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ABSTRACT 

This study is concerned with the safety risk of reduced visibility on roadways. Inclement 

weather events such as fog/smoke (FS), heavy rain (HR), high winds, etc, do affect every road by 

impacting pavement conditions, vehicle performance, visibility distance, and drivers’ behavior. 

Moreover, they affect travel demand, traffic safety, and traffic flow characteristics. Visibility in 

particular is critical to the task of driving and reduction in visibility due FS or other weather 

events such as HR is a major factor that affects safety and proper traffic operation. A real-time 

measurement of visibility and understanding drivers’ responses, when the visibility falls below 

certain acceptable level, may be helpful in reducing the chances of visibility-related crashes. 

In this regard, one way to improve safety under reduced visibility conditions (i.e., reduce 

the risk of visibility related crashes) is to improve drivers’ behavior under such adverse weather 

conditions.  Therefore, one of objectives of this research was to investigate the factors affecting 

drivers’ stated behavior in adverse visibility conditions, and examine whether drivers rely on and 

follow advisory or warning messages displayed on portable changeable message signs (CMS) 

and/or variable speed limit (VSL) signs in different visibility, traffic conditions, and on two types 

of roadways; freeways and two-lane roads. The data used for the analyses were obtained from a 

self-reported questionnaire survey carried out among 566 drivers in Central Florida, USA. 

Several categorical data analysis techniques such as conditional distribution, odds’ ratio, 

and Chi-Square tests were applied. In addition, two modeling approaches; bivariate and 

multivariate probit models were estimated. The results revealed that gender, age, road type, 

visibility condition, and familiarity with VSL signs were the significant factors affecting the 

likelihood of reducing speed following CMS/VSL instructions in reduced visibility conditions.  

 Other objectives of this survey study were to determine the content of messages that 
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would achieve the best perceived safety and drivers’ compliance and to examine the best way to 

improve safety during these adverse visibility conditions. The results indicated that “Caution-fog 

ahead-reduce speed” was the best message and using CMS and VSL signs together was the best 

way to improve safety during such inclement weather situations.  

In addition, this research aimed to thoroughly examine drivers’ responses under low 

visibility conditions and quantify the impacts and values of various factors found to be related to 

drivers’ compliance and drivers’ satisfaction with VSL and CMS instructions in different 

visibility and traffic conditions.  

To achieve these goals, Explanatory Factor Analysis (EFA) and Structural Equation 

Modeling (SEM) approaches were adopted. The results revealed that drivers’ satisfaction with 

VSL/CMS was the most significant factor that positively affected drivers’ compliance with 

advice or warning messages displayed on VSL/CMS signs under different fog conditions 

followed by driver factors. Moreover, it was found that roadway type affected drivers’ 

compliance to VSL instructions under medium and heavy fog conditions. Furthermore, drivers’ 

familiarity with VSL signs and driver factors were the significant factors affecting drivers’ 

satisfaction with VSL/CMS advice under reduced visibility conditions. Based on the findings of 

the survey-based study, several recommendations are suggested as guidelines to improve drivers’ 

behavior in such reduced visibility conditions by enhancing drivers’ compliance with VSL/CMS 

instructions.  

Underground loop detectors (LDs) are the most common freeway traffic surveillance 

technologies used for various intelligent transportation system (ITS) applications such as travel 

time estimation and crash detection. Recently, the emphasis in freeway management has been 

shifting towards using LDs data to develop real-time crash-risk assessment models. Numerous 
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studies have established statistical links between freeway crash risk and traffic flow 

characteristics.  However, there is a lack of good understanding of the relationship between 

traffic flow variables (i.e. speed, volume and occupancy) and crashes that occur under reduced 

visibility (VR crashes).  

Thus, another objective of this research was to explore the occurrence of reduced 

visibility related (VR) crashes on freeways using real-time traffic surveillance data collected 

from loop detectors (LDs) and radar sensors. In addition, it examines the difference between VR 

crashes to those occurring at clear visibility conditions (CV crashes). To achieve these 

objectives, Random Forests (RF) and matched case-control logistic regression model were 

estimated.  

The results indicated that traffic flow variables leading to VR crashes are slightly 

different from those variables leading to CV crashes. It was found that, higher occupancy 

observed about half a mile between the nearest upstream and downstream stations increases the 

risk for both VR and CV crashes. Moreover, an increase of the average speed observed on the 

same half a mile increases the probability of VR crash. On the other hand, high speed variation 

coupled with lower average speed observed on the same half a mile increase the likelihood of 

CV crashes. 

Moreover, two issues that have not explicitly been addressed in prior studies are; (1) the 

possibility of predicting VR crashes using traffic data collected from the Automatic Vehicle 

Identification (AVI) sensors installed on Expressways and (2) which traffic data is advantageous 

for predicting VR crashes; LDs or AVIs. Thus, this research attempts to examine the 

relationships between VR crash risk and real-time traffic data collected from LDs installed on 

two Freeways in Central Florida (I-4 and I-95) and from AVI sensors installed on two 
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Expressways (SR 408 and SR 417). Also, it investigates which data is better for predicting VR 

crashes.  

The approach adopted here involves developing Bayesian matched case-control logistic 

regression using the historical VR crashes, LDs and AVI data. Regarding models estimated 

based on LDs data, the average speed observed at the nearest downstream station along with the 

coefficient of variation in speed observed at the nearest upstream station, all at 5-10 minute prior 

to the crash time, were found to have significant effect on VR crash risk. However, for the model 

developed based on AVI data, the coefficient of variation in speed observed at the crash 

segment, at 5-10 minute prior to the crash time, affected the likelihood of VR crash occurrence. 

Argument concerning which traffic data (LDs or AVI) is better for predicting VR crashes is also 

provided and discussed. 
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CHAPTER 1.  INTRODUCTION 

1.1 Overview 

 

Inclement weather events such as Fog/Smoke (FS), Heavy Rain (HR), high winds, etc, 

do affect roadways by impacting pavement conditions, vehicle performances, visibility 

distances, and drivers’ behavior. Moreover, they affect travel demand, traffic safety, and traffic 

flow characteristics. Visibility in particular is critical to the task of driving and reduction in 

visibility due FS or other weather events such as heavy rain is a major traffic operation and 

safety concern.  

Patches of fog and wildfires have become a recurring problem for the safety and 

operation of Florida highways. In Florida, these conditions could be a result of sudden dense 

fog, fires (whether wild or controlled), and heavy pockets of rain or hail. Florida is among the 

top states in the United States regarding traffic safety problems resulting from adverse visibility 

conditions due to FS and HR. 

Considering data queried from the Fatality Analysis Reporting System (FARS), 3729 

fatal crashes occurred in the United States between 2000 and 2007 where FS was the main 

contributing factor. Florida was the third after California and Texas with 299 fatal crashes due 

to FS. Although, the percentage of visibility related (VR) crashes is small compared to crashes 

that occurred at clear visibility conditions, these crashes tend to be more severe and involve 

multiple vehicles. The most recent example for VR crashes in Florida is the 70 vehicle pileup 

on I-4 in Polk County, Florida in January 2008. This multi vehicle crash caused 5 fatalities, 

many injuries, and shutting down I-4 for extended time. 
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Thus, there is a need to detect any reduction in visibility and develop ways to convey 

warnings to drivers in an effective way. A real time measurement of visibility as well as 

understanding drivers’ responses when the visibility falls below certain acceptable levels may 

help in reducing the chances of visibility-related crashes. 

Moreover, there are many fog warning systems that inform drivers of sudden drop in 

visibility especially due to fog. However, these systems were designed as fixed stations and 

hence, it is not possible to reinstall them at other locations. Unlike other states, there are no 

fixed locations for fog/smoke in Florida. Therefore, there is a need to develop a portable system 

that continuously detects any reduction in visibility and reports this information to the 

appropriate Traffic Management Center (TMC). The design and components of the portable 

visibility system that was developed by researchers at UCF as well as a preliminary testing for 

the system’s performance are discussed and presented in Chapter 3. 

Furthermore, Underground loop detectors (LDs) are the most common freeway traffic 

surveillance technologies used for various intelligent transportation system (ITS) applications 

such as travel time estimation and crash detection. Recently, the emphasis in freeway 

management has been shifting towards using LDs data to develop real-time crash-risk 

assessment models. Numerous studies have established statistical links between freeway crash 

risk and traffic flow characteristics.  However, there is a lack of good understanding of the 

relationship between traffic flow variables (i.e. speed, volume and occupancy) and crashes that 

occur under reduced visibility (visibility related crashes).  

Moreover, two issues that have not explicitly been addressed in prior studies are; (1) the 

possibility of predicting VR crashes using traffic data collected from the Automatic Vehicle 



3 
 

Identification (AVI) sensors installed on Expressways and (2) which traffic data is 

advantageous for predicting VR crashes; LDs or AVIs. 

 

1.2 Research Objectives 

 

The objectives of this research are as follows: 

1. To gain a good understanding of the factors affecting drivers’ stated behavior in adverse 

visibility conditions, and to examine whether drivers rely on and follow advisory or 

warning messages displayed on portable changeable message sign (CMS) and/or 

variable speed limit Sign (VSL) in different visibility, traffic conditions, and on two 

types of roadways; freeways and two-lane roads. To achieve these goals, a survey-based 

study was designed and undertaken in Fall 2009, targeting licensed drivers in Orange 

and Seminole counties as a representative of Central Florida drivers. A total of 566 

respondents participated in this study through three survey approaches; handout, 

interactive, and online questionnaire.  

The research issues investigated in this survey-based study are: 

• Whether drivers follow warning messages displayed on CMS and/or VSL signs 

in adverse visibility conditions and  rely on such messages, 

• Drivers’ stated responses to different visibility conditions, 

• What differentiates drivers who claim to be more or less likely to comply with 

CMS and VSL instructions, 

• What is the content of warning messages that would achieve the best perceived 

safety and driver stated compliance in reduced visibility conditions? 
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• What are the options that would be preferred during driving through FS: using 

CMS only, using VSL signs only, using CMS and VSL signs together, or close 

the road during such adverse visibility conditions? 

• What are the differences in drivers’ responses to reduction in visibility for 

freeways versus two-lane roads? 

To achieve this goal, several categorical data analysis techniques such as conditional 

distribution, odds’ ratio, and Chi-Square tests were applied. In addition, two modeling 

approaches; bivariate and multivariate probit models were estimated. 

2. To thoroughly examine drivers’ responses under low visibility conditions and quantify 

the impacts and values of various factors found to be related to drivers’ compliance and 

drivers’ satisfaction with VSL and CMS instructions in  different visibility, traffic 

conditions over freeways and two-lane roads. To achieve these goals, Explanatory 

Factor Analysis (EFA) and Structural Equation Modeling (SEM) approaches were 

adopted. 

3. To understand the traffic precursors that affects the risk of VR crashes. In other words, 

to explore the occurrence of visibility related (VR) crashes on freeways using real-time 

traffic surveillance data (speed, volume and occupancy) collected from underground 

loop detectors (LDs) and radar sensors located on Interstate-4 and Interstate-95 in 

Central Florida potentially associated with VR crash occurrence. Random Forests (RF), 

a relatively recent data mining technique, was used to indentify significant traffic flow 

variables affecting VR crash occurrence. In addition, matched case-control logistic 

regression model was estimated. The purpose of using this statistical approach is to 

explore the effects of traffic flow variables on VR crashes while controlling for the 
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effect of other confounding variables such as crash time and the geometric design 

elements of freeway sections (i.e. horizontal and vertical alignments).  

4. To examine the possibility of predicting VR crashes using traffic data collected from 

the Automatic Vehicle Identification (AVIs) sensors installed on Expressways (SR408 

and SR417) and to investigate which traffic data is advantageous for predicting VR 

crashes; LDs or AVIs. The approach adopted here involves developing Bayesian 

matched case-control logistic regression using the historical VR crashes, LDs and AVIs 

data. 

 

1.3 Dissertation Organization 

 

Following this chapter, a detailed literature review of the relevant studies is provided in 

Chapter 2 of this dissertation. The design and components of the portable visibility system that 

was developed by researchers at UCF as well as a preliminary testing for the system’s 

performance are discussed and presented in Chapter 3. 

The survey design and content, the evaluation of the quality and completeness of data 

received from the three surveys approaches, and some recommendations for improving future 

surveys design and response are presented in Chapter 4.  

Chapter 5 discusses the description of the survey sample, analysis of the participants’ 

responses, several categorical data analysis techniques (conditional distribution, odds’ ratio, 

and Chi Square tests), bivariate and multivariate probit models and structural equation 

modeling that were applied to achieve the objectives of that survey-based study.  

Chapter 6 examines the prediction of VR crashes on Freeways using real-time LDs 

traffic data while, chapter 7 explores the occurrences of VR crashes on expressways using real-
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time AVIs traffic data. Argument concerning which traffic data (LDs or AVIs) is better for 

predicting VR crashes is also provided and discussed in Chapter 7. 

Finally, Chapter 8 summarizes the key findings, conclusions and recommendations that 

were drawn from this research.  
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CHAPTER 2.  LITERATURE REVIEW 

The literature review is divided into five sections. Section 1 discusses previous studies 

that addressed weather impacts on highway networks. Weather impacts on Highway mobility, 

traffic flow characteristics, and traffic safety are also presented in that section. Section 2 reports 

prior studies that investigated drivers’ response to adverse weather conditions using 

questionnaire surveys, driving simulator and field experiments. Section 3 summarizes existing 

visibility warning systems. Section 4 examines prior studies that established statistical links 

between crash risk and real-time traffic flow variables. Finally, some conclusions from the 

literature review are presented in section 5.   

 

2.1 Weather Impacts on Highway Networks 

 

Adverse weather conditions have a major impact on safety, mobility and productivity of 

our Nation's roads. Weather affects roadway safety by increasing crash risk, as well as exposure 

to weather-related hazards. Weather impacts roadway mobility by increasing travel time delay, 

reducing traffic volumes and speeds, increasing speed variance and decreasing roadway 

capacity. Weather events influence productivity by disrupting access to road networks, and 

increasing road operating and maintenance costs (U.S. FHWA, 2009). 

 

2.1.1 Weather Impact on Highways’ Mobility and Traffic Flow Characteristics 

 

Adverse weather conditions often diminish visibility distances, reduce tire-pavement 

traction, and cause drivers to slow down, or increase following distances on highways. 

Consequently, that often leads to delays, capacity reduction, trip rescheduling, rerouting, 

reduced mobility, and reduced travel reliability. Several prior studies indicated that traffic 
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volumes decrease during winter storms such as McBride et al. (1977), Hanbali (1994), Nixon 

(1998), and Knapp (2000). Shah et al. (2003) revealed that weather events have a greater 

impact on increasing congestion in urban areas. 

In a study of weather impacts on a Texas freeway, Gordon (1996) indicated that rain 

reduced capacity by 14 to 19%. In addition, Chin et al. (2002) showed that capacity on U.S. 

freeways and principle arterials in 1999 was reduced by more than 11% due to fog, snow and 

ice. Liang et al. (1998) indicated that the speed of vehicles on any roadway depends on five 

factors: the speed limit, the geometry of the roadway (the horizontal and vertical alignments), 

the density of the traffic stream, the condition of the roadway surface, and environmental 

factors that may affect a driver’s visibility such as snow or fog. 

Han et al. (2003) examined the travel delays on all urban and rural freeways and 

principal arterials in the nation’s highway system in 1999 due to inclement weather in order to 

have a better appreciation of the magnitude of the problems traffic and transportation 

professionals face each year. The travel delays were estimated based on Highway Capacity 

Manual (HCM) 2000. The main result from this study was that approximately 46 million hours 

of traffic delay on major U.S. highways in 1999 were lost due to adverse weather conditions 

such as fog, ice, and snow storms.  Moreover, the findings showed that the majority of the 

delay occurred during winter and early spring. 

Goodwin (2003) summarized the impacts of various weather events on roadways, traffic 

flow, and operational decisions (as shown in Table 2-1). 
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Table 2-1: Weather impacts on roads, traffic and operational decisions  
(Source: Goodwin; 2003) 
 

Road Weather 
Variables 

Roadway 
Impacts 

Traffic Flow 
Impacts 

Operational 
Impacts 

Air temperature 
and humidity N/A N/A Road treatment strategy 

(e.g., snow and ice control) 

Wind speed 

• Visibility distance 
(due to blowing 
snow, dust). 

• Lane obstruction (due 
to wind-blown snow, 
debris). 

• Traffic speed. 
• Travel time 

delay. 
• Accident risk. 

• Vehicle performance 
(e.g., stability). 

• Access control (e.g., restrict 
vehicle type, close road). 

• Evacuation decision support. 

Precipitation 
(type, rate, 

start/end times) 

• Visibility distance. 
• Pavement friction. 
• Lane obstruction. 

•  Roadway 
capacity. 

• Traffic speed. 
• Travel time 

delay. 
• Accident risk. 

• Vehicle performance (e.g., 
traction). 

• Driver capabilities/behavior. 
•  Road treatment strategy. 
• Traffic signal timing. 
• Speed limit control. 
•  Evacuation decision support. 
• Institutional coordination. 

Fog •  Visibility distance 

• Traffic speed. 
• Speed variance. 
• Travel time 

delay. 
•  Accident risk. 

• Driver capabilities/behavior. 
• Road treatment strategy. 
• Access control. 
• Speed limit control. 

Pavement 
temperature • Infrastructure damage N/A • Road treatment strategy 

Pavement 
condition 

•  Pavement friction. 
• Infrastructure 

damage. 

• Roadway 
capacity. 

• Traffic speed. 
• Travel time 

delay. 
• Accident risk. 

• Vehicle performance. 
• Driver capabilities/behavior 

(e.g., route choice). 
• Road treatment strategy. 
• Traffic signal timing. 
• Speed limit control. 

Water level • Lane submersion. 

• Traffic speed. 
• Travel time 

delay. 
• Accident risk. 

• Access control. 
• Evacuation decision support. 
• Institutional coordination. 

 

 

In addition, nearly all traffic engineering manuals and specifications used to estimate 

highway capacity assume clear weather conditions. However, for many northern states, 

inclement weather conditions occur during a significant portion of the year and hence 

estimation of highway capacity using these guidelines would be inaccurate.  
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Therefore, Maze et al. (2005) quantified the impact of rain, snow, and pavement surface 

conditions on freeway traffic flow for the metro freeway region around the Twin Cities in Iowa. 

The main objective of this study was to estimate the capacity and speed reductions under 

adverse weather conditions. The results indicated that lower visibility (i.e., due to fog events) 

caused capacity reductions of 10–12% and speed reductions of 6–12%. However, speed 

reductions for visibility (< 0.25 mile) were significantly greater than other visibility categories 

presented in this study. Also, the authors of this study presented a comparison of percentage 

reductions in capacity and average operating speeds with the Highway Capacity Manual 2000 

(as shown in Table 2-2). 

 

Table 2-2: Comparison of percentage reductions in capacity and average operating speeds with 
the Highway Capacity Manual 2000 
 (Source: Maze et al. 2005) 

Variable Range 

Assumed 
Corresponding 

Categories from the 
Highway Capacity 

Manual (2000) 

Capacities 
(percentage 
reductions) 

Average operating 
speeds 

(percentage 
reductions) 

HCM  
(2000) 

This 
study 

HCM  
(2000) 

This 
study 

Rain 

0-0.01 inch/hour Light 0 1-3 2-14 1-2.5 
0.01-0.25 
inch/hour Light 0 5-10 2-14 2-5 

> 0.25 inch/hour Heavy 14-15 10-17 5-17 4-7 

Snow 

<= 0.05 inch/hour Light 5-10 3-5 8-10 3-5 
0.06-0.1 inch/hour Light 5-10 5-12 8-10 7-9 
0.11-0.5 inch/hour Light 5-10 7-13 8-10 8-10 
> 0.5 inch/hour Heavy 25-30 19-28 30-40 11-15 

Temperature 
10°-1° Celsius  N/A 1 N/A 1-1.5 
0°- (-20°) Celsius  N/A 1.5 N/A 1-2 
< -20° Celsius  N/A 6-10 N/A 0-3.6 

Wind Speed 16-32 km/hr  N/A 1-1.5 N/A 1 
> 32 km/hr  N/A 1-2 N/A 1-1.5 

Visibility 
 

1-0.51 mile  N/A 9 N/A 6 
0.50–0.25 mile  N/A 11 N/A 7 
< 0.25 mile  N/A 10.5 N/A 11 

N/A – Not Available 
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Maze et al. (2006) reviewed prior studies that investigated weather’s impact on traffic 

demand, traffic safety, and traffic flow characteristics. The findings pointed out that weather 

conditions have an important impact on traffic safety, traffic demand, and traffic flow. In 

addition, it was found that roadway traffic volumes reduced by less than 5% during rainstorms, 

and from 7 to 80% for snowstorms. The results of this study indicated also that road weather 

information systems (RWIS) are very beneficial tool for traffic management. 

Pisano and Goodwin (2004) reported the impacts of inclement weather on traffic flow 

and described an emerging concept of operations for a system-wide approach to traffic 

management in adverse weather to assess weather’s impacts and implement operational 

strategies that improve safety, mobility, and productivity. They stated the required future 

research that is needed in order to apply the weather-responsive traffic management. They also 

highlighted the concept of operation by the following questions.  

• What data, processes, and procedures are needed by traffic managers to support 

weather-responsive traffic management? 

• How should weather-related data, processes, and procedures be integrated with 

other transportation management systems and activities? 

• What additional resources are needed to support weather-responsive traffic 

management? 

 

2.1.2 Impacts on Traffic Safety 

 

Most of earlier studies that studied weather impacts on traffic safety such as McBride et 

al. (1977),  Brodsky and Hakkert (1988), Perry and Symons (1991), Savenhed (1994),  Shankar 

et al. (1995), Scharsching (1996), Brow and Baass (1997),  Khattak et al. (1998, 2000), 
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Norrman et al. (2000), and Eissenberg (2004), showed that crash rates increase during 

inclement weather such as fog, rain, snow, storm, high winds and as roadways became wet or 

snow or ice-covered. 

Maze et al. (2006) indicated that during reduced visibility conditions (<0.25 mile) and 

high wind speeds (> 40 miles per hour), crash rates increased to about 25 times the normal 

crash rate. 

Edwards (1996) examined the spatial dimension of weather-related road crashes using 

data extracted from police crash report forms. A comparison between frequency of crash 

occurrence and weather conditions across England and Wales was done. The main finding from 

this study was that the reporting of crashes in hazardous weather broadly follows the regional 

weather patterns for those hazards. 

Lynn et al. (2002) studied fog-related crashes on the Fancy Gap and Afton Mountain 

sections of I-64 and I-77 in Virginia because these interstates have a long history of fog-related 

crashes. The main objective of this study was to evaluate the nature and severity of the problem 

of fog-related crashes in this area, to identify alternative solutions and technologies to address 

the problems. The primary recommendations from this study were to install variable message 

signs (VMS) to warn drivers of fog-related vehicle stops or slowdowns and to use highway 

advisory radio within the fog zone to communicate with drivers. 

Less effort has been devoted to explore how weather-related risks vary over time, and 

what these variations inform us about interactions between weather and other risk factors. In 

this regard, Andrey et al. (2003) examined temporal variations in weather-related collision and 

injury risk using collision and weather data for Ottawa, Canada over the period 1990-1998. In 

this study, to estimate and compare the risk of collision and injury during precipitation, a 
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matched-pair approach was used to define precipitation events and corresponding controls. The 

findings revealed that collision crash risk increased significantly-by about 50% for winter 

precipitation and by more than 100% for rain. In addition, collision risks were high during the 

early winter season and on weekends compared to weekdays. 

 

2.2 Drivers’ Response to Reduced Visibility Conditions 

 

Drivers’ responses to both traffic and environmental conditions can be examined 

through a variety of approaches, including questionnaire surveys, driving simulator 

experiments, and network monitoring. The relatively low cost of questionnaire surveys, 

compared to the other approaches, has encouraged researchers to use it as a way to collect data 

on different driving situations under different traffic and environmental conditions (Chatterjee 

et al., 2002).  

 

2.2.1 Using Questionnaire Surveys 

 

In general, there are two kinds of questionnaires: a stated preference (SP) survey, 

examining human response to a hypothetical situation, and a revealed preference (RP) survey, 

investigating human response derived from a real-life choice situation in the physical world. 

The primary shortcoming of SP data is that they might not be harmonious with actual behavior.  

A number of prior studies examined consistency between RP and SP data. By 

comparing SP data to actual trip data, Loomis (1993) found that SP relating to intended trips 

under alternative quality levels are valid and reliable indicators of actual behavior. Cumming et 

al. (1995) compared real purchasing behavior for private goods with dichotomous choice (DC) 
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contingent valuation questions. They found that the proportion of DC “yes” responses exceeds 

the proportion of actual purchases. Also, Johannesson et al. (1998) showed that hypothetical 

"yes" responses overestimate the real purchases. 

Yannis et al. (2005) indicated that some participants may have the tendency to 

exaggerate when they respond to SP questions and hence, more attention should be given to the 

results explanation and conclusions. 

Despite those drawbacks, questionnaire surveys have been commonly used so far to 

study drivers’ responses to Advanced Traveler Information System (ATIS) and to adverse 

weather conditions. Clearly, the surveys can provide valid results and indications. However, 

actual magnitude of these results should be viewed carefully and interpreted conservatively. 

The SP surveys have been widely adopted in numerous transportation studies. Abdel-

Aty et al. (1994), Khattak et al. (1996), Mahmassani et al. (2003), Iragüen and Ortúzar (2004), 

Tilahun et al. (2007), Junyi et al. (2008), Carlsson et al. (2010) and Correia and Viegas (2011) 

used SP method to identify the behaviors of drivers with ATIS deployments. 

 

2.2.1.1 Drivers’ responses to ATIS 

 

Many previous studies focused on studying commuters’ responses and satisfactions 

with traveler advisory systems such as variable message signs.  

Haselkorn et al. (1989) examined the influence of traffic information from commercial 

radio, television traffic announcements, DMS, highway advisory radio and telephone 

information services on driver departure time and route choice behavior. A driver mail-back 

survey was undertaken in Seattle in September 1988. A total of 3893 participants sent complete 

responses (40% response rate). Using principal components factor analysis, it was found that 
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commuting distance and time characteristics, attitudes towards different sources of traffic 

information (radio–based, television, DMS, etc) and commuter characteristics were the 

components related to route choice.   

Harris and Konheim (1995) surveyed 1002 peak-hour travelers in the New York 

metropolitan area to investigate driver’s satisfaction with ATIS. The findings revealed that 

approximately 88% of the drivers believe that ATIS are important in providing information 

about location and duration of delays and alternative route travel times. In addition 78% of 

commuters were willing to pay for ATIS. 

