
Marquette University
e-Publications@Marquette

Master's Theses (2009 -) Dissertations, Theses, and Professional Projects

Immersive Visualization in Biomedical
Computational Fluid Dynamics and Didactic
Teaching and Learning
John Thomas Venn
Marquette University

Recommended Citation
Venn, John Thomas, "Immersive Visualization in Biomedical Computational Fluid Dynamics and Didactic Teaching and Learning"
(2018). Master's Theses (2009 -). 459.
https://epublications.marquette.edu/theses_open/459

https://epublications.marquette.edu
https://epublications.marquette.edu/theses_open
https://epublications.marquette.edu/diss_theses

IMMERSIVE VISUALIZATION IN BIOMEDICAL COMPUTATIONAL FLUID

DYNAMICS AND DIDACTIC TEACHING AND LEARNING

By

John T. Venn

A Thesis Submitted to the Faculty of the Graduate School,

Marquette University,

in Partial Fulfillment of the Requirements for

the Degree of Master of Science

Milwaukee, Wisconsin

May 2018

ABSTRACT

IMMERSIVE VISUALIZATION IN BIOMEDICAL COMPUTATIONAL FLUID

DYNAMICS AND DIDACTIC TEACHING AND LEARNING

John T. Venn

Marquette University, 2018

Virtual reality (VR) can stimulate active learning, critical thinking, decision

making and improved performance. It requires a medium to show virtual content, which

is called a virtual environment (VE). The MARquette Visualization Lab (MARVL) is an

example of a VE. Robust processes and workflows that allow for the creation of content

for use within MARVL further increases the userbase for this valuable resource.

A workflow was created to display biomedical computational fluid dynamics

(CFD) and complementary data in a wide range of VE’s. This allows a researcher to

study the simulation in its natural three-dimensional (3D) morphology. In addition, it is

an exciting way to extract more information from CFD results by taking advantage of

improved depth cues, a larger display canvas, custom interactivity, and an immersive

approach that surrounds the researcher.

The CFD to VR workflow was designed to be basic enough for a novice user. It is

also used as a tool to foster collaboration between engineers and clinicians. The workflow

aimed to support results from common CFD software packages and across clinical

research areas. ParaView, Blender and Unity were used in the workflow to take standard

CFD files and process them for viewing in VR. Designated scripts were written to

automate the steps implemented in each software package. The workflow was

successfully completed across multiple biomedical vessels, scales and applications

including: the aorta with application to congenital cardiovascular disease, the Circle of

Willis with respect to cerebral aneurysms, and the airway for surgical treatment planning.

The workflow was completed by novice users in approximately an hour.

Bringing VR further into didactic teaching within academia allows students to be

fully immersed in their respective subject matter, thereby increasing the students’ sense

of presence, understanding and enthusiasm. MARVL is a space for collaborative learning

that also offers an immersive, virtual experience. A workflow was created to view

PowerPoint presentations in 3D using MARVL. A resulting Immersive PowerPoint

workflow used PowerPoint, Unity and other open-source software packages to display

the PowerPoint presentations in 3D. The Immersive PowerPoint workflow can be

completed in under thirty minutes.

i

ACKNOWLEDGMENTS

John T. Venn

 I would like to gratefully acknowledge my advisor, Dr. John LaDisa who has a

passion for research and knowledge. I often wondered how he could be involved in such

a vast array of disciplines and have intimate knowledge in each subject area. He

underscores the importance of professionalism and work ethic. The opportunities Dr.

LaDisa presented me will forever be appreciated. I would also like to thank him for

funding me throughout my time at Marquette, via a MARVL research assistantship and

Marquette’s Lafferty project. Also, I would like to thank the many individuals behind

Marquette’s Lafferty project for suggesting additional involvement by Marquette’s

engineering professors and MARVL. I truly believe that an engineering professor’s

research would benefit greatly by the use of MARVL.

 Secondly, I would like to thank Marquette’s Visualization Specialist, Chris

Larkee. I came to Marquette with minimal knowledge of VR and nominal experience in

coding. Chris took me under his wing and taught me most everything there is to know

about VR. He was happy to help whether I was lost, frustrated, or needed his feedback.

Chris’s help will never be forgotten. I truly appreciate his efforts!

A special thanks to Dr. Garcia and Dr. Rayz for not only serving on my

committee but also for providing me with their CFD research. I would have not been able

to advance the CFD to VR workflow without their efforts. Dr. Vanhille and Dr. Garcia

were instrumental in presenting some of MARVL’s CFD to VR work at the Advances in

Rhinoplasty Conference in Chicago, IL., thank you very much. Dr. Choi and Dr.

Sachdeva provided their clinical feedback on select biomedical CFD VR models. Their

assistance is much appreciated. I would also like to recognize Jesse Gerringer, Evelyn

Granados Centeno, and the Marquette Engineering professors who volunteered to test and

or provide feedback for both of my workflows.

 Lastly, I would like to thank my friends and family for their continuous support.

Most notably my mom and dad, Ann Marie and Tom Venn. Whenever I needed a pick-

me-up or motivation, they were there for me.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... i

LIST OF ABBREVIATIONS & ACRONYMS .. vi

CHAPTER 1: INTRODUCTION ...1

1.1 Specific Aims .. 1

1.2 Virtual Reality ... 4

1.2.1 Virtual and Augmented Reality Defined .. 4

1.2.2 CFD in Immersive VR .. 5

1.2.2.1 Visualization as a Solution... 9

1.2.3 Academe in VR .. 9

1.2.4 Components Recommended for a Quality Virtual Experience 14

1.3 Visualization Theories and Methods ... 15

1.3.1 Depth Perception .. 15

1.3.2 Field of View .. 20

1.3.3 Stereoscopy ... 21

1.3.3.1 Color Multiplexed Approach ... 22

1.3.3.2 Polarization Multiplexed Approach ... 23

1.3.3.3 Time Multiplexed Approach .. 24

1.4 VR Visualization Tools ... 24

1.4.1 CAVE® .. 25

1.4.2 Standalone 3D Projectors ... 27

1.4.3 Head Mounted Displays ... 27

1.4.3.1 Samsung Gear VR.. 28

1.4.3.2 Oculus Rift ... 29

iii

1.4.3.3 Microsoft HoloLens ... 30

1.5 Challenges of VR ... 31

1.6 Biomedical Computational Fluid Dynamics ... 33

1.6.1 Pre-Processing .. 34

1.6.2 Solving Governing Equations ... 36

1.6.3 Post-Processing ... 39

CHAPTER 2: CFD TO VR ...41

2.1 Previous Work Done at MARVL ... 41

2.2 Materials and Methods ... 43

2.2.1 Workflow Requirements... 45

2.2.2 Format of CFD Results ... 47

2.2.3 Convert CFD Results Into a 3D Format ... 49

2.2.4 Reorganizing of CFD Results ... 52

2.2.5 Add Supplementary Data.. 55

2.2.6 Customize for a Given VR Environment ... 56

2.2.6.1 Unity Template .. 57

2.2.6.2 Load .fbx File ... 58

2.2.6.3 Scale, Rotate, and or Reposition CFD simulation 60

2.2.6.4 Run Editor Script ... 61

2.2.6.5 Manually Add Supplementary Data... 63

2.2.7 Arrange VR Environment ... 66

2.3 Results .. 69

2.3.1 Cases ... 69

iv

2.3.1.1 Thoracic Aorta Simulation ... 71

2.3.1.2 Brain Aneurysm Simulation .. 75

2.3.1.3 Airway Simulation ... 79

2.4 Discussion ... 83

2.4.1 Novice Users CFD to VR Workflow Experience ... 83

2.4.2 Clinical Feedback from Derivative Project .. 86

2.4.2.1 Virtual Nasal Surgery .. 86

2.4.2.2 Summary .. 90

2.5 Limitations and Future Directions .. 91

CHAPTER 3: IMMERSIVE POWERPOINT ..94

3.1 Previous Work Done at MARVL ... 94

3.2 Materials and Methods ... 95

3.2.1 Data Acquisition ... 95

3.2.2 Converting Slides ... 96

3.2.3 Transform to Meet Virtual Environment .. 97

3.3 Results .. 100

3.3.1 Case Study .. 100

3.4 Discussion ... 101

3.5 Limitations and Future Directions .. 101

CHAPTER 4: CONCLUSION..103

BIBLIOGRAPHY ..105

Appendix A: Convert CFD Results into Streamlines Using ParaView113

Appendix B: Convert CFD Results into Glyphs Using ParaView120

v

Appendix C: Create/Turn Off Flow Waveform in Unity ...126

Appendix D: Label Scales in Unity ..130

vi

LIST OF ABBREVIATIONS & ACRONYMS

2D – Two dimensional

3D – Three dimensional

AR – Augmented reality

CAD – Computer-aided design

CAVE® – Computer- automatic virtual

environment

CFD – Computational fluid dynamics

CoA – Coarctation of the aorta

CT – Computer tomography

DICOM – Digital imagining and

communication in medicine

EVL – Electronic Visualization Lab

FSI – Fluid-structure interaction

FOV – Field of view

GUI – Graphical user interface

HMD – Head mounted display

HUD – Head-up display

IHC – Immunohistochemical stain

IVE – Immersive virtual environment

MRA – Magnetic resonance

angiography

MRI – Magnetic resonance imaging

MARVL – MARquette Visualization

Lab

NS – Navier-Stokes

OCT – Optical coherence tomography

OCOE – Opus College of Engineering

OSI – Oscillatory shear index

PC-MRI – Phase contrast-magnetic

resonance imaging

SDK – Software development kit

TAWSS – Time-averaged wall shear

stress

VE – Virtual environment

VR – Virtual reality

VVG – Verhoeff-Van Gieson stain

WSS – Wall shear stress

1

CHAPTER 1: INTRODUCTION

1.1 Specific Aims

Experiences that allow for motion within a realistic environment promote active

learning, critical thinking, improved decision making and better performance [1, 2, 3].

This is the basis for the Opus College of Engineering’s (OCOE) MARquette

Visualization Lab (MARVL), which opened within Marquette’s Engineering Hall on

January 16, 2014 as a facility to (1) demonstrate how advanced visualization technology

can be used in learning, research, and industry applications, (2) teach the theory rooted in

this technology, and (3) create technologically advantageous visualization content [4].

The ability to have robust processes and workflows that allow for the creation of content

for use within MARVL and its available head-mounted-displays (HMD) would further

increase the userbase for these important resources. As seen in Figure 1, the objective of

this thesis was to create two semi-automatic workflows for this purpose. In doing so, the

current work aims to demonstrate (1) the practicality of using advanced visualization via

virtual and augmented reality in biomedical computational fluid dynamic (CFD) research

and (2) presentation of didactic lectures and related content for use in teaching.

Additional details are included below.

2

Figure 1: Two workflows were created for the current thesis in order to increase and

extend usage of the MARquette Visualization Lab. Green indicates the Aim 1 workflow.

Purple indicates the Aim 2 workflow.

Aim 1: Develop a semi-automatic workflow that combines biomedical

computational fluid dynamic results and subsequent complementary data to be

viewed in large-scale and head-mounted virtual environments.

CFD results are typically viewed on a standard computer screen and presented

slowly as sequential time steps. In addition, CFD results are seldom viewed with

complementary data that could be beneficial when understanding pathology. Virtual

environments (VE) can attenuate many of these issues by taking advantage of improved

depth cues, a larger display canvas, custom interactivity, and immersive approach that

surrounds the researcher [13,14]. The application of this workflow is used across multiple

biomedical vessels, scales and applications including: the aorta with application to

congenital cardiovascular disease, the Circle of Willis with respect to cerebral aneurysms,

and the airway for surgical treatment planning.

3

Aim 2: Create an easy to use, interactive and rapid workflow that converts a

standard PowerPoint slideshow, for viewing in 3D using Marquette’s Visualization

Lab.

 MARVL within Marquette University’s OCOE contains a large-scale computer-

automatic virtual environment (CAVE®). VE hold tremendous potential as an

educational tool. Multiple studies have shown the advantages of using VR in didactic

teaching and learning [18-38]. As a starting point, the current workflow was created to

allow faculty, staff and instructors within the OCOE to present lectures and presentations

with added depth cues using the CAVE® within MARVL.

4

1.2 Virtual Reality

1.2.1 Virtual and Augmented Reality Defined

 Virtual reality (VR) according to McMenemy et al. is defined as “a computer-

generated 3D environment within which users can participate in real time and experience

a sensation of being there” [5]. VR can be shown in a variety of VE, defined as a

computer-generated space where a user can interact with a virtual element [6]. VE

include large-scale immersive virtual environments (IVE) such as the CAVE®’s, HMD,

and select three-dimensional (3D) projectors. Many IVE are customizable, immersive,

semi-enclosed rooms that display virtual, 3D content when a person wears site-specific

glasses [5]. HMD are devices that are worn on a person’s head to display virtual content

in front of his or her eyes [5]. Select 3D projectors display virtual content onto a standard

projector screen that appears in 3D when a person wears projector-specific glasses. In

recent years, the price of VE’s have decreased, while the quality has increased, leading to

more people using VR [7, 8].

Augmented reality (AR) is another term commonly associated with VR [5]. AR

takes place in the real, physical world where the user can interact with a superimposed

virtual element [9]. An example of AR, illustrated in Figure 2, is the popular smartphone

app, Pokémon Go. The app works by using a smartphone’s camera and GPS. In the

application, GPS is used to find AR cartoon avatars placed throughout the world. When

the user finds the general area of the cartoon avatar using GPS, the smartphone camera is

used to precisely locate the avatar cartoon. For example, in Figure 2, a cartoon avatar is

5

highlighted in the red square, the user does not see the cartoon avatar in the real world,

but when the user looks at the real world through his or her smartphone camera, the

cartoon avatar appears.

Figure 2: Augmented reality, Pokémon Go application [10]

1.2.2 CFD in Immersive VR

An area where VR could have a positive impact is in biomedical CFD research

[13-16]. CFD is a method to generate computer simulations using numerical analysis and

algorithms to replicate or solve problems that involve fluid flow. It is also used to

illustrate spatial and temporal patterns of fluid flow. In the biomedical field, CFD allows

for highly repeatable simulations throughout the body to replicate complex situations that

are difficult to measure experimentally due to high costs, non-existent methods, or the

complexity of the physiologic situation [11].

6

CFD researchers often spend weeks determining boundary conditions, running

simulations and solving governing equations [12]. However, CFD results are typically

viewed on a two-dimensional (2D) display, at one point in time, or very slowly at

sequential time steps without the aid of complementary data. This means that only a

fraction of the CFD results are being studied in detail, at an extremely slow rate, resulting

in associations from related data possibly going unnoticed. In addition, individuals who

did not perform the CFD analysis, for example clinicians who would like to review CFD

results, may not appreciate the utility of CFD results when operating currently available

visualization tools [13]. VR alleviates many of these issues by taking advantage of

improved depth cues, a larger display canvas, custom interactivity, and an immersive

approach that surrounds the researcher [14].

 The first attempt to bring biomedical CFD research into VR was in 2000 by

Andrew Forseberg and colleagues [13]. Their immersive simulation explored CFD results

from a coronary artery graft and aimed to better uncover approaches to reduce failure

rates in artery grafts. The VR-based simulation allowed the viewer to study changes in a

vessel’s flow patterns and geometry in addition to exploring possible lesion sources [13].

The virtual simulation was built for a 4-walled CAVE® (3 walls and a floor). The users

manipulated and moved simulation results around using a widget, voice, and hand

commands. The feedback was mostly positive, but the paper noted that “significant time”

was put toward reformatting the simulation results before being viewed in VR [13].

 Quam et el. developed a semi-automatic workflow for the “import, processing,

rendering, and stereoscopic visualization of high resolution, patient-specific imaging

data, and CFD results in an IVE” [14]. In turn, the workflow expedited the process of

7

reformatting select CFD results to be viewed in a CAVE®, which was an issue in

Forseberg et al’s. work. The workflow imitated a pulsating cardiovascular vessel by using

velocity vectors to represent blood flow. Each velocity vector for each time step had the

same coordinates, but different magnitudes (dependent on the speed in each particular

time step and vector location). When each time step was rapidly played in succession,

blood flow within the featured arteries appeared as though they were pulsating. The

workflow could also display select hemodynamic parameters and patient-specific

imaging data used to create the model. The workflow used MATLAB (The MathWorks;

Natick, MA) as an intermediary tool to convert the CFD results into files that were

compatible with VR. The converted files were then imported into the IVE using custom

Visual Basic scripts [14]. EON STUDIO 7 (EON Reality; Irvine, CA) was used to

display the content in Discovery World Science and Technology Museum’s IVE

(Milwaukee, WI), where the cardiovascular CFD results were viewed in VR. The

workflow was successfully tested on two CFD data sets. The first was a left common

carotid artery. The second was a left-circumflex coronary artery after stenting and again

after a 9-month follow-up period [14, 15].

 Though Foreseberg et al, Quam et. al, and likely other researchers, advanced the

application of CFD to the field of VR, the applications lacked accessibility and

functionality. Preparation of CFD results for use in VE was conducted on in-house

computer software packages where only the individuals who built, tested, ran and

operated the simulations could advance them to the point of use within the VE [13]. In

2015, Berg et al. developed a pipeline that visualized architectural CFD research used for

urban planning via an open source software called Unity (Unity Technologies; San

8

Francisco, CA). Unity is a multipurpose game engine used to display both 2D and 3D

graphics. Unity is also compatible with almost every HMD and is used as the primary

gaming engine in many CAVE®’s throughout the country, including MARVL. The

workflow was designed to “bridge the gap between architects and engineers” [16].

Despite this potentially notable advancement with the use of Unity, many architects are

unfamiliar with post-processing CFD software and would prefer software to be more user

friendly and allow for “real-time exploration of results” [16]. The paper noted that Unity

could fix many of these shortcomings. The workflow’s input requires the numerical CFD

results from Fluent (ANSYS Inc; Canonsburg, PA) and the 3D computer-aided design

(CAD) geometry of the architecture. The numerical CFD results were either pre-

processed or directly imported into the Unity game engine as either .txt, .csv, .dat, or .xml

files. The 3D CAD files were imported into the Unity game engine as a .fbx or .obj file.

After the Unity scene was properly set up, the user could easily visualize and interact

with the results [16]. Though the workflow used Unity, it did not take the extra step of

viewing the results in a VE. The paper did not note whether the workflow could be

completed by any user, or if the workflow needed to be completed by the engineer before

being presented to the architect. In addition, the paper neglected to mention whether the

workflow was compatible with a variety of CFD software packages, or if it was only for

use with CFD results from Fluent.

9

1.2.2.1 Visualization as a Solution

 CFD results can be analyzed using tabulated results in spreadsheets or in common

visualization programs such as ParaView (Kitware, Inc; Clifton Park, NY). Visualization

is the basis of any virtual or augmented reality device [5]. Visualization was originally

defined in a paper written by DeFanti et el in 1987 stating: “Visualization is a method of

computing. It transforms the symbolic into the geometric, enabling researchers to observe

their simulations and computations. Visualization offers a method for seeing the

unseen… it is a tool for both interpreting image data fed into a computer, and generating

images from complex multi-dimensional data sets” [17]. Based on this definition,

visualization through the use of a VR or AR device can be used to illustrate trends or

anomalies in experimental or theoretical data, which would otherwise be difficult to

recognize in tabular form [5]. VR offers the user an alternative to view and/or study data

by taking advantage of improved depth cues, custom interactivity, and an immersive

approach that surrounds his or her self [14].

