036	.150	.061
Roy's largest root	.038	.150 ^a	1.000	4.000	.718	.036	.150	.061

Each F tests the multivariate effect of group. These tests are based on the linearly independent pairwise comparisons among the estimated marginal means.

a. Exact statistic

b. Computed using alpha = .05

Mauchly's Test of Sphericity^a

Measure: MEASURE_1

						Epsilon ^b	
Within Subjects Effect	Mauchly's W	Approx. Chi- Square	df	Sig.	Greenhouse- Geisser	Huynh-Feldt	Lower-bound
group	1.000	.000	0		1.000	1.000	1.000
session_number	.000		27		.307	.673	.143
group * session_number	.000		27		.388	1.000	.143

		Pairwise Con	nparisons			
Measure: MEASURE	<u>_</u> 1					
		Mean Difference (I			95% Confiden Differ	
(I) session_number	(J) session_number	Difference (I– J)	Std. Error	Sig. ^b	Lower Bound	Upper Bound
1	2	467.600	71.000	.077	-57.258	992.458
	3	554.400	132.297	.386	-423.590	1532.390
	4	584.200	179.630	.877	-743.690	1912.090
	5	768.800*	87.948	.026	118.660	1418.940
	6	740.900	76.602	.018	174.629	1307.171
	7	795.500 [*]	92.539	.028	111.419	1479.581
	8	816.200	114.335	.057	-29.008	1661.408
2	1	-467.600	71.000	.077	-992.458	57.258
	3	86.800	79.915	1.000	-503.958	677.558
	4	116.600	158.514	1.000	-1055.192	1288.392
	5	301.200*	32.486	.021	61.049	541.351
	6	273.300	43.961	.095	-51.675	598.275
	7	327.900*	33.546	.017	79.916	575.884
	8	348.600	64.884	.162	-131.043	828.243
3	1	-554.400	132.297	.386	-1532.390	423.590
	2	-86.800	79.915	1.000	-677.558	503.958
	4	29.800	145.883	1.000	-1048.618	1108.218
	5	214.400	64.951	.837	-265.738	694.538
	6	186.500	67.117	1.000	-309.649	682.649
	7	241.100	62.543	.510	-221.242	703.442
	8	261.800	75.073	.705	-293.167	816.767
4	1	-584.200	179.630	.877	-1912.090	743.690
	2	-116.600	158.514	1.000	-1288.392	1055.192
	3	-29.800	145.883	1.000	-1108.218	1048.618
	5	184.600	128.118	1.000	-762.493	1131.693
	6	156.700	125.646	1.000	-772.117	1085.517
	7	211.300	141.948	1.000	-838.031	1260.631
	8	232.000	125.696	1.000	-697.186	1161.186
5	1	-768.800	87.948	.026	-1418.940	-118.660
	2	-301.200*	32.486	.021	-541.351	-61.049
	3	-214.400	64.951	.837	-694.538	265.738
	4	-184.600	128.118	1.000	-1131.693	762.493
	6	-27.900	27.108	1.000	-228.294	172.494
	7	26.700	22.581	1.000	-140.229	193.629
	8	47.400	43.847	1.000	-276.735	371.535

1	-740.900	76.602	.018	-1307.171	-174.629
2	-273.300	43.961	.095	-598.275	51.675
3	-186.500	67.117	1.000	-682.649	309.649
4	-156.700	125.646	1.000	-1085.517	772.117
5	27.900	27.108	1.000	-172.494	228.294
7	54.600	33.687	1.000	-194.423	303.623
8	75.300	49.264	1.000	-288.875	439.475
1	-795.500	92.539	.028	-1479.581	-111.419
2	-327.900 [*]	33.546	.017	-575.884	-79.916
3	-241.100	62.543	.510	-703.442	221.242
4	-211.300	141.948	1.000	-1260.631	838.031
5	-26.700	22.581	1.000	-193.629	140.229
6	-54.600	33.687	1.000	-303.623	194.423
8	20.700	33.760	1.000	-228.863	270.263
1	-816.200	114.335	.057	-1661.408	29.008
2	-348.600	64.884	.162	-828.243	131.043
3	-261.800	75.073	.705	-816.767	293.167
4	-232.000	125.696	1.000	-1161.186	697.186
5	-47.400	43.847	1.000	-371.535	276.735
6	-75.300	49.264	1.000	-439.475	288.875
7	-20.700	33.760	1.000	-270.263	228.863
	3 4 5 7 8 1 2 3 4 5 6 8 1 2 3 4 5 6 8 1 2 3 4 5 6 8 5 6 8 5 6 8 5 6 8 5 6 8 5 6 8 5 6 8 5 6 8 5 5 6 8 5 5 5 6 8 5 5 5 7 8 5 5 5 7 8 5 5 5 7 8 5 5 5 7 8 5 5 5 7 8 5 5 5 5	2 -273.300 3 -186.500 4 -156.700 5 27.900 7 54.600 8 75.300 1 -795.500* 2 -327.900* 3 -241.100 4 -211.300 5 -26.700 6 -54.600 8 20.700 1 -816.200 2 -348.600 3 -261.800 4 -232.000 5 -47.400 6 -75.300	$\begin{array}{ccccc} 2 & -273.300 & 43.961 \\ 3 & -186.500 & 67.117 \\ 4 & -156.700 & 125.646 \\ 5 & 27.900 & 27.108 \\ 7 & 54.600 & 33.687 \\ 8 & 75.300 & 49.264 \\ 1 & -795.500 & 92.539 \\ 2 & -327.900 & 33.546 \\ 3 & -241.100 & 62.543 \\ 4 & -211.300 & 141.948 \\ 5 & -26.700 & 22.581 \\ 6 & -54.600 & 33.687 \\ 8 & 20.700 & 33.760 \\ 1 & -816.200 & 114.335 \\ 2 & -348.600 & 64.884 \\ 3 & -261.800 & 75.073 \\ 4 & -232.000 & 125.696 \\ 5 & -47.400 & 43.847 \\ 6 & -75.300 & 49.264 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