In addition, using a questionnaire survey, Benson (1996) investigated drivers’ behaviors 

when they encounter Dynamic Message Signs (DMSs). He examined whether drivers noticed 

and therefore comply with DMSs, The findings revealed that approximately 20% out of 500 

respondents ignored DMSs instructions while driving. 

Emmerink et al. (1996) surveyed road users in the Amsterdam corridor (on the ring 

road’s access motorways A1, A2 and A4) in July 1994 to examine the impact of both radio 

traffic information and VMS information on route choice behavior. 2145 questionnaires were 

distributed among drivers however, only 826 of them were returned (response rate: 38.6%). 

Discrete choice models were conducted to investigate the factors that influence route choice 

behavior. The results revealed that women were less likely to be influenced by traffic 

information and the impacts of both radio traffic information and VMS information on route 

choice behavior were very similar. In addition, the results indicated that there is a positive 

correlation between the use of radio traffic information and VMS information. 

Chatterjee et al. (2002) conducted SP questionnaires to study driver response to VMS in 

London. The main objective of this study was to investigate the effect of different messages 
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displayed on VMS on route choice. Three questionnaires were conducted in this study. The first 

questionnaire focused on studying drivers’ attitudes to London VMS information. However, the 

second questionnaire investigated how drivers would respond to different VMS messages. 

Logistic regression models were developed to predict the probability of diversion in response to 

different VMS messages. The third questionnaire was conducted during the activation of an 

immediate warning message. The results showed that one third of motorists saw the 

information that was displayed on VMS however, few of them diverted. 

Zwahlen and Russ (2002) evaluated a real-time travel time prediction system (TIPS) in 

a construction work zone that includes CMS. The main aim was to evaluate the travel time and 

distance to the end of the work zone displayed on CMS to motorists. They surveyed the 

motoring public regarding their acceptance of this system. A total of 660 completed surveys 

were returned and analyzed (21% response rate). 97% of surveyed motorists indicated that 

TIPS that provide real-time travel time information in advance of work zones and in advance of 

open exit ramps is either outright helpful or maybe helpful. 

Al-Deek et al. (2003) investigated predictive information on traveler behavior using 

Computer Assisted Telephone Interview (CATI) and web-based (online) survey. A total of 400 

and 439 responses were collected using the CATI and web-bases surveys, respectively. The 

results showed that crash location and expected delay were the most needed information by 

drivers. 

Lai and Yen (2004) examined how DMS affected driver behavior such as changing 

lanes, route changing, and decreasing speed using a questionnaire survey.  312 respondents 

participated in the survey. The main results showed that gender, age, and education were the 

most significant factors affecting drivers’ preference for DMS. Drivers also were asked about 
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their preference of color, and display formats of DMS. The analysis of survey revealed red and 

orange colors as well as flashing formats for the messages were preferred by most of 

participants. 

Peeta and Ramos (2006) examined commuters’ responses to traffic information 

provided through DMS using a SP survey using three different administration methods: an on-

site survey, a mail-back survey, and an Internet-based survey. The findings showed that a 

combination of survey administration methods may generate more representative data. In 

addition, the results showed that a high correlation between DMS message type and driver 

response was existed. 

In addition, a number of earlier studies have used images of CMS to explore driver 

comprehension and responses to the information displaying on CMS. For instance, using a SP 

survey, Wardman et al. (1997) evaluated the effect of information provided by CMS on drivers’ 

route choice. Lai and Wong (2000) examined driver comprehension of the traffic information 

presented on CMS.  

Moreover, using laptop computers, Dudek and Ullman (2002) investigated the effect of 

flashing an entire message, flashing one line and alternating text on one line on drivers’ 

comprehension and recall. Using driving simulation experiments, Wang and Cao (2005) 

studied the influences of CMS format and number of message lines on drivers’ response time. 

Dudek et al. (2006) examined the effect of displaying CMS with dynamic features on drivers’ 

comprehension and response time. Ullman et al. (2007) investigated the ability of motorists to 

capture and process information on two CMS used in sequence. Finally, Lai (2010) examined 

the effects of color scheme and message lines of CMS on driver performance. 
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2.2.1.2 Drivers’ responses to inclement weather 

 

Noticeably, very few prior studies examined drivers’ behavior in adverse weather 

conditions such as rain, snow, fog/smoke using questionnaire surveys. 

Kilpelainen and Summala (2007) examined the effects of adverse weather and traffic 

weather forecasts on driver behavior in Finland using a questionnaire on perceptions of 

weather, pre-trip acquisition of weather information, and possible changes in travel plan. The 

questionnaire was conducted in rural service stations in different weather and driving 

conditions. The questionnaires were distributed and instantaneously collected. A total of 1437 

complete questionnaires were collected and analyzed. Drivers were asked to rate the current 

driving conditions on a three steps scale (normal, bad, very bad), classify the slipperiness on a 

five-step scale (ranging from very slippery to not slippery), to mention whether they had 

acquired weather-related information for the trip, to report their decisions before and during the 

trip, and to estimate their speed, headways and overtaking frequency compared to those on the 

same road in good weather and driving conditions. The authors also collected data from traffic 

weather forecasts, weather measurement stations, and automatic traffic counters concerning the 

same area/road. The findings revealed that drivers, who had acquired information, had also 

made more changes to travel plans. On the other hand, they estimated prevailing risks higher 

than those who did not receive weather information. The results suggest that drivers’ behavior 

is basically affected by the prevailing observable conditions rather than traffic weather 

forecasts. 
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2.2.2 Using Driving Simulator Experiments 

 

Driving Simulators have been used in many prior studies as it is a very economical and 

a safer option compared to field studies. Driving simulators have been used on a broad variety 

of experiments where most of them focused on studying drivers’ behavior under conditions that 

will not be safe to test in the real world. 

Ng and Mannering (1998) developed a driving simulator experiment that collected data 

from four different advisory scenarios: 1) in-vehicle information (they called this type of 

information IVD); 2) out of vehicle information (VMS); 3) combination of in-vehicle and out 

of vehicle; and 4) No information present. Furthermore, there were three main messages 

viewed by the subjects that drove the VMS or IVD scenario: 1) fog ahead – slow down 45 mph; 

2) curvy road – drive slowly; and 3) snow plow ahead – 35 mph. Static speed limit signs 

showed a maximum of 65 mph. In addition, two types of weather conditions (fog and no fog) 

and two types of incidents (snowplows or no snowplows) were incorporated for each sign.  

The authors did find statistical differences in the average speed when fog or snowplows 

were present. Moreover, they discovered that the subjects that drove the “no sign” condition 

presented higher speeds than the ones that drove a sign condition. 

Ikeda et al. (2002) examined whether factors like vision, visual perception, cognition, 

reaction time, and driving knowledge were affected by the drivers’ age. Twelve subjects 

participated in the driving experiment where they were asked to follow traffic signals and signs 

and preceding cars during a 2 km stretch. It was found that depending on age, drivers have 

reaction times of 0.3 and 0.42 seconds. Also, the required time for judgment and recognition of 

another vehicle for older drivers is shorter than the one for younger drivers. Due to 
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deterioration of information processing caused by aging, older drivers are not good at 

processing multiple tasks, but they are faster than young drivers at recognizing individual tasks. 

Dudek et al. (2005) conducted driving simulator study to examine the effects on 

motorists of the following three types of CMS dynamic display features: 1) flashing an entire 

one-phase message; 2) flashing one line of a one-phase message; and 3) alternating text on one 

line of a three-line CMS while keeping the other two lines of text constant on the second phase 

of the message thus displaying redundant information. The results indicated that flashing 

messages may have an adverse effect on message comprehension for unfamiliar drivers.  

Mitchell et al. (2005) investigated the use of a driving simulator to evaluate the 

effectiveness of traffic safety countermeasures such as reduced speed limit signs, rumble strips, 

and reduced lane width in freeway work zones. The main finding of this study was that a 

narrow traffic lane appeared to be effective in reducing average speeds through the work zone 

when compared to the base scenario (no countermeasures). However, the placement of rumble 

strips was effective in reducing average speeds only in the transition area. 

Dudek et al. (2006) employed a driving simulator experiment to evaluate flashing 

message features on VMS. The results indicated that no differences in the average reading time 

between the two types of display and among age groups, education levels, and gender were 

observed. However, a flashing message might not provide the same effect as the static message 

when unfamiliar drivers read the message. 

Broughton et al. (2007) examined factors that govern car following under conditions of 

reduced visibility due to fog. Using a driving simulator, the behavior of drivers following a lead 

vehicle at 13.4 m/s (30 mph) or 22.4 m/s (50 mph) under three visibility conditions (clear or 

one of two densities of simulated fog) were observed. The results revealed that many drivers 
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strive to maintain visible contact with the lead vehicle when driving through dense fog 

however; headway time might be too short for adequate safety. In addition, they indicated that 

even drivers who do not maintain visual contact with the lead vehicle may still constitute a 

hazard for following drivers who seek to maintain visible contact with them by following too 

closely.  Finally, they suggested that a built-in vehicle’s device that provides the driver with a 

substitute visual image would mitigate the unsafe headway times necessary to maintain visual 

contact. 

Reimer et al. (2007) explored the effects of age, gender, and time of day on drivers’ 

performance using a driving simulation experiment. The results revealed that time of day, age, 

and gender significantly affected drivers’ speed. In the late afternoon period, drivers drove 

significantly slower than drivers in other time periods. Moreover, it was found that old females 

(50 years old or more) tended to driver more slowly. In addition, time of day and age affected 

driver’s speed and reaction time however; gender did not show significant effects. 

Andersen et al. (2008) examined the effects of reduced visibility of scene information 

from fog on car following performance using a driving simulator. The main finding from this 

study was that the presence of fog in a car following task has a greater effect on responding to 

variations in speed rather than variations in headway distance. 
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2.2.3 Using Field Experiments 

 

Many prior research efforts investigated drivers’ responses to adverse weather 

conditions such as reduction in visibility due to FS by observing traffic spot speeds such as 

Hogema and Horst (1997), Edwards (1999), Maze et al. (2006) and MacCarley et al. (2006). 

For example, Hogema and Horst (1997) evaluated the Dutch fog warning system in 

terms of driving behavior for a period of more than 2 years after implementing the system. The 

results showed that the system has a positive effect on speed choice in fog as it resulted in a 

decrease of speed of about 8 to 10 kph. 

MacCarley et al. (2006) examined drivers’ responses to messages displayed by a CMS 

warning of fog ahead and advising specific speeds at lower visibility levels. The speed, length 

and time of detection were individually recorded for all vehicles over a two-year period of 

study at four sites: two prior to exposure to the CMS, and two after exposure to the CMS. The 

results indicated that the mean speed decreased by an average of 1.1 mph compared with the 

mean speed of traffic in the absence of a message.  
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2.3 Existing Visibility warning Systems 

 

Nowadays, there are many fog warning systems to warn drivers of sudden drops in 

visibility especially due to fog. This section presents a literature review for the existing fog 

warning and detection systems. 

 

2.3.1 Projects in USA 

 

2.3.1.1 Alabama DOT low visibility warning system 

 

In fall 1999, the Alabama Department of Transportation (DOT) deployed a low 

visibility warning system on a prone fog area near Mobile, Alabama (Goodwin 2003). This 

system consisted of 6 visibility sensors with forward-scatter technology that were installed at 

about one-mile (1.6-kilometer) intervals. About 25 Closed Circuit Television (CCTV) cameras 

were used for monitoring traffic data. Via a fiber optic cable communication system, field 

sensor data were transmitted to a central computer in the control room. Also to display 

advisories or regulations to drivers, 24 VSL and 5 DMS signs were used. Operators displayed 

messages on DMS and changed speed limits with VSL based on the current visibility 

conditions (as shown in Table 2-3). 

Goodwin (2003) indicated that Alabama’s low visibility system was effective in 

improving safety, reducing average speed and minimizing crash risk in low visibility condition. 
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Table 2-3: Alabama DOT low visibility warning system strategies  
(Source: Goodwin; 2003) 

 

Visibility Distance Advisories on DMS Other Strategies 
Less than 900 feet 
(274.3 meters) “FOG WARNING” Speed limit at 65 mph (104.5 kph) 

Less than 660 feet 
(201.2 meters) 

“FOG” alternating with “SLOW, 
USE 
LOW BEAMS” 

• “55 MPH” (88.4 kph) on VSL signs 
• “TRUCKS KEEP RIGHT” on DMS 

Less than 450 feet 
(137.2 meters) 

“FOG” alternating with “SLOW, 
USE 
LOW BEAMS” 

• “45 MPH” (72.4 kph) on VSL signs 
• “TRUCKS KEEP RIGHT” on DMS 

Less than 280 feet 
(85.3 meters) 

“DENSE FOG” alternating with 
“SLOW, USE LOW BEAMS” 

• “35 MPH” (56.3 kph) on VSL signs 
• “TRUCKS KEEP RIGHT” on DMS 
• Street lighting extinguished 

Less than 175 feet 
(53.3 meters) 

I-10 CLOSED, KEEP RIGHT, 
EXIT 
½ MILE 

Road Closure by Highway Patrol 

 

2.3.1.2 California DOT motorist warning system 

 

In 1996, California Department of Transportation (Caltrans), District 10, implemented a 

low visibility warning system to warn drivers of adverse visibility on I-5, Stockton, CA. To 

collect traffic and weather data, the system includes 36 traffic speed monitoring sites, 9 

complete Environmental Sensor Stations (ESS), and 9 DMS for warning drivers (see Table 2-

4).  

Figure 2-1 shows one of the California’s ESS. Each ESS includes a forward-scatter 

visibility sensor, a rain gauge, wind speed and direction sensors, a relative humidity sensor, a 

thermometer, a barometer, and a remote processing unit (Goodwin; 2003). 
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(Source: Goodwin; 2003) 

 

Figure 2-1: California DOT ESS 

 

Table 2-4: California DOT motorist warning system messages  
(Source: Goodwin; 2003) 

 

Conditions Displayed Message 
Average speed between 11 and 35 mph (56.3 kph) “SLOW TRAFFIC AHEAD” 
Average speed less than 11 mph (17.7 kph) “STOPPED TRAFFIC AHEAD” 
Visibility distance between 200 and 500 feet (152.4 meters) “FOGGY CONDITIONS AHEAD” 
Visibility distance less than 200 feet (61.0 meters) “DENSE FOG AHEAD” 
Wind speed greater than 35 mph “HIGH WIND WARNING” 
 

Traffic and environmental data were transmitted from the field to TMC via dedicated, 

leased telephone lines. The evaluation of this system should that it improved highway safety by 

reducing the number of visibility related crashes (MacCarley 1998, 1999).  

 

2.3.1.3 Florida Tampa Bay area motorist warning systems for fog-related incidents 

 

The analysis of traffic crashes at Tampa Bay revealed that it has a history of fog related 

problems, and has an average of 22 "heavy fog" days every year. Fog events in this area have 

no fixed locations. Also, there are no established trends by location, therefore no automated fog 

detection systems have been installed (CUTR; 1997).  
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2.3.1.4 Georgia automated adverse visibility warning and control system 

 
 

In 2001, at a site known for fog problems on Interstate Highway 75 in South Georgia, 

Georgia Tech and the Georgia Department of Transportation (GDOT) jointly implemented an 

automated adverse visibility warning and control system along 14 miles section of I-75 to warn 

drivers about adverse visibility conditions.  

This system consists of 19 visibility sensors, 2 DMSs, and 5 sets of traffic loops 

monitor speed and headway for northbound and southbound moving traffic lanes. The data 

collected by sensors are transmitted to an on-site computer using a fiber-optic communications 

network. The total project cost for system development and installation was $4 million. In 

addition, the cost needed to duplicate the system would be approximately $1.7 million 

(Gimmestad et al. 2004). 

 

2.3.1.5 Idaho DOT motorist warning system 

 

Between 1988 and 1993, 18 low visibility related crashes, involving 91 vehicles and 

resulting in 9 fatalities and 46 injuries, occurred on a 45-mile stretch of Interstate 84 in 

southeast Idaho. Therefore, in 1993, to improve the safety in this area, Idaho Transportation 

Department (ITD) installed weather and visibility warning system at that site to measure three 

kinds of data: traffic, visibility, and weather data. Furthermore, to measure driver behavior 

during normal clear days and visibility event periods, automatic traffic counters were used to 

observe and record the lane number, time, speed, and length of each vehicle passing by the 

sensor site (Goodwin; 2003). 

The system consists of three visibility sensors (as shown in Figure 2-2) to measure 

reduced visibility conditions and a video camera to provide visual verification of the visibility 
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sensors. The data collected by these sensors are transmitted to a master computer which records 

readings every five minutes. This project was conducted in two phases. The objective of phase 

I was to determine if the visibility sensors provide accurate visibility measurements, while the 

objective of Phase II was to assess whether the VMSs would reduce vehicle speed during 

periods of low visibility (Kyte et al. 2000). 

 

 
 

(Source: Goodwin; 2003) 
 

Figure 2-2: Idaho DOT visibility sensor  
 

In this regards, Liang et al. (1998) studied the effects of visibility and other 

environmental factors on driver speed. The main objective was to determine the efficacy of 

using Idaho visibility warning System to warn motorists of inclement weather conditions and to 

quantify the nature of the speed-visibility relationship.  

The results indicated that drivers respond to adverse environmental conditions by 

reducing their speeds by about 5.0 mph during the fog events and approximately 12 mph during 

the snow events (Table 2-5). Also, it was found that the primary factors affecting driver speed 

were reduced visibility and winds exceeding 25 mph. Also, Table 2-6 indicates an initial set of 

recommended speed levels based on the findings of the aforementioned study.  
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Table 2-5: Vehicle speed characteristics (mph)  
(Source: Liang et al. 1998) 
 

 Number of 
Events 

Evaluated 

Car/trucks 
Combined 

Passenger Cars 
Only Trucks only 

Mean 
Speed 

Standard 
Deviation 

Mean 
Speed 

Standard 
Deviation 

Mean 
Speed 

Standard 
Deviation 

Base Conditions 3 65.8 2.3 68.4 3.6 63.5 2.6 
Fog Events 2 60.8 4.6 64.8 7.2 59.2 4.4 
Snow Events 11 53.9 6.3 55.3 7.6 52.5 6.4 
 
 
 
Table 2-6: An initial set of recommended speeds (mph)  

(Source: Liang et al. 1998) 
 

Visibility (miles) Night Time Speed Day Time Speed 
0-1 60 62 
>1 63 64 

 

 

2.3.1.6 Maryland I-68 fog detection system  

 

In 2005, a Fog detection system was installed on I-68, Big Savage Mt. The system 

consists of 4 ground mounted signs with solar powered flashers, 2 upgraded RWIS (camera, 

radio, remote processing unit, fog sensor), 6 Yagi directional antennas, 3 Omni directional 

antennas, and10 Spread – spectrum radios (shelf item) (Sabra, Wang & Associates 2003). 

 

2.3.1.7 South Carolina DOT low visibility warning system 

 

In 1992, South Carolina Department of Transportation (DOT) deployed a low visibility 

warning system on 7 miles (11.3 kilometers) on Interstate 526 to warn drivers of dense fog 

conditions, reduce traffic speeds, and guide vehicles safely through this fog-prone area. 

The system consisted of 5 forward-scatter visibility sensors spaced at 500-foot (152.4 

meter intervals, pavement lights installed at 110-foot spacing (33.5 meter), adjustable street 
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light controls, 8 closed circuit television cameras, 8 DMSs, a remote processing unit, a central 

control computer, and a fiber optic cable communication system. Table 2-7 shows the advisory 

and control strategies of the system. The South Carolina low visibility warning system 

improved both mobility and safety on I-526.   No fog-related crashes have occurred since the 

system was deployed (Goodwin; 2003, Schreiner; 2000, and Center for Urban Transportation 

Research; 1997). 

 

Table 2-7: South Carolina DOT low visibility warning system strategies 
  (Goodwin 2003) 

Visibility 
Conditions 

Advisory 
Strategies 

Control 
Strategies 

700 to 900 feet 
(213.4 to 274.3 meters) 

“POTENTIAL FOR FOG” and 
“LIGHT FOG CAUTION” on 
DMS 

“LIGHT FOG TRUCKS 45 MPH” and 
“TRUCKS KEEP RIGHT” on DMS 

450 to 700 feet 
(137.2 to 213.4 meters) 

“FOG CAUTION” and 
“FOG REDUCE SPEED” on 
DMS 

Pavement lights illuminated 
“FOG REDUCE SPEED 45 MPH” and 
“TRUCKS KEEP RIGHT” on DMS 

300 to 450 feet  
(91.4 to 137.2 meters) “FOG CAUTION” on DMS 

Pavement lights illuminated and 
overhead street lighting extinguished 
“FOG REDUCE SPEED 35 MPH” and 
“TRUCKS KEEP RIGHT” on DMS 

Less than 300 feet N/A 

Pavement lights illuminated and 
overhead street lighting extinguished 
“DENSE FOG REDUCE SPEED 25 
MPH” and “TRUCKS KEEP RIGHT” 
on DMS 
If warranted, “PREPARE TO STOP”, 
“I-526 BRIDGE CLOSED AHEAD 
USE I 26/US 17”, and “ALL TRAFFIC 
MUST EXIT” on DMS 
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2.3.1.8 Tennessee low visibility warning system 

 
In 1990, a multi vehicles visibility related crash, involving 99 vehicles, 42 injuries, and 

12 fatalities, had occurred in I-75 in southeastern Tennessee due to reduced visibility (less than 

10 ft or 3.1 m). Therefore in 1994, Tennessee Department of Transportation (DOT) and the 

Tennessee Department of Safety implemented a low visibility warning system on I-75, 

Tennessee. The system covered 19 miles (30.6 kilometers) and consisted of 2 ESS, 8 forward-

scatter visibility sensors, 44 vehicle detectors, 10 DMS, 10 VSL signs, and two highway 

advisory radio transmitters. Figure 2-3 shows one VSL sign of the Tennessee low visibility 

warning system. Traffic and environmental data were transmitted from the sensors to on-site 

computer for processing through underground fiber optic cables then the data were submitted to 

the central computer in the Highway Patrol office in Tiftonia via a microwave communication 

system.   

Table 2-8 shows the control strategies, while Table 2-9 shows the system strategies of 

Tennessee visibility warning system. 

 

 

 

                                                                                         

 

 
 

 
(Source: Goodwin 2003) 

 

Figure 2-3: Tennessee VSL sign  
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Table 2-8: Control strategies of Tennessee low visibility warning system 
(Source: Dahlinger et al. 2001) 

 

Visibility Distance Control strategies 
From 480 feet (146.3 kph) to 1,320 feet The speed limit is reduced from 65 to 50 mph 
From 240 to 480 feet. The speed limit is lowered to 35 mph (56.3 kph) 
Less than 240 feet or 73.2 meters Road close due to Fog 
 

 

Table 2-9: System strategies of Tennessee low visibility warning system  
(Source: Dahlinger et al. 2001) 
 

Conditions Advisories on DMS Other Strategies 
Speed 

Reduced 
“CAUTION” alternating with 
“SLOW TRAFFIC AHEAD” N/A 

Fog Detected “CAUTION” alternating with 
“FOG AHEAD TURN ON LOW BEAMS” • “FOG” displayed on VSL signs 

Speed Limit 
Reduced 

“FOG AHEAD” alternating with 
“ADVISORY RADIO TUNE TO XXXX 
AM” • “FOG” & Reduced Speed Limits 

displayed on VSL signs 
• HAR messages broadcasted 

“FOG AHEAD” alternating with 
“REDUCE SPEED TURN ON LOW 
BEAMS” 
“FOG” alternating with 
“SPEED LIMIT XX MPH” 

Roadway 
Closed 

“DETOUR AHEAD” alternating with 
“REDUCE SPEED MERGE RIGHT” • “FOG” displayed on VSL signs 

• HAR messages broadcasted 
• Ramp Gates closed 

“I-75 CLOSED” alternating with “DETOUR” 
“FOG AHEAD” alternating with 
“ADVISORY RADIO TUNE TO XXXX 
AM” 

 
 

After deployment of the warning system in 1994, safety improved significantly as only 

one visibility related crash has occurred due to fog (Dahlinger et al. 1995, 2001), (Tennessee 

ITS State Status Report 2000).                                        

 

2.3.1.9 Utah DOT low visibility warning system 

 

In 1988 there was a 66 multi-vehicles crash and in 1991 ten crashes, with three 

fatalities, occurred on one day due to dense fog on Interstate 215 above the Jordan River in Salt 

Lake City, Utah. Therefore, during 1995 and 2000, the Utah Department of Transportation 
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(DOT) deployed a low visibility warning system on two mile (three-kilometer) of Interstate 215 

to notify drivers of safe travel speeds and to achieve more uniform traffic flow in cases of 

reduction of visibility.  

The warning system consisted of 4 forward-scatter visibility sensors and 6 vehicle 

detection sites to collect data on prevailing conditions. The speed, length, and lane of each 

vehicle were measured by underground loop detectors. Traffic and Environmental data were 

transmitted to a central computer through Ultra-High Frequency radio modems. In addition, 

two DMS were used to post advisories to drivers. Table 2-10 shows Utah DOT low visibility 

warning system messages (Perrin et al. 2000, 2002). 

 

Table 2-10: Utah DOT low visibility warning system messages  
(Source: Perrin et al. 2000) 

 

Visibility Conditions Displayed Messages 
656 to 820 feet (200 to 250 meters) “FOG AHEAD” 
492 to 656 feet (150 to 200 meters) “DENSE FOG” alternating with “ADVISE 50 MPH” 
328 to 492 feet (100 to 150 meters) “DENSE FOG” alternating with “ADVISE 40 MPH” 
197 to 328 feet (60 to 100 meters) “DENSE FOG” alternating with “ADVISE 30 MPH” 
Less than 197 feet (60 meters) “DENSE FOG” alternating with “ADVISE 25 MPH” 
 

Perrin et al. (2002) evaluated Utah low visibility warning system in reducing the 

variation between speeds which is the most important factor in reducing fog-related crashes. To 

achieve this goal, they tested a fog-prone area of I-215 in Salt Lake City, Utah, during three 

phases. Phase I was the base case, no VMSs were used in this phase. In phase II, the warning 

system was implemented and VMSs were used. Phase III data was collected following VMS 

installation during the winter of 1999-2000. The displayed VMSs, based on measured visibility, 

are listed below in Table 2-11. 

The results of this research showed that Utah warning system successfully reduced 

speed variation by an average 22%. This finding supports a prior idea that informing drivers of 
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a safe speed during adverse visibility conditions is much better than leaving each driver to 

decide their own safe speed. In summary, Utah fog warning system, failed to reduce mean 

speed, but it succeeded in reducing the variation between vehicle speeds. 