1.2.3 Academe in VR

In recent years, there has been an increased investment in academia using VR [8].

For example, in 2015, Case Western Reserve and Cleveland Clinic announced a

partnership with Microsoft HoloLens, an AR-based HMD. As a result of this partnership,

beginning in the summer of 2019, nursing, dental, and medical students will no longer

learn anatomy using traditional cadaver-filled laboratories. Instead, as shown in Figure 3,

10

the students will use AR to learn human anatomy [18, 19]. One of the benefits of VR is

that students are fully immersed in their respective subject matter, thereby increasing

their sense of presence, understanding and enthusiasm [21-38].

Figure 3: HoloLens based AR application that will be implemented at Case Western

Reserve and Cleveland Clinic [20]

Compared to a standard classroom, VR provides a higher sense of presence (i.e.

“being there”) by using visual, haptic (touch), auditory and/or sensory feedback. As more

senses are stimulated, the student feels immersed and present in the VE, which results in

triggering semantic and physiological associations from the student’s previous

experiences and or assumptions [21]. A study by Everson et al. tested nursing students’

apathy for patients in third world clinical settings [22]. The rationale for this work was

that prior studies have shown that health professionals had less empathy for culturally

and linguistically diverse patients. The lack of empathy could have grave consequences

leading to ignored or under-treated patients from different racial or ethnic backgrounds.

The simulation positioned nursing students in a third world community hospital where

11

they were exposed to a different language, clinical practice, and unfamiliar smells and

tactile stimuli. After the simulation, nursing students showed a significant improvement

in empathy towards racially and culturally diverse patients [22].

 VR is also an excellent tool for “learning by doing.” For years, medical

professionals have operated on cadavers or mannequins to learn, practice and hone their

curative skills [19]. The importance of “learning by doing” via simulations allows the

user to construct personal knowledge and refine his or her understanding of the task at

hand in a way consistent with cognitive constructional learning theories [23, 24]. Real

life simulations though, are difficult to replicate, are not cost effective, and or consume a

large amount of space [27-29]. VR can mitigate these issues. An example of a real-world

simulation are physical simulation centers used by nursing students at multiple

universities throughout the world. These simulation centers are designed to replicate

clinical hospital settings where life-like mannequins are used to practice specific skills,

like a woman giving birth. Simulation centers require a significant amount of space and

are expensive to maintain. Marquette and Purdue Universities were able to recreate the

simulation environments using CAVE® [25, 26]. VR simulation environments reduce the

amount of space needed by altering the VE to replicate a wide variety of clinical settings

[27].

It is also sometimes very difficult to replicate scenarios from the real world [29].

A study done by Lee et al. created an immersive, post-disaster virtual world. The

simulation used visual graphics, as well as sounds and smoke to recreate what disaster

relief personnel would see after a catastrophic event. The simulation allowed disaster

12

relief personal to practice how to treat the wounded and mark the dead. In this scenario, it

would be almost impossible to replicate this simulation without the aid of VR [28, 29].

The medical field has begun creating virtual simulations for training of certain

surgeries/procedures. For example, Rhienmora et al. created an AR, force and kinematic

feedback, dental simulator [30]. The simulator was designed for dental students to

practice dental surgery. As seen in Figure 4, when the student puts on the AR-HMD, a

“virtual” tooth and mirror appear. When the student moves a dental drill and starts

operating (changes geometry) on the tooth, force and kinematic feedback are provided to

the user [30].

Figure 4: AR-based dental training as discussed in Rhienmora et al. [30]

In contrast, arguments can be made that computer-based learning does not

accurately represent what is going on in a clinical setting. Moule et el. investigated

whether computer-based learning in conjunction with practical instruction was

comparable to common classroom methods when studying the use of an automated

external defibrillator. The study determined that there was no significant difference

13

between e-learning and classroom-based learning, suggesting that computer-based

learning was a viable substitute for classroom-based learning [31].

 VE are also used to enhance visualization and allow users to view content from a

range of perspectives [32]. For example, when studying architecture, it is advantageous

for the student to view the structure from every angle to understand how different lines of

sight affect a person’s perception of a structure. Thorndyke et al. investigated whether

spatial knowledge would result in different conclusions. The study investigated the

knowledge acquired via a birds-eye-view vs. a first-person view when determining how

to get from one place to another. When the person uses a map (birds-eye-view) he or she

has a better idea of location and straight-line distances between where they would start

and the target. When the person was on the ground (first-person view), he or she had a

better idea on how long it would take to reach the target [32, 33]. If those two

perspectives were viewed together, it would help the person better navigate through

traffic. VR allows the user to view virtual objects from a variety of perspectives, hence

more information is presented to make decisions.

 One important aspect of any educational setting is collaborative learning. Studies

have shown that students who are in social learning environments outperform students in

individualistic settings [34]. In social learning environments, students can bounce ideas

off one another and walk through a specific problem and or task. Collaborative learning

environments that also incorporate some type of game, offer the users a competitive

setting, motivating them to learn [35, 36]. VR can achieve a collaborative learning via

avatars or a CAVE®. Avatars are computer-generated graphics that represent the user. In

the VE, each student and teacher have their own avatar that represents his or her self.

14

When the student feels comfortable and safe with his or her character, there is an increase

in creativity and imagination [37]. More advanced avatar based virtual systems track the

user’s head and hands. Those actions are then implemented to the user’s avatar at a rate

of 60 Hz [32]. One advantage of avatar-based learning is that users can be anywhere in

the world and “meet” in the VE by using a HMD. A CAVE® is another avenue to

incorporate VR in a collaborative learning environment. The students can see and interact

with virtual elements by wearing site specific glasses but are still able to collaborate with

fellow students and the professor [38].

 VR can also be used to increase student’s enthusiasm about a topic. In a study

done by Limniou et al. students previously viewed chemical reactions using standard 2D

animations. When the class was brought into a CAVE®, the students were more engaged

in the lecture because they could interact with the objects and feel like they were inside

the chemical reaction. The paper noted multiple times how enthusiastic the students were

when viewing the reactions in VR [38].

1.2.4 Components Recommended for a Quality Virtual Experience

 To develop VR applications for CFD or teaching/training experiences, one of the

goals for the developer is to ‘trick’ the user’s state of awareness into believing he or she

is in a virtual world [5]. According to Sherman et al., there are 4 key components for a

quality virtual experience: virtual world, immersion, sensory feedback, and interactivity

[9]. The virtual world is the VE, which can be displayed in an IVE, HMD or 3D

projectors. Immersion is defined by Stuart et al. as “presentation of sensory cues that

15

convey perceptually to the users that they’re surrounded by a computer-generated

environment” [6]. Sensory feedback is the sensory information provided by the sensory

system including visual, auditory and haptic feedback. For the VE to accommodate the

user’s sensory and auditory feedback, the VE must track the user’s position. This can be

done by head or hand tracking [9]. More advanced VE also incorporate artificially

created haptic feedback [9]. Interaction in VR is the communication/sync between the

user and the VE. The most important interaction in VR, is that the VE changes based on

the user’s viewpoint [9]. The user should be able to walk around an object, while the

virtual scene adjusts accordingly. More advanced virtual systems allow the user to

physically interact with game objects by picking them up, rotating, and throwing the

object(s). This typically results in higher immersion [9].

1.3 Visualization Theories and Methods

For a user to understand how he or she interprets a virtual element, he or she must

first understand how they construe 3D objects in the real world. There are three main

theories behind vision including depth perception, field of view, and stereoscopy.

1.3.1 Depth Perception

Depth perception provides humans with the ability to see objects in 3D. The main

principle behind depth perception is the Cue Theory [39]. The theory states that humans

interpret objects in 3D by using three cue groups: oculomotor cues, monocular cues, and

16

binocular depth perception. Oculomotor cues are created by the convergence and

accommodation of an individual’s eye and eye lens that move and flex when focusing on

nearby objects. The concept behind this is that an individual can feel his or her eye move,

and eye lens tighten [39]. As seen in Figure 5, oculomotor cues are effective only at very

short distances, and are therefore ineffective in CAVE settings. When using HMD,

oculomotor cues can result in some discomfort [40].

Figure 5: Importance of cues relative to viewing distance [40]

Monocular cues work for one eye and include the following subgroups: occlusion,

size and position cues, aerial perspective, and motion cues [41]. Occlusion is a cue that

interpolates whether an object is in front or behind another object. As shown in Figure 6,

an individual will decipher that the circle is the most forward object and the triangle is the

object that is furthest back. This interpolation is found almost everywhere within the

physical world, and it is considered to be the most reliable depth cue [41]. Size and

position cues take advantage of an individual’s pre-programed visual system. A person

17

infers that if there are two of the same objects but one of the objects is closer, the closer

object should be larger. Texture gradients and relative heights also play a large role in

size and position cues. Texture gradients are used when observing a scene, if all the

objects in the scene are evenly spread out, the objects furthest away appear closer

together. An example of texture gradients can be found in Figure 6 where marathon

runners appear more tightly packed further away [39]. Relative height is the observation

when objects near to the ground appear closer, and objects at the top appear further away.

Aerial perspective refers to the depth cue where further away objects appear less defined.

This is the result of light being scattered through the atmosphere. Further away objects

have more time for the light to become scattered, therefore making the object appear less

distinct [41]. Motion cues refer to a geometric relationship when a person moves their

eyes, objects closest to the person will move the furthest away. Motion parallax is the

theory behind this phenomenon. Motion parallax defined by Wolfe et al. is “The

geometric information obtained from an eye in two different positions at two different

times is similar to the information from two eyes in different positions in the head at the

same time” [41]. Although some monocular cues in the virtual world can be easy to

achieve, many can be computationally expensive. For example, shaders are used to make

objects appear more realistic by altering an object’s lighting, darkness, and or color.

Typically, computationally expensive shaders look more realistic but can result in a

slower frame rate [40].

18

Figure 6: Monocular depth cures. Left- occlusion. Right- texture gradient [41]

Binocular depth perception is the angular information taken from both eyes to

determine the depth of an object. The term vergence, is exemplified when an individual

looks at an object that is close to their face, and their eyes converge to focus on the

object. When an individual adjusts their focus from a close object to an object that is

further away, the eyes diverge [41]. Vergence works in conjunction with stereovision.

Stereovision describes the relationship between the location of an object in each eye’s

retina to the distance of an object. An example of stereovision can be found in Figure 7

[42]. On the table, the apple and pear are the same distance from the person’s face.

Therefore, the apple and pear are spaced the same distance apart, in the same location, in

both the right and left retina, this term is referred to corresponding points [42].

Meanwhile, on the table, the flowers are behind the apple. When looking at the

individual’s retinas, the right retina has the flowers aligned behind the apple, while the

left retina has the flowers next to the apple. The difference in distance causes the images

in the left and right eye to have different spacing, this term is called non-corresponding

19

points [42]. Stereovision allows an individual to infer the different distances from

different objects and can be used to artificially create 3D images [42]. Sir Charles

Wheatstone was the first person to use stereovision to create 3D displays using 2D

images when he invented the stereoscope in the 1830’s [41]. As seen in Figure 8,

stereoscopes work by taking two pictures of the same image at slightly different angles.

When the individual views the stereo photo through the stereoscope, the individual sees a

3D image. Currently, stereovision is the primary driving force for many HMD [51-58].

Figure 7: Stereovision. A person observing an apple, pear, and flowers on a table. With

the corresponding alignment of the objects in the persons left and right retina [42]

Figure 8: Stereoscope using stereovision [42]

20

1.3.2 Field of View

 A major component that affects the quality of an immersive display is the field of

view (FOV) [6]. It is defined as the part in space that a person can see without moving

their head [6]. As seen in Figure 9, the FOV of the human eyes, represented by the dark

thick lines, is quite large covering roughly 150º horizontally and 120º vertically, and

includes an overlap where stereoscopy occurs called binocular field of view [40]. A large

FOV makes a person feel fully immersed in the real world [6]. Studies have shown that

when an individual’s FOV is decreased in the real world, the subject’s sense of balance

and presence is reduced [43, 44]. When developing for a quality, immersive, virtual

experience the FOV should be heavily considered. Lin et al. investigated whether a user’s

FOV in a VE altered the user’s sense of presence using the “Real Drive” driving

simulator. The simulator included a full-sized car placed in a 3 walled CAVE®. The

study established a positive correlation between the user’s sense of presence with an

increased FOV [45]. As seen in Figure 9, the FOV of HMD, represented by the shaded

rectangular box, is much smaller than the FOV of normal human eyes.

Figure 9: FOV the normal human eyes (represented by the thick black lines) and a

typical stereoscopic HMD (grey square) [40]

21

1.3.3 Stereoscopy

 As previously mentioned, in reviewing human depth perception, stereoscopy is

one of the primary driving forces in VE [51-58]. The key theory behind stereoscopy is

there are two sets of images or videos taken at two slightly different angles. Lenses are

used to ensure that the proper image or video is being displayed in the individual’s

correct retina. Many HMD, including the Gear VR and Oculus Rift use wide angle lenses

that take in an input image/video like the one shown in Figure 10 [46]. When the input

image/video is viewed through the HMD-wide angle lenses, the user achieves the

stereoscopic effect. These devices also allow for movement of the head, which then

extends the FOV. Stereoscopy is also used in many TV’s, projectors, cinema, and

CAVE® settings [47]. Some of the most common stereoscopic multiplexed (multiple

inputs combined into one signal) approaches include color multiplexed, polarization

multiplexed, and time multiplexed [47-49].

Figure 10: Left- Oculus Rift, with its wide-angle lenses. Right- input for HMD [46]

22

1.3.3.1 Color Multiplexed Approach

 The simplest stereoscopic method is the color multiplexed approach, where

different colored lenses are used to filter color multiplex images [48]. The most common

color multiplex glasses are the anaglyph glasses show in Figure 11 [40]. They work by

having the left lens encode for red channel frequencies and the right lens encode for cyan

channel frequencies. The anaglyph images are typically created with a binocular camera

[48]. When a person is wearing anaglyph glasses, and observing an anaglyph image, the

left lens blocks out all cyan channel frequencies in the anaglyph image, meaning that the

left eye is observing the image that has red in it. The right eye blocks out all red channel

frequencies in the anaglyph image, meaning that the right eye is observing any image that

has cyan in it. This process results in one of the two images taken by the binocular

camera being blocked in each eye, creating a stereoscopic effect and resulting in the user

viewing a 3D image. Anaglyph glasses are inexpensive to make and can be used without

a special display, but, are not as commonly used in VE due to a loss in color information

and an increased degree of crosstalk inherent in their use [48].

Figure 11: Anaglyph glasses [42]

23

1.3.3.2 Polarization Multiplexed Approach

Polarization glasses work by selectively polarizing the light that is projected from

the VE [48]. As seen in Figure 12, alternating horizontal rows are assigned to the left or

right eye, with odd and even rows being orthogonal to one another. There are two types

of polarization filters, circular and linear. Circular filters alternate each row between

clockwise and counter-clockwise orientations. Linear filters alternate each row

perpendicular to the previous row. Circular filters are more commonly used because they

allow the person to tilt his or her head, where linear filters do not [48]. Depending on the

system, a polarization image can come from one or two projectors. One of the downsides

of the polarization approach is that some systems require special screens to preserve that

state of polarization. The special screens increase the cost, but there is no loss in color

information, making it ideal for cinemas [46]. A less expensive polarization system uses

a passive approach, where half of the pixels are assigned to one eye, and the other half to

the other eye. The downside of this approach is that there is a 50% reduction in the image

resolution [49].

Figure 12: Stereoscopic Polarization method [48]

24

1.3.3.3 Time Multiplexed Approach

 The theory behind the time multiplexed approach is that a projector flickers

between images for the right eye and left eye at around 120 frames per second. Battery

powered, shutter glasses use liquid crystal lenses to block a specific image [49]. To

achieve the stereoscopic effect, the glasses flicker at the same rate as the projectors, to

block the left-eye image from being viewed from the right-eye, and block the right-eye

image from being viewed from the left-eye [48]. Without shutter glasses, the time

multiplexed image appears to have a ghost image. This is the result of human’s

eyes/brain not able to process a single image being flickered 120 times in one second

[48]. The synchronization between the shutter glasses and the projectors is achieved by

either an infrared emitter, radio frequency emitter, or DLP-link [48]. Time multiplex

approach is common in many TV’s and IVE. The downside of time multiplexed

approach is that brightness is noticeably decreased. Benefits over the color and

polarization multiplexed approaches includes preservation of native resolution [48].

1.4 VR Visualization Tools

 To achieve the stereoscopic effect, the above stated visualization methods are then

applied to VE using approaches such as a CAVE®, standalone 3D projector, and or

HMD such as the GearVR, Oculus Rift and HoloLens.

25

1.4.1 CAVE®

CAVE®, also defined as an IVE, are customizable rooms used to immersively

view virtual content. Many CAVE®’s operate by having a series of rear-screen projectors

projecting content on the environments walls, however newer CAVE®’s are beginning to

use LCD screens, which create more vibrant graphics [50]. One of the downsides of using

a series of LCD screens are the small but visible bezels between screens positioned

together to cover a large FOV. Bezels are the frames that encapsulate the LCD screens.

When viewed in VR, the bezels are still visible to the user.

CAVE®’s are often run using multiple servers, therefore intermediary programs

are required to cluster the servers together to get a seamless transition between each

projector or LCD screen. CAVE®’s range in shape (cylinder, square, rectangle, etc.),

sizes, and different accessories (i.e. head tracking) with each environment designed for a

unique purpose [9]. Unlike some HMD, CAVE®’s are nonintrusive spaces, where the

viewers are free to move around while having awareness of both the real and virtual

world [51]. The first CAVE was invented in 1992, at the University of Illinois’ Electronic

Visualization Lab (EVL) and has been recently upgraded [51]. The original EVL

CAVE® had four sides, three walls and a floor, and used projector technology. The EVL

opened CAVE2® in October 2012. CAVE2®, as seen in Figure 13, uses a nearly circular

footprint, 24 feet in diameter, and has 18 columns of four 45-inch LCD screens to display

the content. When the user puts on stereoscopic glasses, the 3D effect is revealed by

passive stereoscopic technology [50].

26

Figure 13: CAVE2®, located at University of Illinois’ Electronic Visualization Lab [52]

Another example of a more recently built CAVE is MARVL which, as mentioned

in the introduction, opened in January 2014, at the cost $1.2 million [4]. The environment

has four walls (front, two sides, and floor), a front wall which is twice as long as the side

walls, with the length, height, and depth dimensions being 18’6” x 9’3” x 9”3”. Ten rear-

screen projectors run on six servers clustered together by a program called MiddleVR

(MiddleVR; Paris, France) [4]. Like the EVL, MARVL also uses stereoscopic glasses to

create a 3D effect. MARVL designed the environment to have an extra-long front wall

because a survey of users indicated this preference could better accommodate a larger

number of potential users across a wider range of applications, as compared to a

traditional cubic CAVE® VE. The environment comfortably seats up to 30 people, which

permits a collaborative learning environment. MARVL has the capability to use head

tracking, though it is typically not used because MARVL is primarily used in a group

setting. When engaging head tracking, the person using the head tracking device has an

optimum experience, but other individuals in the CAVE® experience the unpleasant

feeling of the virtual world randomly moving around.