	Kolm	ogorov-Smi	rnov ^a	S	hapiro-Wilk	
	Statistic	df	Sig.	Statistic	df	Sig.
al	.243	5	.200	.827	5	.131
a2	.155	5	.200*	.995	5	.994
a3	.349	5	.047	.776	5	.051
a4	.308	5	.136	.866	5	.252
a5	.275	5	.200*	.875	5	.288
a6	.262	5	.200*	.838	5	.160
a7	.275	5	.200*	.932	5	.613
a8	.209	5	.200*	.942	5	.681
s1	.289	5	.200*	.854	5	.209
s2	.251	5	.200*	.846	5	.181
s3	.268	5	.200*	.866	5	.250
s4	.388	5	.013	.677	5	.005
s5	.232	5	.200*	.953	5	.762
s6	.280	5	.200*	.891	5	.362
s7	.194	5	.200*	.972	5	.889
s8	.297	5	.172	.818	5	.113

Tests of Normality

Appendix C: Statistical analysis from total procedure time between low and high MRT participants

								_		-				Observe
Effect			Value	F	Ну	pothesis df	Error df		Sig.	Partial I Square		Noncent Paramete		Observed Power ^d
MRT	Pillai's Tra	ce	.93	8 45.01	3 ^b	1.000	3.000		.007		.938	45.0)13	.98
	Wilks' Lam	bda	.06	2 45.01	3 ^b	1.000	3.000		.007		938	45.0	013	.98
	Hotelling's	Trace	15.00	4 45.01	3 ^b	1.000	3.000		.007		938	45.0	013	.98
	Roy's Larg	est Root	15.00	4 45.01	3 ^b	1.000	3.000		.007		938	45.0	013	.98
				м	auchly'	s Test of S	Spheric	ty ^a						
Measure: M	EASURE_1													
										Epsilon ^b				
Wahin Colora		Mauchly	c W	Approx. Squa		df	Sig.		Greenhouse- Geisser Huynh-Feldt Lower-				ver-bound	
Within Subje	cts Effect		000		.000	0	Jig.	_		inayin		1.000	201	1.000
					.000	-				1.000		1.000		
session			000			27		· .		.385				.143
MRT * session	on		000			27				.286		.861		.143
Measure: MEAS	SORE_1													
Source				pe III Sum f Squares	df	Mean Sou	are	F	Sig		al Eta ared	Noncer		Observed Power ^a
MRT	Spheric	ity Assumed	ó	f Squares	df	Mean Squ		F	Sig.	Squ	ared	Parame	ter	Power ^a
MRT		ity Assumed	88	f Squares 8070.641	1	888070.6	541 45	.013	.00	Squ 7	ared .938	Parame 45.	ter .013	Power ^a .98
MRT		ouse-Geisse	88 188 188	f Squares		888070.6 888070.6	541 45 541 45		.00 .00	Squ 7 7	ared	Parame 45. 45.	ter	Power ^a .98 .98
MRT	Greenh	ouse–Geisse Feldt	88 er 88 88	f Squares 8070.641 8070.641	1.000	L 888070.6 0 888070.6 0 888070.6	541 45 541 45 541 45	.013 .013	.00 .00 .00	Squ 7 7 7	ared .938 .938	Parame 45. 45. 45.	ter .013 .013	Power ^a .98 .98
	Greenh Huynh- Lower-	ouse–Geisse Feldt	o 88 88 88 88	f Squares 8070.641 8070.641 8070.641	1 1.000 1.000	1 888070.6 0 888070.6 0 888070.6 0 888070.6 0 888070.6	541 45 541 45 541 45 541 45	.013 .013 .013	.00 .00 .00	Squ 7 7 7	ared .938 .938 .938	Parame 45. 45. 45.	ter .013 .013 .013	Power ^a
	Greenh Huynh- Lower- Spheric	ouse–Geisse Feldt bound	o 88 88 88 88 5	f Squares 8070.641 8070.641 8070.641 8070.641	1.000 1.000 1.000	888070.6 888070.6 888070.6 888070.6 888070.6 819729.3	541 45 541 45 541 45 541 45 541 45 391	.013 .013 .013	.00 .00 .00	Squ 7 7 7	ared .938 .938 .938	Parame 45. 45. 45.	ter .013 .013 .013	Power ^a .98 .98
	Greenh Huynh- Lower- Spheric	ouse-Geisse Feldt bound ity Assumed ouse-Geisse	er 88 88 88 88 88 88 88 88 88 88 88 88 88	f Squares 8070.641 8070.641 8070.641 8070.641 9188.172	1 1.000 1.000 1.000	 888070.6 888070.6 888070.6 888070.6 888070.6 888070.6 888070.6 19729.3 19729.3 	541 45 541 45 541 45 541 45 541 45 541 45 541 45 541 45 391 391	.013 .013 .013	.00 .00 .00	Squ 7 7 7	ared .938 .938 .938	Parame 45. 45. 45.	ter .013 .013 .013	Power ^a .98 .98
	Greenh Huynh- Lower- Spheric Greenh	ouse-Geisse Feldt bound ity Assumed ouse-Geisse Feldt	er 88 88 88 88 88 88 88 5 97 5	ř Squares 8070.641 8070.641 8070.641 8070.641 9188.172 9188.172	1.000 1.000 1.000 3.000	888070.6 888070.6 888070.6 888070.6 888070.6 888070.6 888070.6 19729.3 19729.3 19729.3 19729.3	541 45 541 45 541 45 541 45 541 45 391 391 391	.013 .013 .013	.00 .00 .00	Squ 7 7 7	ared .938 .938 .938	Parame 45. 45. 45.	ter .013 .013 .013	Power ^a .98 .98
Error(MRT)	Greenh Huynh- Lower- Spheric Greenh Huynh- Lower- Spheric	ouse-Geisse Feldt bound ity Assumed ouse-Geisse Feldt bound ity Assumed	er 88 88 88 88 88 88 88 88 5 5 5 5 5 5 5 5	<pre>f Squares 8070.641 8070.641 8070.641 8070.641 9188.172 9188.172 9188.172 9188.172 9188.172 74290.23</pre>	1 1.000 1.000 3.000 3.000 3.000 7	1 888070.6 0 888070.6 0 888070.6 0 888070.6 0 888070.6 0 19729.3 0 19729.3 0 19729.3 0 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3	541 45 541 45 541 45 541 45 541 45 391 391 391 391 391 391 391 14	.013 .013 .013 .013	.00 .00 .00 .00	5qu 7 7 7 0	ared .938 .938 .938 .938	Parame 45. 45. 45. 45. 103.	ter .013 .013 .013 .013	Power ^a .98 .98 .98
Error(MRT)	Greenh Huynh- Lower- Spheric Greenh Huynh- Lower- Spheric Greenh	ouse-Geisse Feldt bound ity Assumed ouse-Geisse Feldt bound ity Assumed ouse-Geisse	r 888 888 888 888 888 888 888 5 5 5 5 5 5	<pre>\$ Squares 8070.641 8070.641 8070.641 8070.641 9188.172 9188.172 9188.172 9188.172 9188.172 74290.23 74290.23</pre>	1 1.000 1.000 3.000 3.000 3.000 7 2.693	1 888070.6 0 888070.6 0 888070.6 0 888070.6 0 888070.6 0 19729.3 0 19729.3 0 19729.3 0 19729.3 0 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19468.6	541 45 541 45 541 45 541 45 541 45 541 45 391 391 391 391 391 391 391 14 .63 14	.013 .013 .013 .013	.00 .00 .00 .00 .00	Squ 7 7 7 7 7 7	ared .938 .938 .938 .938 .938	Parame 45. 45. 45. 45. 103. 39.	ter .013 .013 .013 .013 .013	Power ^a .98 .98 .98 .98 .98