 

Table 2-11: Highway visibility range criteria for changeable message signs  
(Source: Rockwell 1997) 

Highway Visibility Range Message 
> 250 meters No message 
200 – 250 meters “Fog Ahead” 
150 – 200 meters “Dense Fog” alternating with “ advise 50 mph 
100 – 150 meters “Dense Fog” alternating with “ advise 40 mph 
60 – 100 meters “Dense Fog” alternating with “ advise 30 mph 
< 60 meters “Dense Fog” alternating with “ advise 25 mph 

 

Furthermore, several fog warning systems, in use in the United States, are provided with 

a 24-hour police presence to help control speeds, verify visibility problems, and assist in cases 

of emergencies. Some fog warning systems in other states are actually run by state or local 

police. The cost of fog mitigation systems depends upon many factors such as the type and 

numbers of fog detection sensors, VMSs, and VSL signs, communication between fog sensors, 

etc. Lynn et al. (2002) summarized the cost of some low visibility warning systems in the 

United States (as shown in Table 2-12). 

Braham et al. (2000) implemented a vision support system to warn drivers in conditions 

of reduced visibility. The system consisted of an infrared camera for detecting objects and a 

virtual image for presenting the images from the camera to the drivers. Using a driving 

simulator, human factors evaluations were conducted in a series of trials. The findings 

indicated that the system might have a positive impact on driver behavior and on road safety by 

encouraging drivers to increase their headways in reduced visibility conditions. 
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Table 2-12: Cost of low visibility warning systems in the United States  
(Source: Lynn et al. 2002) 
 

Location Length Visibility/Weather 
Detectors VMSs Traffic/Speed 

Detectors Cost 

I-10 (Mobile, Alabama) 6.2 miles 6 visibility sensors 4 VMSs, CCTV Loop detectors $18,000 excluding VMSs 
and loops 

Rt. 99/I-5 (San Joaquin 
Valley, California) Unknown 

15 Road Weather 
Information System 
(RWIS) stations, plus fog 
detectors, visibility test 
signs 

80 VMSs None $3,600,000 

I-5/Rt. 205 (Stockton, 
California) 16 miles 9 RWIS stations 9 VMSs 36 inductive loop 

sensors $2,750,000 -- $2,770,000 

Planned I-75 (Georgia / 
Florida border) 2 miles 19 visibility sensors Light emitting diode 

(LED) VMSs 5 loop detectors $1,410,500 

I-25 (Colorado) Unknown None, visibility reported 
by CDOT personnel 

6 roadside VMSs, 
overhead VMSs None $275,000 

I-69 (Fort Wayne, Indiana) ¾ mile 1 visibility sensor LED VMSs None $155,000 
I-40 (Haywood County, 
North Carolina) 5 miles 3 visibility sensors 2 VMSs None $1,100,000 

Rt. 22 (Crescent Mountain, 
Pennsylvania) 2 miles 1 RWIS VMSs, Highway 

Advisory Radio None $411,010 plus $1,200,000 
in upgrades 

I-75 (Calhoun, Tennessee) 19 miles 8 fog detectors, 2 RWIS 
stations 20 VMSs 22 speed detectors $4,460,580 

I-215 (Salt Lake City, 
Utah) Unknown 4 fog sensors 2 VMSs 6 loop detectors $461,000 
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2.3.2 Projects in England 

 

In 1990, an automatic fog warning system (M25 London Automatic Fog-Warning 

System) was designed by Traffic Control and Communications Division of the Department of 

Transport, London. This system was installed on the M25 London orbital motorway to warn 

drivers about formation of fog by displaying “Fog” legend on roadside matrix signals. Transport 

Research Laboratory of the United Kingdom, evaluated the effectiveness of the system in 

reducing the variation in vehicles’ speeds during inclement visibility conditions due to fog. 

Based on data measured from 6 test sites, the results revealed that there was about a 1.8 mph 

reduction in mean vehicle speeds when the signals were switched on (Cooper and Sawyer; 1993, 

MacCarley; 1999). 

 

2.3.3 Projects in the Netherlands 

 

The Dutch Ministry of Transport implemented an automatic fog warning system to 

achieve safer driving behavior during adverse visibility conditions along 12 km (7.4 mile) 

section of the A16 Motorway in the Netherlands. The system consisted of 20 visibility sensors to 

continuously measure the visibility distances. The objective of this system was to warn drivers of 

reduced visibility conditions (i.e., due to fog) by displaying an explicit fog warning on overhead 

matrix signs together with a maximum safe speed limit that depends on the actual measured 

visibility distance.  

Hogema and Horst (1997) evaluated the Dutch fog warning system in terms of driving 

behavior for a period of more than 2 years after implementing the system. Using subsurface loop 

detectors at six locations (four experimental and two control locations), continuous traffic 
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measurements for individual vehicles were observed. Data on the local visibility conditions and 

on the messages displayed on the matrix signs were available on a 1-min basis. The results 

showed that the system has a positive effect on speed choice in fog as it resulted in a decrease of 

speed of about 8 to 10 kph. 

 

2.3.4 Projects in Finland 

 

Rama et al. (2000) investigated the effects of two VMS on driver behavior. The two signs 

were a warning sign for slippery road conditions and a minimum headway sign. A before-and-

after experiment was performed at three test sites in Finland with an after period covering two 

winter seasons. The slippery road condition sign decreased the mean speed on slippery roads by 

1-2 km/h in addition to the decrease caused by the adverse road conditions. Moreover, the 

minimum headway sign decreased the proportion of headways shorter than 1.5 s for cars in car-

following situations, in addition to a speed reduction of 1 km/h.  

Luoma et al. (2000) indicated that the signs may have other effects on driver behavior 

besides those measurable in terms of speed and headway that were found in Rama et al. (2000). 

Therefore, this study was designed to investigate such potential effects. To achieve this goal, 114 

drivers who had encountered the slippery road condition sign and 111 drivers who had 

encountered the sign showing recommended minimum headway in adverse road surface 

conditions were interviewed. The results indicated that these VMS have other effects, such as the 

refocusing of attention to seek cues on potential hazards, testing the slipperiness of the road, and 

more careful passing behavior.  
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2.3.5 Projects in Saudi Arabia 

 

Al-Ghamdi (2004) evaluated the effectiveness of a fog detection and warning system on 

driver behavior in terms of reduction in average speed, speed variability in the traffic stream, and 

choice of time headway. This system was installed on a 2-km section of a two-lane, rural 

highway in the Al-Baha region of Saudi Arabia. The system consisted of a visibility sensor, a 

point detection device that utilizes infrared technology to measure visibility, and a VMS. In 

addition, NC-97, an advanced traffic counter classifier, was used to measure traffic data (i.e., 

speed, headway, vehicle classification, and volume). Only one message was used during the 

project and the VMS was activated once the sensor detects a reduction in visibility less than 200 

m.  

The main result from this study indicated the system was ineffective in reducing speed 

variability. However, the system reduced mean speed throughout the experimental sections by 

about 6.5 kph. On the other hand, this study had three drawbacks: (1) the frequency of the signs 

within and before the fog-prone area was not tested, (2) no different messages and speeds were 

tested, and (3) The distance from the sign at which drivers resume their normal speed was not 

measured. 

 

2.3.6 Summary of Existing Fog Warning Systems 

 

Reviewing the existing visibility warning systems revealed that they have many 

limitations. First, these systems were designed specifically for one road location (fixed systems) 

and hence, it is not possible to reinstall them at other locations. Second, they are not cost-

effective in terms of system’s components, management and maintenance. Finally, most of them 
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depend on AC power supply and fiber-optic cable for internal communication thus; they are not 

suitable in the absence of AC power. Therefore, there is a need to design a portable detection and 

warning system that is developed from components that are inexpensive and available 

commercially.  

Chapter 3 presents the design and components of the portable visibility system that was 

developed by researchers at UCF. A preliminary testing for the system’s performance is also 

discussed and presented in Chapter 3. 

 

2.4 Relationship between Crash Characteristics and Real-Time Traffic Flow variables 

 

Subsurface loop detectors (LDs) are the most common freeway traffic surveillance 

technologies used for various intelligent transportation system (ITS) applications such as travel 

time estimation and crash detection. Recently, the emphasis in freeway management has been 

shifting towards using LD data to develop real-time crash-risk assessment models.  

Numerous studies have established statistical links between freeway crash risk and traffic 

flow characteristics.  However, there is a lack of good understanding of the relationship between 

traffic flow variables (i.e. speed, volume and occupancy) and crashes that occur under reduced 

visibility (visibility related crashes).  

Earlier studies that examined relationships between traffic flow variables and crashes can 

be categorized into two types; aggregate and disaggregate studies (Golob et al. 2004). Regarding 

aggregate studies such as Zhou and Sisiopiku (1997), the units of analysis represent crash counts 

or rates for specific time and location. For similar time and location, traffic flow is represented 

by parameters of statistical distributions of traffic flow. Concerning disaggregate studies, the 
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units of analysis are individual crashes and traffic flow is represented by the corresponding 

traffic flow variables at the same time and location of each crash (Golob et al. 2004). 

In this regard, the relationship between historical crash occurrence and loop detectors 

data gathered from stations surrounding the crash location have been explored by numerous 

studies to develop crash prediction models. These models were developed by several of the 

earlier studies such as Madanat and Liu (1995), Oh et al. (2001), Lee et al. (2002, 2003), Golob 

and Recker (2003), Abdel-Aty et al. (2004, 2008), Abdel-Aty and Pande (2005), and Pande and 

Abdel-Aty (2006). 

Madanat and Liu (1995) used traffic stream and environmental conditions measured by 

surveillance sensors for developing binary logit models. The objective was to estimate the crash 

likelihood for two types of crashes, namely, crashes and overheating vehicles. The results 

indicated that merging section, visibility, and rain were the significant variables affecting the 

crash likelihood prediction. 

 Oh et al. (2001) used the Bayesian classifier to categorize the two possible traffic flow 

conditions; crash versus normal traffic flow. The results showed that five minutes standard 

deviation of 30-second speed measurements was the significant factor leading to crash 

occurrence. 

Lee et al. (2002) developed a log-linear model for predicting crashes using LD data. They 

refined this model in a later study (Lee et al. 2003). The results revealed that the coefficient of 

variation in speed (CVS) was the significant factor affecting the probability of crash occurrence. 

In order to determine how crash characteristics are related to traffic flow conditions at the 

time of occurrence, Golob and Recker (2003) developed a method involves nonlinear canonical 

correlation applied together with cluster analyses. The results revealed that interactions between 
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traffic flow conditions and accident propensities vary with environmental factors. Twenty one 

traffic flow regimes for three different ambient conditions were identified: eight regimes for dry 

roads during daylight, six regimes for dry roads at night, and seven regimes for wet conditions 

(based on condition of the roadway surface: wet or dry). 

Abdel-Aty et al. (2004) adopted matched case-control logistic regression for developing a 

crash likelihood prediction model using real-time traffic variables measured through serious of 

LDs. The findings showed that the average occupancy observed at the upstream station along 

with the CVS at the downstream station, both during 5-10 minutes prior to the crash, were the 

significant factors affecting crash likelihood. 

Abdel-Aty and Pande (2005) used Bayesian classifier based methodology, probabilistic 

neural network to identify patterns in the freeway LDs data that potentially lead to traffic 

crashes. The logarithm of CVS observed from the nearest station to the crash location and two 

stations immediately preceding it upstream during 10-15 minutes prior to the crash time were the 

inputs to the final classification model. 

Pande and Abdel-Aty (2006) predicted the occurrence of lane–change related crashes on 

freeways using the classification tree procedure. The results showed that average speeds 

upstream and downstream of the crash location, difference in occupancy on adjacent lanes and 

standard deviation of volumes and speed downstream of the crash location were the significant 

variables affecting crash occurrence. 

Abdel-Aty et al (2008) used Random Forests and multilayer perception neural network 

for assessing safety on Dutch freeways using LDs data. The results indicated that the average and 

standard deviation of speed and volume were significantly related to real-time crash likelihood. 
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Obviously, very few studies investigated the relationship between real-time traffic 

parameters and crash occurrences while controlling for visibility and/or weather conditions. For 

example, Golob and Recker (2001) examined how the types of freeway accidents are related to 

both the flow of traffic, and weather and ambient lighting conditions. The results indicated that 

median traffic speed and temporal variation in speed in the left and interior lanes are strongly 

related to the type of collision. Also, when controlling for weather and lighting conditions, the 

findings suggested that crash severity is influenced more by volume than by speed. 

In addition, Dion and Rakha (2006) indicated that in recent years, there has been a 

growing emphasis on employing Automatic Vehicle Identification (AVI) data for the provision 

of real-time travel time information to motorists within Advanced Traveler Information Systems 

(ATIS).  
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2.5 Conclusions from the Literature Review 

 

Considering the aforementioned studies, in spite of the fact that many studies have 

extensively analyzed drivers’ behavior in response to DMS, VSL signs, unexpected congestion, 

and the impact of both radio traffic information and variable message sign information, very few 

studies have examined drivers’ behavior at different visibility conditions using a questionnaire 

survey. Therefore, one objective of this study is to gain a better understanding of drivers’ 

behavior under different visibility and traffic conditions and identifying the factors that might 

affect their reaction and preferences under such adverse conditions using multiple survey 

approaches; handout, interactive and online survey. The survey design and content is presented 

in Chapter 4. In addition, the analysis of the survey is illustrated and discussed in Chapter 5.  

In addition, reviewing the existing visibility warning systems revealed that they have 

many limitations. First, these systems were designed specifically for one road location (fixed 

systems) thus it is not possible to reinstall them at other locations. Second, they are not cost-

effective in terms of system’s components, management and maintenance. Finally, most of them 

depend on AC power supply and fiber-optic cable for internal communication thus; they are not 

suitable in the absence of AC power. Therefore, the researchers at UCF developed a portable 

visibility detection and warning system. The system was developed from components that are 

inexpensive and available commercially. Another advantage is that the system can be powered 

using car batteries instead of AC power. The system components and a preliminary testing for 

the system’s performance are discussed and presented in Chapter 3.  

Moreover, numerous studies have established statistical links between freeway crash 

occurrence and traffic flow variables at normal visibility conditions (clear weather conditions).  
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However, there is a lack of studies that strive to gain a good understanding of the relationship 

between traffic flow characteristics and crashes occurring under reduced visibility (visibility 

related crashes). Therefore, one objective of this study is to develop a visibility related crash 

prediction model for freeways using real-time traffic flow variables observed from loop detectors 

and radar sensors. Chapter 6 discusses data collection and preparation, and presents prediction of 

VR crashes on Freeways. 

Finally, two issues that have not explicitly been addressed in prior studies are; (1) the 

possibility of predicting VR crashes using traffic data collected from the Automatic Vehicle 

Identification (AVI) sensors installed on Expressways and (2) which traffic data is advantageous 

for predicting VR crashes; LDs or AVIs. Thus, Chapter 7 examines the relationships between 

VR crash risk and real-time traffic data collected from LDs installed on two Freeways in Central 

Florida (I-4 and I-95) and from AVIs sensors installed on two Expressways (SR 408 and SR 

417). Also, it investigates which data is better for predicting VR crashes (LDs or AVIs).  
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CHAPTER 3.  PORTABLE VISIBILLITY WARNING SYSTEM 

This chapter presents the components and a preliminary evaluation of a portable visibility 

warning system that was developed by the researchers at the University of Central Florida 

(UCF), Orlando, USA. The development of this system was completed in June 2010. 

 

3.1 System Components and Operation 

 

Low visibility scenarios can occur due to a variety of conditions such as fog, smoke, 

smog or heavy rain.  They can occur anywhere, and are especially dangerous on freeways and in 

rural areas.  To cope with a variety of operational scenarios, a visibility detection system needs 

careful consideration for mobility, power, and communication technologies.  

UCF portable visibility detection and warning system consists of several components that 

are illustrated in more detail in this section. Initially for the prototype, the hardware is composed 

of four stations, each is connected to a visibility sensor; and each of these four stations is 

monitored and controlled by a micro controller installed in a unit attached to it. The proposed 

structure of the system is shown in Figure 3-1. One of the stations performs as a base station 

which carries out all the communication processes between the different stations and the traffic 

management center (TMC) and Changeable Message Signs (CMS). The components of the base 

and the station are shown in Figure 3-2 and Figure 3-3, respectively. 

Each station contains the following components: 

• Radio antenna 

• GPS 

• Visibility sensor 
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• XBee Radio (Receiver and Transmitter) 

• Mini Computer 

• USB hub 

• Power regulator 

• Power distributor 

• Battery 

 

Each station continuously detects highway visibility distances and save them on a flash 

memory attached to the mini computer. Then every station transmits this information as 

messages to the base station. These messages contain the visibility distance (measured by the 

visibility sensor), coordinates of a station (estimated by GPS), and time and date of each 

message. In addition to the components mentioned above, base station contains XTend radio for 

communication between base and CMS. It also contains a cellular modem for communication 

between the base and TMC. 

Therefore, the visibility system is designed to be autonomous in its operation and 

decision-making. It continuously monitors visibility distances. Whenever hazardous conditions 

are detected, it automatically generates warning messages that can be displayed to motorists on 

CMS and VSL signs.  
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Figure 3-1: Visibility system components 
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Figure 3-2: Base components 
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Figure 3-3: Station components 
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3.2 Communications 

 

Communication is the important part of the system; the system includes two types of 

communication links. First, the internal communication link (data from sensors and base station) 

is a 900 MHz radio. The second type is cellular communication which is used to exchange 

information from the base station to the TMC. Any system is useless if it cannot report real-time 

visibility conditions for warning drivers and TMC about reduced visibility conditions. For this 

reason, the selection of a reliable communication system is of utmost importance.  Thus, to avoid 

typical line of sight limitations inherent in communication technologies such as WiFi, the spread 

spectrum, etc., researches at UCF proposed the use of cell-based communication.  This 

communication mode guarantees national coverage and reduces hardware costs.  Also, since this 

system is designed to report on exceptional bases, data costs should be minimal. 

 

3.3 System Operation 

 

The visibility system is designed to be autonomous in its operation and decision-making. 

It continuously monitors visibility. Whenever hazardous conditions are detected, it automatically 

generates warning messages that can be displayed to motorists. Two types of messages are 

generated; speed advisories and warning messages of poor visibility. The automatic messages are 

selected by a computer algorithms based on the measured visibility distance and the maximum 

safe speed. 
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3.4 Software Design and Algorithms 

 

The system’s software control runs on a micro controller attached to the base station and 

executes a real-time operating structure. The system controls the entire baseline functions 

necessary to operate the overall system, including data acquisition, data storage, system control, 

and self monitoring. Specifically, the system reads from 4 fog sensors, while controlling up to 

four CMSs. This overall functionality is obtained through individual software modules, which 

are illustrated in the diagram shown in Figure 3-4. The design of the system is extendible to 

include additional fog sensors, VSL signs, flashing lights and DMSs to expand the capability of 

the system to cover longer segments of roads in fog prone areas. 

There are two main algorithms that have been designed to control the communications 

process and data reporting frequencies. One of these algorithms controls the communications 

between the stations and the base, while the other controls the communication between the base 

and both CMSs and TMC. 

As mentioned earlier, each station detects the visibility distance and reports it to the base 

station. At normal conditions (highway visibility distance > 250 m), the base station receives 

messages from each station showing the current visibility distance every 15 minutes. Although it 

is not needed to take any action at normal visibility conditions, it was decided to receive 

messages from each station to make sure that all stations are working properly. However, once 

the visibility distance drops below hazardous visibility levels (<250 m), the reporting frequency 

reduces to 1 minute.   
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Figure 3-4: Structure of the system algorithms 
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3.5 Testing the Radios’ Range 

 

The objectives of testing the radios’ range of the developed visibility detection and 

warning system were to determine the maximum range between two successive radios (one at the 

base and the other at the station) and to examine the possibility of using an intermediate radio 

(hopping) to increase the range between the base and the stations’ radios. The testing of radios’ 

range was divided into two stages. The first stage was conducted in the lab to make sure that the 

system components are working properly however; the second stage was conducted in the field 

to examine the system performance in real life. 

To test the system in the field, the station and the base were installed at the UCF campus. 

To simplify the test, the base station was installed on a truck and powered using a generator. A 

laptop was attached to the base to check the receiving messages from the station. During 

movement with the base away from the station, the base was receiving messages until the 

distance increased more than 0.6 mile. At that point the communication between the base and the 

station was lost. After using an intermediate radio (hopping) between the base and the station, 

the radios’ range increased to about 1.2 mile. 

 

3.6 Testing the System’s Performance 

 

This section presents the preliminary performance’s testing of this visibility system. The 

base and station were installed as shown in Figure 3-2 and Figure 3-3, respectively. To check the 

performance of the base algorithm, the base was powered first using a car battery. Since the 

station was not powered yet, the base sent an e-mail to TMC showing that no messages were 

received from station(s) yet. This initial e-mail implies that the base is working properly, and 
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either the station(s) was non-powered yet or has a technical problem. Once the station was 

powered, a message with the current visibility distance was sent (e.g., normal visibility 

condition) to the base station which submitted an e-mail to TMC titled “normal conditions” and 

contains station’s number, position (latitude and longitude), time and date of message. To test the 

performance of the system in poor visibility conditions, a cloth bag was put on the visibility 

sensor (because no fog existed when conducting the test). Thus the visibility measurement 

dropped to zero and the station sent this message to the base which reported TMC with an 

emergency e-mail titled “emergency: no visibility”. These warning e-mails can enable the TMC 

and/or FDOT to take the appropriate decisions at such adverse visibility conditions. Table 3-1 

summarizes the titles of all e-mails that could be sent to TMC/FDOT at all visibility levels. Once 

the cloth bag was removed away from the visibility sensor, the station reported normal visibility 

condition to the base. However, according to the design of the base algorithm, 5 minutes later the 

base informed the TMC about improving the visibility range. The same email messages or 

modification could also be sent to the CMS. Moreover, to test the base algorithm when loosing 

communication between base and station(s), the base station was moved away from the station. 

When the communication was lost, the base is programmed to send an e-mail to TMC entitled 

“Station # 11 failure report”. This e-mail is important as it helps TMC to identify which station 

has a problem so a technician can be dispatched to fix this problem immediately. Later, after 

installing an intermediate radio, the base started again to receive messages from the station. 

Figure 3-5 show examples of warning’s e-mail messages sent to TMC. 
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Table 3-1: E-mail message titles and frequency of reporting messages to TMC 
 

 E-mail Title Highway Visibility Range 
1 EMERGENCY: No Visibility < 20ft 
2 URGENT: Extremely low Visibility < 200ft 
3 WARNING: Moderate visibility If visibility is between 200-500 ft 

4 WARNING: Fog or Smoke Conditions 
affecting visibility 

If visibility is between 500-800 ft 
 

5 NORMAL CONDITIONS Visibility greater than 800 ft 
Frequency of reporting to TMC 

Every hour Normal conditions. 
Every 1 Minute in Emergency 
Every 5 minutes otherwise 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

a) Emergency e-mail       b) Normal condition e-mail  
 

 
 
 
 

 
c) No received messages’ e-mail                                 d) Station(s) failure e-mail 
 

 

Figure 3-5: Examples of warning’s E-mail messages sent to TMC 
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3.7 Conclusions 

 

This chapter presents the design of a visibility detection and warning system that was 

developed by researchers at UCF. A discussion of the system components and performance was 

introduced. The preliminary testing of this visibility system indicates that it can detect any 

reduction in visibility in a timely manner and respond accordingly in real-time to convey specific 

warning messages either by reporting these messages to TMC/FDOT through e-mails or by 

displaying a warning message and an advisory safe speed at each visibility level using CMS and 

VSL signs, respectively. However, before reaching a final conclusion about the performance of 

this visibility detection system, conducting another field study at real fog condition is still 

needed. 
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CHAPTER 4.  SURVEY DESIGN AND CONTENT 

This chapter presents the design and administration of a survey-based study focusing on 

understanding commuters’ response to different visibility conditions due to fog/smoke in Central 

Florida. A total of 566 respondents participated in this study through three survey approaches; 

handout, interactive, and online questionnaire. The evaluation of the quality and completeness of 

data received from the three surveys approaches as well as recommendations for the 

improvement of future survey design and response are presented in this chapter.  

 

4.1 Survey Design 

 

To achieve the objectives of this survey, different scenarios consisting of several 

visibility levels, traffic conditions, warning messages and advice displayed on CMS and VSL 

signs were designed using driving simulation software, L-3 Scenario Editor. There is no doubt 

that it would have been better to use real pictures in this study. However, the scenario editor 

software was used to develop those scenarios since it was not possible to find real pictures for all 

the scenarios that were developed. Snapshots at different fog levels, traffic conditions, and based 

on the two roadway types were prepared before designing the two survey forms. It is worth 

mentioning that due to limited budget and the various scenarios that were investigated in the 

present study, neither field studies nor driving simulator experiments were feasible. Examples of 

information displayed on both CMS and VSL signs are shown in Figure 4-1. 
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                                                                CMS                                                VSL            

Figure 4-1: Examples of information displayed on CMS and VSL signs 
 

Prior studies such as Huang et al. (2010) revealed that most of the fog/smoke related 

crashes (48.3%) occurred on four lane roadways followed by two-lane roads with 33.8%. 

Therefore, two surveys were conducted in the present study: freeways’ survey and two-lane 

roads’ survey to examine drivers’ behavior in response to reduction in visibility on those types of 

roadways. The two survey forms are similar in all questions; both of them contained 31 

questions. However, the only difference was in the snapshots that were developed. Each 

respondent got only one of the two surveys randomly. For clarity, Figure 4-2 and Figure 4-3 

show samples questions from the freeway’s survey and two-lane road’s survey, respectively.  

In summary, the two survey forms were designed to obtain the following information 

from each respondent:  

• Gender (male or female). 

• Age (18-25, 26-35, 36-50, 51-65, over 65 years). 

• Education (Graduate school or higher, college degree, some college, high school, did not 

graduate from high school). 

• Number of years the drivers had a valid driver’s license. 
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• Number of traffic citations (i.e. traffic rule violations) in the previous 3 years. 

• Involvement in any fog/smoke or heavy rain related crashes. 

• Frequency of freeways/ two-lane roads use? 

• Drivers’ familiarity with CMS and VSL signs. 

• Drivers’ behavior when they encounter CMS at two traffic conditions (no car leading 

ahead, and car leading ahead). 

• Drivers’ behavior when they encounter a VSL sign at four fog conditions (very light fog, 

light fog, medium fog, and heavy fog) and two traffic conditions (no car leading ahead, 

and car leading ahead). 

• Drivers’ satisfaction with the importance of CMS and VSL signs in providing 

information that may help to manage the traffic flow along Highways and consequently 

reducing the chances of a crash. 

• Drivers’ satisfaction with using two successive CMS prior to Fog/ smoke zones. 

• Which one of the following would improve safety during driving through fog/smoke 

highways segments: using CMS only or using VSL signs only or using CMS and VSL 

signs together or closing the road during such adverse weather conditions? 