27

1.4.2 Standalone 3D Projectors

 Standalone 3D projectors are a less expensive alternative to a CAVE® while still

offering a collaborative viewing environment [53]. For example, the rear-screen

projectors used in a CAVE® could also serve as standalone projectors if used in

isolation. While the projector is on, and the user is wearing projector specific glasses, he

or she sees 3D virtual content. An issue with standalone stereoscopic projectors is that

they typically are not as immersive as a large-scale multi-surface IVE. The virtual world

does not surround the user, instead it is displayed on a smaller screen. Due to humans

wide FOV, even if the user is looking directly at the screen from some pronounced

distance, the user can conclude they are in the real world [40, 43].

1.4.3 Head Mounted Displays

 HMD are devices that are worn on a person’s head to display virtual content

directly in front of his or her eyes [5]. Recently designed HMD show quality virtual

content at a relatively inexpensive cost [53-60]. Ivan Sutherland made the first conceptual

idea for HMD in 1965. He wrote a paper titled “The Ultimate Display” which discussed a

force feedback device, where the user could view interactive graphs, as well as hear,

smell and taste [54]. Later in 1968, Sutherland built the first HMD which updated a

graphic display when the user moved their head to appropriately replicate the new

viewing position. The device worked by having two half-slivered mirrors that

superimposed computer-graphics into the real world [54]. One of the greatest contributors

28

to the development of HMD was the US Air Force [51]. In the 1970’s and 1980’s the US

Air Force built a flight simulator called the Visual Coupled Airborne System, where the

pilot could view optimal flight paths, identify the enemy, and target threat information.

While the simulator created an accurate environment, the project cost millions of dollars

to build and operate [54]. Updates to HMD continued for the next four plus decades, but

the devices either lacked functionality and or the costs were excessive [51, 55]. In 2010’s,

through companies like Samsung, Oculus Rift, and Microsoft, costs were driven down,

and HMD’s became less expensive, more accessible and provided high quality content.

Some examples of HMD’s include Gear VR, Oculus Rift and HoloLens.

1.4.3.1 Samsung Gear VR

 Gear VR is a HMD released on November 27th, 2015. The HMD works in

conjunction with select Samsung smartphones. According to amazon.com, the Gear VR

costs approximately $30 with an optional trackable controller for an additional $18. To

display virtual content, Gear VR uses the same stereoscopic technique previously

discussed in the Stereoscopy section, where stereoscopic images are observed through

two wide angle lenses. Gear VR is a passive device. It does not need to be charged,

although its associated smartphone requires power. The Gear VR design contains a focus

adjustment wheel, home key, back key, touchpad, volume key device holder, cushion

foam, and two wide angle lenses. To run any Gear VR application, the game is first

uploaded onto the Samsung smartphone and depending what generation the smartphone

is, connected to the Gear VR’s MicroUSB or USB type-c. Once the smartphone is in

29

place, the user can put on the HMD and view virtual content. To account for rotational

head tracking, inside the device, there is a sensor, accelerometer, and three-axis

gyroscope that measures angular velocity and external specific force [56]. For interaction,

the user can either use the built-in touchpad located on the right side of the device, the

Gear VR trackable controller, or a variety of external controllers that connect via

Bluetooth.

1.4.3.2 Oculus Rift

 The Oculus Rift, bought by Facebook in 2014, is a HMD released on March 28th,

2016. It is tethered to a computer or a high-end laptop and provides the user an

immersive, virtual experience [7, 57]. In addition to the headset, the Oculus Rift has a

Tracker v2 and two trackable controllers [58]. According to amazon.com, the entire

bundle costs approximately $399. Oculus Rift displays virtual content the same way as

the Gear VR, through the stereoscopy technique. Oculus facilitates head tracking by the

use of a gyroscope, accelerometer, and magnetometer [57]. The gyroscope tracks the

angular velocity around the x, y and z axes. The Oculus software development kit (SDK)

uses the angular velocity measurements to determine the direction of the rift relative to

the starting point. Head tracking coordinates are sent to the Oculus Tracker v2 at a

sampling rate of 1000 Hz, resulting in roughly a 2-millisecond lag between the player’s

head movement in the real and virtual world [57]. To combat the issue of drift, the

accelerometer estimates the “down” vector and the magnetometer measures the magnetic

fields strength and direction [58]. Oculus also has 6-degrees-of-freedom position tracking

30

which is traced by an infrared camera inside the Oculus Tracker v2. Position tracking

allows the user to move closer or peak around in-game-objects [58]. Oculus reduces

motion sickness and dizziness by synchronizing the user’s virtual viewpoint in real-time.

Movement is pivoted around a point near the base of the user’s neck. This location in

conjunction with position tracking creates a near motion parallax [57]. The Oculus SDK

can support Linux, MacOS, and Windows. No specific hardware is required; however,

specific relatively high-end graphics card is recommended for the best gaming

experience. Interaction with content is achieved via the Oculus tracking controllers or

select gaming controllers.

1.4.3.3 Microsoft HoloLens

 Unlike Gear VR and Oculus Rift, the Microsoft HoloLens uses AR instead of VR.

HoloLens was initially available to developers in early 2016 and is currently being sold

for $3,999 on amazon.com. The device is a fully untethered holographic computer that

contains an inertial measurement unit, Intel Cherry Trail chip and, a holographic

processing unit that runs on Windows 10 [59]. The holographic images are projected

from two HD 16:9 “light engines” comprising of miniscule crystal on silicon displays.

These “light engines” are mounted on the bridge of the HoloLens and projections are

passed through a “combiner” that projects the virtual element onto the real world [59].

The user is able to view, place, record, interact, and walk around virtual elements via

multiple “environmental understanding cameras”, time of flight depth cameras, ambient

light sensors, and a video camera. “Environmental understanding cameras” are used for

31

head tracking. The time of flight depth cameras place objects in the real world and track

the user’s hand movements [59]. An ambient light projector facilitates how bright the

projected virtual element needs to be. The video camera is used to record what the user is

seeing while using the device. An issue with the current design is that the FOV is narrow.

Interaction with the HoloLens is achieved by either voice controls, gaze tracking, custom

gestures, the HoloLens clicker, or select gaming controllers [60].

1.5 Challenges of VR

Many of the issues that were previously associated with VR, such as cost and

accessibility, have been mitigated over the last decade by the introduction of less

expensive, higher quality HMD such as the Gear VR. One of the challenges facing VR is

that between 20-40% of individuals during and after viewing virtual content experience

some sort of simulator sickness [61]. Simulator sickness was initially documented in

1957, where individuals were in helicopter training and experienced symptoms similar to

motion sickness including: general discomfort, apathy, drowsiness, headache,

disorientation, fatigue, pallor, sweating, salivation, stomach awareness, nausea and

vomiting [61]. Simulator sickness is the result of a lack of consistency between

information being received by the visual and vestibular systems. The user is visually

seeing him or herself moving, but the vestibular system is interpreting something else

[61]. The vestibular system is located in a person’s inner ear and is responsible for the

sense of balance, spatial orientation, head position, and motion [62]. Vestibular labyrinth

is the main compartment in the vestibular system which includes three semicircular

32

canals filled with fluid that are aligned in three different planes. When a person moves

their head, the fluid movement is detected, and the information is sent to the brain [62].

When the user is in a VE, what the user is visualizing often times does not match what

the vestibular system is detecting, resulting in simulator sickness [61]. Although

developers have created solutions to combat simulator sickness, it remains an important

issue facing the virtual community.

Another challenge in VR is the lack of effective gestural and voice interaction.

Many virtual devices execute commands using a gaming controller, some of which can

be tracked and interpreted as a hand in the virtual world [57]. While these controls are

effective, there is a lack of full immersion because the user is pressing a button in the real

world while being in the virtual world. However, with the advanced development of in-

hand tracking and machine learning, games in the near future will adapt to the user’s

hand and voice gestures, resulting in higher immersion [63].

A limitation for VR developers is the lack of collaboration between HMD

companies. As will be discussed in the Methods section, the CFD to VR workflow

targeted GearVR and Oculus Rift because they are one of the few HMD’s that

collaborated and used the same SDK [64]. SDK are libraries of code with examples that

help aid the developers build an application for a specific HMD. The VIVE is another

popular HMD. Regarding the CFD to VR workflow, the VIVE was not selected because

it uses an entirely different SDK, as compared to the Oculus Rift and GearVR. The

Oculus Rift and GearVR use Oculus SDK while the VIVE uses OpenVR SDK [65]. The

vastly dissimilar SDK’s between different HMD’s makes building a generic VR

application difficult for developers. With additional collaboration between HMD

33

companies, where developers use a common SDK, more VR applications could be shared

to a wider population.

1.6 Biomedical Computational Fluid Dynamics

 Before a user builds and or observes a VR CFD simulation, he or she must first

understand how the simulation was created and solved. As shown in Figure 14, there are

multiple steps to create biomedical CFD simulations [66]. The CFD process can be

segmented into three main phases: pre-processing, solving governing equations, and post-

processing [11]. The pre-processing phase requires the user to obtain medical images for

some portion of the cardiovascular system of interest, followed by segmenting the

medical images to create a surface model. The surface model is then discretized into

millions of finite elements that represent the volume available for blood flow. Solving the

governing equations of fluid flow requires a user to apply boundary and initial conditions.

This typically consists of an inflow waveform and profile, and outflow representations of

the downstream vasculature not captured by imaging data, such as a 3-element

Windkessel approximation. The Navier-Stokes (NS) equations are then iteratively solved

at each node in the volume mesh. Finally, the post-processing phase requires the user to

analyze the simulation using velocity profiles, pressure distribution, and related indices

such as wall shear stress (WSS), and/or oscillatory shear index (OSI).

34

Figure 14: Steps to conduct a CFD simulation. Steps a-c represent the pre-processing

phase, b represents the solving governing equations phase, and e and f represent the post

processing phase [66].

1.6.1 Pre-Processing

 The first step to create a CFD simulation is to obtain imaging data from the region

of interest. Four forms of medical images are most often used to create a volumetric

model for biomedical applications: magnetic resonance imaging (MRI), computed

tomography (CT), ultrasound, and intravascular imaging modalities such as optical

coherence tomography (OCT). MRI obtains medical imaging by using magnetic spin

relaxation properties to discern between different tissue types [67]. For vascular CFD

purposes, an advantage of MRI is its ability to create phase contrast magnetic resonance

images (PC-MRI). PC-MRI has the velocity encoded into its phase of the complex MRI

signal and may also be used to obtain flow waveforms and elastic moduli [67]. A variety

of software platforms use PC-MRI to measure the cross-sectional area of the vessel to

obtain velocity information that can be used as inflow boundary condition information.

35

Being that MRI can create high quality, cross sectional images and be used to calculate a

flow waveform, it is the most common imaging technique used to create CFD models

[67]. CT uses a radiation beam and X-ray detectors to measure the amount of radiation

absorbed by a person’s body. The radiation beam and X-ray detector are measured from

multiple angles. This information is then sent to a computer to reconstruct the area of

interest [68]. Ultrasound is a widely available imaging modality that uses high frequency

sound pressure waves. An ultrasound machine includes a transducer that uses an array of

piezoelectric crystals. When an electrical signal is applied, the crystals create high

frequency sound pressure waves. The sound waves reflect off different tissue types,

creating an echo that is then picked up by the piezoelectric crystals. The echo is then

converted into an electrical signal and eventually an image. Ultrasound is not typically

used to create the volumetric model because it does not have references to a fixed

coordinate system and, resolution is lower than MRI or CT. However, Doppler

ultrasound is an often-used tool to provide real-time velocity, vessel dimensions, and

flow measurements [67]. OCT is a light-based image modality that can be used with

vessels of the cardiovascular system. A catheter is inserted into an artery where an optical

fiber emits infrared light, and the same fiber measures the intensity of the infrared light

after its reflection to generate a local cross-sectional image [69].

 Once medical images are obtained, the volumetric model can be constructed by

segmentation. Depending on the images taken and the complexity of the model, the user

can either outline the lumen of the vessel by direct 3D segmentation, or determine a

centerline for each vessel of interest, travel along that centerline to segment the vessel at

corresponding 2D imaging slices, and then loft these segments to create a representation

36

of the flow domain. Many software packages, such as SimVascular (simtk.org), can do

this step to create the model. For more complex models, such as models with multiple

bifurcations, the vessel junctions are blended together to create a smooth transition

between the vessels [67].

 Finally, the surface model needs to be discretized into a finite element mesh for

use in solving the NS equations. Best practices dictate that the mesh needs to be denser in

areas of complex flow. However, there is a tradeoff, the more dense the mesh, the higher

the computational cost. The user must therefore balance solution accuracy arising from a

denser mesh with computational cost. For complex CFD simulations, the volumetric

mesh is typically discretized into millions of elements. To expedite solving the NS

equations at each element, CFD simulations are generally submitted to a high-

performance computing resource.

1.6.2 Solving Governing Equations

 Once the volume mesh is obtained, the next step is to define fluid properties and

apply boundary conditions to the wall, inlet and outlet. Fluid properties generally consist

of density and viscosity. The density of blood is often taken from literature and viscosity

is typically assumed to be constant (i.e. Newtonian fluid). In reality, blood is a non-

Newtonian fluid with a non-linear relationship between shear stress and strain rate [70].

However, in large arteries, blood can be assumed to be a Newtonian fluid because the

large arteries have very high strain rates making the blood’s viscosity relatively constant

(~4 cP for humans) [70]. Boundary conditions applied at the walls of a model typically

37

include either a rigid (i.e. no-slip) or deformable wall. A no-slip boundary condition

means that the fluid layer closest to the surface model is moving at the same rate as the

surface model. If the walls are rigid, the particle velocity at the wall is zero. If the wall is

deformable, governing equations are needed to solve for displacement at the fluid-

structure interface that allows for the replication of vessel wall movement [71]. Inflow

boundary conditions require prescribing the velocity of the fluid at the inlet. The flow

rate can be defined as either pulsatile or steady-state. The analytic shape of the inlet can

take the form of several well-known shapes including Womersley, plug, parabolic or

patient-specific profiles. PC-MRI, Doppler ultrasound, literature, or an invasive process

are typically used to calculate time-resolved volumetric blood flow for an inlet [72]. The

last step is to apply outflow boundary conditions to account for the influence of the

vessels distal to the CFD simulation’s branches [72]. There are many different methods

of selecting outlet boundary conditions, some of which include zero pressure, resistance,

and 3-element Windkessel (i.e. RCR) [73]. Zero pressure is sometimes used for its

simplicity, but causes inaccurate simulation results. Zero pressure ignores the fluctuation

in pressure as the result of wave reflection from distal vessels. In addition, there is

typically a residual pressure at the end of the vessel being modeled, which zero pressure

outlet boundary conditions ignores [73]. Local resistances in the model may therefore

play a larger role in the distribution of flow to branches than occurs in reality. Resistance

models define the distal branches as a single variable, resistance [73]. The 3-Element

Windkessel model, as shown in Figure 15, adjusts the local resistance/local impedance

(Rc), distal resistance (Rd), and total capacitance (C) values until the computed pressure

matches a desired pressure range [74].

38

Figure 15: 3-Element Windkessel Model [74]

 For every CFD simulation, the NS equation must be solved at each location in the

mesh. NS equations are sets of non-linear partial differential equations that solve for two

laws (1) conservation of mass and (2) balance of fluid momentum. Regarding biomedical

CFD applications, the energy equation is generally ignored because human body

temperature is considered constant.

 Conservation of mass, Equation 1, means that the mass within a control volume

must be constant over time, mass cannot be added or removed.

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝑢) = 0 (1)

 In this equation,



 represents density, and



u represents velocity. Human blood

has a constant density of 1.06 g/ [75]. A constant density eliminates the density and

partial derivative terms resulting in Equation 2 or in simple Cartesian coordinate form,

Equation 3.

∇ ∙ 𝑢 = 0 (2)

𝜕𝑢1

𝜕𝑥
+

𝜕𝑢2

𝜕𝑦
+

𝜕𝑢3

𝜕𝑧
= 0 (3)

 Balance of fluid momentum, Equation 4, means that the rate of momentum



cm3

39

entering the system must be the same as that leaving the system. Momentum can enter

and or leave the system via convection (i.e. bulk fluid flow) or molecular transfer (i.e.

velocity gradients or viscous contributions).

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢 ∙ ∇𝑢) = −∇𝑝 + 𝜇∇2𝑢 + 𝐹 (4)

 Where



u

t
 is temporal acceleration,



u u is convective acceleration,



p is the

pressure gradient,



2u represents viscous contributions, and



F includes body forces.

For biomedical purposes, the body force term is ignored because the images used for the

CFD simulation are taken in a system where the patient is typically lying down, therefore

gravitational body force is often assumed to be zero.

 In simpler terms, Equation 4 is Newton’s second law, Equation 5. On the left side

of the equation are mass and acceleration and on the right side of the equation are forces.

𝑚 ∙ 𝑎 = ∑ 𝐹 (5)

 The NS equations are applied at each location in the mesh where velocity,



u , and

pressure, P, are typically solved using a high-performance computing resource.

1.6.3 Post-Processing

 After a simulation converges, the researcher uses its associated velocity and

pressure information to analyze indices of interest. Some common indices used

frequently include: velocity profiles, pressure distributions, WSS, and OSI. WSS is a

measure of the tangential force exerted by flowing blood on a vessel wall [75]. As shown

40

in Equation 6, in its simplest form, WSS is the product of viscosity and strain rate. Strain

rate is a representation of the near-wall velocity gradient. In areas where there is low

WSS, there is increased risk of neointimal thickening [76].

𝜏 = 𝜇𝛾̇ = 𝜇[∇𝑢 + ∇𝑢𝑡] (6)

 As shown in Equation 7, OSI is derived from WSS. In areas where there is high

OSI, blood is bi-directional, moving back and forth over the same area the vessel. In

areas where there is low OSI, blood is flowing unidirectional, in one uniform direction.

Increased OSI is typically correlated to the organization of atherosclerotic lesions [77].

Areas where there are low WSS and high OSI result in the inhibition of nitric oxide-

synthesis, endothelial dysfunction, increased apoptosis and many other adverse outcomes

[78].

𝑂𝑆𝐼 = 0.5 (1.0 −
|∫ 𝜏𝑑𝑇

𝑇

0
|

∫ |𝜏|
𝑇

0
𝑑𝑇

) (7)

41

CHAPTER 2: CFD TO VR

2.1 Previous Work Done at MARVL

As seen in Figure 16, prior Marquette University graduate students and faculty

members have used VR to view and study CFD data since 2010. Previous researchers

created a pipeline that took CFD simulation results from the first generation of

SimVascular and converted those results to be viewed as pulsating velocity glyphs in VR

using MATLAB, Visual Basic (Microsoft; Redmond Washington), and EON STUDIO 7

[14].