	Greenh Huynh- Lower- Spheric Greenh Huynh- Lower- Spheric Greenh Huynh-	ouse-Geisse Feldt bound ity Assumed ouse-Geisse Feldt bound ity Assumed ouse-Geisse Feldt	er 888 888 888 888 888 888 888 888 888 88	f Squares 8070.641 8070.641 8070.641 9188.172 9188.172 9188.172 9188.172 74290.23 74290.23	1.000 1.000 3.000 3.000 3.000 7.2.693 7.000	1 888070.6 0 888070.6 0 888070.6 0 888070.6 0 888070.6 0 19729.3 0 19729.3 0 19729.3 1 19729.3 1 19729.3 7 710612.8 1 1846866 0 710612.8	541 45 541 45 541 45 541 45 541 45 391 391 391 391 391 44 391 14 .63 14 391 14	.013 .013 .013 .013 .013	.00 .00 .00 .00 .00	Squ 7 7 7 7 7 1 0	ared .938 .938 .938 .938 .938 .831 .831 .831	Parame 45. 45. 45. 45. 45. 103. 39. 103.	ter .013 .013 .013 .013 .013 .546 .841 .546	Power ^a .98 .98 .98 .98 .98 .98 .98 .98 .98 .98
Error(MRT) session	Greenh Huynh- Lower- Spheric Greenh Huynh- Lower- Spheric Greenh Huynh- Lower-	ouse-Geisse Feldt bound ity Assumed ouse-Geisse Feldt bound ity Assumed ouse-Geisse Feldt bound	er 88 88 88 88 88 88 88 88 88 88 88 88 88	Šquares 8070.641 8070.641 8070.641 9188.172 9188.172 9188.172 9188.172 74290.23 74290.23 74290.23	1.000 1.000 3.000 3.000 3.000 7.2.693 7.000 1.000	1 888070.6 0 888070.6 0 888070.6 0 888070.6 0 888070.6 0 19729.3 0 19729.3 0 19729.3 0 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 1846866 1 710612.8 1 4974290	541 45 5541 45 5541 45 5541 45 391 391 391 391 391 14 6.63 14 391 14 .23 14	.013 .013 .013 .013	.00 .00 .00 .00 .00	Squ 7 7 7 7 7 1 0	ared .938 .938 .938 .938 .938	Parame 45. 45. 45. 45. 45. 103. 39. 103.	ter .013 .013 .013 .013 .013	Power ^a .98 .98 .98 .98 .98 .98 .98 .98 .98 .98
MRT Error(MRT) session Error(session)	Greenh Huynh- Lower- Spheric Greenh Huynh- Lower- Greenh Huynh- Lower- Spheric	ouse-Geisse Feldt bound ity Assumed ouse-Geisse Feldt bound ity Assumed ouse-Geisse Feldt bound ity Assumed	er 88 88 88 88 88 88 88 5 5 5 5 5 5 5 5 5	<pre>f Squares 8070.641 8070.641 8070.641 9188.172 9188.172 9188.172 9188.172 9188.172 9188.24 918 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824 918824 918824 918824 918824 918824 918824 918824 91882 91882 91882 918 918 918 918 918 91 918 91 91 91 91 91 91 91 91 91 91 91 91 91</pre>	1.000 1.000 3.000 3.000 3.000 7 2.693 7.000 1.000 21	1 888070.6 0 888070.6 0 888070.6 0 888070.6 0 888070.6 0 19729.3 0 19729.3 0 19729.3 7 710612.8 8 1846866 0 710612.8 4974290 1 1 48039.2	541 45 541 45 541 45 5541 45 391 391 391 391 391 4 63 14 891 14 .63 14 260 460	.013 .013 .013 .013 .013	.00 .00 .00 .00 .00	Squ 7 7 7 7 7 1 0	ared .938 .938 .938 .938 .938 .831 .831 .831	Parame 45. 45. 45. 45. 45. 103. 39. 103.	ter .013 .013 .013 .013 .013 .546 .841 .546	Power ^a .98 .98 .98 .98 .98
Error(MRT) session	Greenh Huynh- Lower- Spheric Greenh Huynh- Lower- Spheric Greenh Huynh- Lower- Spheric Greenh	ouse-Geisse Feldt bound ity Assumed ouse-Geisse Feldt bound ity Assumed ouse-Geisse Feldt bound ity Assumed ouse-Geisse	er 888 888 888 888 888 888 888 888 5 5 5 5	<pre>f Squares 8070.641 8070.641 8070.641 9188.172 9188.172 9188.172 9188.172 9188.172 74290.23 74290.23 74290.23 74290.23 08824.45</pre>	1 1.000 1.000 3.000 3.000 3.000 7.000 1.000 2.693 7.000 1.000 2.1 8.080	1 888070.6 0 888070.6 0 888070.6 0 888070.6 0 888070.6 3 19729.3 0 19729.3 0 19729.3 1 19729.3 7 710612.8 8 1846866 0 4974290 1 48039.2 1 24852.5	541 45 541 45 541 45 5541 45 391 391 391 391 391 4 63 14 391 14 .63 14 260 336	.013 .013 .013 .013 .013	.00 .00 .00 .00 .00	Squ 7 7 7 7 7 1 0	ared .938 .938 .938 .938 .938 .831 .831 .831	Parame 45. 45. 45. 45. 45. 103. 39. 103.	ter .013 .013 .013 .013 .013 .546 .841 .546	Power ^a .98 .98 .99 .99 .99 .99 .99 .99 .99 .00 .99 .00
Error(MRT) session	Greenh Huynh- Lower- Spheric Greenh Huynh- Lower- Greenh Huynh- Lower- Spheric	ouse-Geisse Feldt bound ity Assumed ouse-Geisse Feldt bound ity Assumed ouse-Geisse Feldt bound ity Assumed ouse-Geisse Feldt	er 888 888 888 888 888 888 888 888 888 88	<pre>f Squares 8070.641 8070.641 8070.641 9188.172 9188.172 9188.172 9188.172 9188.172 9188.24 918 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824.45 918824 918824 918824 918824 918824 918824 918824 918824 91882 91882 91882 918 918 918 918 918 91 918 91 91 91 91 91 91 91 91 91 91 91 91 91</pre>	1.000 1.000 3.000 3.000 3.000 7 2.693 7.000 1.000 21	1 888070.6 0 888070.6 0 888070.6 0 888070.6 0 888070.6 0 19729.3 0 19729.3 1 19729.3 7 710612.8 8 1846866 0 19749.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 1 19729.3 7 710612.8 9 1974290 1 48039.2 1 24852.5 9 48039.2	541 45 5541 45 5541 45 5641 45 391 391 391 391 391 44 63 14 260 236 260 266	.013 .013 .013 .013 .013	.00 .00 .00 .00 .00	Squ 7 7 7 7 7 1 0	ared .938 .938 .938 .938 .938 .831 .831 .831	Parame 45. 45. 45. 45. 45. 103. 39. 103.	ter .013 .013 .013 .013 .013 .546 .841 .546	Power ^a .98 .98 .98 .98 .98 .98 .98 .98 .98 .98