• What is the best CMS message that can be used to warn drivers about any reduction of 

visibility due to fog/smoke and drivers will most likely comply with it. 

• Drivers’ behavior when they encounter a sudden reduction in visibility due to fog, smoke, 

or heavy rain while they are driving on a freeway/ two lane roads. 

• Drivers’ ranking for the actions/responses that they can do when they encounter a sudden 

reduction in visibility due to fog, smoke, or heavy rain while they are driving on a 

freeway/ two lane roads. 
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If you were driving on a freeway with a speed limit of 65 mile/hour (mph), and you encounter a 
Variable Speed Limit (VSL) sign of 40 mile/hour (mph) in order to reduce the chances of 
accident that may occur because of a sudden reduction in visibility due to fog/smoke. What will 
you do in each of the following cases?  
Note: in case you will reduce your speed (answers c or d), please specify your reduced speed 
  

                                                                   Heavy Fog (some vehicles ahead) 
a) Do nothing 
b) Follow other vehicles’ speed.  
c) Reduce speed to ………..mph  
   (Please specify your reduced speed)  
 d) Put blinkers on and reduce speed to.…..mph     

(Please specify your reduced speed)  
 

 

 

 

 

Figure 4-2: Sample question from the freeway’s survey 
 
 
 

If you were driving on a two lane road with a speed limit of 45 mile/hour (mph), and you encounter a 
Variable Speed Limit (VSL) sign of 25 mile/hour (mph) in order to reduce the chances of accident 
that may occur because of a sudden reduction in visibility due to fog/smoke. What will you do in each 
of the following cases?  
Note: in case you will reduce your speed (answers c or d), please specify your reduced speed  
 

                                                                                   Heavy Fog (some vehicles ahead) 
 
a) Do nothing 
b) Follow other vehicles’ speed.  
c) Reduce speed to ………..mph  
   (Please specify your reduced speed)  

      d) Put blinkers on and reduce speed to.…..mph     
  (Please specify your reduced speed) 
 

 

 

 

 

Figure 4-3: Sample question from the two lane road’s survey 
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4.2 Survey Pilot Test 

 

A pilot test of the surveys was conducted in the Central Florida region. Ten survey forms 

were distributed among undergraduate students, graduate students, and professors at University 

of Central Florida. In addition, one survey form was sent to a Transportation Engineer at the 

Florida Department of Transportation (FDOT) as shown in Table 4-1. 

 

Table 4-1: Number of persons who participated in the pilot test of the surveys 

Participants in the pilot test No. of participants 
Undergraduate students 1 
Graduate Students 5 
Professors and post doctors 3 
Transportation Engineers at FDOT 1 
 

The survey forms were revised after feedback was received. Questions that were 

considered ambiguous to individuals who read the survey were rewritten and more pictures were 

added to make the questions be easier and more understandable in the final surveys. Revisions 

included wording ambiguity, verb tenses, and the inclusion of relevant questions and options that 

were not considered in the preliminary survey forms. 

 

4.3 Determining the Required Sample Size of Survey 

 The minimum sample size can be estimated using the full factorial design. The factors 

affecting the survey design and their associated levels are summarized in Table 4-2. 

 

Table 4-2: Factors affecting survey design and their levels 

Factors Levels 
Type of survey 3 levels: mail, interactive, and online survey 

Road type 2 levels: freeway and 2 lane roads 
Gender 2 levels: male and female 

Age groups 5 levels: 18-25, 26-35, 36-50, 51-65, and over 65 

Education 5 levels: Graduate school or higher, college degree, some college, 
high school, and did not graduate from high school 
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Therefore, the minimum survey size = 3*2*2*5*5 = 300 

To be more conservative, we recruited more than 500 participants in the survey as indicated in 

the following sections. 

 

4.4 Sampling Procedure and Survey Methods 

 

The survey targeted a random sample of licensed drivers living in Orange and Seminole 

counties. Respondents were limited to adults over 18 years of age who have a valid driver’s 

license. Based on the review of previous studies, it was found that mail-in questionnaires yield 

low response rates, and do not provide interaction between the interviewer and the respondent. 

Hence, mail-in questionnaire was not undertaken. Also, phone interviews were not used because 

of the need to incorporate images in the survey questions.  

According to TCRP (2006), the use of Internet-based survey only usually does not 

provide a representative sample of the population due to some population segments not having 

access to the Internet or not having good knowledge about using the Internet. Thus, it was 

decided to implement a 3-way approach to conduct the survey for both freeways and 2-lane 

roads. The three survey types incorporated were handout, interactive, and online questionnaires.  

 

4.4.1 Handout Questionnaire 

 

The first survey approach was handout questionnaires. In this approach, 300 survey forms 

were printed for each roadway type. These survey forms were distributed randomly in November 

2009 among colleagues, friends, family, neighbors, faculty and staff who live in Central Florida. 

Each one of them has received from 5 to 20 survey forms and he/she was asked to distribute 
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them among his/her colleagues, friends, neighbors and family members. They were asked to 

return them once they are completed.  

Out of the 600 distributed survey forms, a total of 376 forms were received back (62.7% 

response rate). However, only 279 handout surveys’ forms were considered complete, 74% 

complete responses (questions completed). The remaining forms had more than 30% missing 

responses (questions) and hence, they were disregarded. Based on the respondents’ feedback, the 

questionnaire took on average 10 minutes to be completed. It is worth mentioning that handout 

surveys are better than the regular mail-back surveys due to the presence of personal interaction 

between the surveyor and respondents. 

 

4.4.2 Interactive Questionnaire 

 

The second survey method was an interactive questionnaire. In this survey method, the 

surveyor meets with a group of people at the same time and location and explains the purpose of 

the survey and the steps they should follow to complete the questionnaire. In the current study, 

the interactive survey was presented to two undergraduate classes and one graduate class at the 

University of Central Florida in November 2009. Two presentations were designed for the two 

survey forms in power point format. Each session gets either the freeway or 2-lane version. After 

distributing the questionnaires to the respondents, each question or picture was presented in a full 

screen using a projector. Participants were responding while the surveyor was explaining what is 

meant by each question and interacting with them. Also, participants were allowed to ask 

questions. The presentation and interaction was carefully considered so that the questions are 

clarified but not to bias the responses. Each interactive questionnaire session lasted on average 

20 minutes. The interactive survey sample contained 102 participants. However, only 91 forms 
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were used in the analysis, 89% complete responses (questions completed). Again the remaining 

forms had more than 30% missing responses and thus they were disregarded.  

 

4.4.3 Online Questionnaire 

 

Online surveys have become more widespread in recent years. The advantages of 

adopting online questionnaires include the possibility of sending a participation request to 

randomly selected subjects using e-mail addresses. Second, respondents’ responses are 

automatically saved in a database existing in the survey’s server, and can be retrieved at a later 

time for data analysis. This simplifies the data processing for the analyst, eliminates coding 

errors and reduces labor costs. Therefore, online questionnaires are less time consuming and less 

labor-intensive than the other survey methods. Third, the use of graphical user interface (GUI) 

and images provide the ability to better understand the questionnaire aspects (Abdel-Aty and 

Abdelwahab, 2001; Peeta and Ramos, 2006). On the other hand, the limitations of online surveys 

include the need accessibility of Internet and some knowledge of using the Internet by the 

participants.  

In this study, links for either survey type (freeway or 2-lane road) were sent randomly to 

about 200 commuters in the Central Florida region in November 2009. Participants were asked 

to estimate how many minutes they took to complete the survey and report it to the surveyor. 

Also, 500 cards containing links to either survey forms were distributed randomly to drivers in 

Central Florida. 

At the beginning of each survey form, an introduction was provided explaining the 

purpose of the survey and some guidelines for completing the survey. The advantages of the 

present online survey include a warning pop-up appearing above any unanswered question 
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asking the respondents that this is required (as shown in Figure 4-4). This option might help to 

increase the percent of complete responses in the online survey. The second advantage is that 

respondents cannot enter the same answer for two or more options in question 31 (as shown in 

Figure 4-5). Out of 231 received responses (33% response rate), 196 complete responses were 

used in the analysis, 85% complete responses (questions completed), as the remaining forms had 

more than 30% missing responses. Based on respondents’ feedback, the online questionnaire 

took on average 8 minutes to be completed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4: A warning hint about unanswered question in the online survey 
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Figure 4-5: A warning hint about entering the same ranking for two options in question 31 in the 
online survey 

 

4.4.4 Validating Survey Sample 

 

To test whether the sample well represents the licensed drivers in Orange and Seminole 

counties, the percentages of gender and age groups of the survey sample were compared to the 

corresponding percents of the licensed drivers in Orange and Seminole counties (January 2009) 

that were obtained from the Florida Department of Highway Safety and Motor Vehicles 

(DHSMV). Distributions of gender and age groups for the survey sample and licensed drivers in 

Orange and Seminole counties in January 2009 are given in Table 4-3 and Table 4-4, 

respectively. 
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Table 4-3: Distribution of gender for the survey sample and licensed drivers in Orange and 
Seminole counties 

Gender Survey Licensed Drivers  in Orange and Seminole 
counties (January, 2009) 

Sample % Pop. % 
Male 310 54.8 615735 50.4 

Female 256 45.2 606070 49.6 
Total 566 100 1221805 100 

 

Table 4-4: Distribution of age groups for the survey sample and licensed drivers in Orange and 
Seminole counties 

Age Groups Survey Licensed Drivers  in Orange and Seminole 
counties (January, 2009) 

Sample % Pop. % 
18-25 173 30.6 191925 16.1 
26-35 120 21.2 255735 21.5 
36-50 136 24.0 369507 31.0 
51-65 98 17.3 243635 20.5 

Over 65 39 6.9 130335 10.9 
Total 566 100 1191135 100 

 

To achieve this objective, Chi-Square test for specified proportions and a large-sample 

test of hypothesis about a population proportion (Z-test) were developed as follows: 

 

4.4.4.1    Chi-Square test for specified proportion 

 

Hypothesis testing 1 

H0: P1 = 0.504, P2 = 0.496 (the observed proportions of males and females in the survey sample 

are not significantly different from the corresponding proportions of licensed drivers in 

Orange and Seminole counties). 

Ha: at least one of the multinomial probabilities does not equal its hypothesis. 

  Test Statistic 

Chi-Square = 4.3244, DF=1, P-value=0.0876 > 0.05 



67 
 

Therefore, it can be concluded that the observed proportions of males and females in the survey 

sample are not significantly different from the proportions of licensed male and female drivers in 

Orange and Seminole counties 

 

Hypothesis testing 2 

H0: P1 = 0.161, P2 = 0.215, P3 = 0.310, P4 = 0.205, P5 = 0.109 (the observed proportions of age 

groups in the survey sample are not significantly different from the corresponding 

proportions of licensed drivers in Orange and Seminole counties). 

Ha: at least one of the multinomial probabilities does not equal its hypothesis 

  Test Statistic 

Chi-Square = 93.6088, DF=4, P-value=0.0001 < 0.05 then null hypothesis can be rejected. 

Therefore, it can be concluded that at least one of the observed proportions of age groups in the 

survey sample is significantly different from the corresponding proportions of licensed drivers in 

Orange and Seminole counties. To investigate which age group has this difference, Z test was 

developed. 

 

4.4.4.2     Z- Test 

 

Hypothesis testing 

H0: P = P0 (the proportion of every age group in the survey sample is not significantly different 

from the corresponding proportion of licensed drivers in Orange and Seminole counties). 

Ha: P ≠ P0 (the proportion of every age group in the survey sample is significantly different from 

the corresponding proportion of licensed drivers in Orange and Seminole counties). 
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 Test Statistic 

  

 It can be realized that the percent of age group 18-25 (30.6%) is over-represented in the 

survey sample because a large percent of the sample were students at UCF. However, in general 

we can say that there are no significant differences between the age groups percents in the survey 

sample and in the licensed drivers in Orange and Seminole counties. 

In summary, considering the above mentioned results, it was concluded that there is no 

significant difference between the percentages of males, females, age groups in the survey 

sample and licensed drivers in Orange and Seminole counties. Hence, it was concluded that the 

survey sample well represented the licensed drivers in Orange and Seminole counties. 

 

4.5 Response Analysis 

 

A total of 566 responses were used in this study. About 49.3% of these responses were 

from handout survey, 16% through the interactive survey, and 34.7% via the Internet. As 

mentioned earlier, the online survey has the shortest average time needed to be completed, 
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followed by handout, then interactive survey; 8, 10, and 20 minutes, respectively. Also, the 

interactive survey has the highest percent of complete responses (questions completed) with 

89%, followed by online survey with 85%, and followed by handout questionnaire with 74%, 

respectively. Designing the online survey in a graphical user interface manner could be the 

reason why it had the shortest average time and the second highest percent of complete responses 

after the interactive survey. Also, in the interactive survey; surveyors had a direct interaction 

with the participants to explain any ambiguousness they may find and this could explain why it 

took the longest time. 

The advantages and limitations of the three survey methods used in this study are 

summarized in Table 4-5. According to Table 4-5, it can be concluded that the interactive survey 

approach is recommended in future studies since it has high response rate, high control of 

interview situation, high percent collection of detailed information, and the highest percent of 

complete responses. This result is consistent with Nachimas (1996). On the other hand, the 

disadvantages include that it has the longest time needed to complete the survey and it is difficult 

to identify respondents. Therefore, the second recommended survey type is the online survey. 

 

Table 4-5: Comparison between survey methods used in the current study 

Criterion 

Current study 

Handout 
Interactive 
(controlled 

group) 

Online 
(web-
based) 

Cost Low Moderate Low 
Response rate Low High Moderate 
Control of interview situation Low High Moderate 
Collection of detailed information Moderate High High 
Speed of collecting survey forms Low Moderate High 
Average time to complete the survey forms (in 
minutes) 10 20 8 

Percent of complete responses (questions 
completed) 74% 89% 85% 
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To investigate the differences between handout, interactive and online questionnaires, 

conditional distribution, odds ratio, Chi-squared test, and Ridit analyses were developed. The 

results of conditional distributions and odds ratios are listed in Table 4-6. 

The odds ratios were estimated for each group with respect to the last category of that 

group. Concerning the gender, the odds ratio of males equals 1.52, which implies that the odds 

(or likelihood) of responding through the online survey are 1.5 times higher for males than for 

females. Also regarding age, for example, the odds ratio of the age group 18-25 equals 2.7, 

which means that the odds of responding via the Internet is 2.7 times higher for the age group of 

16-25 than for the over 65 years old age group. This result supports the hypothesis that young 

respondents are more likely to respond to the online survey than old participants.  

With respect to the education levels, it was found that the odds ratio of education level 

“graduate school or higher” equals 4.04, which indicates that the odds of responding through the 

online survey are 4 times greater for this specific level than for respondents who did not graduate 

from high schools. This finding supports the idea that Internet users might have a higher level of 

education and awareness and therefore, are keen to respond in questionnaires related to studies 

that are of interest. In this regards, the results shown in Table 4-6 indicate that the majority of 

Internet respondents (87.75%) have some college degree or higher. In addition, Table 4-6 

revealed that the majority of the Internet respondents (85.2%) are younger than 51 years old.  
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Table 4-6: Distribution of gender, age, and education by response method 
(The percent between parentheses is cell size relative to the group total) 

Factor Response method Total Odds ratio* Handout Interactive online 

Gender 

Male 126 
(45.16%) 

75 
(82.41%) 

109 
(55.61%) 

310 
(54.77%) 1.52 

Female 153 
(54.84%) 

16 
(17.58%) 

87 
(44.39%) 

256 
(45.23%) 1 

Total 279 
(100%) 

91 
(100%) 

196 
(100%) 

566 
(100%)  

 

Age  

18-25 64 
(22.94%) 

69 
(75.82%) 

55 
(28.06%) 

188 
(33.22%) 2.70 

26-35 62 
(22.22%) 

15 
(16.48%) 

53 
(27.04%) 

130 
(22.97%) 2.68 

36-50 86 
(30.82%) 

6 
(6.59%) 

59 
(30.10%) 

151 
(26.67%) 2.16 

51-65 45 
(16.13%) 

1 
(1.11%) 

22 
(11.22%) 

68 
(12.01%) 1.54 

Over 65 22 
(7.89%) 

0 
(0.00%) 

7 
(3.58%) 

29 
(5.13%) 1 

Total 279 
(100%) 

91 
(100%) 

196 
(100%) 

566 
(100%)  

 

Education 

Graduate school 
or higher 

52 
(18.64%) 

7 
(7.69%) 

63 
(32.14%) 

122 
(21.55%) 4.04 

College degree 103 
(36.92%) 

19 
(20.88%) 

59 
(30.10%) 

181 
(31.98%) 1.91 

Some College 79 
(28.32%) 

60 
(65.93%) 

50 
(25.51%) 

189 
(33.39%) 2.11 

High School 35 
(12.54%) 

5 
(5.50%) 

21 
(10.71%) 

61 
(10.78%) 1.99 

Did not graduate 
 from high school 

10 
(3.58%) 

0 
(0.00%) 

3 
(1.54%) 

13 
(2.30%) 1 

Total 279 
(100%) 

91 
(100%) 

196 
(100%) 

566 
(100%)  

* Odds ratio between handout and online survey 

 

Moreover, Chi-square test was developed to test the association between response 

method and respondents’ characteristics; gender, age, and education. It was found that significant 

associations exist between the response method and the respondents’ characteristics. Table 4-7 

summarizes the results of Chi-Square Test. However, Chi-square test is not an appropriate test in 
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case of age and education with response method as we would lose crucial information on the 

natural ordering of age and education categories (Abdel-Aty and Abdelwahab; 2001).  

 

Table 4-7: Summary of the results of Chi-squared test 

Association χ² df P-value 
Gender * response method 38.5338 2 <.0001 

Age * response method 122.3664 8 <.0001 
Education * response method 67.6873 8 <.0001 

 

Therefore, Ridit analysis, a technique that takes advantage of natural ordering, was 

developed. The first step in Ridit analysis is to select one group to serve as a reference then the 

average Ridit for the other group (comparison group) can be determined. For more information 

about Ridit analysis, the reader is referred to Bross (1958) and Fleiss (1981). The Ridits were 

calculated for age groups as shown in Table 4-8. The handout response group was selected as the 

reference group and the online response group was selected as the comparison group. The mean 

Ridit for the online group was 0.214, smaller than 0.5, which implies that the chances are about 

2:1 that such an online respondent will be younger than a handout respondent. Again, this means 

young participants have higher odds of responding via the Internet. 

Similarly, Ridits of education levels were estimated. The mean Ridit for the online group 

was 0.213, smaller than 0.5, then the chances are about 2:1 that such an online respondent will 

have higher education degree than a handout respondent. This implies that participants with high 

education have higher odds of responding via the Internet. 

In summary, all the preliminary test results (odds ratios, Chi-squared test, and Ridits) 

revealed that the participants’ response method vary by gender, age, and education.  
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Table 4-8: Ridit estimations for handout and online age groups 

Age 
Handout survey Online 

survey 
Frequency (1) (2) (3) (4) Ridit (5) Frequency 

16-25 64 32 0 32 0.056 55 
26-35 62 31 64 95 0.168 53 
36-50 86 43 126 169 0.298 59 
51-65 45 22.5 212 234.5 0.414 22 

Over 65 22 11 257 268 0.473 7 
Average Ridit for the online group 0.214  

The entries in column 2 are half the corresponding values in column 1 (handout frequency) 
The entries in column 3 are the accumulated entries in column 1 shifted one category downwards. 
The entries in column 4 are the sums of the corresponding entries in columns 2 and 3. 
The entries in column 5 are the corresponding entries in column 4 divided by the total sample size “566” 
Average Ridit for the online group = ∑ Online frequency x Ridit / Internet sample size = 0.214 
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4.6 Conclusions Regarding Survey Methods  

  

This chapter presents the design and administration of a survey-based study to explore 

commuters’ responses to different visibility conditions due to fog/smoke. The survey consisted 

of 566 responses through three different survey approaches; handout, interactive, and online 

questionnaires. Discussion of the quality and completeness of responses received by these three 

approaches were presented. Also, the advantages and limitations of the three survey methods 

used in this study were presented and discussed. 

The results indicated that the online survey has the shortest average time needed to be 

completed, followed by handout, then interactive survey; 8, 10, and 20 minutes, respectively. 

Also, the interactive survey has the highest percent of complete responses (questions completed) 

with 89%, followed by online survey with 85%, and followed by handout questionnaire with 

74%, respectively. Designing the online survey in a graphical user interface manner could be the 

reason why it had the shortest average time and the second highest percent of complete responses 

after the interactive survey. Also, in the interactive survey; surveyors have a direct interaction 

with the participants to explain any ambiguousness they may find and this could explain why it 

took the longest time. Moreover, concerning the quality and completeness of responses, it was 

found that the handout survey is even better than regular mail-back survey as personal interaction 

exists between the surveyors and respondents in the handout questionnaire case. 

In addition, several categorical data analysis techniques were applied to understand the 

difference between handout, interactive, and online responses. These methods include odds ratio, 

Chi-squared test, and Ridits analysis. 

The results depict that the odds of online responses are much higher for young 

respondents (18-25 years old). This implies that young respondents are more likely to respond to 
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the online survey than older participants possibly because young respondents are more used to 

using the Internet than older participants. These results are consistent with the result obtained by 

Abdel-Aty and Abdelwahab (2001).  Also, compared to participants who just have a high school 

degree or less, the findings revealed that online respondents might have a higher level of 

education and awareness and therefore, are keen to respond to questionnaires related to studies 

that could affect and benefit them. In this regards, it was found that the majority of Internet 

respondents (87.75%) have some college degree or higher. 

It can be concluded that the interactive survey approach is recommended in future studies 

since it has high response rate, high control of interview situation, high percent collection of 

detailed information, and the highest percent of complete responses. On the other hand, the 

disadvantages include that it has the longest time needed to complete the survey and it is difficult 

to identify respondents. Therefore, when conducting an interactive survey is not possible, the 

second recommended survey type is the online survey as it has the shortest time to be completed 

and the second highest percentage of complete responses (questions completed) after the 

interactive survey. Also, conducting the survey with a combination of survey methods such as 

handout or phone is highly recommended to obtain a well representative survey sample.  
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CHAPTER 5.  SURVEY ANALYSIS 

5.1 Description of the Survey Sample 

 

As indicated earlier, a total of 566 responses were used in the analysis presented in this 

survey study. The frequencies and percentages of the survey sample are summarized in Table 5-

1. As shown in Table 5-1, about 54.8% and 45.2% of participants were males and females, 

respectively. Also, about 49.3% of responses were from the handout survey, 16% through the 

interactive survey, and 34.7% via the Internet. Moreover, the number of respondents for the 

freeway and the two-lane road surveys were 262 (46.3%) and 304 (53.7%), respectively.  

Respondents were asked if they were involved in previous crashes due to FS or HR.   

According to Table 5-1, about 3.9% and 10.8% of the respondents reported that were involved in 

FS and HR-related crashes, respectively.  

 

5.2 Response Analysis 

 

Respondents were asked if they have encountered CMS and VSL signs on freeways/two 

lane roads. The results indicated that the majority of respondents (83.6% and 68.2%) are familiar 

with CMS and VSL signs, respectively.  

As mentioned earlier, one of the objectives of this study is to determine the content of the 

message that is perceived to achieve the best safety and achieve drivers’ compliance. 

Considering drivers’ opinions, 216 respondents (38%) stated that the best message is “Caution-

fog ahead-reduce speed”. By testing the homogeneity of proportions of the given messages, the 

hypothesis that all proportions are equal was rejected at the 5% level of significance (χ2=274.7, 
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DF=5, p-value<0.0001) which implies that there is significant difference in selection of 

messages and that the aforementioned message was selected as the best message by the larger 

proportion of participants. The percentages of drivers’ choices for other alternative messages are 

listed in Table 5-1. 

In addition, the responses revealed that the majority of respondents (83.2%) agree with 

the usefulness of using two successive CMS prior to FS zones for warning drivers about any 

sudden reduction in visibility. This could provide drivers with another chance to read the content 

of the warning message of the second CMS if they missed the first one. 

Furthermore, drivers were asked about their satisfaction with the usefulness of using 

CMS and VSL signs on a five-point scale ranging from “strongly disagree” to “strongly agree”. 

About 93.5% of respondents (who agree or strongly agree) reported that they are satisfied with 

the usefulness of CMS while, 76% of participants (who agree or strongly agree) stated that VSL 

signs could be useful in reducing the number of FS crashes (as shown in Table 5-1). This 

difference could be attributed to the fact that drivers in Florida are not familiar with VSL signs 

compared to CMS. 

Another objective of this study was to investigate the best way to improve safety during 

driving through FS zones based on drivers’ expectations and preferences: using CMS only, using 

VSL signs only, using CMS and VSL signs simultaneously or closing the road during such 

adverse weather. Most of the respondents (63.8%) stated that using CMS and VSL signs together 

is the best way to improve safety during reduced visibility conditions (as shown in Table 5-1). 

 

 

 

 



78 
 

Table 5-1: Survey sample distributions 

Variables Categories Number of 
Respondents 

Percentages of 
Respondents 

Gender Male 310 54.8 
Female 256 45.2 

Age Groups 

18-25 173 30.6 
26-35 120 21.2 
36-50 136 24.0 
+51 137 24.2 

Education 
Levels 

Graduate school or higher 122 21.6 
College degree 182 32.1 
Some College 188 33.2 
High School or less 74 13.1 

Survey type 
Handout 279 49.3 
interactive 91 16.0 
online 196 34.7 

Road type Freeways 262 46.3 
two lane roads 304 53.7 

Involved in FS crashes yes 22 3.9 
no 544 96.1 

Involved in HR crashes yes 61 10.8 
no 505 89.2 

Drivers’ familiarity with CMS yes 473 83.6 
no 93 16.4 

Drivers’ familiarity with VSL 
signs 

yes 386 68.2 
no 180 31.8 

Drivers' opinion of the 
messages that will achieve the 
best safety and driver 
compliance 

Fog ahead-Reduce speed 71 12.5 
Caution-Fog ahead-reduce speed 216 38.2 
Fog ahead-Reduce speed-fine doubled 91 16.1 
Fog ahead- Reduce speed –Strictly 
enforced 132 23.3 

Caution- Reduce speed –Strictly enforced 41 7.2 
Other 15 2.7 

Drivers' opinion about the 
best way to improve safety 
during poor visibility 
conditions 

using CMS only 176 31.1 
using VSL only 16 2.8 
using CMS and VSL together 361 63.8 
close the road  13 2.3 

Drivers’ satisfaction with the 
usefulness of CMS in warning 
them about reduced visibility 
conditions 

Strongly agree 268 47.4 
Agree 261 46.1 
Neither agree nor disagree 24 4.2 
Disagree 13 2.3 
Strongly disagree 0 0 

Drivers’ satisfaction with the 
usefulness of VSL in reducing 
the number of fog related 
crashes by informing them 
about safe speed limit under 
reduced visibility conditions 

Strongly agree 187 33.0 
Agree 243 42.9 
Neither agree nor disagree 78 13.8 
Disagree 47 8.4 

Strongly disagree 11 1.9 
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This result is logical because warning drivers that there is fog ahead using CMS only 

does not instruct them on what to do. Therefore, using VSL signs is also important to advise 

drivers about the safe speed at every visibility conditions. This result is consistent with prior 

studies such as Perrin et al. (2002). The hypothesis that the proportions of all possible ways to 

improve safety are equal was rejected at the 5% level of significance (χ2=576.9, DF=3, p-

value<0.0001) which means that using CMS and VSL signs together during adverse visibility 

conditions was preferred by the larger proportion of participants. 