Figure 16: Timeline of viewing CFD results in VR at Marquette University

In the most recent version of the related workflow, before the creation of the

current work, MATLAB was used to convert the first generation of SimVascular result

files (.vis and .vtk) into formats that store 3D geometry and vertex magnitude.

In total, thirteen MATLAB scripts were used for the prior conversion process.

One of the thirteen MATLAB scripts was primary and had an executable script with a

graphical user interface (GUI). The GUI instructed the user which file or folder to input

in order to execute file conversion. The GUI, along with each of the scripts, had concise

42

comments and file names allowing the user to determine what each script, command or

function was designed to do. In addition, it allowed the user to copy a specific section of

code if the user only needed a certain portion to be completed.

The first half of the single executable MATLAB script was designed to convert

.vis files, representing the blood flow velocity of each time step into .ply files. The

MATLAB scripts were used to extract spatial locations of roughly 0.1% of the original

CFD blood flow velocity results. Spatial locations were uniformly distributed with a set

amount along the outer edge of the wall to satisfy the no-slip boundary condition from

the CFD simulation. If the user only wanted to create .ply files, the user would run the

first half of the single executable script.

The second half of the single executable MATLAB script was designed to convert

.vis files (containing pressure data of each time step) and .vtk files (containing TAWSS

and OSI) into PNG images and create a .x3d file representing the wall mesh geometry. If

the user decided to run the entire script, it took approximately one minute to create the

.ply file and PNG pressure image per time step.

The .x3d (geometry) and .ply (glyphs for each time step) were then reorganized in

Blender (Blender Foundation; Amsterdam, Netherlands), an open source computer

graphics program. Lastly, the Blender project and PNG images were brought into Unity

where custom C# (Microsoft; Redmond Washington) scripts were written to view and

interact with the simulation in MARVL.

43

While this process was reliable, there were many issues including:

• Inability to run with data from other CFD software packages

• Only able to view the velocity information via glyphs

• Additional software packages were required to display the pressure

results in VR

• SimVascular updated its software; in the new update users were no

longer able to save simulation results as .vis files, only .vtu or .vtp

• The Unity step was labor intensive, where novice users would struggle to

correctly set up the Unity scene to work in MARVL

As a result, a new workflow was created, noted in red in Figure 16, which works

on a variety of CFD software packages, views CFD results as glyphs or streamlines, uses

fewer software packages, works in a diverse set of VE, and is almost fully automated. In

addition, the new workflow significantly reduces the time it takes to convert the CFD

results into files that store 3D geometry.

2.2 Materials and Methods

 The new workflow, as shown in Figure 17, has 5 steps to convert CFD simulation

results into VR: (1) format of CFD results, (2) convert CFD results into a 3D format, (3)

reorganize CFD results, (4) customize for a given VR environment, and (5) arrange VR

environment. The workflow is compatible on a variety of CFD software packages and

uses open source packages once the CFD results are obtained. For a standard multi-time

44

step CFD simulation, meaning the user wants to view some combination of wall pressure,

TAWSS, OSI, and animated vector information (streamlines/glyphs), the workflow is

practically fully automated. The user only needs to complete small tasks and run scripts

for each step.

Figure 17: Flowchart describing the immersive visualization workflow after CFD is

complete. Steps 1-5 are the focus of the current work to create a pipeline for biomedical

CFD results within virtual and augmented reality environments. Colors denoted in black

= necessary steps, blue =optional steps, green = pick one of the options. CFD results (1)

are acquired and converted into .vrml files (type of 3D geometry) (2) .vrml files are

reorganized in a graphics program called Blender where supplementary material can be

added (3) simulation is transferred into Unity (4) more supplementary material can be

added and 3D, animated content is generated from the CFD results (5) simulation is

arranged for VR environment by using a proprietary plug-ins where the Unity project

can be presented in VR.

45

2.2.1 Workflow Requirements

Requirements for the workflow presented above are determined based on the

simulation and visualization needs of investigators within Marquette’s OCOE and

collaborating clinical divisions, while keeping potential derivative projects in mind.

Based on input from these researchers, the workflow was designed to facilitate viewing

of CFD results using a diverse set of VE including standalone stereoscopic projectors,

HMD, and IVE. The workflow has been successfully tested on a stereoscopic standalone

projector, MARVL, Samsung Gear VR, Oculus Rift, and Microsoft HoloLens. For

automation purposes, the main template used in part 5 of the workflow, customized for a

given VR environment, is geared to work on standalone stereoscopic projectors, Gear

VR, and Oculus Rift, although modest alterations can be made to the template if the CFD

simulation is viewed using the Microsoft HoloLens or IVE.

If the user is planning to purchase a HMD to view his or her CFD data, the user

should consider the information listed in Table 1. The first consideration is whether to

view CFD results in VR or AR. When viewing content in VR, the user is fully immersed

in the virtual world [9]. For CFD applications, the virtual world is the computational

model, where the user can have a sense of presence both inside and outside the model.

This is exemplified in Figure 18. When viewing content in AR, the user understands that

they are still in the real world and lacks full immersion [79]. Therefore, in AR, it is

difficult to get the feeling of being inside the computational model [79]. For this reason,

as shown in Figure 19, in AR, the computational model is observed from outside the

model.

46

The Gear VR and Oculus Rift are fully immersive, but collaboration is minimal.

The HoloLens allows fellow users who are also wearing the HoloLens to collaborate and

share their experience, and can permit external feedback by an audience using a live-

streaming option. When comparing the Gear VR and Oculus Rift, the user should weigh

the importance of budget, quality of experience, and mobility.

 Samsung Gear VR Oculus Rift Microsoft

HoloLens

Cost* $30 - headset

$18 - optional

controller

$399 $3,999

Platform Virtual reality Virtual reality Augmented reality

Medium Samsung Galaxy

Smartphone

Desktop or high-

power laptop

Built-in untethered

holographic

computer

Graphics Quality Lower High High

FOV Standard for HMD Standard for HMD Small

Advantages Portable, less

expensive

Relatively

inexpensive, high

quality virtual

content, quality

trackable

controllers

Collaborative, uses

hand and voice

gestures

Disadvantages Lower quality

graphics, application

may need alteration

for peak performance

Tethered to a

computer or laptop

Expensive, small

FOV, difficult to

develop

Table 1: Facts/Recommendations for Gear VR, Oculus Rift, and HoloLens - *all costs

were the lowest values found on amazon.com

47

Figure 18: Left- Birds-eye-view of CFD model using VR. Right – inside the CFD model

using VR

Figure 19: Screenshot of what a CFD model looks like in AR

2.2.2 Format of CFD Results

As stated above, the workflow was aimed to support several common CFD

software packages used by members of Marquette University’s OCOE and their

respective collaborators. The software packages are fairly common and include Fluent

and SimVascular. Execution of these software packages yields result files that can be

saved as either .vtk, .vtu, .vtm or .case file formats. Given the interchangeability and

capability of geometry, mesh and simulation results, it is possible the workflow could

48

also work for other software packages that can be saved in one of these formats. The

aforementioned files facilitate viewing CFD results on 2D display but are not natively

compatible with VR. The provided workflow allows the user to convert CFD results into

formats that are compatible for VE. The steps within the workflow are designed to use

supporting software packages that are common within academic, engineering and digital

design facilities. Table 2 lists the supporting packages that are needed to use the

workflow in its current form, along with the function being performed by each supporting

package.

 Function

ParaView Convert CFD results into a 3D format

Blender Reorganize 3D format files and add supplementary data

Unity Animation, custom interaction, add supplementary data and application

used to view CFD results in VR

Table 2: Necessary programs for workflow

All the following figures that include a CFD model in the methods section come

from a CFD simulation run on a PE-240 cylinder phantom. Images of PE-240 tubing

were obtained from a micro CT scan as discussed in detail elsewhere [80]. The imaging

data was segmented, lofted into a 3D model, meshed, and an associated simulation was

run using SimVascular. The inflow waveform was pulsatile, the walls were considered

rigid, and a 3-element-Windkessel model was applied to the outlet that allowed pressure

within the tubing to range between 80-120 mmHg, which represents normal diastolic and

systolic blood pressure values.

49

2.2.3 Convert CFD Results Into a 3D Format

The majority of CFD simulations display flow patterns over a set time. These

results are typically shown using streamlines or glyphs. To view the streamlines or glyphs

in a VE, the CFD results need to be converted into files that store 3D geometry, vertex

magnitude (e.g., color coded), and a compatible file format for the selected 3D gaming

engine. For the workflow’s purpose, streamlines and glyphs for each time step are

converted into .vrml files using ParaView.

ParaView is an open source software package that is used for both scientific and

interactive visualization. It was chosen because it is an excellent file conversion tool and

also allows the user to visualize the monoscopic CFD simulation before it is brought into

VR. ParaView supports stereoscopic viewing, but with several limitations. ParaView is

incompatible with HMD, there is a lag between viewing consecutive time steps, the

viewer is unable to view complementary data sources, and when displayed in

stereoscopic 3D, the graphic quality is poor.

As seen in Figure 20, there are 5 steps to create streamlines that are compatible

with a VE. First, the CFD project is loaded, if the user was only given scalar velocity

information, a vector velocity field measurement is made using ParaView’s calculator

tool. The vector measurement is made by taking the sum of each unit vectors (i.e. 𝑖̂, 𝑗̂, 𝑘̂)

and subsequent scalar value (i.e. x-directed velocity, y-directed velocity, z-directed

velocity). If vector velocity information is already provided, step two can be skipped.

Next, streamlines are added using ParaView’s streamline tracer tool. Volume is then

added to the streamlines so that each line will appear as tubes in a VE. Lastly, a pre-

50

written Python script is run to save each time step as a .vrml file. Step by step instructions

can be found in Appendix A.

Figure 20: Flowchart to create 3D geometry velocity streamlines files (.vrml). Icons on

the top right hand corner of steps 1-3 represent: (1) open, (2) calculator, (3) streamline

tracer. Step 2 may be skipped, depending on the format of velocity in the CFD data.

As seen in Figure 21, there are 4 steps to create glyphs that are compatible with a

VE. Steps 1, 2, and 4 (Step 5 for streamline workflow) are identical to creating

streamlines. To create glyphs that are compatible with a VE, first, the CFD project is

loaded. If the user was only given scalar velocity information, a vector velocity

measurement is made using ParaView’s calculator tool. If vector velocity information is

already provided, step two can be skipped. Next, glyphs are added using ParaView’s

glyph tool. Finally, a pre-written Python script is run to save each time step as a .vrml

file. The step by step instructions can be found in Appendix B.

Figure 21: Flowchart to create 3D geometry velocity glyph files (.vrml). Icons on the top

right corner of steps 1-3 represent: (1) open, (2) calculator, (3) glyph. Step 2 can be

skipped depending on the CFD file

51

For both the streamline and glyph workflow, being that only portions of the

available velocity information will be used, the user should be aware of the vertices

where the streamline or glyphs are being generated. If the user would like to display

streamlines or glyphs in precise locations (i.e. important model features), specific

ParaView properties can be adjusted to match the desired output.

If the user would like to represent their CFD simulation results using velocity

glyphs, ParaView should appear similar to Figure 22 before the script is run.

Figure 22: Results from a phantom tube CFD simulation with pulsatile, rigid, RCR

boundary conditions as visualized using the ParaView glyphs workflow

The same Python (python.org) script is used for the streamline and glyph

workflow. Before the script is run, the user must open the script, change the end time step

to match the last time step of the CFD simulation, and map the location of the folder that

will store each .vrml file. The execution order for the script is:

52

1. Define the time step variable

2. Re-check that the simulation is on the first time step

3. Loop through, and save each time step as a .vrml file

2.2.4 Reorganizing of CFD Results

Blender is a graphics program that is used to reorganize the .vrml files created in

ParaView. As to the workflow, Blender is where all the objects are created. Blender is

user friendly software with numerous tutorials and websites to help answer questions. It

takes each 3D geometry file and re-creates the CFD simulation. For the workflow’s

purpose, Blender does not create an animation, but, as shown in Figure 23 Part B, all the

objects and vertex colors to make the animation are created in one Blender project.

When using CFD simulations that have multiple time steps, it is imperative that

each time step is uploaded in the correct 3D space. To ensure proper object positioning, a

Python script was written that can be implemented in Blender’s text editor. The script re-

creates the original CFD simulation, sequencing the 3D-geometry-time-steps inside the

wall mesh and creates proper parent-child relationships that are necessary when the

Blender project is loaded into Unity. As shown in Figure 23 Part C, each streamline or

glyph is placed under an empty “parent object.” The streamlines or glyphs are now

considered “child objects.” The same parent-child relationship is done for a mesh

representing the vascular wall. Another important aspect of the Python script is that it

creates a wire-frame wall-mesh game object. The wire-frame wall-mesh game object is

used as a monocular cue while in the VE, giving the user another sense of depth.

53

Importantly, this wire-frame wall-mesh is a representation of the mesh on the surface of

the model that was used with the CFD simulation. The Python script also UV maps the

wall mesh (technique used to wrap a 2D texture on a 3D model), and deletes unnecessary

cameras and lamps that are rooted in the .vrml files, thereby increasing the efficiency of

execution of the Blender project.

After the user has followed the instructions in the Python script, as shown in

Figure 23 Part A, it can be run. For each time step being imported, it should take

approximately seven seconds to load (time based off a 8,500 KB .vrml file - larger files

will take a longer time to load). Progress of the script can be tracked by Blender’s System

Console as shown in Figure 24. After the script is completed, the CFD simulation appears

re-created in Blender’s 3D view (Figure 23 Part B). In addition, each object in Blender’s

3D view appears in Blender’s Outliner with proper parent-child relationships (Figure 23

Part C).

The next step is dependent on what the model looks like after the first script is

completed. In the Blender template, there is also a secondary script that removes

duplicate structures (i.e. doubles) and reduces the number of vertices. If after the first

script is completed, and in the 3D view, the glyphs or streamlines are not visible, only the

wall mesh, this means that the model’s mesh has duplicate structures (double-sided

mesh). For this scenario, the secondary script would need to be run. This ensures, if the

user is looking at the model in the VE, that the glyphs or streamlines are visible. If the

user would like to reduce the number of vertices, the secondary script should be run

regardless of whether the wall mesh is double-sided. While in VR, too many vertices can

slow down the frame rate of the Unity project, causing simulator sickness. If the model is

54

not double-sided and there is a reasonable number of vertices, the secondary script can be

skipped. Lastly, the Blender file is exported as an .fbx file and loaded into Unity.

Figure 23: Screenshot of Blender’s interface depicting a CFD simulation (same

simulation that is used in Figure 22). (A) Blender’s Text Editor where a Python script is

used to reorganize the simulation and reduce the number of vertices. (B) Blender’s 3D

View which displays every single object of the simulation. In Unity, the objects will be

turned on or off. (C) Blender’s Outliner of parent-child relationships where each object

may be edited. It is important the objects are properly named and organized so Unity’s

C# scripts do not have to be altered.

Figure 24: Blenders System Console in the middle of running the Python script

55

2.2.5 Add Supplementary Data

Depending on the type of supplementary material available, the material can be

added in either Blender or the Unity template. MARVL amassed three workflows/C#

code from various CFD projects that requested specific tasks and custom interaction. The

first workflow allowed the user to toggle through volumetric imaging data used to create

the CFD model. The second workflow recognized and displayed scientific imaging data

(i.e. histology) in specific portions of the CFD simulation. The third workflow allowed

the user to “fly through” the CFD simulation on a set track. The ability to add related data

sources to a CFD simulation is one reason why it is beneficial to view a simulation in

VR.

To toggle through the volumetric imaging data, each image slice is added in the

Blender project. After the CFD simulation is reorganized, a blank array is added into the

Blender scene and scaled to the CFD simulation. The image slices are then added to the

corresponding array’s plane. Like each glyph/streamline and wall mesh game object, an

empty parent object is created where each image slice is placed underneath, becoming a

child object. When the .fbx file and each image slice is imported into the Unity template,

the template recognizes the parent object, adds a script, tags, and assigns a custom shader

to each image plane.

A more project specific workflow can recognize where the user is at in the virtual

simulation and display a corresponding site-specific image. The execution behind this

function comes from the “Histology” C# script that is available in the Unity template.

However, it is likely that the script would need to be slightly altered depending on the

56

user’s intent. In Blender, after the CFD simulation is reorganized, wire-framed cubes are

added to break up the simulation into specific sections. The wire-framed cubes are placed

under an empty parent object. After the .fbx file is imported into Unity, a box collider and

the “Histology” script are added to each cube. Lastly, a plane is added to the head-up

display (HUD). When in play mode, and the user is moving around the simulation, the

head node collides with the box collider. Upon collision, the corresponding site-specific

images are shown. This approach can be used for any scenario where the user wants

designated sections to show specific content.

Sometimes, the CFD model is too narrow to manually fly directly down the

middle without going through the wall mesh. Other times, the user might want to have a

pre-animated track where they can stop at certain sections for observation purposes.

There are two alternatives to create the set pathway. One is by using Blender’s path tool

where a physical line is created. In Unity, a C# code is written where the camera is

attached to the physical path. The second option uses Unity’s animation tool where key

frames are used to interpolate between points.

2.2.6 Customize for a Given VR Environment

The Unity game engine was selected for the workflow because of its speed,

flexibility and ability to integrate data from multiple sources. Through multiple C#

scripts, Unity is able to generate animations and interact with objects that were created in

Blender or added into the Unity scene. As shown in Figure 25, to expedite the CFD to

VR workflow, a pre-programmed Unity template was created where the initial number of

57

steps changed from over fifty to only four necessary steps for the user to view the CFD

simulation in VR.

Figure 25: Required Unity template steps to view CFD simulation in VR

2.2.6.1 Unity Template

The Unity template was created for a standalone stereoscopic projector, Gear VR,

and Oculus Rift. If the user prefers to view content using Microsoft HoloLens or IVE,

changes to the Unity scene, C# code, and custom packages are required. As seen in Table

3, the Unity automated template has a minimum and maximum output. Changes to the

template are required for more advanced or specific tasks. The Unity template, via

automated code, animates the streamlines/glyphs, animates/changes the wall mesh

texture, and toggles through medical imaging data (i.e. CT, MRI). Importing/animating a

flow waveform and assigning proper labels to the scales (velocity, pressure, TAWSS,

OSI) are not automated. However, the instructions are straightforward. These instructions

can be accomplished relatively quickly and do not require alteration to any code. If the

user does not have a full set of complementary data such as volumetric imaging data, or

wall mesh scalar information like pressure, the Unity template still works. If the user is

58

interested in adding supplemental medical imaging data such as histology, adjustment to

the Unity template and prewritten code would be required.

Minimum Output Maximum Output With change of code,

Additional Output

Animated

Streamlines/glyphs

Flip through wall indices

including one or more of

pressure, TAWSS, or OSI

View supplemental medical

imaging data such as

histology/myograph

Fly throughout simulation Animated flow waveform View multiple Unity scenes

Scales Toggle through volumetric

imaging data

Fly through model on a set

track

Overhead map of

simulation

Table 3: Minimum output, maximum output, and possible alterations of the Unity

template. Italicized text indicates the user must manually alter the Unity prefab

2.2.6.2 Load .fbx File

Once the Unity template is opened, the user copies his or her .fbx file created in

Blender, and replaces the .fbx file in the Unity template “Asset folder.” After the .fbx file

is overridden, the Unity scene is refreshed. This step can take up to 15 minutes to

complete and eventually creates a prefab called ParaView_CFD. After the “prefab” is

created, the user drags and drops the CFD prefab into the hierarchy.

