2,206 research outputs found

    Tradeoffs among Free-flow Speed, Capacity, Cost, and Environmental Footprint in Highway Design

    Get PDF
    This paper investigates differentiated design standards as a source of capacity additions that are more affordable and have smaller aesthetic and environmental impacts than expressways. We consider several tradeoffs, including narrow versus wide lanes and shoulders on an expressway of a given total width, and high-speed expressway versus lower-speed arterial. We quantify the situations in which off-peak traffic is sufficiently great to make it worthwhile to spend more on construction, or to give up some capacity, in order to provide very high off-peak speeds even if peak speeds are limited by congestion. We also consider the implications of differing accident rates. The results support expanding the range of highway designs that are considered when adding capacity to ameliorate urban road congestion.Highway design; Capacity; Free-flow speed; Parkway

    Infrastructure networks and the competitiveness of the economy

    Get PDF
    This paper aims to examine how technical infrastructure networks may contribute to improving the competitiveness of the Hungarian economy. Consequently, our main question will be to establish how certain networks or sectors can promote competitiveness of the entire economy rather than how they could be more competitive in their own field. In the macroeconomic or regional sense competitiveness is interpreted as the entirety of safeguards and preconditions that provide a long term basis for success in a competitive market environment. The review of the economic, social, institutional and facility preconditions of competitiveness has highlighted that practically every component must be backed by a good system of relations: both strong, balanced internal relations promoting co-operation and external relations to assure outward linkages. Despite the above correlation, it would be a fallacy to assume that infrastructure networks as linking elements in general are factors per se improving competitiveness. In accordance with the level of development of the economy, the key forms of activity and the realistically attainable objectives, different linkages and service needs become key for the development of the economy in different stages

    Leave the expressway or not? Impact of dynamic information

    Get PDF

    How to determine an optimal threshold to classify real-time crash-prone traffic conditions?

    Get PDF
    One of the proactive approaches in reducing traffic crashes is to identify hazardous traffic conditions that may lead to a traffic crash, known as real-time crash prediction. Threshold selection is one of the essential steps of real-time crash prediction. And it provides the cut-off point for the posterior probability which is used to separate potential crash warnings against normal traffic conditions, after the outcome of the probability of a crash occurring given a specific traffic condition on the basis of crash risk evaluation models. There is however a dearth of research that focuses on how to effectively determine an optimal threshold. And only when discussing the predictive performance of the models, a few studies utilized subjective methods to choose the threshold. The subjective methods cannot automatically identify the optimal thresholds in different traffic and weather conditions in real application. Thus, a theoretical method to select the threshold value is necessary for the sake of avoiding subjective judgments. The purpose of this study is to provide a theoretical method for automatically identifying the optimal threshold. Considering the random effects of variable factors across all roadway segments, the mixed logit model was utilized to develop the crash risk evaluation model and further evaluate the crash risk. Cross-entropy, between-class variance and other theories were employed and investigated to empirically identify the optimal threshold. And K-fold cross-validation was used to validate the performance of proposed threshold selection methods with the help of several evaluation criteria. The results indicate that (i) the mixed logit model can obtain a good performance; (ii) the classification performance of the threshold selected by the minimum cross-entropy method outperforms the other methods according to the criteria. This method can be well-behaved to automatically identify thresholds in crash prediction, by minimizing the cross entropy between the original dataset with continuous probability of a crash occurring and the binarized dataset after using the thresholds to separate potential crash warnings against normal traffic conditions

    Investigation Of Free-Flow Speed At Basic Segment Expressways For Level Terrain In Malaysia

    Get PDF
    Free-flow speed (FFS) is an important parameter in the speed-flow relationship, analyses of capacity and level of service (LOS) for basic segment expressways. Relevant authorities in Malaysia have been referring to the ArahanTeknik (Jalan) 8/86 to estimate LOS for basic segment expressways based on v/c ratio. However, due to the technological advancement and the surge of vehicle numbers on roads, the values obtained in the study may not show the actual resemblance of current Malaysian traffic conditions in Malaysia. There are several FFS models presented in major references and previous studies throughout the world. However, the suitability of these models for Malaysian traffic conditions is limited to some extent. Therefore, this study was conducted to understand in more detail about FFS at basic segment expressways and to develop FFS model based on current local standards. Six FFS models are developed based on regression analysis. However, one final model is selected as the best FFS model through the performance indicators. In this study, FFS of vehicles without motorcycles using headway (≥ 8 s) is selected as the best FFS model. Sensitivity analysis had also been performed in order to measure the sensitivity of each parameter for the developed FFS model. Thus, the outcome of this study is valuable for local traffic engineers and highway authorities in Malaysia for better understanding of the FFS and to estimate LOS at basic segment expressways

    Improving Traffic Safety And Drivers\u27 Behavior In Reduced Visibility Conditions