		Tes	ts of Norn	nality		
	Kolmo	gorov-Smir	nov ^a	Sł	napiro-Wilk	
	Statistic	df	Sig.	Statistic	df	Sig.
a1	.229	4		.948	4	.704
a2	.172	4		.995	4	.981
a3	.357	4		.814	4	.130
a4	.279	4		.882	4	.346
a5	.168	4		.984	4	.923
a6	.174	4		.996	4	.984
a7	.259	4		.912	4	.492
a8	.386	4		.746	4	.035
s1	.288	4		.823	4	.149
s2	.281	4		.829	4	.164
s3	.433	4		.642	4	.002
s4	.288	4		.832	4	.172
s5	.331	4		.868	4	.288
s6	.268	4		.937	4	.639
s7	.263	4		.889	4	.379
s8	.163	4		.997	4	.988

Appendix D: Statistical analysis of total fluoroscopy time between alternating and consistent training groups

					Epsilon ^b			
Within Subjects Effect	Mauchly's W	Approx. Chi- Square	df	Sig.	Greenhouse- Geisser	Huynh-Feldt	Lower-bound	
group	1.000	.000	0		1.000	1.000	1.000	
session_number	.000		27		.339	.866	.143	
group * session_number	.000		27		.391	1.000	.143	

Mauchly's Test of Sphericity^a

Measure: MEASURE_1

Source		Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^a
group	Sphericity Assumed	90.312	1	90.312	.000	.984	.000	.000	.050
	Greenhouse-Geisser	90.312	1.000	90.312	.000	.984	.000	.000	.050
	Huynh-Feldt	90.312	1.000	90.312	.000	.984	.000	.000	.050
	Lower-bound	90.312	1.000	90.312	.000	.984	.000	.000	.050
Error(group)	Sphericity Assumed	802149.000	4	200537.250					
	Greenhouse-Geisser	802149.000	4.000	200537.250					
	Huynh-Feldt	802149.000	4.000	200537.250					
	Lower-bound	802149.000	4.000	200537.250					
session_number	Sphericity Assumed	3604292.19	7	514898.884	13.885	.000	.776	97.198	1.000
	Greenhouse-Geisser	3604292.19	2.373	1518896.54	13.885	.001	.776	32.950	.990
	Huynh-Feldt	3604292.19	6.063	594464.967	13.885	.000	.776	84.189	1.000
	Lower-bound	3604292.19	1.000	3604292.19	13.885	.020	.776	13.885	.793
Error(session_number)	Sphericity Assumed	1038290.50	28	37081.804					
	Greenhouse-Geisser	1038290.50	9.492	109387.348					
	Huynh-Feldt	1038290.50	24.252	42811.965					
	Lower-bound	1038290.50	4.000	259572.625					