In addition to the newly imported CFD prefab in the hierarchy as seen in Figure

26, the user should also see Scene Objects and OVRCameraRig. The Scene Objects

includes Map Camera, Audio Source, Background Cylinder, and Directional Light. The

Map Camera records a birds-eye view of the CFD simulation. It is also used to show

59

where the user is at in relation to the simulation. The Audio Source plays a heartbeat

noise that is synced to the animated streamlines/glyphs script. The Background Cylinder

encapsulates the CFD simulation. It is best practice in VR to have a distant point of

reference when there is a moving camera to avoid simulator sickness. The Directional

Light makes the simulation look more enhanced in the VE and is also used to cast

shadows. OVRCameraRig includes TrackingSpace and the HUD. The OVRCameraRig is

used for camera and Oculus Rift controls. The rig also allows for a HUD to be attached to

the head. When the user moves around the simulation, the HUD moves with it.

TrackingSpace is part of the ORVCameraRig prefab provided by Oculus. The HUD is

where all of the supplemental data is viewed including the canvas (buttons), scales, map,

and flow waveform. The Unity template also includes pre-imported textures, shaders, and

materials that make the simulation look realistic in a VE.

Figure 26: List of objects in the Unity Template Hierarchy

60

2.2.6.3 Scale, Rotate, and or Reposition CFD simulation

The next step is to scale, rotate, and or reposition ParaView_CFD prefab so it is

visible in the HUD’s Map View. This can be done by selecting on the ParaView_CFD

prefab in the hierarchy, then in the inspector transform, adjust the Position, Rotation, and

or Scale until the simulation appears properly aligned in the Map View. For example,

Figure 27 shows the simulation before realignment and Figure 28 shows the

simulation after realignment. Note that the prefab needed to be moved -14.7 in the x-

direction, -5.4 in the z-direction, rotated 90 degrees in the y-direction, and scaled up by

1.5 to properly appear in the Map View.

Figure 27: ParaView_CFD prefab before realignment

61

Figure 28: ParaView_CFD prefab after realignment. Note that the cylinder phantom is

now viewable in the Map View. The virtual model also includes the volumetric imaging

data used to create the phantom cylinder.

2.2.6.4 Run Editor Script

The last step is to run the “Set up CFD Scene” editor script by selecting Assets 

Set up CFD Scene. The editor script recognizes the type of input in the .fbx file, tags

child game objects, assigns materials/shaders, and assigns scripts to parent game objects.

As seen in Table 4, the Unity template has multiple C# scripts that were either

provided by Oculus SDK or made from scratch. The scripts made from scratch include

over 1,500 lines of code. The scripts highlighted in orange indicate that they are already

assigned to game objects before the “Set up CFD Scene” editor script is run. The scripts

62

highlighted in purple indicate that after the “Set up CFD Scene” editor script is run,

depending on the type of input, these scripts are assigned to specific game objects. The

scripts highlighted in blue indicate that these scripts are highly customizable, where the

script and or Unity template would need to be modified to work in the scene. Oculus

SDK provides a multitude of other scripts that are also included in the Unity template but,

for this specific project, they are not used. Therefore, non-used Oculus SDK scripts are

not shown in Table 4.

Script Name Function

animateGlyphs Attaches to ParaView_CFD parent object. Creates an

animation loop that makes the velocity glyphs appear as

though they are pulsating OR loops through each

streamline.

attachToHead Used for multiple scene. After the start and menu scene,

script finds the Head node of the camera rig and attaches

this script.

blinkingAction When initialize movement, scene replicates a “blink”

(screen goes black) - done to combat simulator sickness.

BlinkingMovement Move around simulation with mouse or joystick.

BlinkPointer Makes the mouse icon blink in Map View.

dontDestroy Used if user has multiple scenes. Brings the same

OVRCameraRig to each scene.

GearVRControls Play/Pause/Execute scripts once a button is clicked on

Oculus or GearVR.

GlobalControls Used if user has multiple scenes. Switch between scenes.

Histology Display scientific imaging data dependent on location

within the simulation.

MasterControl Attaches to ParaView_CFD parent object. Universal state

control. Toggles things on and off.

mouseMode Recognizes if using the Oculus or GearVR, then moves the

HUD and changes mode of navigation accordingly.

63

moveIndicatorLine Moves line over flow waveform, making the waveform

animated. Used so the user knows which time step they are

observing.

MouseLook Controls for mouse rotation in pitch and tilt axis.

MriHiding If user is close to volumetric image slice, it disappears.

MRSlices Attaches to MRI parent object. Toggle through each

volumetric image slice one at a time.

OVRCameraRig Built in Oculus script. A head tracked-stereoscopic VR

camera rig.

OVRManager Built in Oculus script. Configuration data for Oculus VR.

OVRGearVRController Built in Oculus script. Enables rendering of trackable

controller if it is connected.

rotateHud When user rotates head, the HUD also moves.

VREyeRaycaster Built in Oculus script. Casts a ray into scene to find

VRInteractive item.

VRInput Built in Oculus script. Input required for most VR games.

VRInteractiveItem Built in Oculus script. Script is attached to interactive

game objects. Is recognized by VREyeRaycaster.

Table 4: C# scripts in the Unity Template. Orange- already in scene. Purple- assigned to

game object after “Set up Scene” editor script is run. Blue- highly customized scripts,

likely would need to be altered depending on what the user would like to display.

2.2.6.5 Manually Add Supplementary Data

There are two steps that the user must complete manually: add the CFD

simulation’s flow waveform and label the scales for velocity (represented as either glyphs

or streamlines) and wall indices. There is a prefab waveform (child object of the HUD)

initially placed in the Hierarchy. It is synced to annimateGlyphs script. When the

streamlines or glyphs are animated, the flow waveform also is animated at the same rate.

The animation appears as a moving orange line as shown in Figure 29. It is recommended

64

to have a flow waveform in the scene because it provides the user with a sense of time

when viewing the content in VR. However, if the user does not want to display the

waveform, it can be turned off. The instructions on how to program or turn off the flow

waveform can be found in Appendix C.

Scales (i.e. legends) are necessary because the user needs an idea what they are

looking at, otherwise they would just see colorful streamlines or glyphs animate back and

forth. The legends provide values for context. Through a C# script, depending on what

wall index the user is looking at, the correct corresponding scale is displayed. As seen in

Figure 29, the user needs to correctly label the Scale Title with its exact units, in addition

to the minimum and maximum values. The step-by-step instructions, to properly label the

scales, can be found in Appendix D.

Figure 29: Left- flow waveform with orange animated line that is synced to the animated

streamlines/glyphs. Right- sample scale used for the streamlines/glyphs and wall indices

When everything is correctly set up, the Unity scene should appear similar to

Figure 30. Figure 31, is a screenshot of the Unity scene when Figure 30 is in “Play

mode,” inside the CFD simulation.

65

Figure 30: Screenshot of Unity’s interface after upon completing the steps described

above (same CFD simulation from the cylinder phantom used in Figure 22).

Figure 31: Unity scene in play mode (same CFD simulation from the cylinder phantom

used in Figure 22).

66

2.2.7 Arrange VR Environment

After the Unity template has been properly setup, and if the workflow is targeted

toward the Gear VR, Oculus Rift, or a standalone stereoscopic projector, no changes are

required for these platforms, the CFD simulation can then be viewed in VR. Interaction is

done via select buttons in the Unity Scene. As seen in Figure 32, if the user has the

maximum input for the Unity template (waveform, imaging, and hemodynamic data),

there are seven buttons.

1. Play/Pause animation

2. While in Pause mode, move forward one time step

3. While in Pause mode, move back one time step

4. Switch wall indices

5. Turn on/off volumetric imaging data

6. While in Image mode, move up one image slice

7. While in Image mode, move down one image slice

For the Oculus Rift and Gear VR, the trackable controller is viewed as an orange

“wand” in the VR simulation. When the user positions the orange “wand” over one of the

buttons, as shown in Figure 32, the button turns yellow. When the user selects the button,

the corresponding action is applied to the simulation. As seen in Figure 33, for

movement, the Gear VR uses the gaming pad and the Oculus Rift uses the right analog

stick. For both the Gear VR and Oculus Rift, steering is achieved by the user’s head

rotation. For a standalone stereoscopic projector, interaction, movement, and steering is

67

achieved by mouse and keyboard controls.

Figure 32: Controls to interact with CFD simulation (same CFD simulation from the

cylinder phantom used in Figure 22).

Figure 33: Left- Gear VR controls. Right- Oculus Rift controls. Both trackable

controllers are viewed as an orange “wand” in the Unity Scene. The user moves the

orange “wand” to point and select on buttons shown in Figure 32

 For Microsoft HoloLens, the C# script must be altered so the commands can be

executed via a user’s finger or voice commands. Microsoft’s API has many frameworks

68

and scripts to assist the user to program the commands. Or, like the C# script used for

Gear VR and Oculus Rift, the HoloLens C# script can be altered to use a gaming

controller as the interactive device. The Unity scene needs more modest adjustments. The

supplementary material must be moved to a convenient location. In addition, the scene’s

background has to be removed and replaced with a solid black color so that the objects

appear as semi-transparent holograms on the HoloLens’ display.

For IVE, Unity currently lacks features such as clustered rendering, clustered

input, nonplanar camera alignment, and infrared tracking of an interactive device,

therefore a proprietary plugin is required to add these features to Unity. Special site-

specific configuration files are also necessary to create an array of cameras that correctly

align to the specific IVE. An example of a proprietary plugin is MiddleVR used by

MARVL. MARVL executes custom interaction via a “wand” that has four buttons, a

trigger and a joystick with each having its own unique task when interacting with the

simulation. The interaction can be achieved by having specific commands within the C#

scripts.

69

2.3 Results

2.3.1 Cases

The workflow was tested on three different CFD simulations: hemodynamics of

the thoracic aorta with respect to congenital cardiovascular disease, vertebral vascular

with application to aneurysm progression, and nasal airflow with application to virtual

treatment planning.

The thoracic aorta simulation was based on a previous dissertation and journal

article written by Menon et al [81]. The research centered on coarctation of the aorta

(CoA), a congenital cardiovascular defect where the aorta is narrowed. This narrowing

typically occurs just distal (i.e. beyond) the left subclavian artery. CoA is associated with

decreased life expectancy, increased hypertension and an early risk of coronary disease

[81]. The prior study examined rabbits that had either untreated CoA, corrected CoA, or a

normal aorta. One of the end goals of the study was to examine hemodynamic and

biomechanical alterations that persisted as a result of CoA. CFD simulations were

performed for 7 rabbits in each of the experimental groups, and one data set for each

group was extracted for use in the current work. Available data included blood flow

velocity, pressure, TAWSS, OSI, magnetic resonance angiography (MRA), and blood

flow waveforms from performing a CFD analysis. In addition, there was Verhoeff-Van

Gieson stains (VVG), immunohistochemical (IHC) stains, and myograph data of vascular

function in response to chemicals that induce contraction or relaxation during previously-

conducted scientific experiments. The objective with this data was to use VR to compare

70

the CFD and experimental results between the different thoracic aortas of each group.

Each of the three thoracic aorta examples (CoA, corrected, and control) used the same

methods to create the VR simulations. All animal data for use in the current work was

obtained from studies that had obtained IACUC approval.

In addition to the brain aneurysm pulsatile CFD simulation, there was also 4D

flow data from the same aneurysm [82, 84]. While CFD and 4D flow results are excellent

tools to non-invasively study the complex flow patterns of the aneurysms, both have

disadvantages regarding the accuracy when trying to replicate the pathophysiologic

condition. CFD uses boundary conditions that are not always physiologically accurate.

4D flow (i.e. 3D phase-contrast MRI over time) sometimes introduces noise due to the

image resolution and or the velocity encoding features implemented with the phase

contrast MRI sequence used. A biomedical engineering professor from Purdue University

sought to have a route to compare a CFD simulation and 4D flow data from the same

brain aneurysm using VR. The end goal of this case study was to view the brain

aneurysm in its natural 3D shape and observe the complex flow patterns that are caused

by the aneurysm. The human data to create the CFD simulation and the 4D flow data

came from IRB-approved studies and were provided to MARVL in a de-identified

format.

The airway simulation was based on a steady CFD simulation where different

aspects of the associated model were taken from different studies by the researching team

that provided a merged model for the current work. The nasal airway and pharynx came

from two separate patients while the bronchioles were created using CAD [83]. The

collaborating researcher wanted to replicate the path an air molecule would take from the

71

left nasal cavity to the bronchioles, somewhat representing an endoscopy. The results

would be used with application to virtual treatment planning. The collaborating

researcher was also interested in viewing the air flow patterns near the intersection

between the nasal cavity and the pharynx. The human data to create the CFD simulation

came from IRB-approved studies and were provided to MARVL in a de-identified

format.

2.3.1.1 Thoracic Aorta Simulation

Format of CFD results

 The MRA imaging data from each thoracic aorta (control, CoA, and corrected)

were obtained using GE Healthcare’s 3-T Sigma Excite MRI scanner at the Medical

College of Wisconsin [76]. Using an earlier generation of SimVascular, each simulation

was segmented and created into a 3D model as discussed in detail elsewhere [72, 76].

Each of the three CFD simulations were presented as twenty-five .vtu files, representing

each time step, and two .vtk files, representing TAWSS and OSI, to MARVL in early

2016. Each simulation used the same workflow.

Convert CFD results into 3D format

For the thoracic aorta CFD simulation, it was decided to view velocity as vectors.

Therefore, the glyph workflow was used. The following was performed for each of the

three cases (CoA, control, corrected). First, each .vtu file was loaded into ParaView.

Next, pressure was assigned to display on the aorta wall for each time step. Glyphs were

72

then added and properly scaled. The Python script was then run, where each .vtu file was

saved as a .vrml file, containing velocity (glyphs) and pressure (wall) information in a

select folder. Each case also included OSI and TAWSS results (.vtk). After each time

step was saved as a .vrml file, both .vtk files were loaded into ParaView, and then in the

same folder, exported as .vrml files.

Reorganize CFD results

The following was done for each of the three cases (CoA, control, corrected). The

provided Blender template and the folder that contained the .vrml files from ParaView

were copied into a master folder. The Blender template was opened where the

instructions were completed, and the Python script was run. For each time step, it took

roughly fifteen seconds to load. After supplementary data was added into the Blender

scene, it was saved as a .fbx file.

Add supplementary data, customize for a given VR environment, and arrange for VR

environment

Each thoracic aorta simulation had three sources of complementary data: MRA

image slices used to create the CFD model, VVG, IHC, and myograph (functional) data

from proximal and distal ends of the aorta, and an inflow waveform.

After the CFD simulation was reorganized in Blender, the MRA slices were

added to the Blender scene using a scaled array. To recognize what section the user was

at in the simulation, two wire-framed cubes were added into the Blender scene. One wire-

73

framed-cube covered the entire proximal portion of the aorta upstream of the narrowing,

while the other wire-framed-cube covered the entire distal end of the aorta downstream of

the narrowing. These regions generally represent the locations from which histological

and myograph functional sections were obtained. After the supplemental data was added

into the Blender scene, the scene was exported as an .fbx file. Using GIMP (gimp.org),

the VVG, IHC, and myograph data taken from the proximal end of the aorta was saved as

one PNG image. The same was done for the distal end. A flow waveform was created in

Microsoft Excel (Microsoft; Redmond Washington) and saved as a PNG image. Finally,

each MRA image slice, scientific data PNG images, and flow waveform PNG image was

copied into the Unity template.

To dynamically compare each CFD simulation and its corresponding functional

data, the following was done for each of the three groups (CoA, control, corrected). The

Unity template was opened and then refreshed, causing each PNG image and the .fbx file

to appear (.fbx file was then a prefab). Next, the CFD prefab was dropped into the

hierarchy where it was properly scaled and repositioned. The “Set up CFD Scene” editor

script was run where the glyphs, wall mesh, and volumetric image slices were properly

tagged, and numerous C# scripts were assigned to various game objects. Next, each scale

was properly labeled, and the flow waveform was set up.

To display the scientific data, slight alterations to the Unity template were

required. First, in the HUD, a secondary plane was added right in front of the Map View.

Next, a box collider and the “Histology” C# script with corresponding scientific data

were added to each wire-framed cube. The script recognizes the user’s location within the

simulation, and then displays the corresponding scientific image. For example, if the user

74

was originally in the proximal end of the CoA and then flew through the CoA, into the

distal end, the image would switch from the proximal VVG, IHC, and myograph data set

to the distal VVG, IHC, and myograph data set. This was designed so the user would be

aware of the endothelial changes that result from CoA. The final iteration of the thoracic

aorta virtual simulation, using the Oculus Rift, is shown in Figure 34.

Figure 34: Thoracic Aorta CFD VR simulations. Upper Left- user observing control

aorta simulation using Oculus Rift. Upper Right- user observing CoA aorta simulation at

peak systole while also observing scientific data using Oculus Rift. Bottom – user

observing corrected aorta simulation while viewing MRA and OSI results using Oculus

Rift

Clinical Feedback

 A pediatric cardiologist observed the thoracic aorta VR simulations and had the

following to say:

75

“I think this would be a valuable education tool for our patients with coarctation

of the aorta. This condition can present either very early in the first couple weeks of life,

but it also commonly presents in older kids and teenagers when they come in with

hypertension… this tool could help the patient population understand this condition

better. I think this would be a valuable tool and of course to engage the parents… the

virtual simulations are a unique, innovative sharing tool and I think it would only

increase patient and family engagement.”

2.3.1.2 Brain Aneurysm Simulation

Format of CFD results

The medical imaging data used to create the pulsatile CFD simulation and 4D

flow data at the request of the Purdue faculty members were previously obtained at the

University of California San Francisco under an IRB-approved study. Both contrast-

enhanced MRA and phase-contrast MR velocimetry (4D Flow MRI) datasets were

obtained from the same patient. The CFD model was created using Hypermesh (Altair;

Troy, Michigan) and the incompressible NS equations were solved numerically using

Fluent [82]. The 4D flow data was processed using ParaView, Geomagic Design software

(3D systems; Rock Hill, South Carolina), and EnSight (ANSYS Inc; Canonsburg, PA).

Using ParaView’s Python counsel, the contrast-enhanced MRA images were segmented

and streamlined [84]. Using Geomagic Design software the region of interest was

defined, noise was reduced, and the data was converted into IGES format. The data was

then converted into VTK format using an in-house software where it was imported into

EnSight for data visualization.

Both the CFD simulation and 4D flow data were presented to MARVL as a .case

file, only including velocity information. The CFD simulation had sixty-six time steps

76

and the 4D flow data had twenty time steps. The disparity in the number of time steps is

expected. The 4D flow data depends on velocity encoding parameters implemented

during the MRI scan, while the CFD simulation time step can be set to whatever the

researcher determines appropriate to achieve simulation convergence and resolve details

of the flow field during viewing.