    Get PDF
    This study is concerned with the safety risk of reduced visibility on roadways. Inclement weather events such as fog/smoke (FS), heavy rain (HR), high winds, etc, do affect every road by impacting pavement conditions, vehicle performance, visibility distance, and drivers’ behavior. Moreover, they affect travel demand, traffic safety, and traffic flow characteristics. Visibility in particular is critical to the task of driving and reduction in visibility due FS or other weather events such as HR is a major factor that affects safety and proper traffic operation. A real-time measurement of visibility and understanding drivers’ responses, when the visibility falls below certain acceptable level, may be helpful in reducing the chances of visibility-related crashes. In this regard, one way to improve safety under reduced visibility conditions (i.e., reduce the risk of visibility related crashes) is to improve drivers’ behavior under such adverse weather conditions. Therefore, one of objectives of this research was to investigate the factors affecting drivers’ stated behavior in adverse visibility conditions, and examine whether drivers rely on and follow advisory or warning messages displayed on portable changeable message signs (CMS) and/or variable speed limit (VSL) signs in different visibility, traffic conditions, and on two types of roadways; freeways and two-lane roads. The data used for the analyses were obtained from a self-reported questionnaire survey carried out among 566 drivers in Central Florida, USA. Several categorical data analysis techniques such as conditional distribution, odds’ ratio, and Chi-Square tests were applied. In addition, two modeling approaches; bivariate and multivariate probit models were estimated. The results revealed that gender, age, road type, visibility condition, and familiarity with VSL signs were the significant factors affecting the likelihood of reducing speed following CMS/VSL instructions in reduced visibility conditions. Other objectives of this survey study were to determine the content of messages that iv would achieve the best perceived safety and drivers’ compliance and to examine the best way to improve safety during these adverse visibility conditions. The results indicated that Caution-fog ahead-reduce speed was the best message and using CMS and VSL signs together was the best way to improve safety during such inclement weather situations. In addition, this research aimed to thoroughly examine drivers’ responses under low visibility conditions and quantify the impacts and values of various factors found to be related to drivers’ compliance and drivers’ satisfaction with VSL and CMS instructions in different visibility and traffic conditions. To achieve these goals, Explanatory Factor Analysis (EFA) and Structural Equation Modeling (SEM) approaches were adopted. The results revealed that drivers’ satisfaction with VSL/CMS was the most significant factor that positively affected drivers’ compliance with advice or warning messages displayed on VSL/CMS signs under different fog conditions followed by driver factors. Moreover, it was found that roadway type affected drivers’ compliance to VSL instructions under medium and heavy fog conditions. Furthermore, drivers’ familiarity with VSL signs and driver factors were the significant factors affecting drivers’ satisfaction with VSL/CMS advice under reduced visibility conditions. Based on the findings of the survey-based study, several recommendations are suggested as guidelines to improve drivers’ behavior in such reduced visibility conditions by enhancing drivers’ compliance with VSL/CMS instructions. Underground loop detectors (LDs) are the most common freeway traffic surveillance technologies used for various intelligent transportation system (ITS) applications such as travel time estimation and crash detection. Recently, the emphasis in freeway management has been shifting towards using LDs data to develop real-time crash-risk assessment models. Numerous v studies have established statistical links between freeway crash risk and traffic flow characteristics. However, there is a lack of good understanding of the relationship between traffic flow variables (i.e. speed, volume and occupancy) and crashes that occur under reduced visibility (VR crashes). Thus, another objective of this research was to explore the occurrence of reduced visibility related (VR) crashes on freeways using real-time traffic surveillance data collected from loop detectors (LDs) and radar sensors. In addition, it examines the difference between VR crashes to those occurring at clear visibility conditions (CV crashes). To achieve these objectives, Random Forests (RF) and matched case-control logistic regression model were estimated. The results indicated that traffic flow variables leading to VR crashes are slightly different from those variables leading to CV crashes. It was found that, higher occupancy observed about half a mile between the nearest upstream and downstream stations increases the risk for both VR and CV crashes. Moreover, an increase of the average speed observed on the same half a mile increases the probability of VR crash. On the other hand, high speed variation coupled with lower average speed observed on the same half a mile increase the likelihood of CV crashes. Moreover, two issues that have not explicitly been addressed in prior studies are; (1) the possibility of predicting VR crashes using traffic data collected from the Automatic Vehicle Identification (AVI) sensors installed on Expressways and (2) which traffic data is advantageous for predicting VR crashes; LDs or AVIs. Thus, this research attempts to examine the relationships between VR crash risk and real-time traffic data collected from LDs installed on two Freeways in Central Florida (I-4 and I-95) and from AVI sensors installed on two vi Expressways (SR 408 and SR 417). Also, it investigates which data is better for predicting VR crashes. The approach adopted here involves developing Bayesian matched case-control logistic regression using the historical VR crashes, LDs and AVI data. Regarding models estimated based on LDs data, the average speed observed at the nearest downstream station along with the coefficient of variation in speed observed at the nearest upstream station, all at 5-10 minute prior to the crash time, were found to have significant effect on VR crash risk. However, for the model developed based on AVI data, the coefficient of variation in speed observed at the crash segment, at 5-10 minute prior to the crash time, affected the likelihood of VR crash occurrence. Argument concerning which traffic data (LDs or AVI) is better for predicting VR crashes is also provided and discussed