To obtain an in-depth understanding of drivers’ behavior in response to CMS and VSL 

instructions at different visibility conditions, 10 scenarios were designed for both; freeways and 

two-lane roads (as shown in Table 5-2). Two scenarios include two pictures for a freeway/a two-

lane road and a CMS displaying the following message: “Fog ahead – speed reduced” (As shown 

in Figure 5-1). Respondents were asked about their possible actions when driving on a freeway at 

a speed of 65 mph (or on a two-lane road at a speed of 45 mph), and they encountered a portable 

CMS advising them to reduce speed due to reduction in visibility at two conditions: low traffic 

volumes (no car leading ahead) and medium-high traffic volumes (some vehicles are ahead). 

 

Table 5-2: Description of scenarios  

Scenario Sign Visibility 
conditions Traffic conditions 

1 CMS Light fog No car leading ahead 
2 Some vehicles are ahead 
3 

VSL 

Very light fog 

No car leading ahead 4 Light fog 
5 Medium fog 
6 Heavy fog 
7 Very light fog 

Some vehicles are ahead 8 Light fog 
9 Medium fog 
10 Heavy fog 
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If you were driving on a two lane road at a speed of 45 mile/hour (mph) and you encounter a CMS 
advising you to reduce your speed because of reduction in visibility due to Fog/smoke in order to reduce 
the chances of an accident. What would you do in each of the following cases? 
 
      No car leading ahead      car leading ahead 

20)  a) Do nothing 21)  a) Do nothing 
b) Reduce speed immediately b) Reduce speed immediately 
c) Reduce speed after some time c) Reduce speed after some time 

        d) Reduce speed and put blinkers on  d) Follow other vehicles’ speed 
 regardless of CMS warning                                                                      
 e) Reduce speed and put blinkers on 

 

Figure 5-1: Sample of CMS questions from the two-lane road survey 

 

The other 8 scenarios consisted of 8 pictures for a freeway/two-lane road; each picture 

contained a VSL sign advising drivers to reduce their speed to 40 mph in the freeway survey and 

to 25 mph in the two-lane road survey. Four out of these 8 scenarios were designed at low traffic 

volume and at 4 fog conditions (very light, light, medium, and heavy fog) while, the other 4 

scenarios were developed at medium-high traffic volume and at the same 4 fog conditions (as 

shown in Table 5-2). An example of these questions is shown in Figure 5-2. It is worth 

mentioning that although using blinkers during driving is not legal in many states, many people 

do not know and do it anyhow (adding this option was recommended during the pilot survey as it 
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is a common driving behavior . Also, it was decided to study drivers’ responses to CMS at only 

one fog condition (light fog) to reduce the numbers of survey’s questions.  

 
If you were driving on a freeway with a speed limit of 65 mile/hour (mph), and you encounter a 
Variable Speed Limit Sign of 40 mile/hour (mph) to reduce the chances of an accident that may 
occur because of a sudden reduction in visibility due to fog/smoke. What will you do in each of 
the following cases?  

Note: in case you will reduce your speed (answers c or d), please specify your reduced speed  
 a) Do nothing  
b) Follow other vehicles’ speed.  
c) Reduce speed to ………..mph (Please specify your reduced speed) 
 d) Put blinkers on and reduce speed to…...mph (Please specify your reduced speed) 
  
                       Very Light Fog                Light Fog 
 
 
 
 
 
 
 
 
 
 
 
 

                                    Medium Fog                                                   Heavy Fog  
 

   
 
 
 
 

 
 
 
 
 

 
Figure 5-2: Sample of VSL questions from the freeway survey 

 

Drivers’ responses to CMS and VSL signs at different fog and traffic conditions for both: 

freeway and two-lane road cases are summarized in Table 5-3 and Table 5-4, respectively. Table 

5-3 indicates that only 37% of the respondents reported that they would reduce speed 
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immediately or reduce speed and put blinkers on when encountered CMS, which advises them to 

reduce speed due to reduced visibility condition, at low traffic volume while driving on a 

freeway. At medium-high traffic volume, this percentage increased to 51.6%. This seems 

reasonable because of the effect of traffic volume as it is one of the most important factors 

affecting drivers’ behavior. 

For two-lane road case, the percentages of drivers who were willing to reduce speed 

immediately or reduce speed and put blinkers on following CMS instructions at low and 

medium-high traffic volumes are 38.5% and 56.9%, respectively. Again, this result implies that 

drivers are more cautious when driving at medium-high traffic volume. Although Table 5-3 

indicates that drivers are more cautious when driving on two-lane roads at adverse visibility 

conditions compared with driving on freeways. However, using Z-test, the differences of 

proportions between drivers’ response when driving on freeways and on two-lane roads were not 

statistically significant.  

 

Table 5-3: Summary of drivers’ responses to CMS instructions  

Traffic 
conditions 

Fog 
conditions 

Do 
nothing 

Reduce speed 
after some 

time 

Follow other 
vehicles’ speed 

Reduce speed 
immediately or 

reduce speed and 
put blinkers on 

Drivers’ behavior for Freeway Survey (Sample size = 262) 
Low traffic 

volume 
Light fog 

56 
(21.4%) 109 (41.6%) NA* 97 (37%) 

Medium –
high traffic 

volume 
20 (7.6%) 63 (24%) 44 (16.8%) 135 (51.6%) 

Drivers’ behavior for Two-Lane Road Survey (Sample size = 304) 
Low traffic 

volume 
Light fog 

44 
(14.5%) 143 (47%) NA* 117 (38.5%) 

Medium –
high traffic 

volume 
11 (3.6%) 71 (23.4%) 49 (16.1%) 173 (56.9%) 

* Not Applicable 
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As shown in Table 5-4, clearly both fog and traffic conditions greatly affect drivers’ 

responses to safe speed limits displayed on VSL signs at each of the aforementioned 8 scenarios. 

As the visibility distance is reduced and traffic volume increases, drivers tend to follow VSL 

instructions. With respect to the survey made in freeway, the percentage of respondents who 

would reduce their speed or reduce speed and put blinkers on increased from 63.4 to 77.1 to 96.6 

to 98.5% for low traffic volumes and increased from 44.7 to 51.1 to 76 to 89.7% for medium-

high traffic volumes. Higher values were obtained for the two-lane road’s survey. Again this 

implies that traffic volume, type of road, and visibility condition affected the likelihood of 

reducing the speed following VSL/CMS instructions. 

 

Table 5-4: Summary of drivers’ responses to VSL sign instructions  

Drivers’ behavior for Freeway Survey (Sample size = 262) 

Traffic 
conditions 

Fog 
conditions Do nothing 

Follow other 
vehicles’ 

speed 

Reduce speed or 
reduce speed and 
put blinkers on 

Reduce speed to 
40 MPH or less 

Low traffic 
volume 

Very light fog 96 (36.6%) NA* 166 (63.4%) 92 (35.1%) 
Light fog 60 (22.9%) NA* 202 (77.1%) 104 (39.7%) 

Medium fog 9 (3.4%) NA* 253 (96.6%) 155 (59.2) 
Heavy fog 4 (1.5%) NA* 258 (98.5%) 201 (76.7%) 

Medium–high 
traffic volume 

Very light fog 43 (16.4%) 102 (38.9%) 117 (44.7%) 93 (35.5%) 
Light fog 22 (8.4%) 106 (40.5%) 134 (51.1%) 107 (40.8%) 

Medium fog 4 (1.5%) 59 (22.5%) 199 (76.0) 159 (60.7%) 
Heavy fog 2 (0.8%) 25 (9.5%) 235 (89.7%) 215 (82.1%) 
Drivers’ behavior for Two-Lane Road Survey (Sample size = 304) 

Traffic 
conditions 

Fog 
conditions Do nothing 

Follow other 
vehicles’ 

speed 

Reduce speed or 
reduce speed and 
put blinkers on 

Reduce speed to 
25 MPH or less 

Low traffic 
volume 

Very light fog 110 (36.2%) NA* 194 (63.8%) 108 (35.5%) 
Light fog 65 (21.4%) NA* 239 (78.6%) 127 (41.8%) 

Medium fog 8 (2.6%) NA* 296 (97.4%) 183 (60.2%) 
Heavy fog 2 (0.7%) NA* 302 (99.3%) 242 (79.6%) 

Medium–high 
traffic volume 

Very light fog 44 (14.5%) 113 (37.2%) 147 (48.3%) 117 (38.5%) 
Light fog 24 (7.9%) 121 (39.8%) 159 (52.3%) 141 (46.4%) 

Medium fog 0 (0%) 64 (21.1%) 240 (78.9%) 196 (64.5%) 
Heavy fog 0 (0%) 25 (8.2%) 279 (91.8%) 262 (86.2%) 

* Not Applicable 
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Furthermore, as shown in the last column of Table 5-4, only 35.1% of respondents stated 

that they would follow VSL signs’ instructions (reduce their speed to 40 mph or less) while 

driving on a freeway at very light fog and low traffic volume. The results also reveal that the 

percentages of drivers who are willing to follow VSL instructions increase as the visibility 

distance deteriorates and traffic volume increases. For example, the percentage increased to 

82.1% at heavy fog and medium-high traffic volume. The same conclusion applies to two-lane 

roads but with higher percentages of compliance with VSL instruction. However, using Z and 

Chi Square tests, no significant differences were found between drivers’ responses to VSL signs 

while driving on freeways versus two-lane roads or while driving at low versus medium-high 

traffic volumes. 

Finally drivers were asked to rank the following six options from the safest action (rank 

1) that they thought would minimize the chance of a FS crash to the least action (rank 6): 1) do 

nothing, 2) drive below speed limit, 3) drive below speed limit following the instructions of 

CMS and VSL signs, if they are available, 4) follow other vehicles’ speed regardless of CMS and 

VSL warnings, 5) drive below speed limit and put blinkers on, 6) Abandon the journey and stop 

the car immediately at the right shoulder of the road. 

The results revealed that 36.2% of the respondents claimed that following the instructions 

of CMS and VSL signs is the safest action.  Driving below speed limit and putting blinkers on 

came in the second place with 26.3%. On the other hand, the majority of sample (86%) stated 

that doing nothing is the most dangerous action. “Abandon the journey and stop the car 

immediately at the right shoulder of the road” came next with about 10%. Some participants 

pointed out that the last option is dangerous as it might increase rear-end crashes especially at 

heavy fog condition. 
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5.3 Association between Categorical Variables 

 

Prior to the modeling process, conditional distributions, odds’ ratios, and Chi square tests 

were used for preliminary investigation of the differences between drivers’ responses to CMS 

and VSL signs at different traffic and visibility conditions. Table 5-5 summarizes the results of 

conditional distributions and odds ratios. The odds’ ratios were estimated for each group with 

respect to the first category of that group.  

As shown in Table 5-5, concerning the gender, the odds’ ratio of females equals 3.7, 

which implies that when driving at heavy fog and medium-high traffic volume, the odds of 

following VSL instructions are 3.7 times higher for females than males. Also regarding age, the 

result supports the hypothesis that older respondents are more likely to respond to VSL 

instructions than young participants. For example, the results revealed that the likelihood of 

following VSL instructions is 5.1 times higher for old drivers than for young drivers (18-25 years 

old).  

Regarding drivers’ familiarity with VSL signs, it was found that the odds of following 

VSL instructions are 2.6 times greater for drivers who are familiar with VSL than for those who 

are not. In addition, the likelihood of following VSL instructions is 2.1 times higher for 

experienced drivers than drivers who are not familiar with driving at poor visibility conditions. 

Similar results were obtained for drivers’ response to CMS (see Table 5-5). Concerning road 

type, it was found that the probability of following CMS while driving on two-lane roads is 1.2 

times higher than while driving on freeways.  
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Table 5-5: Conditional distributions and odds ratio 
(The percent between parentheses is cell size relative to the group total) 
 

Factor 

Driver’s response to VSL instructions at heavy fog and 
medium-high traffic volume Total Odds 

ratio Do nothing or follow other 
vehicles’ speed 

Reduce speed or reduce 
speed and put blinkers on 

Gender 
Male 48 (80%) 262 (51.8%) 310 (54.8%) 1 

Female 12 (20%) 244 (48.2%) 256 (45.2%) 3.7 
Total 60 (100%) 506 (100%) 566 (100%)  

 

Age  

18-25 33 (55%) 140 (27.7%) 173 (30.6%) 1 
26-35 14 (23.3%) 106 (20.9%) 120 (21.2%) 1.8 
36-50 7 (11.7%) 130 (25.7%) 137 (24.2%) 4.4 
+51 6 (10%) 130 (25.7%) 136 (24%) 5.1 

Total 60 (100%) 506 (100%) 566 (100%)  
 

Drivers’ familiarity with 
VSL signs 

No 31 (51.7%) 149 (29.4%) 180 (31.8%) 1 
Yes 29 (48.3%) 357 (70.6%) 386 (68.2%) 2.6 

Total 60 (100%) 506 (100%) 566 (100%)  
 

Past experience  
with driving at adverse  

visibility conditions 

No 19 (31.7%) 91 (18%) 110 (19.4%) 1 
Yes 41 (68.3%) 415 (82%) 456 (80.6%) 2.1 

Total 60 (100%) 506 (100%) 566 (100%)  
 

Involved in FS crashes 
No 20 (90.9%) 486 (89.3%) 506 (89.4%) 1 
Yes 2 (9.1%) 58 (10.7%) 60 (10.6%) 1.2 

Total 22 (100%) 544 (100%) 566 (100%)  
 

Involved in HR crashes 
No 55 (91.7%) 450 (88.9%) 505 (89.2%) 1 
Yes 5 (8.3%) 56 (11.1%) 61 (10.8%) 1.4 

Total 60 (100%) 506 (100%) 566 (100%)  

Factor 

Driver’s response to CMS instructions at medium-high 
traffic volume 

Total Odds 
ratio Do nothing or reduce speed 

after some time or follow 
other vehicles’ speed 

Reduce speed immediately 
or reduce speed and put 

blinkers on 

Gender 
Male 162 (62.8%) 148 (48.1%) 310 (54.8%) 1 

Female 96 (37.2%) 160 (51.9%) 256 (54.8%) 1.8 
Total 258 (100%) 308 (100%) 566 (100%)  

 

Age 

18-25 119 (46.1%) 54 (17.5%) 173 (30.6%) 1 
26-35 49 (19.0%) 71 (23.1%) 120 (21.2%) 3.2 
36-50 58 (22.5%) 78 (25.3%) 136 (24.0%) 3.0 
+51 32 (12.4%) 105 (34.1%) 137 (24.2%) 7.2 

Total 258 (100%) 308 (100%) 566 (100%)  
 

Road Type 
freeway 127 (49.2%) 135 (43.8%) 262 (46.3%) 1 

2-lane road 131 (50.8%) 173 (56.2%) 304 (53.7%) 1.2 
Total 258 (100%) 308 (100%) 566 (100%)  

 

Drivers’ familiarity with 
CMS 

No 221 (85.7%) 252 (81.8%) 473 (83.6%) 1 
Yes 37 (14.3%) 56 (18.2%) 93 (16.4%) 1.3 

Total 258 (100%) 308 (100%) 566 (100%)  
 

Past experience  
with driving at adverse  

visibility conditions 

No 211 (81.8%) 245 (79.5%) 456 (80.6%) 1 
Yes 47 (18.2%) 63 (20.5%) 110 (19.4%) 1.2 

Total 258 (100%) 308 (100%) 566 (100%)  
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Additionally, one more interesting research question was to examine whether drivers’ 

responses to reduced visibility conditions differed for those who were involved in FS or HR 

crashes. As expected, it was found that when driving at heavy fog and medium-high traffic 

volume, the odds of following VSL instructions is 1.2 times higher for participants who were 

involved in FS crashes than those who were not involved in such crashes (as shown in Table 5-

5). Similarly, the odds of following VSL signs at heavy fog condition and medium-high traffic 

volume is 1.4 times higher for participants who were previously experienced HR crashes than 

those who were not involved in such crashes. 

Moreover, Pearson Chi-Square test (χ2) and Mantel-Haenszel Chi-Square test (CMH) 

were developed to explore the association between drivers’ responses to CMS/VSL signs and 

other factors such as age, gender, education, drivers’ familiarity with CMS/VSL signs, and 

experience with driving at adverse visibility conditions. Chi-Square test was used to test the 

independence of every two nominal variables while, CMH test was used to examine the 

association between every two ordinal variables or between ordinal and nominal variables. 

The results showed significant association between drivers’ response to VSL/CMS signs 

and those variables shown in Table 5-6. 
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Table 5-6: Summary of Pearson Chi-Squared and Mantel-Haenszel tests’ results 

Factors Value DF P-value 
Factors associated with drivers’ responses to VSL instructions  

at heavy fog and medium to high traffic volume (1) 
Gender χ2 =20.770 4 0.000 
Age CMH =58.943 12 0.000 
Education CMH =22.978 12 0.028 
Drivers’ familiarity with VSLS χ2 =15.045 3 0.002 
Past experience with driving at poor visibility condition χ2 =8.391 3 0.039 

Factors associated with drivers’ responses to VSL instructions  
at very light fog and low traffic volume (2) 

Gender χ2 =7.889 2 0.019 
Age CMH =67.117 8 0.000 

Factors associated with drivers’ responses to CMS instructions  
at low traffic volume (3) 

Gender χ2 =12.127 3 0.007 
Age CMH =94.622 12 0.000 
Education CMH =43.128 12 0.000 
Drivers’ familiarity with driving on freeway/2 lane road χ2 =9.693 3 0.021 
Drivers’ familiarity with PCMS χ2 =8.668 3 0`.034 

Factors associated with drivers’ responses to CMS instructions  
at medium to high traffic volume (4) 

Gender χ2 =14.601 4 0.006 
Age CMH =110.418 16 0.000 
Education CMH =35.570 16 0.003 
 
(1) * (2) χ2 =62.068 6 0.000 
(1) * (3) χ2 =105.904 9 0.000 
(1) * (4) χ2 =129.065 12 0.000 
(2) * (3) χ2 =141.239 6 0.000 
(2) * (4) χ2 =109.491 8 0.000 
(3) * (4) χ2 =652.313 12 0.000 

* Only significant associations are shown in the table 
 

In summary, all the preliminary tests’ results revealed that the participants’ response to 

CMS and VSL signs instructions vary by gender, age, familiarity with CMS and VSL signs, and 

experience with driving at adverse visibility condition. Thus, to improve our understanding of 

the preferences of respondents in following VSL and CMS instructions at such adverse visibility 

conditions, multivariate analyses; the bivariate and multivariate probit models were employed for 

further analyses. 
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5.4 Bivariate and Multivariate Probit Approach 

 

This section emphasizes two methodological approaches for analyzing and modeling 

drivers’ responses to CMS and VSL signs at different visibility and traffic conditions; Bivariate 

Probit Models (BPM) and Multivariate Probit Model (MPM). Correlated responses often arise in 

behavioral, medical and psychological researches. BPM and MPM are popular methods for 

analyzing this kind of data (Lu and Song, 2006).  

MPM has been widely used in agricultural, statistical, and economic studies for analyzing 

potentially correlated multivariate outcomes. These studies include Gibbons and Wilcox (1998), 

Lansink et al. (2003), and Young et al. (2009). However, MPM has been developed in few 

transportation related studies such as Choo and Mokhtarian (2008), and Rentziou et al. (2010).  

In the present study, BPM and MPM were adopted due to the likely correlation of 

unobserved effects (between drivers’ response to CMS and to VSL signs at different visibility 

and traffic conditions) which if not accounted for, would lead to biased model coefficient 

estimates. MPM is a generalization of the BPM used to estimate several correlated binary 

outcomes jointly (Ashford and Sowden, 1970).  

In this study, the BPM was used to identify the dependent variables that better explain 

drivers’ responses to CMS and VSL signs at adverse visibility conditions, and then these 

dependent variables were used to estimate the MPM.  The advantage of using MPM is that all 

dependent and explanatory factors affecting drivers’ responses to CMS and VSL signs at 

different traffic and visibility conditions can be shown and discussed in one model framework 

instead of explaining several BPM separately. In addition, correlations between several equations 

can also be accounted for. 
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In BPM, the simultaneous estimation of the two models would improve the coefficient 

estimates by accounting for the correlation between the unmeasured factors (Das et al., 2008). 

Additionally, one advantage of the BPM is that the estimated values of the first binary dependent 

variable can be determined and instrumented simultaneously as an explanatory variable in the 

second model and vice versa (if a relationship between the two variables are thought to exist). 

According to Meng and Schmidt (1985), Abdel-Aty et al. (1994), Mohanty (2002) and 

Greene (2003), the BPM is a natural extension of the probit model that allows two equations 

with correlated disturbances. The model specification for the simultaneously estimated BPM can 

be explained as follows: 

 

            Y1
* = β X1

 + έ1  Y1 = 1 if Y1
* ≥ 0; 0 otherwise                                         (5-1) 

  Y2
* = α X2 + έ2   Y2 = 1 if Y2

* ≥ 0; 0 otherwise                                        (5-2) 

Where: 

Y1
* and Y2

* = Estimated dependent variables; 

Y1 and Y2 = Observed choices for dependent variables; 

X1, X2 = Vector of explanatory variables influencing choice behavior; 

Β, α = Coefficient vectors; and 

έ1, έ2 = random error term. 

The error terms έ1 and έ2 are estimated according to: 

E [έ1 / x1, x2] = E [έ2 / x1, x2] = 0                                                                                                (5-3) 

Var [έ1 / x1, x2] = Var [έ2 / x1, x2] = 1                                                                                         (5-4)   

Cov [έ1, έ2 / x1, x2] = ρ                                                                                                                (5-5)   
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Where: ρ is the correlation coefficient between the two error terms. If ρ equals zero, the bivariate 

probit model converges to two separate binomial probit models. In addition, the model 

parameters of the two probit equations are estimated simultaneously using full information 

maximum likelihood estimation. Parameters vectors Β, α, and ρ are estimated to maximize the 

likelihood function. Also, significant ρ will imply the presence of unobserved individual factors 

(heterogeneity) that affect both dependent variables used in the BPM. 

Three bivariate probit models were developed after investigating several alternative 

model formations and dependent variables (as shown in Table 5-7). Drivers’ response to VSL 

signs at heavy fog and medium-high traffic volume (0 if do nothing or follow other vehicles’ 

speed, 1 if reduce speed or reduce speed and put blinkers on) was the first dependent variable in 

the three models. The second dependent variables in the three fitted BPM were drivers’ response 

to VSL signs at very light fog and low traffic volume (0 if do nothing, 1 if reduce speed or 

reduce speed and put blinkers on), drivers’ response to CMS at low traffic volume (0 if do 

nothing or reduce speed after some time, 1 if reduce speed immediately or reduce speed and put 

blinkers on), and drivers’ response to CMS at medium-high traffic volume (0 if do nothing or 

reduce speed after some time or follow other vehicles’ speed, 1 if reduce speed immediately or 

reduce speed and put blinkers on), respectively. Level 0 was considered the base case for each 

dependent variable (Table 5-7). 

The results of the three BPM revealed that gender, age, drivers’ familiarity with VSL 

signs, and road type were the most significant factors affecting the likelihood of reducing speed 

following the instructions of VSL or CMS in response to adverse visibility conditions. 

 

 



 

 
 

Table 5-7: Summary of Bivariate probit models 
                    (a Base case     b Akaike Information Criterion) 

 First BPM Model Second  BPM Model Third BPM Model 

Variable Description Estimate Standard 
Error P-value Estimate Standard 

Error P-value Estimate Standard 
Error P-value 

First equation drivers’ responses to VSL signs at heavy fog and medium-high traffic condition 
(Baseline:  do nothing or follow other vehicles’ speed) 

Intercept 0.6629 0.1290 0.0000 0.6896 0.1325 0.0000 0.6826 0.1299 0.0000 
Gender - male ----- a   ----- a   ----- a   

Gender - female 0.5889 0.1702 0.0005 0.5569 0.1748 0.0014 0.5747 0.1711 0.0008 
Age (18-25) ----- a   ----- a   ----- a   
Age (36-50) 0.6515 0.2311 0.0048 0.6219 0.2289 0.0066 0.6283 0.2232 0.0049 
Age (+51) 0.6556 0.2280 0.0040 0.6036 0.2180 0.0056 0.6239 0.2186 0.0043 

Drivers’ familiarity with VSL SIGNS (no) ----- a   ----- a   ----- a   
Drivers’ familiarity with VSL SIGNS (yes) 0.5233 0.2045 0.0105 0.4807 0.2168 0.0266 0.5193 0.2075 0.0123 

Road type (2-lane road) ----- a   ----- a   ----- a   
Road type (freeway) -0.3805 0.2077 0.0670 -0.3319 0.2141 0.1212 -0.3923 0.2175 0.0713 

Second equation 

Drivers’ responses to VSL signs 
at very light fog and low 

 traffic volumes 
(Baseline: do nothing) 

Drivers’ responses to CMS at low 
traffic volume 

(Baseline: do nothing or reduce 
speed after some time) 

Drivers’ responses to CMS at 
medium-high traffic volume 

(Baseline: do nothing or reduce 
speed after some time or follow 

other vehicles’ speed) 
Intercept -0.2175 0.1032 0.0350 -1.0576 0.1241 0.0000 -0.4799 0.1149 0.0000 

Gender-male ----- a   ----- a   ----- a   
Gender-female 0.2265 0.1166 0.0520 0.2758 0.1128 0.0145 0.3346 0.1141 0.0034 

Age (18-25) ----- a   ----- a   ----- a   
Age (26-35) 0.4105 0.1468 0.0052 0.6540 0.1630 0.0001 0.6486 0.1534 0.0000 
Age (36-50) 0.5372 0.1483 0.0003 0.6067 0.1588 0.0001 0.6419 0.1506 0.0000 
Age (+51) 1.2097 0.1673 0.0000 1.2299 0.1589 0.0000 1.2226 0.1567 0.0000 

Road type (2-lane road)       ----- a   
Road type (freeway)       -0.2973 0.1139 0.0091 

Error terms correlation coefficient (ρ)  0.3534 0.0899 0.0001 0.3819 0.1149 0.0009 0.3785 0.0969 0.0001 

Number of observations  566 566 566 

Log-likelihood at convergence  -499.475 -500.666 -510.442 

AIC b  1020.95 1023.332 1044.884 
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In addition, to improve our understanding of the factors affecting drivers’ behavior at 

different visibility and traffic conditions, an MPM was developed. Based on the three BPM 

mentioned above, it was found that the dependent variables that better explain drivers’ response 

to adverse visibility conditions were; drivers’ response to VSL at heavy fog and medium-high 

traffic volume, drivers’ response to VSL at very light fog and low traffic volume, and drivers’ 

response to CMS at medium-high traffic volume. Therefore, these three dependent variables 

were used in MPM.  