Convert CFD results into 3D format

The collaborator was interested in viewing blood flow patterns that were caused

by the morphology of a brain aneurysm. Therefore, the streamline workflow was used.

First, the CFD .case file was loaded into ParaView. Next, with collaboration from the

collaborator, the ratio between the number of streamlines and the radius for each “tubed”

streamline was determined. Then each of the sixty-six time steps were saved as .vrml

files using the Python script and placed in a specific folder.

The 4D flow data did not include the brain aneurysms wall mesh, only velocity

encoded streamlines. However, the collaborator wanted to use the wall mesh data from

the CFD simulation. Therefore, in Unity, the CFD wall mesh was manually overlaid on

the 4D flow data. As regard to ParaView, the same exact process was done for the 4D

flow .case file where each of the twenty time steps were saved as .vrml files (without the

wall mesh for each time step) and placed in a specific folder.

Reorganize CFD results

The following was done for both cases (CFD and 4D flow). The provided Blender

template and the folder that contained the .vrml files from ParaView were copied into a

77

master folder. The Blender template was then opened where the instructions were

completed, and the script was run. For each time step, it took roughly twelve seconds to

load. For the CFD simulation, after it was created, it was discovered that the wall mesh of

the brain aneurysm was double-sided, and each time step had too many vertices.

Therefore, the secondary Blender Python script was run to remove duplicate mesh

structures and decrease the number of vertices. For the 4D flow data, after it was created,

slight alterations were made to the Blender scene due to the model not having a wall

mesh (was later added in Unity). Finally, the Blender project was exported as a .fbx file.

Add supplementary data, customize for a given VR environment, and arrange for VR

environment

Both the CFD simulation and 4D flow data did not include any supplementary

data. It only included the velocity information. The following was done for both cases

(CFD and 4D flow). The Unity template was opened and then refreshed, causing the .fbx

file (was then a prefab) to appear in the Unity template. Next, the CFD prefab was

dropped into the hierarchy where it was properly scaled and repositioned. For the brain

aneurysm CFD simulation, the wall mesh was originally solid white. While in VR, a solid

white mesh could disorientate the user. Instead, a red material was created and then

applied to the wall mesh. To add a wall mesh to the 4D flow data, the wall mesh of the

CFD simulation was added into the 4D flow Unity scene, where it was then manually

overlaid on the 4D flow data. Next, for both cases, the “Set up CFD Scene” editor script

was run where the streamlines were tagged, and numerous C# scripts were assigned to

various game objects. Next, the velocity scale was properly labeled while the other labels

78

(wall indices) and flow waveform were turned off. The final iteration of the CFD

simulation and 4D flow data, using the Oculus Rift, are shown in Figure 35.

Figure 35: Upper- CFD Brain Aneurysm simulation shown using Oculus Rift. Lower- 4D

flow data Brain Aneurysm shown using Oculus Rift

79

Clinical Feedback

 A neurosurgeon observed the brain aneurysm CFD simulation and 4D flow data

in VR and had the following to say:

“I see this as a first step in using flow dynamics to predict which aneurysms are more

likely to rupture and therefore which ones need to be surgically treated.… First we need

to visualize the problem which can be done using the 3D virtual model to objectify what

is bad and what is good.”

2.3.1.3 Airway Simulation

Format of CFD results

The airway steady CFD simulation comprised of three different data sets: nasal

cavity, pharynx, and bronchioles. As mentioned above, the nasal airway and pharynx data

came from CT scans of two different subjects as provided by the collaborating researcher

[83]. The bronchioles were created using CAD. The CT scans were segmented in Mimics

(Materialise; Leuven, Belgium) where then the nasal cavity, pharynx and bronchioles

were assembled together. The complete airway model was meshed using ICEM-CFD

(ANSYS Inc; Canonsburg, PA) [83]. The NS equations were solved numerically using

Fluent and visualized in Fieldview (Intelligent Light; Rutherford, New Jersey). The CFD

results were presented to MARVL as a .case file.

80

Convert CFD results into 3D format

The collaborating researcher was interested in viewing air flow patterns

throughout the nasal airway down through the bronchioles. It was determined that

streamlines would best represent the airway simulation CFD results. The .case file was

loaded into ParaView and like the brain aneurysm example, with collaboration of the

researcher, the ratio between the number of streamlines and the radius for each “tubed”

streamline was determined. Two sets of “tube” streamlines were added because there

were two inlets, the nasal and oral cavity. Being that the simulation was steady, the

Python script was not required since temporal progress along a flow or other input

waveform was not applicable. Instead, the ParaView scene was exported as one .vrml

file.

Reorganize CFD results

Unlike the previous two examples, the airway simulation only had one .vrml file,

therefore, the Python script was not needed in Blenders text editor. A blank Blender

project was opened and the single .vrml file was imported into the Blender scene and

scaled. Unnecessary lamps and cameras that were rooted in the .vrml file were deleted.

The Blender project was then saved as a .fbx file.

81

Add supplementary data, customize for a given VR environment, and arrange for VR

environment

The airway simulation did not include any supplementary data. The CFD

simulation was steady, initially lacking animation. Therefore, slight alterations to the

Unity template were required. The Unity template was opened and refreshed, causing the

.fbx file (was then a prefab) to appear in the Unity template. Next, the CFD prefab was

dropped into the hierarchy where it was properly scaled and repositioned. Labels were

assigned to the scales. Being that the airway simulation was steady, the “Set up CFD

Scene” editor script was not required because there were no successive streamlines to

animate through. Instead, to create animation, a camera was placed at the tip of the nasal

airway. Using Unity’s animation tool and subsequent C# scripts, a camera fly-through

starting from the nasal cavity ending at one of the bronchioles was created. To make the

simulation more realistic, a texture was created that mimicked the look of epithelium

within the airway. The texture was then overlaid on the wall mesh. The final airway

Unity project, displayed in MARVL, is shown in Figure 36, and details pertaining to

clinical feedback from a derivative project are presented in more detail within the

discussion.

82

Figure 36: Airway VR simulation being displayed at MARVL

83

2.4 Discussion

2.4.1 Novice Users CFD to VR Workflow Experience

Application of the CFD to VR workflow was tested on two users, a graduate and

an undergraduate student studying Biomedical Engineering at Marquette University. As

seen in Table 5, the experience levels between the two users were slightly different. The

graduate student was chosen because it was under the assumption that the individuals

who would use the CFD to VR workflow would have prior knowledge in CFD but, little

knowledge in VR, specifically in Blender and Unity. The undergraduate student was

chosen as the baseline, showing that a novice person in CFD and VR could complete the

workflow.

Prior Experience?

 CFD VR ParaView Blender Unity

Graduate student Yes No Yes No No

Undergrad Student No No No No No

Table 5: Experience levels of tested users

 The graduate student was the first user to test the CFD to VR workflow. The

graduate student was presented with a PNG flow waveform and 20 .vtu files that were

generated using SimVascular. The CFD to VR workflow was successfully completed in

one hour and seven minutes. As seen in Table 6, the minimum output along with an

animated flow waveform were shown in VR. The completion time also included

84

processing time (running the Python script in ParaView, running the Python script in

Blender, Opening Unity, and reloading the .fbx file into the Unity scene). For the

workflow, specifically to convert CFD files into 3D format, the subject used an older

version of ParaView. This resulted in confusion for the graduate student because the

older version of ParaView had different syntax to complete certain steps than the

provided workflow made using ParaView version 5.4.2. After the test, the workflow was

updated to include step-by-step instructions for ParaView version 5.2.0 to 5.4.2 (newest

ParaView version at the time of the paper). Overall, MARVL personnel were satisfied

with the result. Before the CFD to VR workflow, a person who had no prior knowledge

of Blender or Unity could not have easily viewed their simulation results in VR.

 The undergraduate student used the workflow after the graduate student, and was

presented with the same data. The undergraduate user had a difficult time initially

understanding ParaView. After the undergraduate was trained how to use ParaView, the

workflow was successfully completed in fifty-nine minutes, including the processing

time for each step. After successfully completing the workflow, the undergraduate

mentioned that if they used the step-by-step workflow videos from the start, they would

have finished much sooner. As seen in Table 6, the minimum output along with an

animated flow waveform were shown in VR. Figure 37 depicts what the final Unity scene

looked like for both the graduate and undergraduate student. As a frame of reference, a

user who was proficient in ParaView, Blender and Unity was able to convert the same

data set into VR in eighteen minutes, including the processing time for each step.

85

Table 6: Output from the CFD to VR workflow- area highlighted in red represents what

both users presented in their final Unity scene

Figure 37: Final Unity scene created by both users

86

2.4.2 Clinical Feedback from Derivative Project

Feedback from clinicians on the practicality of using VR CFD simulations in a

clinical setting, whether it be research, surgical planning, or patient

education/communication was obtained anecdotally. The majority of the clinical

feedback came from a derivative project of the Airway VR simulation discussed earlier.

2.4.2.1 Virtual Nasal Surgery

In the summer of 2016, a professor and clinician from the Medical College of

Wisconsin came to MARVL asking to create a “Virtual Nasal Surgery.” The goal of the

project was to use an Oculus Rift to effectively communicate virtual surgery modeling

predictions (CFD results) to assist surgeons in determining what type of nasal surgery

was optimal for patients with nasal airway obstruction [85]. The professor and clinician

provided MARVL with two sets of steady-state CFD simulations saved as .case files. The

first simulation was from a patient who had a nasal obstruction. The second simulation

was from the same patient, but after a virtual “post-surgery” to correct the nasal

obstruction [85]. Both CFD simulations had steady pressure and velocity information.

The human data to create both CFD simulations came from IRB-approved studies and

were provided in a de-identified format.

Portions of the CFD to VR workflow were used to create the “Virtual Nasal

Surgery” application. Additional steps were required beyond the scope of the current

thesis. Using ParaView, seven .vrml files were created to display the pre and post surgery

87

wall mesh and corresponding pressure and velocity streamline information. The .vrml

files were reorganized in the same Blender scene. Using one of MARVL’s supplementary

workflows, two set tracts (for the right and left nasal cavity) with subsequent cameras

were added to the Blender scene and then exported as a .fbx file. Slight modifications to

the Unity template were required to fly down the set tracks created in Blender and toggle

between the pre and post-surgery CFD simulations. Figure 38 provides the final Unity

application, after it was initially launched. As shown in Figure 39, when inside one of the

nasal cavities, the user can toggle between pre and post-surgery CFD simulations,

observing the changes in geometry, velocity, and pressure information.

Figure 38: Initial view of the Virtual Nasal Surgery Project

88

Figure 39: Upper -Inside the right nasal cavity pre-surgery observing velocity

information. Lower- Inside the right nasal cavity post-surgery observing velocity

information (note that there was an increase in velocity post-surgery because the patient

had an unobstructed nasal cavity resulting in an increase in flow)

89

The Virtual Nasal Surgery application was presented at the Advances in

Rhinoplasty Conference in Chicago, IL in May 2017. At the conference, surgeons from

the United States and Brazil viewed the simulation using the Oculus Rift. Comments

obtained by our clinical colleagues from the conference are shown in Table 7.

Surgeons Feedback from Advances in Rhinoplasty Conference

Surgeon 1 “...is an interesting tool to possibly teach or for patient discussions.”

Surgeon 2 “I think it would be HUGE in patient education, resident teaching and

research. It would be very useful in the cleft palate/VPI world,

rhinoplasty and nasal applications, as well as sleep apnea evaluation.

Combining with video-based data would also be great to evaluate

mucosal changes and have better detail.”

Surgeon 3 “This would be great to show patients and demonstrate nasal airway

changes”

Surgeon 4 “I think a big positive to its use would not just be for the surgeon but

for education of the patient. Patient benefit may far outweigh surgeon

benefit and further strengthen the patient surgeon relationship and

confidence in what the surgeon is suggesting to treat their problem.”

Surgeon 5 “Great program. Really useful”

Surgeon 6 “Improves 3-D sense of surgery. Makes sure I am aware of total

anatomy Frontal/Ventral; cranial, caudal”

Surgeon 7 “Great experience”

Surgeon 8 “As surgeons, this can help us to share the decision with our patients”

Table 7: Surgeons feedback of the Virtual Nasal Surgery Unity App from the Advances in

Rhinoplasty Conference

90

After the conference, the Medical College of Wisconsin clinician who

spearheaded the “Virtual Nasal Surgery” application had the following to say about the

simulation:

“The 3D model was very impressive. The general feedback from everyone was that this

would be a very useful educational tool in this context and many other surgical contexts

as a way to see the 3D relationships between structures. The ability to use the VR goggles

to see the nose in a full 3D way was very cool, very visual, and very helpful. The addition

of the two simulations on top of each other was a great way to visually see surgical

changes. Surgery is a very visual field, and this was very helpful. As I was more familiar

with the CFD information, having this information to visually see in the model was more

impressive to surgeons than just seeing the simulations in 2D or the numbers.”

A few months after the Advances in Rhinoplasty Conference, the same

neurosurgeon who observed the CFD simulation and 4D flow data from the same brain

aneurysm viewed the “Virtual Nasal Surgery” application, and had the following to say:

 (how he currently goes over a surgery with the patient) “… I use a spinal model,

and then I use a real model MRI X-ray, then I show the patient this is what I'm going to

do… I wish I could show them this is what it looks like before surgery, and this is what it

will look like after surgery. But, you are basically asking them to visualize in an abstract

term of what the post-surgery would look like. If you could show them what it looks like,

using 3D geometry, that is very helpful for them to understand.”

2.4.2.2 Summary

The clinicians above concurred that viewing medical simulations in VR was

impressive and had many advantages including patient education, resident teaching and

research. It was their belief that visualization of a procedure gives the patient insight as to

what the issue is and how surgery would rectify the problem. Finally, the clinician from

the Medical College of Wisconsin, who had more experience with CFD, commented that

91

visualizing CFD results as streamlines in VR were “more impressive” than viewing the

CFD results using spreadsheets or on a 2D monitor.

2.5 Limitations and Future Directions

The first limitation to this study is that MARVL has yet to do a scientific test to

determine whether viewing CFD data in VR can add more value to CFD research when

compared to traditional ways of studying CFD results. The study could also examine

whether viewing CFD results in VR may be better used as a complementary tool to

convey his or her results. As noted in Table 7, the surgeons at the Advances in

Rhinoplasty Conference, believe that viewing simulations in VR could have a significant

impact on patient education. That alone suggests an advantage to viewing simulations in

VR, but it still does not prove that viewing CFD results in VR could add value to CFD

research. MARVL has significantly reduced the time it takes to view CFD results in VR.

But, converting the results to be shown in VR is an extra step that takes at least eighteen

minutes. A future study would be helpful in determining the validity/practicality of

viewing CFD results in VR.

A second limitation to the study is related to the boundary conditions used to

create the CFD simulations. Boundary conditions are not always physiologically correct.

For example, assuming the pressure at the outlet is zero is not realistic for CFD

simulations involving arterial vasculature, and the results could be questioned by fellow

colleagues. Moreover, if the VR CFD simulation is used as a patient educational tool, and

92

the CFD results are inaccurate, the VR simulation could mislead the patient, potentially

resulting in unrealistic expectations or outcomes.

 An area where the CFD to VR workflow can improve is the adding volumetric

imaging data in Blender step. After the .vrml files are created, the workflow is almost

fully automated with the exception of the volumetric imaging step. This step is very

tedious and can be time consuming. A future direction could be to find a way to script:

align the medical image to the CFD model, add a properly scaled array, add the medical

imaging data for each corresponding plane, and properly naming each plane’s object,

texture, and material. If this step were scripted, it would automate everything needed to

be done in Blender.

Another area where the CFD to VR workflow could improve would be to allow

for deformable walls which can be done using fluid-structure interaction (FSI)

simulations. These are simulations where the fluid flow deforms in a physical structure.

For the current workflow, the walls must be rigid. Potential changes in the workflow to

allow for a deformable wall would be to first load the FSI simulation results into

ParaView. The displacement and wall mesh values would be exported as a CSV file.

Then using a programing language for each time step, the wall mesh and displacement

values would be used to create a new mesh, representing the displacement of the mesh for

that particular time step. The new wall mesh for each time step would then be exported as

a file that stores 3D geometry. Using Blender’s text editor, a Python code would be

written that would import the first time step 3D geometry file, then store the remaining

time steps position values. Using Blender’s shape keys, the first time step 3D geometry

would be modified sequentially to the position values of the next sequential time step,

93

creating a seamless transition. The Blender project would then be exported and loaded

into Unity as a .fbx file, creating a prefab. Using the prefab’s animation component and

subsequent scripts, the wall deformation would be synced to the pulsating glyphs or

streamlines.

The most drastic alteration to the current workflow would be to eliminate the

entire Blender step. By doing this, it could potentially expedite the total workflow. The

reason Blender is used is because the import and export formats between ParaView and

Unity do not align. ParaView’s only suitable exportable 3D formats are .x3d or .vrml.

Unity’s only suitable importable 3D formats are .fbx, dao, .3ds, .dxf, .obj and .skp. For

the current workflow, Blender takes .vrml files from ParaView, then exports the entire

CFD simulation as a .fbx file, where it can then be imported into Unity. To bypass

Blender, there are three alternative methods (1) add a plugin to ParaView to export ,fbx

or .obj files (2) add a plugin to Unity to import .vtk of .x3d files or (3) write a custom

format on both ends.

94

CHAPTER 3: IMMERSIVE POWERPOINT

3.1 Previous Work Done at MARVL

 MARVL has been used as an integral part of select engineering lectures since it

first opened in 2014. One lecture in particular was a fluid dynamics lecture where the

professor viewed a VR, CFD carotid artery simulation. The professor used the CFD

simulation to convey the fluid dynamic topics that the students learned in the classroom.

For this specific lecture, at the touch of a button, the mode went from viewing the CFD

simulation to viewing a 2D PowerPoint presentation. Though this process was very

reliable, there were many issues including:

• The PowerPoint was in 2D

o It did not take full advantage of MARVL’s many benefits related

to didactic teaching and learning [21-36]

▪ i.e. students are fully immersed in their respective subject

matter, increasing a sense of presence, understanding and

enthusiasm

o If there was not a relevant VR model for a professor’s lecture,

there was no reason to use MARVL

• A new Unity project had to be built for each presentation

o Professors had to send their PowerPoint slide to MARVL days in

advance

• Lacked interactivity

95

• Lacked the ability to annotate/draw on the slides

The Director of MARVL, Dr. LaDisa, spearheaded a project in 2017 as part of his

role as the Lafferty Professor in the OCOE at Marquette University to make MARVL

more accessible to Marquette’s engineering professors. As discussed in the introduction,

VR allows students to be fully immersed in their respective subject matter thereby

increasing their sense of presence, understanding and enthusiasm [21-36]. The way of

viewing PowerPoints in MARVL above was not conducive to many of professors in the

OCOE. The end goal of the Lafferty Project was to have an easy, expedited process

where a professor could view his or her PowerPoint presentation and have an exciting,

interactive lecture that the students would enjoy, learn and remember. At completion, the

project was able to take a professor’s PowerPoint slide, setup the 3D presentation under

30 minutes and include the ability to view supplementary movie files and draw on each

slide using a virtual wand.