    Methods to estimate link level travel based on spatial effects

    Get PDF
    Annual Average Daily Traffic (AADT) is used in several planning, roadway design, operational and safety analyses by transportation planners and engineers. Existing methods are very complex and do not adequately address the modeling needs. Errors and inaccuracies in a traditional four-step method get carried to later steps often resulting in incorrect estimates of travel demand. The primary focus of this research is to develop a systematic and simplified methodology to estimate link level travel on roadways. The proposed methodology involves scientific principles and statistical techniques, but bypasses the tedious four-step method. Two spatial methods, first one based on “spatial proximity” and second one based on “spatial weighting”, are proposed to estimate link level travel. While the former method investigates to identify ideal “proximal” distance to capture spatial data, the later method involves application of “spatial weights” that decrease with an increase in distance to integrate spatial data from multiple buffer bandwidths. Generalized Estimating Equations (GEE) models are developed for both the methods using Poisson and Negative Binomial distributions with and without network characteristics to facilitate transportation planning and analysis. Validation of the developed models is carried out using Chi-Square Statistic test. The goodness of fit statistics indicates that Negative Binomial models performed better than Poisson models. Models with network characteristics performed better than models without network characteristics. Model validation results indicate that link level travel can be accurately estimated using both the spatial methods

    Multi-level Safety Performance Functions For High Speed Facilities

    Get PDF
    High speed facilities are considered the backbone of any successful transportation system; Interstates, freeways, and expressways carry the majority of daily trips on the transportation network. Although these types of roads are relatively considered the safest among other types of roads, they still experience many crashes, many of which are severe, which not only affect human lives but also can have tremendous economical and social impacts. These facts signify the necessity of enhancing the safety of these high speed facilities to ensure better and efficient operation. Safety problems could be assessed through several approaches that can help in mitigating the crash risk on long and short term basis. Therefore, the main focus of the research in this dissertation is to provide a framework of risk assessment to promote safety and enhance mobility on freeways and expressways. Multi-level Safety Performance Functions (SPFs) were developed at the aggregate level using historical crash data and the corresponding exposure and risk factors to identify and rank sites with promise (hot-spots). Additionally, SPFs were developed at the disaggregate level utilizing real-time weather data collected from meteorological stations located at the freeway section as well as traffic flow parameters collected from different detection systems such as Automatic Vehicle Identification (AVI) and Remote Traffic Microwave Sensors (RTMS). These disaggregate SPFs can identify real-time risks due to turbulent traffic conditions and their interactions with other risk factors. In this study, two main datasets were obtained from two different regions. Those datasets comprise historical crash data, roadway geometrical characteristics, aggregate weather and traffic parameters as well as real-time weather and traffic data. iii At the aggregate level, Bayesian hierarchical models with spatial and random effects were compared to Poisson models to examine the safety effects of roadway geometrics on crash occurrence along freeway sections that feature mountainous terrain and adverse weather. At the disaggregate level; a main framework of a proactive safety management system using traffic data collected from AVI and RTMS, real-time weather and geometrical characteristics was provided. Different statistical techniques were implemented. These techniques ranged from classical frequentist classification approaches to explain the relationship between an event (crash) occurring at a given time and a set of risk factors in real time to other more advanced models. Bayesian statistics with updating approach to update beliefs about the behavior of the parameter with prior knowledge in order to achieve more reliable estimation was implemented. Also a relatively recent and promising Machine Learning technique (Stochastic Gradient Boosting) was utilized to calibrate several models utilizing different datasets collected from mixed detection systems as well as real-time meteorological stations. The results from this study suggest that both levels of analyses are important, the aggregate level helps in providing good understanding of different safety problems, and developing policies and countermeasures to reduce the number of crashes in total. At the disaggregate level, real-time safety functions help toward more proactive traffic management system that will not only enhance the performance of the high speed facilities and the whole traffic network but also provide safer mobility for people and goods. In general, the proposed multi-level analyses are useful in providing roadway authorities with detailed information on where countermeasures must be implemented and when resources should be devoted. The study also proves that traffic data collected from different detection systems could be a useful asset that should be utilized iv appropriately not only to alleviate traffic congestion but also to mitigate increased safety risks. The overall proposed framework can maximize the benefit of the existing archived data for freeway authorities as well as for road users
    corecore