The MPM estimates, goodness-of-fit statistics, and the correlation coefficient “ρ” 

between every two error terms in the three equations are presented in Table 5-8. As shown in 

Table 5-8, the coefficients of correlation “ρ” is statistically different from zero, hence illustrating 

the validity of using the Multivariate probit framework.  

According to the first model, while encountering a heavy fog condition and some 

vehicles are ahead (medium-high traffic volume), the likelihood of female drivers who are 

reducing their speed or reducing their speed and putting the blinkers on are more than the 

corresponding male drivers. This implies that female drivers are more cautious than male drivers.  

Concerning age, as age increases, the likelihood of following VSL instruction at heavy 

fog and medium-high traffic volume increases. The results suggest that compared to young 

respondents (18-25 years old), old respondents (51 years old or more) are more likely to reduce 

their speed following VSL instruction. This indicates that maturity and experience are essential 

factors that affect the driver’s response to VSL instructions. 

An expected finding is that drivers, who are familiar with VSL signs, are more likely to 

reduce their speed at heavy fog conditions. This could be attributed to the fact that drivers, who 
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are familiar with VSL signs and aware of its importance in avoiding a potential accident in case 

of reduced visibility due to FS, are less likely to ignore its instructions.    

Regarding the type of road, at 90% confidence, the probability of reducing speed, 

following VSL at heavy fog and medium-high traffic volume while driving on a freeway, is less 

than the corresponding probability while driving on a two-lane road. Thus drivers could be more 

cautious on two-lane roads.  

Similar findings were obtained from the second and third equations. The second model 

suggests that both females and old drivers (51 years old or more) are more likely to reduce their 

speed following VSL instructions at very light fog and low traffic volume compared to males 

and young drivers (18-25 years old), respectively.  

According to the third probit model, while encountering CMS at medium-high traffic 

volume which advise drivers to reduce their speed due to reduction of visibility, the likelihood of 

females and old drivers who are reducing their speed or reducing their speed and putting blinkers 

on are more than the corresponding males and young drivers. Again, this implies that females 

and old drivers are more cautious than male and young drivers.  

Finally, drivers who drive on a freeway at poor visibility conditions are less likely to 

respond to CMS instructions compared to those who drive on a two-lane road possibly due to 

more cautious driving on two-lane roads. It is possible that the presence of medians on freeways 

could give drivers a better sense of protection from the opposing traffic. 
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Table 5-8: Multivariate Probit model estimates 
                    (a Base case     b Akaike Information Criterion) 

 
  

Variable Description Estimate Standard 
Error P-value 

First equation : drivers’ responses to VSL signs at heavy fog and medium-high traffic volume 
(Baseline: do nothing or follow other vehicles’ speed) 
Intercept 0.5690 0.1463 0.0001 

Gender-male ----- a   
Gender-female 0.5553 0.1714 0.0012 

Age (18-25) ----- a   
Age (26-35) 0.2778 0.1712 0.1041 
Age (36-50) 0.7678 0.2408 0.0014 
Age (+51) 0.7637 0.2356 0.0012 

Drivers’ familiarity with VSL SIGNS (no) ----- a   
Drivers’ familiarity with VSL SIGNS (yes) 0.5001 0.2106 0.0176 

Road type (2-lane road) ----- a   
Road type (freeway) -0.3508 0.2193 0.1097 

Second  equation :  drivers’ responses to VSL signs at very light fog and low traffic volume 
 (Baseline: do nothing) 

Intercept -0.2299 0.1038 0.0267 
Gender-male ----- a   

Gender-female 0.2242 0.1174 0.0562 
Age (18-25) ----- a   
Age (26-35) 0.4501 0.1527 0.0032 
Age (36-50) 0.5589 0.1496 0.0002 
Age (+51) 1.2241 0.1679 0.0000 

Third  equation :  drivers’ responses to CMS at medium-high traffic volume 
 (Baseline: do nothing or reduce speed after some time or follow other vehicles’ speed) 

Intercept -0.5007 0.1155 0.0000 
Gender-male ----- a   

Gender-female 0.3321 0.1146 0.0038 
Age (18-25) ----- a   
Age (26-35) 0.6880 0.1569 0.0000 
Age (36-50) 0.6574 0.1510 0.0000 
Age (+51) 1.2322 0.1571 0.0000 

Road type (2-lane road) ----- a   
Road type (freeway) -0.2694 0.1138 0.0179 

Error terms correlation coefficient between equations 1 & 2 (ρ12)  0.3525 0.0901 0.0001 

Error terms correlation coefficient between equations 1 & 3 (ρ13)  0.3716 0.0976 0.0001 

Error terms correlation coefficient between equations 2 & 3 (ρ23) 0.2524 0.0698 0.0003 

Number of observations  566 

Log-likelihood at convergence  -835.7581 

AIC b  1707.5162 
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5.5 Structural Equation Modeling (SEM) Approach 

 

This section examine drivers’ responses under low visibility conditions and quantify the 

impacts and values of various factors found to be related to drivers’ compliance and drivers’ 

satisfaction with VSL and CMS instructions in  different visibility, traffic conditions, and at two 

types of roadways; freeways and two-lane roads. To achieve these goals, Explanatory Factor 

Analysis (EFA) and Structural Equation Modeling (SEM) approaches were adopted. 

 

5.5.1 Explanatory Factor Analysis 

 

Explanatory Factor Analysis (EFA) is a statistical method used to identify the number 

and nature of the underlying factors (latent variables) that are responsible for the variability in 

the data. Table 5-9 shows description and input codes of the observed variables used in the 

present study.  

These variables include (1) demographic variables (i.e., gender, age, number of years the 

driver had a valid driver’s license, number of traffic citations in the previous 3 years, 

involvement in fog/smoke or heavy rain related crashes, and frequency usage of freeways/ two-

lane roads), (2) roadway type (the type of survey that each participate responded to: freeways or 

2 lane roads), (3) familiarity with CMS and VSL signs, (4) drivers’ satisfaction with the 

importance of using CMS and VSL signs in reduced visibility conditions, (5) drivers’ responses 

to CMS instructions under two traffic conditions (no car leading ahead and some vehicles are 

ahead), (6) drivers’ responses to VSL instructions under four levels of fog (very light, light, 

medium and heavy) and the same two traffic conditions mentioned above. 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Variance
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It is worth mentioning that nominal variables (such as CMS_follow 1 and CMS_follow 

2) were transferred to binary variables. In SEM, this way is preferable as it allow us to indentify 

the nonlinear influence of nominal variables on endogenous variables (Lee et. al, 2008). Using 

SAS procedure FACTOR, EFA was performed on the observed variables shown in Table 5-9. 

The Scree test, a plot of the eigenvalues associated with factor analysis, suggests that the number 

of meaningful factors to retain is four.  

In addition, Table 5-10 shows the Varimax (orthogonal) rotated factor loadings which are 

the correlations between each observed variable (rows) and each factor (columns). In interpreting 

the rotated factor pattern, usually a variable is said to load on a given factor if the factor loading 

is 0.4 or greater for that factor (Hatcher 1994 and Lee et. al, 2008).  Using these criteria, four 

factors were identified. Three observed variables (VSL_follow 1, VSL_follow 5 and 

VSL_follow 6) were found to load on the first factor, which was subsequently labeled “drivers’ 

compliance with VSL signs under very light/light fog”. Also, three variables (VSL_follow 3, 

VSL_follow 4, and VSL_follow 8) loaded on the second factor, which was called “drivers’ 

compliance with VSL signs under medium/heavy fog”. In addition, four variables (Intention, 

CMS_satisfaction, VSL_satisfaction, and CMS_satisfaction2) loaded on the third factor which 

was labeled “satisfaction with VSL and CMS signs”. Finally, two variables (age and 

driving_exp) loaded on the fourth factor which was called “driver factors”. These four factors 

account for about 97% of the variance in the data. It is worth noting that two variables 

(VSL_follow 2 and VSL_follow 7) load on both factors 1 and 2 and hence, they were not used in 

interpreting the factors. 
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Table 5-9: Definitions of variable, their codes and statistics 

Observed variables Description and coding of 
input value 

Simple 
Statistics 

Name Description Mean S.D 

Gender Gender    1   male 
   0   female 0.55 0.50 

Age Age Continuous variable 37.03 15.31 

Driving_exp Driving experience (number of years the driver had a 
valid driver’s license) Continuous variable  19.30 14.58 

Citation_no Number of traffic citations in the previous 3 years Continuous variable 0.66 1.28 

FS_crashes Involvement in fog/smoke related crashes    1  Yes 
   0   No 0.04 0.19 

HV_crashes Involvement in heavy rain related crashes    1  Yes 
   0   No 0.11 0.31 

Exposure Frequency usage of freeways/ two-lane roads 

   1   rarely or never 
   2   once a month 
   3   once in two weeks 
   4   once a week 
   5   2-4 times a week 
   6   > 4 times a week 

4.93 1.44 

Road_type The type of survey that a participant responded to    1  two-way lane roads 
   0   freeways 0.54 0.50 

CMS_ 
familiarity Drivers’ familiarity with changeable message signs    1  Yes 

   0   No 0.84 0.37 

VSL_ 
familiarity Drivers’ familiarity with variable speed limit signs    1  Yes 

   0   No 0.68 0.47 

Intention Willingness to follow VSL and CMS instructions 
1   Strongly disagree 
2   disagree 
3   neither agree nor 

disagree 
4   agree 
5   strongly agree 

4.42 0.683 
CMS_ 

satisfaction 
Drivers’ satisfaction with the usefulness of CMS in 
warning them about reduced visibility conditions 4.39 0.68 

VSL_ 
satisfaction 

Drivers’ satisfaction with the usefulness of VSL in 
informing them about safe speed limit under reduced 
visibility conditions 

3.97 0.99 

CMS_ 
Satisfaction 2 

Drivers’ satisfaction with the usefulness of using two 
successive CMS prior to fog/smoke zones 4.14 0.88 

CMS_follow 1 Drivers’ responses to CMS at light fog condition and 
no car leading ahead 

1 reduce speed immediately 
or  reduce speed and put 
blinkers on 

0   other 

0.38 0.49 

CMS_follow 2 Drivers’ responses to CMS at light fog condition and 
some vehicles are ahead 

0.54 0.50 

VSL_follow 1 Drivers’ responses to VSL at very light fog and no 
car leading ahead 

Continuous variables  
(% of reduction of speed 

following VSL instructions) 

19.97 18.10 

VSL_follow 2 Drivers’ responses to VSL at light fog and no car 
leading ahead 24.60 17.24 

VSL_follow 3 Drivers’ responses to VSL at medium fog and no car 
leading ahead 35.29 12.83 

VSL_follow 4 Drivers’ responses to VSL at heavy fog and no car 
leading ahead 42.14 10.58 

VSL_follow 5 Drivers’ responses to VSL at very light fog and some 
vehicles are ahead 16.16 19.82 

VSL_follow 6  Drivers’ responses to VSL at light fog and some 
vehicles are ahead 18.58 20.25 

VSL_follow 7 Drivers’ responses to VSL at medium fog and some 
vehicles are ahead 31.41 19.04 

VSL_follow 8 Drivers’ responses to VSL at heavy fog and some 
vehicles are ahead 40.76 16.85 
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Table 5-10: Varimax rotated factor analysis results 

 Factor 1  Factor 2  Factor 3  Factor 4  
Age 31  10  15  93 * 
Driving_exp 28  5  12  90 * 
Citation_no -10  -8  -3  -24  
Gender -10  -6  -18  -7  
FS_crashes 0  -1  1  9  
HV_crashes -1  -9  -3  7  
Exposure -2  1  -2  15  
Road type 1  30  -7  -11  
CMS_familiarity 0  -11  2  8  
VSL_familiarity 7  -7  16  16  
Intention 15  12  58 * 3  
CMS_satisfaction 9  10  76 * 3  
VSL_satisfaction 15  8  62 * -2  
CMS_Satisfaction 2 7  9  57 * 0  
CMS_Follow1 33  32  37  15  
CMS_Follow2 34  27  39  18  
VSL_Follow1 67 * 35  26  13  
VSL_Follow2 59 * 49 * 25  17  
VSL_Follow3 39  79 * 19  16  
VSL_Follow4 25  82 * 13  15  
VSL_Follow5 92 * 14  23  8  
VSL_Follow6 91 * 19  21  12  
VSL_Follow7 52 * 51 * 24  11  
VSL_Follow8 30  58 * 23  18  
Printed values are multiplied by 100 and rounded to the nearest integer.  Values greater than 
0.4 are flagged by an '*'. 
 

 

5.5.2 Reliability Analysis 

 

Cronbach’s α (alpha) is a coefficient of consistency that measures how well a set of 

variables or items measures a single, unidirectional latent construct (Ma et al. 2010). Cronbach’s 

alpha generally increases when the correlations between the items increase. For this reason, it is 

called the internal consistency or the internal consistency reliability of the test. Moreover, 

composite reliability is analogous to the coefficient alpha, and reflects the internal consistency of 

the indicators measuring a given factor (Hatcher 1994).  
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In this survey study, Cronbach’s alpha was applied to evaluate the internal consistency of 

the four latent factors obtained by EFA. The values of Cronbach’s alpha of the observed 

variables as well as composite reliability of the latent variables are given in Table 5-11. A 

Cronbach’s alpha of 0.7 or more indicates acceptable reliability (Nunnally 1978, Hatcher 1994 

and Ma et al. 2010). As shown in Table 5-11, the reliability of the scales is generally acceptable. 

This implies that the used scales (latent variables) are valid. 

 

Table 5-11: Cronbach’s α-value of latent and observed variables 

Latent variable Observed variable 
Reliability 

Cronbach’s α Composite 
reliability 

Drivers’ compliance 
with VSL at very light 

/ light fog (F1) 

VSL_follow 1 0.957 
0.919 VSL_follow 5 0.838 

VSL_follow 6 0.841 
Drivers’ compliance 

with VSL at medium / 
heavy fog (F2) 

VSL_follow 3 0.750 
0.839 VSL_follow 4 0.726 

VSL_follow 8 0.881 

Satisfaction with 
VSL/CMS (F3) 

Intention 0.708 

0.720 CMS_Satisfaction 0.716 
VSL_Satisfaction 0.773 
CMS_Satisfaction 2 0.704 

Driver factors 
(F4) 

Age 0.842 

0.740 Driving exp. 0.814 
Citation_no. 0.747 
Exposure 0.723 
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5.5.3 Structural Equation Modeling 

 

Structural Equation Modeling (SEM) represents a combination of two types of statistical 

techniques: factor analysis and simultaneous equation models. In SEM, variables can be either 

exogenous or endogenous which allow SEM to handle indirect, multiple, and reverse 

relationships (Martinez et. al 2010).  

SEM is a technique that consists of a set of equations that are specified by direct links 

between variables and hence it can be called “the simultaneous equations”. However, in SEM, 

latent variables (unobserved or unmeasured variables) can be introduced (Lee et al. 2008). 

The advantages of using SEM include: (1) it can handle complex relationships among 

variables, where some variables can be hypothetical or unobserved (latent variables); (2) It 

estimates all coefficients in the model simultaneously and thus, one is able to assess the 

significance and strength of a particular relationship in the context of the complete model, (3) 

multi-colinearity can be accounted for, (4) when using latent variables in SEM, measurement 

error is eliminated and thus more valid coefficients are obtained (Dion, 2008 and Martinez et. al, 

2010). Therefore, SEM is an adequate tool to model the complex relationships such as those that 

are being modeled in this survey study. SEM is applied in this research using SAS software 

(version 9.2) procedure CALIS. 

To develop SEM, the present analysis followed a two-step approach recommended by 

Anderson and Gerbing (1988). With this approach, the first step involves using confirmatory 

factor analysis (CFA) to develop an acceptable measurement model. This measurement model 

describes the nature of the relationship between a number of latent variables and the observed 

variables that measure those latent variables. However, this measurement model does not specify 

any causal relationships between the latent variables of interest. 
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In the second step, the measurement model is modified so that it can describe the 

relationships among the latent variables. This model usually is referred to as the structural model 

or the causal model (Hatcher, 1994). Equations 5-6 and 5-7 represent the model specification for 

the measurement and structural models, respectively (Kim et al. 2011). 

Where: vi is a vector of observed variables; Fi is a vector of latent constructs; λi is a vector of 

parameters and ei is a vector of measurement errors, and: 

Where: the endogenous variables Fi** is a function of the endogenous effects of mediating 

variables Fi* and the effects of the exogenous variables Fi plus residual terms di. βi and Γi are 

parameter vectors. 

In the present study, to systematically explain drivers’ responses under reduced visibility 

conditions and quantify the impacts and values of various factors found to be related to drivers’ 

compliance and drivers’ satisfaction with VSL/CMS instructions in adverse visibility conditions, 

three research hypotheses and their interactions were investigated and discussed. These research 

hypotheses are:  (1) drivers’ compliance with VSL Instructions; (2) drivers’ compliance with 

CMS Instructions and (3) drivers’ satisfaction with VSL/CMS Instructions. 

Thus, three SEM models were estimated after investigating several SEM structures. 

These three models investigate drivers’ compliance with VSL instructions, drivers’ compliance 

with CMS instructions and drivers’ satisfaction with VSL/CMS instructions, respectively, all 

under adverse visibility conditions. 

As shown in Figure 5-3, the measurement model of the first SEM model investigated 

here consists of 4 latent variables; drivers’ compliance with VSL under very light/light fog (F1), 
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drivers’ compliance with VSL under medium/heavy fog (F2), satisfaction with VSL/CMS (F3) 

and driver factors (F4). These four latent variables (represented by Fi in Equation 5-6) are 

measure by 14 observed variables (represented by vi in Equation 5-6). 

Although the results of EFA showed that only two variables (age and driving experience) 

are loaded on the fourth latent variable (F4), several demographic observed variables were 

investigated in the measurement model because prior studies indicated that it is highly desirable 

to have at least three variables loading on each latent variable (Spector 1992 and Hatcher 1994). 

As shown in Figure 5-3, the results revealed that each of F1 and F2 is measured by three 

observed variables. However, each of F3 and F4 is measured by four observed variables. As 

indicated earlier, the descriptions of these variables are provided in Table 5-9. As shown in 

Figure 5-3, rectangles represent observed variables; ellipses represent unobserved latent 

variables and arrows pointing from the observed variables to latent factors representing 

regression paths. Additionally, circles with an arrow pointing toward each observed variable 

represents the measurement error terms (represented by ei in Equation 5-6). Moreover, each 

latent factor is connected to every other factor by a curved two-headed arrow meaning that every 

factor is allowed to covary with every other factor. 

Standardized loading factors along with its standard error and t-value are shown in Figure 

5-3. In the Figure, the numbers on the arrows are parameter estimates and numbers in 

parentheses indicate standard errors and t-values. The t values presented in Figure 5-3 represent 

large-sample t tests of the null hypothesis that the factor loading is equal to zero in the 

population. The obtained t values showed that all factor loadings were significant at 95% 

confidence (t-values are greater than 1.96). 
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Figure 5-3: The measurement model along with loading factors, standard error and t-values (Model 1) 

Age Driving exp. Citation_no 

Intention CMS_ 
Satisfaction 

VSL_ 
Satisfaction 

CMS_ 
Satisfaction 2 

VSL_follow 1 VSL_follow 5 VSL_follow 6 

VSL_follow 3 VSL_follow 4 VSL_follow 8 

Exposure 

0.765 
(0.02, 41.6) 

0.951 
(0.07, 12.8) 

0.964 
(0.07, 13.9) 

0.898 
(0.01, 63.6) 

0.886 
(0.01, 60.9) 

0.712 
(0.02, 30.4) 0.613 

(0.03, 18.3) 
0.785 

(0.03, 28.3) 
0.649 

(0.03, 20.3) 
0.575 

(0.03, 73.9) 

1.031 
(0.01, 73.9) 

0.911 
(0.01, 64.8) 

-0.260 
(0.04, -6.7) 

0.109 
(0.04, 2.7) 

e1 

Drivers’ compliance 
with VSL at very 

light/light fog 
(F1) 

 

Drivers’ compliance 
with VSL at 

medium/heavy fog 
(F2) 

 

e4 e7 

e13 e14 e12 e11 

Driver factors 
(F4) 

 

Satisfaction 
with 

VSL/CMS (F3) 

e2 e3 

e6 e5 
e8 e9 e10 
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Regarding the structural model, Figure 5-4 presents the first SEM model that examines 

drivers’ compliance with VSL instructions under different fog conditions. This model was first 

conceptualized so that it could be refined through SEM. This model was composed based on the 

relation on the correlations between observed variables and latent variables, as well as 

correlations among latent variables. As shown in Figure 5-4, the first SEM model consists of the 

same four latent variables in addition to one observed variable; roadway type (2-lane roads vs. 

freeway). It was decided to examine the effect of roadway type on drivers’ behaviors because our 

preliminary analysis indicated that there is a significant correlation between the type of road and 

drivers’ behavior under reduced visibility conditions (Hassan et al. 2011). 

It is worth mentioning that each latent variable is an unobserved variable that has no 

established unit of measurement. Therefore, to define the unit of measurement of each latent 

variable, a non-zero coefficient (usually one) is given to one of its observed variables as an 

indicator (i.e., reference variable). For that reason, the factor loading of the indicator variable 

that best represent the corresponding latent variable was fixed at 1 (Hatcher, 1994 and Lee et al. 

2008). The final structure of the first SEM model as well as standardized loading factors, 

standard errors and t-values are given in Figure 5-4. According to the results of first SEM model 

shown in Figure 5-4, it was found that drivers’ satisfaction with VSL/CMS was the most 

significant factor that positively affected drivers’ compliance with VSL under very light or light 

fog (factor loading=0.372, t-value=9.182). In addition, driver factors (i.e., higher age, longer 

driving experience, less number of traffic citations and higher usage of freeways/2-lane roads) 

was found out to positively affect drivers’ responses to VSL instructions under very light or light 

fog (factor loading = 0.351, t-value = 9.637).  
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Figure 5-4: Structural equation model of drivers’ compliance with VSL instructions (Model 1) 
a: (Estimates for variance of exogenous variables (i.e., latent, observed, error or disturbance) 

0.69a 

Age Driving exp Citation_no 

Driver factors 
 (F4) 

 

Intention 
CMS_ 

Satisfaction 

Satisfaction with 
VSL/CMS (F3) 

VSL_ 
Satisfaction 

CMS_ 
Satisfaction 2 

Road type 

VSL_follow 1 

Drivers’ compliance 
with VSL at very light 

/ light fog (F1) 

Drivers’ compliance 
with VSL at medium / 

heavy fog (F2) 
 

VSL_follow 5 VSL_follow 6 

VSL_follow 3 VSL_follow 4 VSL_follow 8 

0.351 
(0.04, 9.64) 

.956 1 

1 .922 .715 

1 .919 -0.26 

1 .617 .573 

0.253 
(0.04, 6.74) 

0.341 
(0.04, 8.06) 

0.231 
(0.05, 5.10) 

Exposure 

.763 .118 

0.051 
(0.04, 1.39) 

R2=0.32 

R2=0.31 

0.95a 

1.00a 

1.00a 

Standardized path coefficient  
(S.E, t-value) 

0.68a 

0.372 
(0.04, 9.18) 

.649 

0.335 
(0.04, 8.88) 
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However, roadway type (i.e., driving on 2-lane roads vs. freeways) had no direct effect 

(the hypothesis was rejected as shown in Table 5-12) on drivers’ compliance with VSL 

instructions under very light or light fog (factor loading = 0.051, t-value = 1.389).  

Similarly, the results indicated that drivers’ satisfaction with VSL/CMS positively 

affected drivers’ behavior (following VSL instructions) under medium or heavy fog (factor 

loading=0.341, t-value=8.056). Also, driver factors was found out to positively affect drivers’ 

responses to VSL instructions under medium or heavy fog (factor loading = 0.335, t-value = 

8.875). Moreover, it was found that roadway type positively affected drivers’ compliance with 

VSL instructions under medium or heavy fog (factor loading = 0.253, t-value = 6.737). This 

imply that drivers tend to follow VSL instructions under medium or heavy fog while driving on 

2-lane roads compared to driving on freeways possibly due to the absence of medians. 

In addition, the results revealed that driver factors has indirect effect on drivers’ 

responses to VSL instructions under reduced visibility conditions as it positively affected 

drivers’ satisfaction with VSL/CMS which subsequently positively affected drivers’ compliance 

with VSL instructions under adverse visibility conditions (factor loading = 0.231, t-value = 

5.102).  

Finally, the first SEM model explained 31% and 32% of total variance in drivers’ 

compliance with VSL under very light/light fog conditions and drivers’ compliance with VSL 

under medium/heavy fog conditions, respectively. 
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As mentioned earlier, the second SEM model (shown in Figure 5-5) was adopted to 

examine causal relationships between drives’ compliance with warning messages displayed on 

CMS under reduced visibility conditions and its associated factors. The standardized path 

coefficients, standard errors and its t-values are presented in Figure 5-5. The results of the second 

SEM model suggest that drivers’ satisfaction with VSL/CMS was the most significant variable 

that positively affected drivers’ compliance with CMS instructions under reduced visibility in 

both traffic conditions; (1) no car leading ahead and (2) some vehicles are ahead. In addition, it 

was found that driver factors positively affected drivers’ compliance with CMS instructions in 

both traffic conditions. This result implies that drivers with higher driving experience, less 

number of traffic citations and higher usage of freeways/2-lane roads are more likely to obey 

warning messages displayed on CMS under reduced visibility conditions.  

Additionally, driver factors positively affected drivers’ satisfaction with VSL/CMS. 

Moreover, the findings revealed that roadway type was found out to positively affect drivers’ 

compliance with CMS only when some vehicles are ahead. This result indicates that when 

driving on 2-lane roads and some vehicles are ahead, drivers tend to follow CMS instructions 

compared to driving on freeways. However, when no leading vehicles are ahead, roadway type 

has insignificant effect on drivers’ compliance with CMS instructions.  