3.2 Materials and Methods

3.2.1 Data Acquisition

PowerPoint, initially launched in 1990, is the world’s most popular presentation

software, accounting for an estimated 95% share of presentation software. The workflow

that was created for the current thesis takes a standard PowerPoint deck and converts

each slide for 3D viewing using MARVL.

96

3.2.2 Converting Slides

 The workflow for creating 3D lectures was designed to make it easy for a

professor to implement. The only input the professor needs to provide MARVL staff is a

standard PowerPoint deck and any supplementary movie files they would like included.

To create a 3D effect when viewed in MARVL, a standard PowerPoint slide as shown in

Figure 40, is separated into three planes. The first plane is the background plane, the

second plane is the text plane, and the third plane is the figures, graphs and or key words

plane. As seen in Figure 40, the plane that is protruding most toward the user is the

figure/graphs/key word plane, while the background plane is the furthest back. To create

these three planes, the PowerPoint deck is saved as three distinct sets of PNG images.

One generic single background slide that is used for the entire PowerPoint presentation, a

text image for each slide, and a figure/graphs/key word for each slide.

Figure 40: Left- normal slide. Right- normal slide sperarated into three PNG images:

figure/graphs/key words, text, and background

97

 To create each of these planes, the MARVL staff slightly alters the PowerPoint

deck provided by the professor. First, a standard background slide is created and placed

as the first slide in the deck. The background style is best matched to whatever style the

professor used for his or her presentation. The background format is set to 100%

transparent for the remaining slides. Next, two PDF files are created. One PDF includes

the background slide and every figure/graph/key word deleted, leaving only the text. The

second PDF includes a blank first slide (background slide is deleted and set to 100%

transparent), and all of the text deleted, leaving only the figures/graphs/key words. The

process of creating these two PDF files is fast. A standard thirteen slide PowerPoint deck

that had at least one figure per frame, took under 115 seconds to create the two necessary

PDF files.

Finally, using Cygwin 64 (includes ImageMagick and GhostScript) and a pre-

written Bash script, each PDF is converted into a series of PNG images. The Bash script

saves each slide as a PNG image, increases its resolution, resizes, renames, and places

each PNG in a respective text or image folder. The text and image folder can then be

easily swapped in the Immersive PowerPoint Unity project right before class.

3.2.3 Transform to Meet Virtual Environment

 A Unity project was created to dynamically load new PowerPoint slides at

runtime. For each presentation, the only task required by the MARVL staff is to convert

the slides and put the image, text, and movie folders in the Unity project’s

StreamingAssets folder. As seen in Figure 41, interaction with the project is achieved by

98

a wand that includes four buttons, an analog stick and a trigger. Like every Unity project,

build-set-up and interaction is achieved by a series of C# scripts. Some of the most

important for this project include: instantiate a prefab for each slide, advance to the

next/previous slide, draw, and play movies.

Figure 41: Wand used for Immersive PowerPoint presentation, with features and

controls for each button

The program works by reading how many PNG images are in the text folder. That

integer is then used to instantiate the correct number of 3D slide prefabs. The respective

background, text, and figure/graph/key word PNG images are then overlaid on each

prefab as a texture. The user is able to advance to the next/previous slide because after

each slide is instantiated, it is placed in a game object array, neatly organizing the project.

If the user would like to go to the next slide, he or she advances one slot in the array. If

the user would like to go back a slide, he or she returns to the previous slot in the array.

The user is able to draw on each slide by using Unity’s raycast and line renderer. In

Unity, raycast is one of the global physics properties. It creates a vector from the origin,

99

in this case, the wand, to the figure/graph/key word plane. This ray, looks like a virtual

pen, and extends from the user’s hand to the front wall of MARVL. When the user

presses down and holds the trigger button, the user is able to draw using Unity’s built in

component, line renderer. The line renderer takes an array of X number of sampling

points in 3D space and draws a line between each one. Movies are played using a plug-in

called AVPro Video. The movie is dynamically loaded at runtime because, like the image

and text folders, they are also called from the StreamingAsses folder.

 Another important feature, before the Unity project was built, was properly

scaling each of the three planes. As previously discussed in the Introduction, if there are

two of the same objects, but one is closer, the closer object appears larger than the further

away object. For this project, to create the 3D effect for each slide, the same object

(plane) was placed at different depths relative to the user. However, when viewed, each

plane needed to be properly scaled so when the user looks at the slide from straight on,

each plane was properly aligned just like it would appear in a standard slide. The proper

scaling ratio for each plane was measured using a grid. The scale of the plane was

adjusted until each of the three grids were directly aligned. After alignment, the

background plane was the largest plane, followed by the text plane, and the

figure/graph/key word plane was the smallest. When viewed from straight on in

MARVL, each slide appeared 3D with the same alignment as the standard PowerPoint

presentation.

100

3.3 Results

3.3.1 Case Study

 In the fall of 2017, two professors for undergraduate level classes at Marquette

University used MARVL’s Immersive PowerPoint during one of their lectures. The

feedback was positive. The professors used the “virtual pen” to highlight and draw

providing emphasis during the lecture. After the class was over, students were queried as

to how they enjoyed MARVL’s Immersive PowerPoint lecture compared to a standard

lecture. The response was nearly unanimous, where students thought the Immersive

PowerPoint lecture was “more exciting.” It was noted that some students did not wear the

stereoscopic glasses because of simulator sickness during their previous VR experiences.

The students who did not wear the glasses revealed that they were able to easily track the

lecture because the text was readable. An image of one of the classes using MARVL’s

Immersive PowerPoint can be found in Figure 42.

Figure 42: Marquette class using MARVL’s Immersive PowerPoint

101

3.4 Discussion

An “Open House” was held for Marquette’s engineering professors to provide an

informative/practice session using MARVL’s Immersive PowerPoint. In total, four

engineering professors participated in the “Open House.” The feedback was mostly

positive where three out of the four professors mentioned using MARVL’s Immersive

PowerPoint for some of their important lectures during the upcoming semesters. Two of

the professors stated that their students would likely be more excited and attentive when

using the Immersive PowerPoint. When the professors were trained how to use

MARVL’s interactive wand, they thought the controls were easy and straightforward.

The professors felt confident that they could operate the Immersive PowerPoint on their

own.

3.5 Limitations and Future Directions

 Future work for MARVL’s Immersive PowerPoint lecture would be to

scientifically test whether having lectures in an IVE can have a positive effect (i.e.

increase in retention/ knowledge) on students. As discussed in the Introduction, there are

a plethora of advantages using VR in didactic teaching and learning [21-36]. However,

there has not been a study that scientifically tested whether viewing a standard

PowerPoint lecture in VR would have any effect on the student. A future case study could

have the same course be split into two classes. Each class would be taught by the same

professor and have the same PowerPoint slides. The only difference between the two

102

classes would be that one class would be taught in MARVL and the other class would be

taught in a standard classroom. Before the study, to account for student intelligence, the

students would be separated so the average class GPA would be the same. After the

semester, the grades between the two classes would be compared as well as a

questionnaire, polling the overall experience of the class. Although the sample size would

be small and could have a large error (i.e. student understanding the course), it would be

a start in determining the validity of viewing PowerPoints in 3D.

103

CHAPTER 4: CONCLUSION

VE such as MARVL provide a collaborative learning environment to display

virtual content. To increase MARVL’s userbase, two robust processes and workflows

(Aim 1 and 2) were created that permit increased content and involvement within

MARVL and its additional VE.

Aim 1 was designed to take biomedical CFD simulations and display it in a

variety of VE. The workflow was intended to take advantage of the tremendous potential

of viewing CFD simulation results and complementary data in VR [13, 14]. The

workflow was successfully implemented on a variety of VE and tested across multiple

clinical applications. As shown in Table 8, each clinical application had a slightly

different input and output, exemplifying the flexibility of the workflow.

 Thoracic Aorta Brain Aneurysm Airway

CFD simulation

Software

SimVascular Fluent Fluent

Visualized results

as:

Glyphs Streamlines Streamlines

Portion of Unity

template used

Maximum (CFD

results, scales,

hemodynamic data,

flow waveform,

volumetric images)

+ slightly altered

Minimum (CFD

results, and scale)

Minimum (CFD

results, and scale) +

slightly altered

Table 8: Flexibility of CFD to VR workflow exemplified by the three CFD clinical cases

 To encourage widespread usage of medical simulations in VR, it was imperative

to decrease and simplify the steps to complete the workflow. In under one hour, Aim 1’s

104

workflow was completed by a novice user with no prior knowledge in either CFD or VR,

demonstrating the ease of the workflow resulting in the potential increase in userbase.

With the changes that have been implemented and outlined in this thesis, the use of

medical simulations in VR shows great promise as an educational, surgical planning, and

research tool for clinicians. This project was a new, collaborative effort between

engineers and clinicians.

Aim 2 was designed to take advantage of the great potential VR has as an

educational tool. Multiple studies have shown the advantages of using VR in didactic

teaching which increases the students’ sense of presence, understanding and enthusiasm

[21-36]. Aim 2’s workflow was successfully tested on college level lectures and

completed in a time effective manner. With positive feedback from both professors and

students regarding immersive PowerPoint, Marquette University classes have an

opportunity to use MARVL on a more consistent basis, potentially increasing its

userbase.

105

BIBLIOGRAPHY

1 Roussou, Maria. "Learning by doing and learning through play: an exploration of

interactivity in virtual environments for children." Computers in Entertainment (CIE) 2.1

(2004): 10-10.

2 Hansen, Margaret M. "Versatile, immersive, creative and dynamic virtual 3-D

healthcare learning environments: a review of the literature." Journal of medical Internet

research10.3 (2008).

3 Mikropoulos, Tassos A., and Antonis Natsis. "Educational virtual environments: A ten-

year review of empirical research (1999–2009)." Computers & Education 56.3 (2011):

769-780.

4 MARVL - the MARquette Viz Lab - Home, Dec. 2017, www.eng.mu.edu/vizlab/.

5 McMenemy, Karen, and Stuart Ferguson. A Hitchhiker's Guide to Virtual Reality. AK

Peters, 2007.

6 Stuart, Rory. The Design of Virtual Environments. McGraw-Hill, 1996.

7 Isaac, Mike. “Facebook's Virtual Reality Business Gets a New Leader.” The New York

Times, The New York Times, 26 Jan. 2017,

www.nytimes.com/2017/01/26/technology/facebook-virtual-reality-hugo-barra.html.

Web. 8 May 2011.

8 “Record over $3B AR/VR Investment in 2017 ($1.5B+ in Q4).” Digi-Capital, Jan.

2018, www.digi-capital.com/news/2018/01/record-over-3b-ar-vr-investment-in-2017-1-

5b-in-q4/#.WmT7sqinHct.

9 Sherman, William R. Understanding Virtual Reality: Interface, Application, and

Design. Morgan Kaufmann, 2013.

10 Turnr, J. (Artist). (2018) Screenshot of the video game Pokémon Go with Treecko and

a Poké Ball [Digital image]. Retrieved from Wikimedia Commons website:

http://upload.wikimedia.org/wikipedia/commons/2/2e/Kamloops%E2%80%94Thompson

%E2%80%94Cariboo.png

11 Lee, Byoung-Kwon. "Computational fluid dynamics in cardiovascular disease."

Korean circulation journal 41.8 (2011): 423-430.

http://www.eng.mu.edu/vizlab/
http://www.nytimes.com/2017/01/26/technology/facebook-virtual-reality-hugo-barra.html
http://www.digi-capital.com/news/2018/01/record-over-3b-ar-vr-investment-in-2017-1-5b-in-q4/#.WmT7sqinHct
http://www.digi-capital.com/news/2018/01/record-over-3b-ar-vr-investment-in-2017-1-5b-in-q4/#.WmT7sqinHct
http://upload.wikimedia.org/wikipedia/commons/2/2e/Kamloops%E2%80%94Thompson%E2%80%94Cariboo.png
http://upload.wikimedia.org/wikipedia/commons/2/2e/Kamloops%E2%80%94Thompson%E2%80%94Cariboo.png

106

12 LaDisa Jr, John F., et al. "Time-efficient patient-specific quantification of regional

carotid artery fluid dynamics and spatial correlation with plaque burden." Medical

physics 37.2 (2010): 784- 792.

13 Forsberg, Andrew S., et al. "Immersive virtual reality for visualizing flow through an

artery." Proceedings of the conference on Visualization'00. IEEE Computer Society

Press, 2000.

14 Quam, David J., et al. "Immersive visualization for enhanced computational fluid

dynamics analysis." Journal of Biomechanical Engineering 137.3 (2015): 031004.

15 Quam, David J. Advanced Visualization and Intuitive User Interface Systems for

Biomedical Applications. Marquette University, 2012.

16 Berger, Matthias, and Verina Cristie. "CFD Post-processing in Unity3D." Procedia

Computer Science 51 (2015): 2913-2922.

17 T.A. DeFanti, M.D. Brown, Visualization in Scientific Computing, Computer

Graphics. 21 (1987).

18 “Case Western Reserve, Cleveland Clinic Collaborate with Microsoft on Earth-

Shattering Mixed-Reality Technology for Education.” Case Western Reserve University -

Hololens, 2015, case.edu/hololens/.

19 “Microsoft Highlights CWRU, Cleveland Clinic Partnership in New Video.” Case

School of Engineering, 12 July 2015, engineering.case.edu/HoloLens-video.

20 “Microsoft HoloLens: Partner Spotlight with Case Western Reserve University.”

YouTube, YouTube, 8 July 2015,

www.youtube.com/watch?time_continue=37&v=SKpKlh1-en0.

21 Dede, Chris. "Immersive interfaces for engagement and learning." science 323.5910

(2009): 66-69.

22 Everson, Naleya, et al. "Measuring the impact of a 3D simulation experience on

nursing students' cultural empathy using a modified version of the Kiersma‐Chen

Empathy Scale." Journal of clinical nursing 24.19-20 (2015): 2849-2858.

23 Dalgarno, Barney, and Mark JW Lee. "What are the learning affordances of 3‐D virtual

environments?." British Journal of Educational Technology 41.1 (2010): 10-32.

107

24 Jonassen, David H. "Objectivism versus constructivism: Do we need a new

philosophical paradigm?." Educational technology research and development 39.3

(1991): 5-14.

25 Conover , Emily. “3D Technology Adds New Dimension to Marquette University

Teaching.” Journal Sentinel, 14 Aug. 2014, archive.jsonline.com/news/education/3d-

technology-adds-new-dimension-to-marquette-university-teaching-b99313821z1-

271331381.html/.

26 Dunston, Phillip S., et al. "An immersive virtual reality mock-up for design review of

hospital patient rooms." Collaborative design in virtual environments. Springer

Netherlands, 2011. 167-176.

27 Dunston P.S., Arns L.L., Mcglothlin J.D., Lasker G.C., Kushner A.G. (2011) An

Immersive Virtual Reality Mock-Up for Design Review of Hospital Patient Rooms.

In: Wang X., Tsai J.JH. (eds) Collaborative Design in Virtual Environments.

Intelligent Systems, Control and Automation: Science and Engineering, vol 48.

Springer, Dordrecht

28 Lee, C. H., Liu, A., Del Castillo, S., Bowyer, M., Alverson, D., Muniz, G., et al.

(2007). Towards an immersive virtual environment for medical team training. Studies in

Health Technology and Informatics, 125, 274-279.

29 Kilmon, Carol A., et al. "Immersive virtual reality simulations in nursing

education." Nursing education perspectives 31.5 (2010): 314-317.

30 Rhienmora, Phattanapon, et al. "Haptic augmented reality dental trainer with automatic

performance assessment." Proceedings of the 15th international conference on Intelligent

user interfaces. ACM, 2010.

31 Moule, Pam, et al. "A comparison of e-learning and classroom delivery of basic life

support with automated external defibrillator use: A pilot study."UWE, Bristol (2006)

32 Bailenson, Jeremy N., et al. "The use of immersive virtual reality in the learning

sciences: Digital transformations of teachers, students, and social context." The Journal

of the Learning Sciences 17.1 (2008): 102-141.

33 Thorndyke, Perry W., and Barbara Hayes-Roth. "Differences in spatial knowledge

acquired from maps and navigation." Cognitive psychology 14.4 (1982): 560-589.

108

34 Johnson, D., Johnson, R., & Skon, L. (1979). Student achievement on different types of

tasks under cooper ative, competitive, and individualistic conditions. Contemporary

Educational Psychology, 4, 99-106.

35 Huang, Hsiu-Mei, Ulrich Rauch, and Shu-Sheng Liaw. "Investigating learners’

attitudes toward virtual reality learning environments: Based on a constructivist

approach." Computers & Education 55.3 (2010): 1171-1182.

36 Shih, Ya-Chun, and Mau-Tsuen Yang. "A collaborative virtual environment for

situated language learning using VEC3D." Journal of Educational Technology & Society

11.1 (2008).

37 Pan, Zhigeng, et al. "Virtual reality and mixed reality for virtual learning

environments." Computers & Graphics 30.1 (2006): 20-28.

38 Limniou, Maria, David Roberts, and Nikos Papadopoulos. "Full immersive virtual

environment CAVE TM in chemistry education." Computers & Education 51.2 (2008):

584-593.

39 Goldstein, E. Bruce, and James Brockmole. Sensation and perception. Cengage

Learning, 2016.

40 Pfautz, Jonathan David. Depth perception in computer graphics. No. UCAM-CL-TR-

546. University of Cambridge, Computer Laboratory, 2002.

41 Wolfe, M. Jeremy, Kluender R. Keith, and Levi, M, Dennis. Sensation & Perception.

Sinauer Associates, Inc., 2009.

42 Groh, Jennifer G. “Vision: Binocular Cues for Depth Perception.” Duke University.

43 Alfano, Patricia L., and George F. Michel. "Restricting the field of view: Perceptual

and performance effects." Perceptual and motor skills 70.1 (1990): 35-45.

44 Dolezal, Hubert. Living in a world transformed: Perceptual and performatory

adaptation to visual distortion. Academic Press, 1982.

45 Lin, JJ-W., et al. "Effects of field of view on presence, enjoyment, memory, and

simulator sickness in a virtual environment." Virtual Reality, 2002. Proceedings. IEEE.

IEEE, 2002.

109

46 LaValle, Steven M., et al. "Head tracking for the Oculus Rift." Robotics and

Automation (ICRA), 2014 IEEE International Conference on. IEEE, 2014.

47 Arthur, Kevin Wayne, and Frederick P. Brooks Jr. Effects of field of view on

performance with head-mounted displays. Diss. University of North Carolina at Chapel

Hill, 2000.

48 Urey, Hakan, et al. "State of the art in stereoscopic and autostereoscopic

displays." Proceedings of the IEEE 99.4 (2011): 540-555.

49 Sexton, Ian, and Phil Surman. "Stereoscopic and autostereoscopic display

systems." IEEE Signal Processing Magazine 16.3 (1999): 85-99.

50 Grimes, Brad. “University of Illinois at Chicago: Virtual Reality's CAVE Pioneer.”

EdTech, 30 Jan. 2013, edtechmagazine.com/higher/article/2013/01/university-illinois-

chicago-virtual-realitys-cave-pioneer.