	Pairwise Comparisons									
Measure: MEASURE	_1									
		Mean Difference (I-			95% Confiden Differ	ce Interval for ence ^b				
(I) session_number	(J) session_number	J)	Std. Error	Sig. ^b	Lower Bound	Upper Bound				
1	2	394.800	55.537	.058	-15.748	805.348				
	3	466.700	123.717	.548	-447.859	1381.259				
	4	469.700	152.705	1.000	-659.147	1598.547				
	5	624.500	85.658	.053	-8.715	1257.715				
	6	590.800 [*]	62.945	.020	125.492	1056.108				
	7	674.100 [*]	78.954	.029	90.447	1257.753				
	8	709.500*	93.524	.045	18.139	1400.861				
2	1	-394.800	55.537	.058	-805.348	15.748				
	3	71.900	87.294	1.000	-573.408	717.208				
	4	74.900	146.405	1.000	-1007.378	1157.178				
	5	229.700	47.186	.230	-119.115	578.515				
	6	196.000	51.376	.528	-183.792	575.792				
	7	279.300	38.631	.054	-6.273	564.873				
	8	314.700	65.404	.240	-168.789	798.189				
3	1	-466.700	123.717	.548	-1381.259	447.859				
	2	-71.900	87.294	1.000	-717.208	573.408				
	4	3.000	141.694	1.000	-1044.454	1050.454				
	5	157.800	65.956	1.000	-329.771	645.371				
	6	124.100	79.474	1.000	-463.403	711.603				
	7	207.400	76.267	1.000	-356.394	771.194				
	8	242.800	84.950	1.000	-385.182	870.782				
4	1	-469.700	152.705	1.000	-1598.547	659.147				
	2	-74.900	146.405	1.000	-1157.178	1007.378				
	3	-3.000	141.694	1.000	-1050.454	1044.454				
	5	154.800	109.366	1.000	-653.673	963.273				
	6	121.100	102.074	1.000	-633.468	875.668				
	7	204.400	119.882	1.000	-681.812	1090.612				
	8	239.800	110.017	1.000	-573.486	1053.086				

5 1	-624.500	85.658	.053	-1257.715	8.715
2	-229.700	47.186	.230	-578.515	119.115
3	-157.800	65.956	1.000	-645.371	329.771
4	-154.800	109.366	1.000	-963.273	653.673
6	-33.700	35.184	1.000	-293.795	226.395
7	49.600	16.597	1.000	-73.091	172.291
8	85.000	34.318	1.000	-168.691	338.691
6 1	-590.800	62.945	.020	-1056.108	-125.492
2	-196.000	51.376	.528	-575.792	183.792
3	-124.100	79.474	1.000	-711.603	463.403
4	-121.100	102.074	1.000	-875.668	633.468
5	33.700	35.184	1.000	-226.395	293.795
7	83.300	39.260	1.000	-206.925	373.525
8	118.700	46.972	1.000	-228.531	465.931
7 1	-674.100	78.954	.029	-1257.753	-90.447
2	-279.300	38.631	.054	-564.873	6.273
3	-207.400	76.267	1.000	-771.194	356.394
4	-204.400	119.882	1.000	-1090.612	681.812
5	-49.600	16.597	1.000	-172.291	73.091
6	-83.300	39.260	1.000	-373.525	206.925
8	35.400	30.125	1.000	-187.294	258.094
8 1	-709.500	93.524	.045	-1400.861	-18.139
2	-314.700	65.404	.240	-798.189	168.789
3	-242.800	84.950	1.000	-870.782	385.182
4	-239.800	110.017	1.000	-1053.086	573.486
5	-85.000	34.318	1.000	-338.691	168.691
6	-118.700	46.972	1.000	-465.931	228.531
7	-35.400	30.125	1.000	-258.094	187.294

Tests of Normality

	Kolmo	ogorov-Smi	rnov ^a	S	hapiro-Wilk	
	Statistic	df	Sig.	Statistic	df	Sig.
a1	.238	5	.200	.887	5	.341
a2	.224	5	.200*	.963	5	.829
a3	.288	5	.200*	.807	5	.093
a4	.320	5	.103	.833	5	.147
a5	.324	5	.094	.866	5	.251
a6	.175	5	.200*	.946	5	.712
a7	.277	5	.200*	.820	5	.117
a8	.326	5	.088	.729	5	.019
s1	.252	5	.200*	.907	5	.447
s2	.239	5	.200*	.878	5	.299
s3	.351	5	.044	.738	5	.023
s4	.350	5	.044	.708	5	.012
s5	.225	5	.200*	.948	5	.724
s6	.314	5	.119	.859	5	.225
s7	.256	5	.200*	.950	5	.739
s8	.255	5	.200*	.905	5	.440

	total fluoroscopy time								
	Correlatio	ns							
		al	a2						
a1	Pearson Correlation	1	.928						
	Sig. (1-tailed)		.000						
	N	115	115						
a2	Pearson Correlation	.928	1						
	Sig. (1-tailed)	.000							
N 115 115									
**	Correlation is significant (1-tailed).	t at the 0.01	level						

Appendix F: Statistical analysis of total contrast injected between alternating and
consistent groups

		Pairwise Cor	nparisons			
Measure: MEASURE	_1	I			95% Confiden	
		Mean Difference (I-			Differ	ence ^a
(I) session number	(J) session_number	J)	Std. Error	Sig. ^a	Lower Bound	Upper Bound
1	2	18.000	3.386	.088	-2.469	38.469
	3	20.000	8.764	1.000	-32.974	72.974
	4	26.000	11.535	1.000	-43.729	95.729
	5	32.667	11.380	.979	-36.124	101.458
	6	38.667	17.968	1.000	-69.945	147.278
	7	30.667	13.009	1.000	-47.972	109.305
	8	43.333	21.674	1.000	-87.683	174.349
2	1	-18.000	3.386	.088	-38.469	2.469
	3	2.000	8.050	1.000	-46.659	50.659
	4	8.000	11.685	1.000	-62.631	78.631
	5	14.667	13.091	1.000	-64.466	93.799
	6	20.667	19.525	1.000	-97.360	138.693
	7	12.667	14.548	1.000	-75.272	100.606
	8	25.333	23.179	1.000	-114.775	165.442
3	1	-20.000	8.764	1.000	-72.974	32.974
	2	-2.000	8.050	1.000	-50.659	46.659
	4	6.000	4.926	1.000	-23.777	35.777
	5	12.667	10.604	1.000	-51.432	76.765
	6	18.667	15.132	1.000	-72.803	110.136
	7	10.667	9.942	1.000	-49.431	70.764
	8	23.333	18.196	1.000	-86.660	133.326
4	1	-26.000	11.535	1.000	-95.729	43.729
	2	-8.000	11.685	1.000	-78.631	62.631
	3	-6.000	4.926	1.000	-35.777	23.777
	5	6.667	8.176	1.000	-42.754	56.088
	6	12.667	11.658	1.000	-57.804	83.137
	7	4.667	7.036	1.000	-37.867	47.200
	8	17.333	13.997	1.000	-67.274	101.941
5	1	-32.667	11.380	.979	-101.458	36.124
	2	-14.667	13.091	1.000	-93.799	64.466
	3	-12.667	10.604	1.000	-76.765	51.432
	4	-6.667	8.176	1.000	-56.088	42.754
	6	6.000	7.780	1.000	-41.030	53.030
	7	-2.000	5.910	1.000	-37.727	33.727
	8	10.667	11.485	1.000	-58.759	80.092