The second SEM model explained 29% and 28% of the total variance in drivers’ 

compliance with CMS instructions when no car is leading ahead and drivers’ compliance with 

CMS instruction when some vehicles are ahead, respectively.  

It is worth mentioning that it was decided to study drivers’ responses to CMS under two 

traffic conditions and under only one reduced visibility condition (light fog) to reduce the 

number of survey questions. 
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One interesting research hypothesis was to examine whether drivers’ behavior in 

response to VSL/CMS instructions was affected by the survey method. The hypothesis that the 

survey method significantly affected drivers’ response to VSL/CMS instructions was rejected at 

the 5% level of significance.  
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Figure 5-5: Structural equation model of drivers’ compliance with CMS instructions (Model 2) 
a: (Estimates for variance of exogenous variables (i.e., latent, observed, error or disturbance)

Age Driving exp Citation_no 

Intention CMS_ 
Satisfaction 

Satisfaction with 
VSL/CMS (F1) 

VSL_ 
Satisfaction 

CMS_ 
Satisfaction 2 

(CMS_Follow 1) 
Drivers’ compliance with 

CMS when no leading 
vehicles are ahead 

0.244 
(0.04, 6.54) 

1 .918 -0.261 

1 .624 .562 .650 

0.421 
(0.04, 10.56) 

0.425 
(0.04, 10.71) 

0.232 
(0.04, 5.15) 

Exposure 

.116 

(CMS_Follow 2) 
Drivers’ compliance with 
CMS when some vehicles 

are ahead 

Standardized path coefficient  
(S.E, t-value) 

0.71a 

R2=0.28 

R2=0.29 

0.72a 
0.95a 

1.0a 

1.0a 

Road type 

Driver factors 
(F2) 

0.092 
(0.04, 2.49) 

0.237 
(0.04, 6.37) 

0.053 
(0.04, 1.45) 
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The third SEM model developed in this research aimed to examine factors associated 

with drivers’ satisfaction with VSL/CMS instructions. The results (shown in Figure 5-6) 

indicated that driver factors positively affected drivers’ satisfaction with VSL/CMS (factor 

loading=0.201, t-value=4.4). These results imply that older motorists (experienced drivers) are 

more satisfied with the usefulness of warning messages/advice displayed on VSL/CMS signs 

compared to young drivers. In addition, drivers who got traffic citation within the last three years 

are less satisfied with VSL/CMS. As expected, the results showed that drivers with higher usage 

of freeways/2 lane roads are more satisfied with VSL/CMS possibly due to the fact that those 

drivers encounter these signs on daily bases and thus, they are more familiar and satisfied with 

the role of VSL/CMS in improving safety. 

The results also revealed that familiarity with VSL signs positively affected drivers’ 

satisfaction with VSL/CMS (factor loading=0.115, t-value=2.46). However, familiarity with 

CMS was found to have insignificant effect on drivers’ satisfaction with VSL/CMS. One 

possible explanation is that drivers in Central Florida are more familiar with CMS compared to 

VSL and hence, drivers, who are familiar with VSL signs, usually are aware of its importance for 

safety. Again, the results indicated that driver factors has a significant positive effect on 

familiarity with VSL signs (factor loading=0.186, t-value=4.64). This is logical as older drivers 

(or experienced drivers) are more familiar with VSL signs compared to young (novel) drivers. 

Finally, the third SEM model explained 36% of total variance in drivers’ satisfaction with 

VSL/CMS. Table 5-12 summarizes the verification of the research hypotheses of the three SEM 

models investigated in the present study. The verification of these hypotheses was developed 

based on the t-values that were estimated for each of the paths between the observed and latent 

variables.  
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Figure 5-6: Structural equation model of drivers’ satisfaction with VSL/CMS instructions (Model 3) 
a: (Estimates for variance of exogenous variables (i.e., latent, observed, error or disturbance) 

Age Driving exp. Citation_no. 

Driver factors 
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Satisfaction 
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with CMS 

0.115 
(0.04, 2.46) 

Standardized path coefficient  
(S.E, t-value) 

-0.053 
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-0.262 .920 1 

R2 =0.36 
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1.0a 

.114 
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Table 5-12: Verification of the three SEM models hypotheses 
 

Hypothesis 

E
st

im
at

e 

St
an

da
r

d 
er

ro
r 

t-
va

lu
e 

a  

re
m

ar
ks

 

M
od

el
 1

 

H1 Driver factors will have a positive effect on drivers’ compliance  
with VSL instructions  under very light or light fog 0.351 0.036 9.637 Accept 

H2 
Drivers’ satisfaction with VSL/CMS will have a positive effect  
on drivers’ compliance with VSL instructions  under very light or  
light fog 

0.372 0.041 9.182 Accept 

H3 
Roadway type will have a positive effect on drivers’  
compliance with VSL instructions  under very light or light fog 0.051 0.037 1.389 Reject 

H4 Driver factors will have a positive effect on drivers’  
compliance with VSL instructions under medium or heavy fog 0.335 0.038 8.875 Accept 

H5 
Drivers’ satisfaction with VSL/CMS will have a positive effect 
on drivers’ compliance with VSL instructions under medium  
or heavy fog 

0.341 0.042 8.056 Accept 

H6 Roadway type will have a positive effect on drivers’  
compliance with VSL instructions under medium or heavy fog 0.253 0.038 6.737 Accept 

H7 Driver factors will have a positive effect on drivers’ satisfaction  
with VSL/CMS 0.231 0.045 5.102 Accept 

 

M
od

el
 2

 

H8 Driver factors will have a positive effect on drivers’ compliance 
with CMS instructions  when no leading vehicles are ahead 0.244 0.037 6.544 Accept 

H9 
Drivers’ satisfaction with VSL/CMS will have a positive effect 
on drivers’ compliance with CMS instructions  when no leading  
vehicles are ahead 

0.421 0.039 10.564 Accept 

H10 
Roadway type will have a positive effect on drivers’ compliance 
with CMS instructions  when no leading vehicles are ahead 0.053 0.037 1.450 Reject 

H11 
Driver factors will have a positive effect on drivers’ compliance 
with CMS instructions  when some vehicles are ahead 0.237 0.037 6.369 Accept 

H12 
Drivers’ satisfaction with VSL/CMS will have a positive effect on 
drivers’ compliance with CMS instructions  when some vehicles 
are ahead 

0.425 0.040 10.711 Accept 

H13 
Roadway type will have a positive effect on drivers’ compliance 
with CMS instructions  when some vehicles are ahead 0.092 0.036 2.491 Accept 

H14 
Driver factors will have a positive effect on drivers’ satisfaction  
with VSL/CMS 0.232 0.045 5.151 Accept 

 

M
od

el
 3

 

H8 Driver factors will have a positive effect on drivers’ satisfaction 
with VSL/CMS instructions   0.201 0.046 4.404 Accept 

H16 
Drivers’ familiarity with CMS has a positive effect on drivers’ 
satisfaction with VSL/CMS instructions   -0.05 0.046 -1.146 Reject 

H17 
Drivers’ familiarity with VSL has a positive effect on drivers’ 
satisfaction with VSL/CMS instructions   0.115 0.047 2.456 Accept 

H18 
Driver factors will have a positive effect on drivers’ familiarity  
with CMS 0.064 0.042 1.516 Reject 

H19 
Driver factors will have a positive effect on drivers’ familiarity  
with VSL 0.186 0.040 4.643 Accept 

 

 



114 
 

5.5.4 SEM Models Fit Indices 

 

A widely reported goodness of fit index used in SEM analysis is the Chi-square test 

which provides a test of the null hypothesis that the theoretical model fit the data. If the model 

fits the data well, Chi-square value should be small and p-value associated with the Chi-square 

should be relatively large. However, with large samples, the Chi-square statistic will very 

frequently be increased even if the SEM model provides a good fit (James et al. 1982, Hatcher 

1994, Acker and Witlox 2010).  

For this reason, prior studies recommended to supplement the Chi-square with some 

alternative model fit indices. Some commonly fit indices are; Goodness of Fit Index (GFI), 

Adjusted Goodness of Fit Index (AGFI), Comparative Fit Index (CFI), Normed Fit Index (NFI), 

Non-Normed Fit Index (NNFI), Root Mean Square Error of Approximation (RMSEA).  

Table 5-13 shows the goodness of fit statistics of the three SEM models that are 

presented in this section. As shown in Table 5-13, the models displayed values greater than 0.9 

on GFI, AGFI, CFI, NFI, NNFI and a value smaller than 0.05 on RMSEA, indicative of a good 

fit (Bentler & Bonett 1980, Hatcher 1994, Lee et al. 2008, 2009 and Ma et al. 2010). 

 

Table 5-13: Fit statistics for structural equation models  

Fit Index 
SEM models 

Model 1 Model 2 Model 3 Criteria of 
acceptable fit 

Chi-square 
       df 
       p-value 

414.944 
82 

0.0001 

213.252 
39 

0.0001 

34.48 
25 

0.052 

Smaller 
values 

Goodness of Fit Index (GFI) 0.9224 0.9370 0.9853 > 0.9 
Adjusted Goodness of Fit Index (AGFI) 0.9064 0.9034 0.9736 > 0.9 
Comparative Fit Index (CFI) 0.9317 0.9222 0.9931 > 0.9 
Normed Fit Index (NFI) 0.9167 0.9071 0.9797 > 0.9 
Non-Normed Fit Index (NNFI) 0.9126 0.9030 0.9901 > 0.9 
Root Mean Square Error of 
Approximation (RMSEA)  0.0448 0.0489 0.029 < 0.05 
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5.6 Summary of Results and Conclusions of the Survey-Based Study 

 

This chapter presented the results of a survey-based study aimed at examining drivers’ 

response to several scenarios of visibility and traffic conditions on two types of roadways; 

freeways and two-lane roads. Conducting this survey using three approaches (handout, 

interactive, and online questionnaire) achieved a well representative sample (i.e., the sample was 

apparently broad and fairly uniform across age, gender, and education). 

To understand commuters’ behavior, attitudes and preferences at reduced visibility 

conditions, several categorical data analysis techniques were applied to. These techniques 

include conditional distributions, odds’ ratio, and Chi-Square tests. The results revealed that 

participants’ response to CMS and VSL signs’ instructions vary by gender, age, familiarity with 

CMS and VSL signs, past experience with driving at adverse visibility condition and 

involvement in FS/HR crashes. 

Multivariate and Bivariate Probit Models were estimated to improve our understanding of 

the preferences of respondents in following VSL and CMS instructions at such adverse visibility 

conditions. The findings indicated that compared to males and young drivers (18-25 years old), 

females and old drivers (51 years old or more) claim to be more likely to reduce their speed in 

response to CMS and VSL instructions when driving in different visibility (heavy or very light 

fog) and traffic conditions (low or medium-high). The results also indicated that drivers who are 

familiar with VSL signs claim to be more likely to follow their instructions at heavy fog 

condition than those who are not. Concerning the type of road, the findings showed that the 

stated likelihood of reducing speed in response to CMS and VSL signs increases when driving 

on a two-lane road at adverse visibility condition compared to a freeway. 
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A further objective of this study was to investigate whether drivers would rely on and 

follow warning messages displayed on CMS/VSL signs at adverse visibility conditions. Only 

37% of the respondents reported that they would reduce their speed immediately or reduce their 

speed and put blinkers on when encountering CMS, which advises them to reduce their speed 

due to reduced visibility condition, at low traffic volume while driving on a freeway. Also, it was 

found that only 35% of the respondents were willing to follow VSL instructions (reducing their 

speed to 40 mph or less) while driving on a freeway at very light fog and low traffic volume. 

Moreover, the results show that as the visibility distance deteriorates and traffic volume 

increases, drivers claim to be more likely to follow CMS/VSL instructions.  

 

In addition, the SEM approach was used in this study to distinguish variables that affect 

drivers’ compliance and satisfaction with advice or warning messages displayed on VSL and 

CMS under different traffic and visibility conditions. The findings revealed that drivers’ 

satisfaction with VSL and CMS was the most significant variable that positively affected drivers’ 

compliance with VSL and CMS instructions under different fog and traffic conditions followed 

by driver factors. This result indicates that higher satisfaction with VSL/CMS instructions and 

higher scores for driver factors (i.e., older age, longer driving experience, less number of traffic 

citations and higher usage of freeways/2-lane roads) contribute to increase drivers’ compliance 

with advice or warning messages displayed on VSL/CMS under reduced visibility conditions. 

Other driver factors such as gender and education did not show significant effect on drivers’ 

compliance with VSL/CMS.  

In addition, it was found that roadway type affected drivers’ behavior in response to VSL 

instructions only under medium and heavy fog conditions. However, roadway type did not 

significantly affect drivers’ behavior in response to VSL under very light or light fog. The 
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findings also indicated that roadway type affected drivers’ compliance with CMS only when 

some vehicles are ahead. Furthermore, drivers’ familiarity with VSL signs and driver factors 

were the significant factors affecting drivers’ satisfaction with VSL/CMS advice under reduced 

visibility conditions. 
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CHAPTER 6.  PREDICTING VISIBILTY RELATED CRASHES ON 

FREEWAYS 

There is a lack of prior studies that investigated the relationship between real-time traffic 

flow variables and traffic crashes that occur due to reduced visibility. This chapter explores the 

occurrence of visibility related (VR) crashes on freeways using real-time traffic surveillance data 

(speed, volume and occupancy) collected from underground loop detectors (LDs) and radar 

sensors potentially associated with VR crash occurrence.  

 

6.1 Data Collection and Preparation 

 

Traffic flow data used in this study were collected from LDs and radar sensors spaced at 

approximately 0.5-0.8 mile for about 75 mile and 137 mile corridors of I-4 and I-95, 

respectively. These sensors record and archive the following traffic flow variables every 30 

seconds for each lane in each direction: 1) average speed of all vehicles passing over LD or 

through radar sensors in 1/2 minute intervals, 2) volume (number of vehicles passing each lane 

over LD in 1/2 minute intervals), and 3) lane occupancy (percentage of time interval, 1/2 minute, 

the LD was occupied). 

According to the crash database maintained by Florida Department of Transportation 

(FDOT), there were 2984 mainline crashes reported in the same study period and area. All 

crashes that occurred under the influence of alcohol and drugs were then excluded. Crashes 

caused by these reasons can occur under any conditions whether the visibility is low or not. 

Subsequently, a total of 125 VR crashes were extracted. However, due to LDs and radar data 

availability, only 67 VR crashes that have corresponding traffic flow data, were obtained and 
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used in the analysis. Considering police reports, two criteria for choosing VR crashes from the 

crash database were considered: weather (fog or rain) and vision obstructed (inclement weather, 

fog or smoke). 

Based on the location of each VR crash, six nearest LDs stations (three stations upstream 

and three stations downstream) to the crash location were identified using Geographic 

Information System (GIS) software. As shown in Figure 6-1, the first downstream and upstream 

LDs stations were named DS1 and US1, respectively. The subsequent stations in the downstream 

direction were labeled DS2 and DS3, respectively. Similarly, the subsequent stations in upstream 

direction were named US2 and US3, respectively. 

Various agencies were contacted to obtain historical visibility measurements for I-4 and 

I-95 at the same period and study area. The aim was to determine non-crash cases at reduced 

visibility. Among the agencies contacted, it was found that National Climate Data Center 

(NCDC) provides the historical visibility data. NCDC website provides access to their database 

that consists of hourly weather data for many stations across the United States. Visibility 

measurements for the same period and study area were successfully obtained for 6 airport 

weather stations surrounding I-4 and I-95: Daytona Beach, Orlando Sanford, Orlando 

Kissimmee, Orlando Executive, Orlando International, and Melbourne.  

 

 
Figure 6-1: Layout of upstream and downstream LDs stations 

~ 0.5-0.8 mile 
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Traffic data were then extracted for the day of every VR crashes (for 30 minutes prior to 

crash time) and on all corresponding non-crash cases (at reduced visibility conditions) to the day 

of every VR crash. For example if a VR crash occurred on February, 11, 2008 (Monday) 7:00 

am, I-4 eastbound, traffic data were extracted from the nearest 3 stations upstream and 3 stations 

downstream of the crash location for 30 minutes prior to crash time for all Mondays of the same 

season in the year at the same time.  

It is worth mentioning that LDs data are known to suffer from inaccuracies due to 

intermittent hardware problems or other errors. These errors emerge in the form of false speed, 

volume, and occupancy. Most of the times, the errors can be identified from the unreasonable 

values of traffic parameters. Thus, the first step in data preparation was to filter the traffic data 

for the crash and non-crash cases. In this study, all unrealistic values were eliminated from the 

raw 30-second data. The unrealistic values of parameters include; occupancy > 100, speed = 0 or 

> 100 and flow = 0 with speed > 0. 

In order to determine the non-crash cases at reduced visibility, the average visibility 

measurements obtained from the two closest weather stations to every VR crash location were 

estimated for all the corresponding non-crash cases. The closest stations to every VR crash were 

identified using geographic information system (GIS) software. A threshold of 250 meters (about 

820 feet) was selected as the criteria for determining non-crash cases at reduced visibility 

(Rockwell, 1997). Therefore, non-crash cases at reduced visibility were considered if the 

corresponding average visibility measurement obtained from the two closest weather stations to 

the crash location was 250 meters or less. 
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A stratified case control dataset consisting of traffic data corresponding to every VR 

crash (case) and three matched non-crash cases at also reduced visibility conditions (controls) 

was created. This matched sample design was created to control the effect of other confounding 

variables such as geometric factors, location, driver population and time of day on the freeways.  

The next step was the aggregation of LDs and radar data. Since the 30-second raw data 

was noticed to have random noise and are difficult to work with in a modeling framework 

therefore, the raw data were combined into 5-minutes level to obtain averages and standard 

deviation for speed, volume, and occupancy.  

The decision for combining the data into 5-minutes level was based on the results of prior 

studies. Abdel-Aty et al. (2008) demonstrated the noise reduction in speed data following the 5-

min aggregation compared to 1-min aggregation. In addition, the decision to have a 5-min level 

of aggregation rather than a 3-min level has also been discussed in detail in one of previous 

studies (Pande et al. 2005). In this study, the 30-second raw data were combined into two 

separate levels of aggregation; 3-minutes and 5-minutes. The results indicated that 5-minute time 

slice would be more effective in crash prediction as it not only has higher and more significant 

hazard ratio but it also provides more time to analyze the data, estimate and possibly intervene to 

reduce the likelihood of crashes. 

Thus, the 30 minutes period from which traffic flow data were collected was divided into 

six time slices. The interval between time of a crash and 5 minutes before was named as time 

slice 1; interval between 5 to 10 minutes prior to a crash time was named as time slice 2 and so 

on. In addition, due to high correlation coefficients that were noticed between each traffic flow 

variable across lanes, data were combined across lanes. Subsequently, the averages, standard 
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deviations and coefficient of variation (standard deviation/ average) in speed, volume and 

occupancy were then calculated for each LDs station at the 6 time slices. 

The nomenclature of traffic variables extracted from LDs stations takes the form 

WXYZα_β. W takes the value A, S or C for average, standard deviation or coefficient of 

variation, respectively, while X takes the value of S, V or O representing speed, volume or 

occupancy. YZα takes the value of US1, US2, US3, DS1, DS2, DS3 representing the station to 

which the traffic parameters belong. β takes the value of 1, 2, 3, 4, 5 or 6 which refer to the time 

slice. For example ASUS1_2 represents the average speed at the nearest upstream station to a 

crash location at time slice 2 (5-10 minutes before crash time). Also, SODS1_3 represents the 

standard deviation of occupancy at the nearest downstream station, at time slice 3 (10 to 15 

minutes before crash time) and so on. 

 

6.2 Identifying Significant Factors Affecting VR crashes 

 

Random Forest (RF) is one of the most recent and promising machines learning 

techniques proposed by Breiman (2000), which is well known for selecting important variables 

from a set of variables. RF is a refinement of bagged trees. The term came from random decision 

forests that were first proposed by Ho (1998). The method combines Breiman's "bagging" idea 

and Ho's "random subspace method" to establish a collection of decision trees with controlled 

variations. 

RF was used in this study for selecting significant flow variables affecting VR crash 

occurrence. The advantage of using RF instead of other data mining techniques such as 

traditional classification trees is that there is no need for a separate cross-validation-test data set 
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to obtain unbiased error estimates, especially when the sample size is small (Abdel-Aty et al. 

2008). 

The main idea of RF is that at each tree split, a random sample of m features is selected, 

and only those m features are considered for splitting. Typically m = (p)1/2, where p is the 

number of features. Then for each tree grown on a bootstrap sample, the error rate for 

observations left out of the bootstrap sample (out-of-bag) is monitored. To test whether the 

attempted number of trees is sufficient enough to reach relatively stable results, the plot of the 

out-of-bag (OOB) error rate against various tree numbers is developed. The best number of trees 

is that having the minimum error rate along with a constant error rate nearby. The main 

advantages of RF are that it usually yields high classification accuracy, and it handles missing 

values in the covariates efficiently (Grimm et al. 2008). 

To select the important covariates affecting the binary target variable, the R package 

provides the mean decrease Gini “IncNodePurity” diagram. By means of the Gini Index, the 

quality (Node Purity) of a split for every variable (node) of a tree is measured. Every time a split 

of a node is made on a variable m, the Gini impurity criterion for the two descendent nodes is 

less than the parent node. Then, adding up the Gini decreases for each individual variable over 

all trees in the forest provides a variable importance. A higher IncNodePurity implies a higher 

variable importance (Kuhn et al., 2008). For detailed information regarding RF, the reader is 

referred to Breiman (2000); Ho (1998); Grimm (2008); and Kuhn et al. (2008). 

In this study, the RF technique was conducted using the R package. Figure 6-2 shows the 

plot of OOB error rate against various tree numbers. Clearly, 50 trees are sufficient enough to 

reach relatively stable results. The purity values for every covariate are shown in Figure 6-3. 
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Figure 6-2: Plot of the OOB error rate against different number of trees 

 

In order to choose the most important covariates affecting the binary target variable (VR 

crash versus non-crash), a cut-off purity value of “1.25” was used. This led to selecting eight 

important covariates. These 8 variables have higher variable importance scores than the 

remaining variables. These variables are average speed at stations US2, US1, DS1, DS2, average 

occupancy at the nearest downstream station DS1, and standard deviation of occupancy at 

stations US2, DS2, and DS1. These significant variables were used as inputs in the matched 

case-control logistic regression model. 
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Figure 6-3: Variable importance ranking using node purity measure 

 

 

 

 

 

 

 

 

 



126 
 

6.3 Matched Crash Non-Crash Analysis 

 

As mentioned earlier, the purpose of the proposed matched crash-non-crash analysis is to 

explore the effects of traffic flow variables on VR crashes while controlling for the effects of 

other confounding variables such as the geometric design elements of freeway sections (i.e. 

horizontal and vertical alignments) and crash time. 

In a matched crash non-crash study, crashes are selected first. Then, for each selected 

crash, some non traffic flow variables associated with each crash are selected as matching factors 

such as location, day of the week, time of day, etc. 

Using these matching factors, a total of non-crash cases (m) are then selected randomly 

from each subpopulation of non-crash cases. For example, for a given crash, a subpopulation of 

non-crash cases consist of observations on traffic flow variables obtained from the same loop 

detector at the same time of the day, same day of the week of crashes but over all other weeks, 

are recorded.  

The (m+1) observations of all traffic variables for VR crashes and non-crash cases form 

one stratum. Within stratum, differences between VR crashes and non-crash cases regarding flow 

characteristic are utilized in the development of the statistical model. This procedure is 

conducted under the conditional likelihood of statistical theory. 

Matched case-control logistic regression has been adopted in epidemiological studies. In 

addition, it was used in few transportation related studies such as Abdel-Aty et al. (2004). A brief 

description of this modeling technique is provided here.  
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Assume that there are N strata with 1 crash and m non-crash cases in stratum j, where j = 

1, 2, 3 …… N. The probability of any observation in a stratum being a crash might be modeled 

by the following linear logistic regression model: 

 

Where Pj (Xij) is the probability that the ith observation in the jth stratum being a crash; Xij = (X1ij , 

X2ij , …….. Xkij) is the vector of k traffic flow variables; i = 0, 1, 2 …….m and j = 0, 1, 2 …….N. 

 It is to be noted that the intercept term α in Equation (6-1) summarizes the effect of 

variables used to form strata on the crash probability and would be different across strata. A 

conditional likelihood is constructed to take account of the stratification in the analysis. This 

conditional likelihood function L (β) is independent of the intercept terms α1, α2, ………., αN and 

hence, the effects of matching variables cannot be estimated. Therefore, crash probabilities 

cannot be estimated using Equation (6-1). However, the values of β parameters that maximize 

the conditional likelihood function are also the estimates of β coefficient in Equation (6-1). 

These estimates are log odds ratio and may be used to represent the relative risk of a VR crash.  

 These relative risks (named as hazard ratio in SAS) are given using SAS procedure 

PHREG (Abdel-Aty et al., 2004). Consider two observation vectors X1j = (X11j, X21j, X31j…….., 

Xk1j) and X2j = (X12j, X22j, X32j…….., Xk2j) from the jth strata on the k traffic flow variables. Thus, 

by substituting the two observation vectors X1j and X2j in Equation (6-1), the log odds ratio of VR 

crash occurrence due to traffic flow vector X1j relative to traffic flow vector X2j will have the 

following form: 



128 
 

The right hand side of Equation (6-2) is independent of αj and can be calculated using the 

estimated β coefficients. Thus, the above relative log odds ratio (left hand side of Equation 6-2) 

may be utilized for predicting VR crashes by replacing X2j with the vector of values of the traffic 

flow variables in the jth stratum of non-crash cases under reduced visibility conditions. One may 

use simple average of all non-crash observations within the stratum for each variable.  

 denote the vector of mean values of non-crash 

cases of the k variables within the jth stratum. Then the log odds ratio of VR crash relative to 

non-crash cases may be approximated by: 

 Therefore, log odds ratio in Equation (6-3) can be used for predicting VR crashes by 

establishing a threshold value that achieve the desirable crash classification accuracy. 

 In the following two sections, using matched case logistic regression, three different 

research classification hypotheses will be investigated in order to gain a comprehensive 

understanding of the relationship between traffic flow variables and VR crashes and how these 

variables differ from those highly associated with crashes that occur under clear visibility 

conditions (CV crashes). As shown in Figure 6-4, these three research hypotheses and the 

objective of each of them are:  

(1) Crashes vs. non-crash cases at poor visibility condition; to investigate the effect of traffic 

flow factors on VR crashes while controlling for the effects of reduced visibility 

conditions and other confounding variables. 
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(2) Crashes at poor visibility conditions vs. non-crash cases at clear visibility conditions; to 

gain a good understanding of the traffic flow variables associated with VR crashes 

compared to non-crash cases at normal visibility conditions.  