51 Cruz-Neira, Carolina, et al. "The CAVE: audio visual experience automatic virtual

environment." Communications of the ACM 35.6 (1992): 64-73.

52 “UIC / EVL.” Evl | Electronic Visualization Laboratory, 18 June 2014,

www.evl.uic.edu/entry.php?id=1165.

53 Sharples, Sarah, et al. "Virtual reality induced symptoms and effects (VRISE):

Comparison of head mounted display (HMD), desktop and projection display

systems." Displays 29.2 (2008): 58-69.

54 Earnshaw, Rae A., ed. Virtual reality systems. Academic press, 2014.

55 Patterson, Robert, Marc D. Winterbottom, and Byron J. Pierce. "Perceptual issues in

the use of head-mounted visual displays." Human factors 48.3 (2006): 555-573.

56 Kok, Manon, Jeroen D. Hol, and Thomas B. Schön. "Using inertial sensors for position

and orientation estimation." arXiv preprint arXiv:1704.06053 (2017).

57 Goradia, Ishan, Jheel Doshi, and Lakshmi Kurup. "A review paper on oculus rift &

project morpheus." International Journal of Current Engineering and Technology 4.5

(2014): 3196-3200.

http://www.evl.uic.edu/entry.php?id=1165

110

58 Desai, Parth Rajesh, et al. "A review paper on oculus rift-a virtual reality

headset." arXiv preprint arXiv:1408.1173 (2014).

59 Colaner, Seth. “What's Inside Microsoft's HoloLens And How It Works.” Tom's

Hardware, 23 Aug. 2016, www.tomshardware.com/news/microsoft-hololens-

components-hpu-28nm,32546.html.

60 Avila, Lisa, and Mike Bailey. "Augment your reality." IEEE computer graphics and

applications 36.1 (2016): 6-7.

61 Kolasinski, Eugenia M. Simulator Sickness in Virtual Environments. No. ARI-TR-

1027. ARMY RESEARCH INST FOR THE BEHAVIORAL AND SOCIAL SCIENCES

ALEXANDRIA VA, 1995.

62 Goldberg, Jay M. The Vestibular System: a Sixth Sense. Oxford University Press,

2012.

63 Olshannikova, Ekaterina, et al. "Visualizing Big Data with augmented and virtual

reality: challenges and research agenda." Journal of Big Data 2.1 (2015): 22.

64 “Best Virtual Reality SDK for VR Development in 2017.” Thinkmobiles, 12 Feb.

2018, thinkmobiles.com/blog/best-vr-sdk/.

65 Hahn, James F. "Virtual Reality Library Environments." American Library

Association, 2017.

66 Wilson, Nathan M. "Open Source Medical Software Corporation." Cardiovascular and

Pulmonary Model Repository. Open Source Medical Software Corporation, 2013. Web.

06 Dec. 2016.

67 Steinman, David A. "Image-based computational fluid dynamics modeling in realistic

arterial geometries." Annals of biomedical engineering 30.4 (2002): 483-497.

68 Seeram, Euclid. Computed Tomography-E-Book: Physical Principles, Clinical

Applications, and Quality Control. Elsevier Health Sciences, 2015.

69 Geraci, Salvatore, et al. “Optical Coherence Tomography for Coronary Imaging.”

European Society of Cardiology , vol. 9, 13 Dec. 2010.

70 Bronzino, Joseph D., and Donald R. Peterson. Biomedical Signals, Imaging, and

Informatics. Boca Raton: CRC/Taylor & Francis Group, 2015. Print.

111

71 Torii, Ryo, et al. "Computer modeling of cardiovascular fluid–structure interactions

with the deforming-spatial-domain/stabilized space–time formulation." Computer

Methods in Applied Mechanics and Engineering 195.13-16 (2006): 1885-1895.

72 LaDisa, John F., et al. "Computational simulations for aortic coarctation: representative

results from a sampling of patients." Journal of biomechanical engineering 133.9 (2011):

091008.

73 Moon, Ji Young, et al. "Considerations of blood properties, outlet boundary conditions

and energy loss approaches in computational fluid dynamics

modeling." Neurointervention 9.1 (2014): 1-8.

74 “SimVascular.” SimVascular, 2017, simvascular.github.io/.

75 Les, Andrea S., et al. "Quantification of hemodynamics in abdominal aortic aneurysms

during rest and exercise using magnetic resonance imaging and computational fluid

dynamics." Annals of biomedical engineering 38.4 (2010): 1288-1313.

76 Menon, Arjun, et al. "Altered hemodynamics, endothelial function, and protein

expression occur with aortic coarctation and persist after repair." American Journal of

Physiology-Heart and Circulatory Physiology 303.11 (2012): H1304-H1318.

77 Markl, Michael, et al. "In vivo wall shear stress distribution in the carotid artery effect

of bifurcation geometry, internal carotid artery stenosis, and recanalization therapy."

Circulation: Cardiovascular Imaging 3.6 (2010): 647-655.

78 Westerhof, N., Nikos Stergiopulos, and Mark I. M. Noble. Snapshots of

Hemodynamics: An Aid for Clinical Research and Graduate Education. New York, NY:

Springer, 2005. Print.

79 Milgram, Paul, et al. "Augmented reality: A class of displays on the reality-virtuality

continuum." Telemanipulator and telepresence technologies. Vol. 2351. International

Society for Optics and Photonics, 1995.

80 J.F. LaDisa, Jr., L.E. Olson, K.M. Ropella, R.C. Molthen, S.T. Haworth, J.R. Kersten,

D.C. Warltier, P.S. Pagel. Microfocal x-ray computed tomography post-processing

operations for optimizing reconstruction volumes of stented arteries during 3D

computational fluid dynamics modeling. Comput Methods Programs Biomed. 2005 Aug;

79(2):121-34.

81 Menon, Arjun, et al. "A coupled experimental and computational approach to quantify

deleterious hemodynamics, vascular alterations, and mechanisms of long-term morbidity

112

in response to aortic coarctation." Journal of pharmacological and toxicological

methods 65.1 (2012): 18-28.

82 Rayz, V. L., et al. "Computational modeling of flow-altering surgeries in basilar

aneurysms." Annals of biomedical engineering 43.5 (2015): 1210-1222.

83 Lin, Emily L., et al. "Relationship between degree of obstruction and airflow limitation

in subglottic stenosis." The Laryngoscope (2017).

84 Liu, Jing, et al. "Highly accelerated intracranial 4D flow MRI: evaluation of healthy

volunteers and patients with intracranial aneurysms." Magnetic Resonance Materials in

Physics, Biology and Medicine (2017): 1-13.

85 Vanhille, Derek L., et al. "Virtual Surgery for the Nasal Airway: A Preliminary Report

on Decision Support and Technology Acceptance." JAMA facial plastic surgery 20.1

(2018): 63-69.

113

Appendix A: Convert CFD Results into Streamlines Using ParaView

Below, are the specific commands to create velocity streamlines. Icons are identified

with bolded font, keyboard commands are underlined., and keyboard entries are

italicized step number (i.e. (1)).

1. Load CFD Project

a. Open ParaView

b. If your CFD simulation has multiple cardiac cycles create a new folder

that only includes the last cardiac cycle

i. For example: If you have 3500 Time Steps going over 7 cardiac

cycles (500 time steps per cycle) with the number of time steps

between restarts as 20 you would select all of the files that are

3020 and greater into a separate folder

c. Load the CFD results created in step 1.b (.vtu, or .vtp) or a .case files into

ParaView by selecting File  Open.

i. A new window should pop up, select the CFD simulation and Press

OK

d. In the properties window press Apply (1)

i. The model should now appear in the Layout Window

e. Select the Coloring as whatever texture gradient the wall mesh should be

(Example: Pressure, wss, or Solid Color) (Figure 43 a)

i. Select Choose preset icon () A new window should pop up,

in Preset select jet and press Apply then press Close (Figure 43 b).

114

115

Figure 43: a) select the wall value you would like to show for each time step. b) Choose

Present jet scale that should be used for all of your scaled

ii. If you are going to select pressure for each time step the scale

needs to be set/adjusted

1. Select the Rescale to data range over all timesteps ()

in the Color Map Editor (Figure 44 a)

a. A new Window should pop up where then the user

should then select Rescale and disable automatic

rescaling (Figure 44 b) or in an older version of

ParaView click Yes

Figure 44: a) Color Map Editor b) setting range of scale

2. Create Coordinate Vector Velocity- Not always necessary

a. If Velocity is not given but, x_velocity, y_velocity, and z_velocity where

(Figure 45 a), scalar velocities must be converted to a coordinate vector

velocity.

116

b. Click the calculator icon () (Figure 45 b); type in

iHat*velocity_X+jHat*velocity_Y+kHat*velocity_Z.

i. Note, if user’s scaler velocity information was x_Velocity,

y_Velocity, z_Velocity the user would type in:

iHat*x_Velocity+jHat*y_Velocity+kHat*z_Velocity.

c. In the Result Array Name, type in Velocity.2 and press Apply (2).

i. An accurate representation of coordinate vector velocity is now

depicted in the CFD model.

d. If Velocity is already provided, the previous step should be skipped.

Figure 45: a) Example (without velocity) of CFD results after loading the CFD file into.

b) Calculator icons interface with the velocity equation and the Results Array Name.

3. Create Streamlines

a. To create streamlines representing flow and velocity profile, click on the

streamline tracer icon () and in the streamline tracer interface

(Figure 46 a).

i. Select Vectors as Velocity and Integration Direction as

FORWARD. Select Seed Type as Point Source. Select the desired

Number of Points (streamlines).

1. In Figure 46 a, the streamlines are selected at 100, which is

a low number of streamlines. Before pressing apply, there

is a white wireframe tube with an asterisk is in the middle.

Move this asterisk into the center part of the models inflow

(Figure 46 b), and set the radius of the wireframe circle (in

Sphere Parameters – Radius) to roughly the radius of the

inlet geometry then press Apply (3).

117

ii. Select Solid Color as Coloring (Figure 46 a)

Figure 46: a) Streamline tracer icons interface with the Vector, Integration Direction,

Radius and Number of Points selected as Velocity, FORWARD, 0.4, and 100. b)

Wireframe circle roughly matches the radius of the inlet and the asterisk in the center part

of the CFD simulations inflow.

4. Add Volume to Streamline

a. To add volume to the streamlines, select Filters  Alphabetical  Tube

on the top toolbar.

b. Adjust the Radius of the desired tubed-streamlines, for the coloring,

select Velocity (see Figure 47). Then press Apply (4).

i. This step creates the 3D geometry needed for VR and creates the

vertex color information indicative of velocity magnitude.

118

Figure 47: Tube interface with Radius set as 8.6297e-05 and the Coloring selected as

Velocity.

c. Select Choose preset icon (). A new window should pop up, in

Preset select jet and press Apply then press Close (Figure 43 b).

d. Select the Rescale to data range over all timesteps () in the Color

Map Editor (Figure 44 a)

i. A new Window should pop up where then the user should then

select Rescale and disable automatic rescaling (Figure 44 b) or

in an older version of ParaView click Yes

e. Record the min and max Velocity information for later use in Unity

5. Run Python Script

a. To run the python script, create a new folder on the desktop and name it

“ParaView_vrml”.

b. Locate the ParaView_export.py python script

c. Open up the ParaView_export.py file

i. On line 8, change the number to the end time step of the

simulation.

ii. On line 20, change the location of the ParaView_export.py file

1. For example, the line of code is originally this:

a. fname =

"C:/users/9376vennj/Desktop/ParaView_vrml/foo_r

es" + format(x) + "_velocity.vrml"

b. Only change the highlighted part

d. Save the ParaView_export.py file.

119

e. In ParaView, select Tools  Python Shell on the top toolbar.

f. In the Python Shell window, select Run Script (5).

i. A new window should pop up, locate the ParaView_export.py file

and select run OK. (Figure 48)

ii. In the main ParaView window, the CFD model should be going

through each desired time step.

Figure 48: Python Shell window

g. After the Python script is complete, go to the ParaView_vrml file, in the

file there should be the desired number of time steps in .vrml form.

This completes the steps to convert CFD results into 3D format if the user would

like to depict his or her CFD results using streamlines.

120

Appendix B: Convert CFD Results into Glyphs Using ParaView

Below, are the specific commands to create velocity glyphs. Icons are identified with

bolded font, keyboard commands are underlined., and keyboard entries are italicized step

number (i.e. (1)).

1. Load CFD Project

a. Open ParaView

b. If your CFD simulation has multiple cardiac cycles create a new folder

that only includes the last cardiac cycle

i. For example: If you have 3500 Time Steps going over 7 cardiac

cycles (500 time steps per cycle) with the number of time steps

between restarts as 20 you would select all of the files that were

3020 and greater and put them in a separate folder

c. Load the CFD results created in step 1.b (.vtu, or .vtp) or a .case files into

ParaView by selecting File  Open.

i. A new window should pop up, select the CFD simulation and Press

OK

d. In the properties window press Apply (1)

i. The model should now appear in the Layout Window

e. Select the Coloring as whatever texture gradient the wall mesh should be

(Example: Pressure, wss, or Solid Color) (Figure 49 a)

i. Select Choose preset icon () A new window should pop up,

in Preset select jet and press Apply then press Close (Figure 49 b).

121

Figure 49 : a) Select the wall value you would like to show for each time step. b) Choose

Present jet scale that should be used for all of your scaled

ii. If you are going to select pressure for each time step the scale

needs to be set/adjusted

122

1. Select the Rescale to data range over all timesteps ()

in the Color Map Editor (Figure 50 a)

a. A new Window should pop up where then the user

should then select Rescale and disable automatic

rescaling (Figure 50 b) or in an older version of

ParaView click Yes

Figure 50: a) Color Map Editor b) setting range of scale

2. Create Coordinate Vector Velocity- Not always necessary

a. If Velocity is not given but, x_velocity, y_velocity, and z_velocity where

(Figure 51 a), scalar velocities must be converted to a coordinate vector

velocity.

b. Click the calculator icon () (Figure 51 b); type in

iHat*velocity_X+jHat*velocity_Y+kHat*velocity_Z.

123

i. Note, if user’s scaler velocity information was x_Velocity,

y_Velocity, z_Velocity the user would type in:

iHat*x_Velocity+jHat*y_Velocity+kHat*z_Velocity.

c. In the Result Array Name, type in Velocity.2 and press Apply (2).

ii. An accurate representation of coordinate vector velocity is now

depicted in the CFD model.

d. If Velocity is already provided, the previous step should be skipped.

Figure 51: a) Example (without velocity) of CFD results after loading the CFD file into.

b) Calculator icons interface with the velocity equation and the Results Array Name.

3. Create Glyphs

a. To create glyphs representing velocity profile, click on the glyph icon (

) and in the glyph interface (Figure 52 a).

i. Select Scalars as None and Vectors as Velocity. Select Scale

Mode as Vector. Select the desired Number of Points

(streamlines).

ii. Select the time step that is peak systole for your simulation (Figure

52 b)

1. For example, the simulation used in Figure 52 b peak

systole was at the 9th time step

iii. In Figure 52 a, the Scale Factor (size of glyph) and Maximum

Number of Sampling points is selected as 0.005 and 5000, this

ratio needs to be adjusted depending on the model Apply (3).

iv. Select Coloring as GlyphVector

124

Figure 52: a) Making Glyphs Note that the scalars are set to None, Vectors is set to

Velocity, Scale mode is set to Vector, the Scale Factor is very small and Coloring is set to

velocity. B) selecting the time step that is peak systole

v. Select Choose preset icon (). A new window should pop up,

in Preset select jet and press Apply then press Close (Figure 49 b).

vi. Select the Rescale to data range over all timesteps () in the

Color Map Editor (Figure 50 a)

vii. A new Window should pop up where then the user should then

select Rescale and disable automatic rescaling (Figure 50 b) or

in an older version of ParaView click Yes

viii. Record the min and max Velocity information for later use in

Unity

4. Run Python Script

125

a. To run the python script, create a new folder on the desktop and name it

“ParaView_vrml”.

b. Locate the ParaView_export.py python script

c. Open up the ParaView_export.py file

i. On line 8, change the number to the end time step of the

simulation.

ii. On line 20, change the location of the ParaView_export.py file

1. For example, the line of code is originally this:

a. fname =

"C:/users/9376vennj/Desktop/ParaView_vrml/foo_r

es" + format(x) + "_velocity.vrml"

b. Only change the highlighted part

d. Save the ParaView_export.py file.

e. In ParaView, select Tools  Python Shell on the top toolbar.

f. In the Python Shell window, select Run Script (5).

i. A new window should pop up, locate the ParaView_export.py file

and select run OK. (Figure 53)

ii. In the main ParaView window, the CFD model should be going

through each desired time step.

Figure 53: Python Shell window

g. After the Python script is complete, go to the ParaView_vrml file, in the

file there should be the desired number of time steps in .vrml form.

126

Appendix C: Create/Turn Off Flow Waveform in Unity

Turn off flow waveform

1. Select the Waveform game object under OVRCameraRig/HUD

1/Overlay/Waveform in the Hierarchy

2. In the Waveform Inspector, uncheck the box next to the right of the blue cube and

above the word “Tag”

Animate flow waveform

1. Create a flow waveform for your CFD simulation

2. Save the waveform as a PNG image

a. Example

3. Using File Explorer () Paste the PNG image in the Unity Template

Materials folder

127

4. Refresh the Unity Scene by right clicking on the Assets folder OR click “Ctrl +

R”

5. Select on the Waveform game object in the Hierarchy

6. In the Materials folder, drag and drop the waveform PNG image into the shader

texture box

a. Your flow waveform should now appear in the Unity scene

128

7. The scale of the waveform might need to be adjusted- to do this adjust Transform

Scale X and Z

8. Select the Indicator object underneath the Waveform in the Hierarchy

a. The line on your waveform should appear orange in the Unity scene

9. Adjust the Transform, Position X of the Indicator to align with the start of the

flow waveform

a. Copy the Position X

b. Past the Position X value to the Move Indicator Script Min X slot

10. Adjust the Transform, Position X of the Indicator to align with the end of the flow

waveform

a. Copy the Position X

b. Past the Position X value to the Move Indicator Script Max X slot

129

130

Appendix D: Label Scales in Unity

1. These steps are done for each of your Scales (Main Mesh Scale, First Other Mesh

Scale, Second Other Mesh Scale, and or Arrows/Streamlines Scale)

a. If you do not have “Other Mesh” disregard the “First Other Mesh Scale”

and “Second Other Mesh Scale”

2. Click on your Scale under OVRCameraRig/HUD 1/Scales/WHATEVER SCALE

3. Click on “Scale Title”

a. In the Transform, in Text (Script) type in the Title of your scale with

appropriate units

4. Click on “Min”

a. In the Transform, in Text (Script) type in the minimum number of your

scale

5. Click on “Max”

a. In the Transform, in Text (Script) type in the maximum number of your

scale

131

	Marquette University
	e-Publications@Marquette
	Immersive Visualization in Biomedical Computational Fluid Dynamics and Didactic Teaching and Learning
	John Thomas Venn
	Recommended Citation

	tmp.1524230384.pdf.FuKUC