6	1	-38.667	17.968	1.000	-147.278	69.945
	2	-20.667	19.525	1.000	-138.693	97.360
	3	-18.667	15.132	1.000	-110.136	72.803
	4	-12.667	11.658	1.000	-83.137	57.804
	5	-6.000	7.780	1.000	-53.030	41.030
	7	-8.000	6.197	1.000	-45.458	29.458
	8	4.667	4.890	1.000	-24.892	34.225
7	1	-30.667	13.009	1.000	-109.305	47.972
	2	-12.667	14.548	1.000	-100.606	75.272
	3	-10.667	9.942	1.000	-70.764	49.431
	4	-4.667	7.036	1.000	-47.200	37.867
	5	2.000	5.910	1.000	-33.727	37.727
	6	8.000	6.197	1.000	-29.458	45.458
	8	12.667	9.204	1.000	-42.968	68.302
8	1	-43.333	21.674	1.000	-174.349	87.683
	2	-25.333	23.179	1.000	-165.442	114.775
	3	-23.333	18.196	1.000	-133.326	86.660
	4	-17.333	13.997	1.000	-101.941	67.274
	5	-10.667	11.485	1.000	-80.092	58.759
	6	-4.667	4.890	1.000	-34.225	24.892
	7	-12.667	9.204	1.000	-68.302	42.968

Source		Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^a
group	Sphericity Assumed	1666.667	1	1666.667	.933	.378	.157	.933	.12
	Greenhouse-Geisser	1666.667	1.000	1666.667	.933	.378	.157	.933	.12
	Huynh-Feldt	1666.667	1.000	1666.667	.933	.378	.157	.933	.12
	Lower-bound	1666.667	1.000	1666.667	.933	.378	.157	.933	.12
Error(group)	Sphericity Assumed	8933.333	5	1786.667					
	Greenhouse-Geisser	8933.333	5.000	1786.667					
	Huynh-Feldt	8933.333	5.000	1786.667					
	Lower-bound	8933.333	5.000	1786.667					
session_number	Sphericity Assumed	15634.667	7	2233.524	2.351	.044	.320	16.456	.77
	Greenhouse-Geisser	15634.667	1.377	11356.685	2.351	.170	.320	3.236	.29
	Huynh-Feldt	15634.667	1.728	9049.166	2.351	.156	.320	4.062	.33
	Lower-bound	15634.667	1.000	15634.667	2.351	.186	.320	2.351	.24
Error(session_number)	Sphericity Assumed	33253.333	35	950.095					
	Greenhouse-Geisser	33253.333	6.883	4830.901					
	Huynh-Feldt	33253.333	8.639	3849.330					
	Lower-bound	33253.333	5.000	6650.667					

Tests of Within-Subjects Effects

		Te	sts of Norn	nality			
	Kolmo	ogorov-Smi	rnov ^a		٦		
	Statistic	df	Sig.	Statistic	df	Sig.	1
a1	.234	5	.200	.928	3 5	.585	
a2	.237	5	.200*	.961	L 5	.814	
a3	.261	5	.200*	.859	9 5	.223	
a4	.241	5	.200*	.821	L 5	.119	
a5	.473	5	.001	.552	2 5	.000	
a6	.304	5	.149	.817	7 5	.111	
a7	.367	5	.026	.684	4 5	.006	;
a8	.473	5	.001	.552	2 5	.000	
s1	.335	5	.069	.860) 5	.228	
s2	.273	5	.200*	.852	2 5	.201	
s3	.473	5	.001	.552	2 5	.000	
s4	.450	5	.001	.638	3 5	.002	2
s5	.221	5	.200*	.902	2 5	.421	
s6	.367	5	.026	.684	4 5	.006	;
s7	.258	5	.200*	.782	2 5	.057	,
s8	.201	5	.200*	.881	1 5	.314	
		Mauc	hly's Test of S	phericity ^a			_
Measure: MEASUR	E_1						
			L.		Greenhouse-	Epsilon ^b	
Within Subjects Effe	ct Mauchly's	Approx. C W Square	hi- df	Sig.	Greennouse- Geisser	Huynh-Feldt	Lower-bo
group	1.00	-	00 0	•	1.000	1.000	1.
session_number group * session_nu	.00 mber .00		. 27		.197 .196	.247	

Appendix G: Statisti	v	l procedure ti ected correlat	,	proscopy time, a
	·			
	Correl	ations		
		Total Procedure Time	Total Fluoroscopy Time	Contrast Injected
Total Procedure Time	Pearson Correlation	1	.928	.481
	Sig. (2-tailed)		.000	.000
	Ν	115	115	115
Total Fluoroscopy Time	Pearson Correlation	.928	1	.283
	Sig. (2-tailed)	.000		.002
	Ν	115	115	115
Contrast Injected	Pearson Correlation	.481	.283	1
	Sig. (2-tailed)	.000	.002	
	Ν	115	115	115

Appendix H: Statistical analysis of number of roadmaps created between alternating and consistent groups

Mauchly's Test of Sphericity^a

Measure:	MEASURE_1	
		_

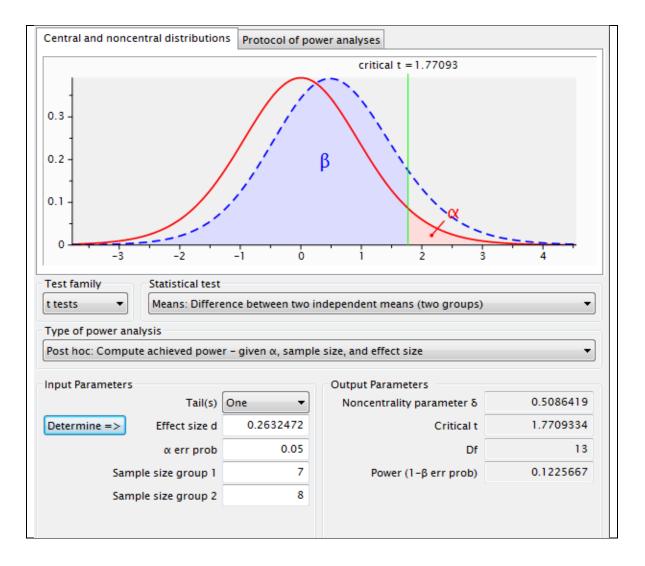
					Epsilon ^D		
Within Subjects Effect	Mauchly's W	Approx. Chi- Square	df	Sig.	Greenhouse- Geisser	Huynh-Feldt	Lower-bound
group	1.000	.000	0		1.000	1.000	1.000
session_number	.000		27		.375	.829	.143
group * session_number	.000		27		.326	.614	.143

Measure: MEASURE_1

Tests of Within-Subjects Effects

Source		Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^a
group	Sphericity Assumed	1.042	1	1.042	.121	.742	.024	.121	.059
	Greenhouse-Geisser	1.042	1.000	1.042	.121	.742	.024	.121	.059
	Huynh-Feldt	1.042	1.000	1.042	.121	.742	.024	.121	.059
	Lower-bound	1.042	1.000	1.042	.121	.742	.024	.121	.059
Error(group)	Sphericity Assumed	43.083	5	8.617					
	Greenhouse-Geisser	43.083	5.000	8.617					
	Huynh-Feldt	43.083	5.000	8.617					
	Lower-bound	43.083	5.000	8.617					
session_number	Sphericity Assumed	111.792	7	15.970	2.673	.025	.348	18.714	.833
	Greenhouse-Geisser	111.792	2.627	42.548	2.673	.096	.348	7.024	.490
	Huynh-Feldt	111.792	5.801	19.270	2.673	.036	.348	15.509	.769
	Lower-bound	111.792	1.000	111.792	2.673	.163	.348	2.673	.266
Error(session_number)	Sphericity Assumed	209.083	35	5.974					
	Greenhouse-Geisser	209.083	13.137	15.916					
	Huynh-Feldt	209.083	29.007	7.208					
	Lower-bound	209.083	5.000	41.817					

Tests of Normality							
	Kolm	ogorov-Smi	rnov ^a	Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
a1	.210	6	.200	.877	6	.256	
a2	.214	6	.200*	.958	6	.804	
a3	.210	6	.200*	.889	6	.315	
a4	.223	6	.200*	.908	6	.421	
a5	.404	6	.003	.692	6	.005	
a6	.388	6	.005	.779	6	.038	
a7	.291	6	.123	.738	6	.015	
a8	.333	6	.036	.827	6	.101	
s1	.201	6	.200*	.912	6	.452	
s2	.292	6	.120	.796	6	.054	
s3	.403	6	.003	.697	6	.006	
s4	.338	6	.031	.672	6	.003	
s5	.183	6	.200*	.960	6	.820	
s6	.333	6	.036	.721	6	.010	
s7	.208	6	.200*	.908	6	.425	
s8	.315	6	.064	.881	6	.275	


		Mean Difference (I-			95% Confiden Differ	ce Interval for ence ^a
(I) session_number	(J) session_number	J)	Std. Error	Sig. ^a	Lower Bound	Upper Bound
1	2	1.500	.742	1.000	-2.983	5.983
	3	1.833	1.515	1.000	-7.323	10.990
	4	2.500	1.544	1.000	-6.832	11.832
	5	3.250	.750	.209	-1.284	7.784
	6	2.917	1.060	1.000	-3.491	9.324
	7	2.167	1.085	1.000	-4.393	8.727
	8	3.667	1.295	1.000	-4.163	11.496
2	1	-1.500	.742	1.000	-5.983	2.983
	3	.333	.872	1.000	-4.940	5.607
	4	1.000	1.008	1.000	-5.095	7.095
	5	1.750	.834	1.000	-3.292	6.792
	6	1.417	.935	1.000	-4.233	7.067
	7	.667	.703	1.000	-3.584	4.917
	8	2.167	1.101	1.000	-4.486	8.819
3	1	-1.833	1.515	1.000	-10.990	7.323
	2	333	.872	1.000	-5.607	4.940
	4	.667	.782	1.000	-4.059	5.392
	5	1.417	1.200	1.000	-5.838	8.671
	6	1.083	1.091	1.000	-5.511	7.678
	7	.333	.615	1.000	-3.382	4.049
	8	1.833	1.333	1.000	-6.226	9.893
4	1	-2.500	1.544	1.000	-11.832	6.832
	2	-1.000	1.008	1.000	-7.095	5.095
	3	667	.782	1.000	-5.392	4.059
	5	.750	1.116	1.000	-5.997	7.497
	6	.417	.841	1.000	-4.666	5.499
	7	333	.972	1.000	-6.208	5.541
	8	1.167	.760	1.000	-3.428	5.761
5	1	-3.250	.750	.209	-7.784	1.284
	2	-1.750	.834	1.000	-6.792	3.292
	3	-1.417	1.200	1.000	-8.671	5.838
	4	750	1.116	1.000	-7.497	5.997
	6	333	.477	1.000	-3.218	2.552
	7	-1.083	.688	1.000	-5.243	3.077
	8	.417	.970	1.000	-5.445	6.278

6 1	-2.917	1.060	1.000	-9.324	3.491	1
2	-1.417	.935	1.000	-7.067	4.233	
3	-1.083	1.091	1.000	-7.678	5.511	
4	417	.841	1.000	-5.499	4.666	
5	.333	.477	1.000	-2.552	3.218	
7	750	.772	1.000	-5.416	3.916	
8	.750	.629	1.000	-3.053	4.553	
7 1	-2.167	1.085	1.000	-8.727	4.393	1
2	667	.703	1.000	-4.917	3.584	
3	333	.615	1.000	-4.049	3.382	
4	.333	.972	1.000	-5.541	6.208	
5	1.083	.688	1.000	-3.077	5.243	
6	.750	.772	1.000	-3.916	5.416	
8	1.500	1.245	1.000	-6.026	9.026	
8 1	-3.667	1.295	1.000	-11.496	4.163	1
2	-2.167	1.101	1.000	-8.819	4.486	
3	-1.833	1.333	1.000	-9.893	6.226	
4	-1.167	.760	1.000	-5.761	3.428	
5	417	.970	1.000	-6.278	5.445	
6	750	.629	1.000	-4.553	3.053	
7	-1.500	1.245	1.000	-9.026	6.026	

Appendix I: Independent samples t-test assessing the MRT values between alternating and consistent groups

Independent Samples Test										
		Levene's Test f Varia		t-test for Equality of Means						
						Sig. (2-	Mean	Std. Error	95% Confidence Interval o the Difference	
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
PERFORMANCE	Equal variances assumed	.411	.533	507	13	.621	-1.11607	2.20132	-5.87173	3.63959
	Equal variances not assumed			516	12.866	.615	-1.11607	2.16336	-5.79469	3.56255

Mean group 1	0
Mean group 2	1
SD σ within each group	0.5
n1 = n2	
Mean group 1	11.58
Mean group 2	12.69
SD σ group 1	3.67
SD σ group 2	4.70
Calculate Effect size d	0.2632472
Calculate and transfer to	main window
	Close

Curriculum Vitae Oleksiy Zaika

51 Apeldoorn Cres.- London - ON - N5Y 2B5 - (226) 374-4399 - ozaika@uwo.ca

EDUCATION

Masters of Science in Clinical Anatomy

Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario (Western), London, Ontario

• Research - Evaluation of User Performance in Simulation-Based Diagnostic Cerebral Angiography Training

Bachelor of Science in Biomedical Sciences (Honours)Sep 2008 – Jun 2013Department of Life Sciences, University of Guelph, Guelph, OntarioSpecialization in Neuroscience

• Research in Neuroscience – Importance of Histone Acetylation in Object-in-Place Memory in Rats

TEACHING & MENTORSHIP EXPERIENCE

Teaching AssistantJan 2015 – PresentACB 2221 - Functional Human Gross Anatomy for Kinesiology, Western

Anatomy Outreach Facilitator Western

Sessional Instructor

Jan 2014 – Dec 2014

Sep 2014 - Dec 2014

Oct 2013 – Present

PSYC/BIOL 2606 - Brain and Behaviour, Algoma University, St. Thomas campus

Teaching Assistant

Medicine Year 1 & 2, Human Anatomy, Schulich School of Medicine and Dentistry, Western

Guest Lecturer
ACB 3319 - Systemic Human Anatomy, Western

Teaching Assistant	Sep 2013 – Apr 2014
ACB 3319 - Systemic Human Anatomy, Western	

Teaching Assistant

Oct 2014

Sep 2013 – Apr 2015 (anticipated)

HS 2300/KIN 2222 - Systemic Approach to Functional Anatomy, Western

Program Facilitator/Instructor Human Anatomy Outreach Program, University of Guelph	Sep 2012 – Apr 2013
Club President	May 2012 – Apr 2013
University of Guelph Pre-Med Club, University of Guelph	
Residence Assistant	Aug 2009 – Apr 2010
University of Guelph Residence Life	

PROFESSIONAL DEVELOPMENT

Certificate in University Teaching and Learning	Apr 2015
Winter Conference on Teaching	Jan 2015
Let's Talk Science Educator	Sep 2013
LEAD@Guelph Leadership Foundations Certificate	Jun 2013
Brain Day Presenter with Parachute© Canada	Apr 2013
Invited Speaker for Last Lecture/Valedictorian Session	Apr 2013

CONFERENCE POSTERS

- Zaika, O., Nguyen, N., Boulton, M., Eagleson, R., de Ribaupierre, S. (2015). Effectiveness of Simulation-Based Training in Aneurysm Diagnosis & Coiling in Cerebral Angiography. Presented at the 2015 Experimental Biology conference, Boston, MA.
- Zaika, O., Nguyen, N., Boulton, M., Eagleson, R., de Ribaupierre, S. (2014). Effectiveness of Simulated Aneurysm Diagnosis and Coiling in Cerebral Angiography. Presented at the 2014 Anatomy and Cell Biology Research Day conference, London, ON.
- Zaika, O., Mitchnick, K.A., Winters, B.D. (2013). <u>The role of histone acetylation in</u> <u>object-in-place memory in rats.</u> Presented at the 2013 Neuroscience Day conference, Guelph, ON.

CONFERENCE ORAL PRESENTATIONS

Zaika, O., Nguyen, N., Boulton, M., Eagleson, R., de Ribaupierre, S. (2015). Evaluating simulator performance in diagnostic cerebral angiography. Presented at the 2015 CNS Departmental Research Day conference, London, ON.

MEMBERSHIPS

Member of the American Association of Anatomists (AAA)

SCHOLARSHIPS AND AWARDS

American Association of Anatomists Student Travel Scholarship	Apr 2015
Western Graduate Research Scholarship	Sep 2013
University of Guelph Entrance Scholarship	Sep 2008