(3) Crashes vs. non-crash cases at clear visibility conditions; to investigate whether there are 

any differences between the traffic variables that are highly associated with the 

occurrence of VR crashes (from 1 and 2 above) and those variables that are highly 

correlated with CV crashes. 

 

 

 
    
   
 
 
 

 

 

 

 

 

 

 

 

 

Figure 6-4: Research hypotheses examined in this chapter 
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6.4 Predicting VR crashes 

 

The first research hypothesis is to compare the traffic flow variables potentially leading 

to VR crashes with non-crash cases at reduced visibility conditions (crashes vs. non-crash cases 

at poor visibility conditions). 

In this regards, a total of 67 VR crashes, on I-4 and I-95 between December 2007 and 

March 2009, were extracted that have corresponding LDs or radar sensors data. The data of all 

corresponding non-crash cases (under low visibility and during the study period) were extracted. 

However, due to hardware problems with LDs and radar sensors, a total of only 3 non-crash 

cases (m) at reduced visibility were selected for every VR crash. 

Varying (m) from 1 to 3, three datasets have been created which referred to as matched 

1:1, 1:2, and 1:3 dataset. Each matched data set (1: m, m = 1, 2 and 3) was analyzed separately. 

However, no significant differences have been observed when changing m. Therefore, only the 

detailed description of the analysis of 1:3 matched data sets will be presented and discussed here. 

 In this study, SAS procedure PHREG was used with some modification of matched data 

to fit the proposed stratified conditional logistic regression model, widely known as matched 

case-control analysis in epidemiological studies (Abdel-Aty et al. 2004). The 8 variables 

obtained by RF that have been found to affect the VR crash occurrence most significantly were 

used as input in the model. 

In addition, automatic search technique: stepwise, forward and backward were used to 

identify significant variables. All three search techniques resulted in three significant variables. 

The estimates of beta coefficients, associated summary results, and model fit statistics obtained 

from the final model are presented in Table 6-1. 
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Table 6-1: Matched case-control logistic regression estimates and goodness of fit statistics  
(Crashes vs. non-crash cases at poor visibility condition)  

Analysis of Maximum Likelihood Estimates 

Variable DF Parameter 
Estimate 

Standard 
Error 

Chi-
Square Pr > ChiSq Hazard 

Ratio 
ASUS1_2 1 0.11908 0.03799 9.8267 0.0017 1.126 

ASDS1_2 1 0.12217 0.03633 11.3100 0.0008 1.130 

AODS1_3 1 0.26378 0.09534 7.6558 0.0057 1.302 

Model Fit Statistics 

Criterion Without 
Covariates 

With 
Covariates 

-2 LOG L 185.763 125.992 

AIC 185.763 131.992 

SBC 185.763 142.765 
 

The final model includes three statistically significant variables; average speed at the 

nearest upstream station (ASUS1_2), average speed at the nearest downstream station 

(ASDS1_2), all at time slice 2 (5-10 minutes before the crash). The third significant variable was 

average occupancy at the nearest downstream station (AODS1_3) at time slice 3 (10-15 minutes 

before the crash). The results indicate that higher occupancy rates downstream during 10-15 

minutes before the crash coupled with an increase of the average speed downstream and 

upstream during 5-10 minutes before the crash increase the likelihood of VR crash occurrence in 

between. One explanation for these results is that as the average speed increase upstream and 

downstream along with an increase of occupancy downstream, drivers cannot reduce their 

relatively high speeds gradually or even change their traffic lanes when encountering high traffic 

density in poor visibility condition and hence a VR crash is likely to occur (most likely a rear-

end crash).  

These results imply that traffic flow indicators that may lead to VR crashes do not 

necessary originate at the same time slice. From the traffic operation perspective, these results 
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could be explained as an increase in the average speed at the nearest upstream and downstream 

stations might lead to a VR crash only if it is coupled with pre-formed queue of vehicles at the 

nearest downstream station. In other words, an increase in the average occupancy should appear 

first (10-15 minute prior to crash time) and during this 5-minute interval, a queue of vehicles 

starts to build up at the nearest downstream station. Then after the queue is built up, if this is 

coupled with an increase in the average speed (5-10 min prior to crash time), a VR crash may 

occur due to this turbulent traffic conditions and the reduced visibility situation.       

Using time slices 5-15 minutes before crashes may provide an opportunity for 

intervention to reduce crash risk in real-time and avoids any discrepancy regarding the exact time 

of crashes (which is ± 2 minutes of the call in reporting the crash based on previous 

investigation, Golob and Recker; 2001). 

Note that hazard ratio corresponding to parameters estimates are shown in the last 

column of Table 6-1. Hazard ratio, equals the exponent of the beta coefficient, is an estimate of 

the expected change in the risk ratio of having a VR crash versus non-crash at reduced visibility 

condition per unit change in the corresponding factor (Abdel-Aty et al. 2004). For Example, a 

hazard ratio of 1.302 corresponding to average occupancy at the nearest downstream station, 10-

15 minutes before the crash (AODS1_3) means that the risk for a VR crash increases about 1.3 

times for each unit increase in the average occupancy. 

As previously explained, the odds ratio in Equation (6-3) can be used to classify VR 

crash and non-crash cases at reduced visibility. Therefore, the mean of the three significant 

variables (ASUS1_2, ASDS1_2, and AODS1_3) of all three non-crash cases within each 

matched set were estimated. The vector X2j in Equation 6-3 was then replaced by the vector of 

non-crash means for the jth matched set. The odds ratio for each observation in the data set was 
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then estimated by substituting the beta coefficient from Table 6-1 in Equation 6-3 where the 

vector X1j is the actual observation in the data set. A threshold value for these ratios was then set 

to determine whether the location has to be flagged as a potential “VR crash”. It was found that 

using a threshold of 1.0 for the log odds ratio, over 68% crash identification was achieved (as 

shown in Table 6-2).  

 

Table 6-2: Classification results of actual and predicted VR crashes  
(Crashes vs. non-crash cases at poor visibility condition)  

 

 Predicted Y  

Frequency 
Percent 

Row Percent 
Col Percent 

0 1 Total 

Actual 
Y 

0 

131 
48.88 
65.17 
86.18 

70 
26.12 
34.83 
60.34 

201 
75.00 

 
 

1 

21 
7.84 
31.34 
13.82 

46 
17.16 
68.66 
39.66 

67 
25.00 

 
 

 Total 152 
56.72 

116 
43.28 

268 
100.00 

 

 

Table 6-2 indicates that the sensitivity, proportion of VR crashes that are correctly 

identified as VR crashes by the model, is 68.66%. Also, the specificity, proportion of non-crash 

cases that are correctly identified as non-crashes by the model is 65.17%. Moreover, Table 6-2 

indicates that the false positive rate, ratio of observed number of non-crashes that are incorrectly 

classified as VR crashes to the total number of predicted VR crashes, is 60.34%. Similarly, the 

false negative rate, ratio of observed number of VR crashes that are incorrectly classified as non-

crashes to the total number of predicted non-crashes is 13.82% (Agresti 2002). Since drivers’ 
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factors and errors are not considered in the present study, therefore 68.66% percent crash 

classification is considered reasonable. However, the results might need further validation with a 

larger sample. 

The second research hypothesis is to compare crashes at poor visibility conditions vs. 

non-crash cases at clear visibility conditions. For each of the 67 crashes, 5 non-crash cases at 

clear visibility conditions (m) were selected randomly from all non-crash cases. 

As shown in Table 6-3, the final model include three statistically significant variables; 

average speed at the nearest upstream station, average speed at the nearest downstream station 

and average occupancy at the nearest downstream station, all at time slice 2 (5-10 minutes before 

the crash). The results reveal that, compared to non–crash cases at clear visibility conditions, a 

decrease of the average speed upstream and downstream along with a decrease in the average 

occupancy downstream increase the risk of VR crashes.  

Considering the results of the first and second research hypotheses, shown in Tables 6-1 

and 6-3, the results suggest that compared to non-crash cases at reduced visibility conditions, the 

probability of VR crash occurrence increase when higher occupancy is observed at the nearest 

downstream station during 10-15 minutes before the crash coupled with an increase of the 

average speed upstream and downstream during 5-10 minutes prior to crash time. However, 

compared to non-crash cases at clear visibility conditions, lower occupancy downstream along 

with a decrease of the average speed downstream and upstream, all during 5-10 minutes before 

the crash increase the likelihood of VR crash occurrence in between. These results are logical 

because at low visibility conditions, drivers tend to reduce their speed compared to their speed at 

clear (normal) visibility conditions.  
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Table 6-3: Matched case-control logistic regression estimates and goodness of fit statistics  
(Crashes at poor visibility conditions vs. non-crash cases at clear visibility conditions) 

 

Analysis of Maximum Likelihood Estimates 

Variable DF Parameter 
Estimate 

Standard 
Error 

Chi-
Square Pr > ChiSq Hazard 

Ratio 

ASUS1_2 1 -0.38504 0.12503 9.4844 0.0021 0.680 

ASDS1_2 1 -0.13679 0.04988 7.5218 0.0061 0.872 

AODS1_2 1 -0.20473 0.12142 2.8431 0.0918 0.815 

Model Fit Statistics 

Criterion Without 
Covariates 

With 
Covariates 

-2 LOG L 92.882 40.253 
AIC 92.882 46.253 

SBC 92.882 52.868 
 
 
 
 

6.5 Predicting CV Crashes 

 

This section investigates whether there are any differences between the traffic variables 

that are highly associated with the occurrence of VR crashes and those variables that are highly 

correlated with CV crashes. Therefore, the third research hypothesis examined here is to 

compare crashes vs. non-crash cases at clear visibility conditions. 

After excluding VR crashes and such crashes that occurred under the influence of drugs 

or alcohol, all CV crashes were extracted. A total of 255 CV crashes were extracted on I-4 that 

has the corresponding LDs or radar sensor data. For each of the 255 CV crashes, 5 non-crash 

cases at clear visibility conditions were selected randomly from all non-crash cases. 

As shown in Table 6-4, the final model resulted in two significant variables: the average 

occupancy at the nearest downstream station (Log10 (AOUS1_2)) and the coefficient of variation 

of speed at the nearest upstream station (CSDS1_2), all at time slice 2 (5-10 minutes before the 
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crash). It is worth mentioning that all other variables as well as using Log10 (CSDS1_2) was 

found to be statistically insignificant.  

Since the coefficient of variation of speed includes the average speed as the denominator 

(coefficient of variation=Standard deviation / average), this indicates that the average speed is 

lower in crash cases. The results from this model point out that approximately one mile segment 

between the upstream and downstream stations experience high speed variation, high occupancy 

rate and lower average speed pointing to potential queue formation under turbulent speed 

conditions, which might be a cause for high crash possibility for a CV crash. These results are 

consistent with the findings of prior studies such as Abdel-Aty et al. (2004).   

Considering the results of the first and third research hypothesis (shown in Table 6-1 and 

Table 6-4, respectively), the results suggest that traffic flow variables leading to VR crashes are 

slightly different from those variables leading to CV crashes. Higher occupancy observed about 

half a mile between the nearest upstream and downstream station increases the risk for both VR 

and CV crashes. In addition, an increase of the average speed observed on the same half a mile 

increases the probability of VR crash. On the other hand, high speed variation coupled with 

lower average speed observed on the same half a mile increase the likelihood of CV crashes. 
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Table 6-4: Matched case-control logistic regression estimates and goodness of fit statistics  
(Crashes vs. non-crash cases at clear visibility conditions) 

Analysis of Maximum Likelihood Estimates 

Variable DF Parameter 
Estimate 

Standard 
Error 

Chi-
Square Pr > ChiSq Hazard 

Ratio 
Log10  AOUS1_2 1 0.46431 0.13083 12.5941 0.0004 1.591 

CSDS1_2 1 3.01961 1.11859 7.2872 0.0069 20.483 

Model Fit Statistics 

Criterion Without 
Covariates 

With 
Covariates 

-2 LOG L 906.630 890.030 
AIC 906.630 894.030 

SBC 906.630 901.096 
 
 
 

6.6 Conclusions 

 

Traffic surveillance data, collected through LDs and radar sensors on a 75 mile and 137 

mile corridors of Intestate-4 and Intestate-95, respectively, between December 2007 and March 

2009, were used in this study. VR crashes and historical visibility measurements were gathered 

for the same study area and during the same period. A total of 67 VR crashes were extracted that 

have corresponding LDs or radar sensors’ data.  

Random Forests were used in this study to indentify significant flow variables affecting 

VR crash occurrences. With significant variables selected by Random Forests, matched case-

control logistic regression model has been estimated.  

The results indicated that higher occupancy rates downstream during 10-15 minutes prior 

to the crash coupled with an increase of the average speed downstream and upstream 5-10 

minutes before the crash increase the likelihood of VR crash occurrence in between. In addition, 

the results revealed that using matched case-control analysis, the log odds of VR crash 
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occurrence may be obtained for a given value of certain traffic flow variables. The threshold 

value of 1.0 led to the identification of over 68% of VR crashes.  

Furthermore, two more research hypotheses were investigated to improve our 

understanding of the relationship between traffic flow variables and VR crashes as well as how 

these variables differ from those variables that are associated with CV crashes. The second 

research hypothesis was to compare crashes at poor visibility conditions vs. non-crash cases at 

clear visibility conditions. The third research hypothesis was to compare crashes vs. non-crash 

cases at clear visibility conditions. 

Considering the results of the first and second research hypotheses, it was found that 

compared to non-crash cases at poor visibility conditions, higher occupancy at the nearest 

downstream station during 10-15 minutes before the crash coupled with an increase of the 

average speed upstream and downstream during 5-10 minutes prior to crash time, increase the 

likelihood of VR crash occurrence. However, compared to non-crash cases at clear visibility 

conditions, lower occupancy downstream along with a decrease of the average speed 

downstream and upstream, all during 5-10 minutes before the crash increase the likelihood of 

VR crash occurrence in between.  

Regarding the results of the first and third research hypothesis, the results suggest that 

traffic flow variables leading to VR crashes are slightly different from those variables leading to 

CV crashes. It was found that, higher occupancy observed about half a mile between the nearest 

upstream and downstream station increases the risk for both VR and CV crashes. Moreover, an 

increase of the average speed observed on the same half a mile increases the probability of VR 

crash. On the other hand, high speed variation coupled with lower average speed observed on the 

same half a mile increase the likelihood of CV crashes. 
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CHAPTER 7.  PREDICTING VISIBILTY RELATED CRASHES ON 

EXPRESSWAYS 

The emphasis in freeway management has been growing toward identifying patterns (i.e., 

turbulence in the traffic flow) in real-time traffic data that potentially precede traffic crashes on 

roadways. Additionally, in recent years, there has been a growing emphasis on employing 

Automatic Vehicle Identification (AVI) data for the provision of real-time travel time 

information to motorists within Advanced Traveler Information Systems (ATIS), (Dion and 

Rakha; 2006). Although, AVI system is designed primary for real-time travel time information 

and tolling purposes, it provides real-time traffic data (Space Mean Speeds) every one minute at 

stations installed on Expressways. 

Numerous studies have established statistical links between freeway crash risk and traffic 

flow characteristics collected from subsurface loop detectors or radar sensors (LDs). However, 

two issues that have not explicitly been addressed in prior studies are; (1) the possibility of 

predicting VR crashes using traffic data collected from AVIs sensors installed on Expressways 

and (2) which traffic data is advantageous for predicting VR crashes; LDs or AVIs. Thus, this 

chapter examines the relationships between VR crash risk and real-time traffic data collected 

from LDs installed on two Freeways in Central Florida (I-4 and I-95) and from AVI sensors 

installed on two Expressways (SR 408 and SR 417). Also, it investigates which data is better for 

predicting VR crashes.  

It is worth mentioning that there are significant differences in the nature of the collected 

speed data from LDs and AVIs sensors. LDs measure time-mean-speed (TMS), whereas AVIs 

measure space-mean-speed (SMS). TMS is defined as the arithmetic mean of the speed of 
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vehicles passing a point during a given time interval. On the other hand, SMS is the average 

speed of all the vehicles traveling a given section of the road over specified time period. 

Historical VR crashes and the corresponding traffic surveillance data of LDs were 

collected from a 75 mile and 137 mile corridors of Intestate-4 and Intestate-95 in Central Florida, 

respectively, between December 2007 and March 2009. In addition, historical VR crashes and 

the corresponding AVI traffic data were collected from two Expressways; SR 408 and SR 417 

between 2007 and 2009.  

Two stratified case-control datasets consisting of traffic data corresponding to every VR 

crash (case) and five random non-crash cases (controls) were created for both freeways and 

expressways under investigation. Hence, a binary classification approach may be adopted. 

Bayesian matched case-control logistic regression models have been estimated to achieve these 

goals. The purpose of using this statistical approach was to explore the effects of traffic flow 

variables on VR crashes while controlling for the effect of other confounding variables such as 

crash time (e.g., peak or off-peak time, season) and the geometric design elements of highway 

sections (e.g., horizontal and vertical alignments). 

 

7.1 Data Collection and Preparation 

7.1.1 Study Area and Parameters 

 

Two sets of data were prepared and used in analysis presented in this Chapter; (1) 

Freeways LDs data and (2) Expressways AVIs data. The first dataset was collected from LDs 

(loop and radar detectors) sensors spaced at approximately 0.5-0.8 mile for about 75 mile and 

137 mile corridors of I-4 and I-95 in Central Florida, respectively, between December 2007 and 

March 2009. VR crashes were gathered during the same period and at the same study area. As 
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indicated earlier in Chapter 6, Due to LDs data availability, only 67 VR crashes that have 

corresponding traffic flow data, were obtained and used in the analysis.  

The second dataset used in this study was collected from AVIs sensors spaced at 

approximately 1-1.5 mile for about 23 and 33 mile of Expressways SR408 and SR417, 

respectively, for three years 2007-2009. The Orlando-Orange County Expressway Authority 

(OOCEA) records and archives only 1-minute aggregation of space mean speed and the 

estimated average travel time along the defined road segments. Again, VR crashes that occurred 

on these Expressways during the same period were extracted. A total of 1895 mainline crashes 

occurred in the same study area and period were extracted. Subsequently, a total of 57 VR 

crashes were obtained. However, only 39 VR crashes that have corresponding traffic flow data 

were used in the analysis. 

 

7.1.2 Data Preparation 

 

Regarding the first dataset (Freeways LDs data), based on the location of each VR crash, 

six nearest LDs stations (three stations upstream and three stations downstream) to the crash 

location were identified using Geographic Information System (GIS) software. As shown in 

Figure 7-1, the first downstream and upstream LDs stations were named DS1 and US1, 

respectively. The subsequent stations in the downstream direction were labeled DS2 and DS3, 

respectively. Similarly, the subsequent stations in upstream direction were named US2 and US3, 

respectively. 

Regarding the second dataset (Expressways AVIs data), based on the location of each VR 

crash, the crash segment (the segment in which the VR crash has occurred) in addition to six 

nearest segments (three segment in the upstream direction and three segment in the downstream 
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direction) to the crash location were identified. Similar to LDs stations, the three upstream 

segments were named US1, US2 and US3, respectively while; the three downstream segments 

were named DS1, DS2 and DS3, respectively. The arrangement of LDs stations and AVIs 

segments is shown in Figure 7-1. 

 
Figure 7-1: Arrangement of LDs and AVI stations 

 

Traffic data for LDs (specifically time mean speeds) were then extracted for the day of 

every VR crash as follows; for example, if a VR crash occurred on January, 14, 2008 (Monday) 

8:00 am, I-4 eastbound, the traffic data were extracted from 3 stations upstream and 3 stations 

downstream of the crash location from 7:45am to 7:55am (10 minutes window). Subsequently, 

five random non-crash cases were also determined for the same location and time on different 
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Mondays (in the same season since Central Florida experience 2 distinct seasons) where no 

crashes were observed within 1 hour of the original crash time. Traffic data was also extracted 

for these five non-crash cases during the same 10 minutes window. 

The 5-minute interval prior to the crash time was disregarded for two main reasons. First, 

the practical application of the models that have significant variables at 0-5 minutes prior to the 

crash time is doubtful. If a crash time is identified correctly there would be no time for the traffic 

management center to analyze, react or disseminate the relevant warning information to the 

drivers. The second reason is to avoid any discrepancy about the exact time of crashes which is 

about ± 2 minutes (Golob and Recker; 2001).  

The next step was the aggregation of LDs and AVIs data. As explained earlier, the raw 

data were combined into 5-minutes level. It is worth noting that 5-minutes of aggregation of the 

data are already carried out by most traffic management agencies for the travel time estimation 

algorithms (Pande et al. 2011). Thus, the 10-minute period for which data were collected was 

then divided into two time slices. The period of 5-10 minutes before the crash was named as time 

slice 2 while the period of 10-15 minutes prior to the crash was labeled as time slice 3. The 

averages, standard deviations and coefficient of variation in speed (standard deviation/ average) 

were then calculated for each LDs station during time slices 2 and 3. 

To sum up, regarding the first dataset, a stratified case-control dataset consisting of LDs 

traffic data corresponding to every VR crash (case) and five randomly selected matched non-

crash cases (controls) was created. Thus, the first dataset includes 402 observations (67 crashes 

and 335 non-crash cases). 

The nomenclature of traffic variables extracted from LDs stations takes the form 

WXYZα_β. W takes the value A, S or C for average, standard deviation or coefficient of 
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variation, respectively, while X takes the value of S representing speed. YZα takes the value of 

US1, US2, US3, DS1, DS2, DS3 representing the station to which the traffic parameters belong. 

β takes the value of 2 and 3 which refer to the two time slices used in the study. For example 

ASUS1_2 represents the average speed at the nearest upstream station to a crash location at time 

slice 2 (5-10 minutes before crash time).  

Similarly, traffic data for AVI (space mean speeds data) were extracted for every VR 

crash that has occurred on Expressways (SR408 and SR417) in addition to 5 randomly non-crash 

cases for the same 10 minutes window mentioned above. These data were extracted for the crash 

segment and six nearest segments (as shown in Figure 7-1). The extracted 1-minute space-mean 

speeds of AVIs data were also aggregated into 5-minute aggregation level (time slices 2 and 3).  

The nomenclature of AVIs variables for the six nearest segment is similar to the LDs. 

However, for the crash segment, the nomenclature of AVIs variables takes the form WXY_β. W 

takes the value A, S or C for average, standard deviation or coefficient of variation, respectively, 

while X takes the value of S representing speed. Y takes the value of C representing the crash 

segment and β takes the value of 2 or 3 representing time slices. For example, CSC_2 represents 

the coefficient of variation in speed of the crash segment at time slice 2. 

In brief, concerning the second dataset, a stratified case-control dataset consisting of 

AVIs traffic data corresponding to every VR crash (case) and five randomly selected matched 

non-crash cases (controls) was created. Thus, the second dataset includes 234 observations (39 

VR crashes and 335 non-crash cases). 

It is worth noting that for each of the two datasets, by varying m (no. of controls) from 1 

to 5; five datasets have been created which referred to as matched 1:1, 1:2, and 1:5 dataset. Each 

matched data set (1: m, m = 1, 2,… and 5) was analyzed separately. However, no significant 
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differences have been observed when changing m. Therefore, only the detailed description of the 

analysis of 1:5 matched datasets is presented and discussed. 

 

7.2 Preliminary Analysis of VR Crashes 

 

This section presents a preliminary analysis of VR crashes used in this study. Table 7-1 

summarizes the distributions of these crashes for both Freeways (I-4 & I-95) and Expressways 

(SR417 & SR408) under exploration. Regarding vision obstruction, 4% of the VR crashes have 

occurred on the freeways under investigation when vision was obstructed by fog while 96% of 

the VR crashes occurred when vision was obstructed due to heavy rain. In addition, 15% and 

85% of the VR crashes extracted for the Expressways have occurred when vision was obstructed 

by fog and heavy rain, respectively. 

Considering lighting conditions, the results revealed that a large percent of the VR 

crashes on the Freeways and Expressways under study (58.2% and 48.7%, respectively) have 

occurred during daylight followed by 19.4% and 23.1%, respectively that occurred at night in the 

absence of street light. Moreover, it was found that about half of the VR crashes, occurred on the 

Freeways and Expressways under investigation, were rear end crashes (about 48% and 46%, 

respectively). One possible explanation for this is that at reduced visibility, drivers cannot reduce 

their speed gradually when they suddenly encounter a relatively higher traffic density, therefore, 

a crash occurs and most likely rear end. In general, previous studies showed that rear-end crashes 

represent the highest percent on Freeways and Expressways (Pande et al. 2011, Singh 2003). 
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Table 7-1: Distribution of VR crashes 

Factors Categories 
Freeways 

(I-4 & I-95) 
Expressways 

(SR417& SR408) 

Percentages Percentages 

Roadways I-4 / SR417 58.2 (I-4) 43.6 (SR417) 
I-95 / SR408 41.8 (I-95) 56.4 (SR408) 

  
Vision 

obstruction 
Fog 6.0 15.0 
Heavy rain 94.0 85.0 

  

Lighting 
conditions 

Daylight 58.2 48.7 
Dusk 4.5 7.7 
Dawn 6.0 5.1 
Dark (street light) 10.5 12.8 
Dark (no street light) 19.4 23.1 
Unknown 1.4 2.6 

  

Crash type 

Rear end 47.8 46.1 
Angle 17.9 10.7 
Sideswipe 7.6 30.2 
others 7.4 13.0 

 

 

7.3 Methodology 

 

A flow chart of the overall data analysis process presented in this chapter is shown in 

Figure 7-2. The figure shows that LDs data (time-mean speeds data) collected from freeways (I-4 

& I-95) was used to predict VR crashes occurrences on Freeways using Bayesian matched case-

control logistic regression approach. The final model obtained from this stage was named Model-

1.  This model was estimated to investigate whether or not one can predict the occurrence of VR 

crashes using time mean speeds only in the absence of any information regarding volume and 

occupancy (to be comparable to the case of AVIs data). 

 Subsequently, the freeways LDs data was converted from time-mean speeds into space-

mean speeds. This new dataset set was also used to predict VR crash occurrence on Freeways 

using space-mean speed data. The model was estimated also using Bayesian matched case-
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control logistic regression approach and labeled Model-2. This dataset is equivalent to AVIs data 

and hence, the results from Model-2 were tested using the AVIs expressways data. 

It is worth mentioning that Wardrop (1952) derived the relationship between the time- 

 

Where: σ2
T is the variance in vehicle speeds about the time-mean speed. They also demonstrated 

that the proposed formulation, which utilizes the variance about the time-mean speed as opposed 

to the variance about the space-mean speed, produces an estimate error to within 0 to 1 percent. 

Equation [7-2] was used in the present study to estimate space-mean speeds from time-mean 

speeds of LDs data. 

Next, AVIs data (space-mean speeds data) collected from Expressways (SR408 & 

SR417) was used to predict the occurrences of VR crashes on Expressways. The developed 

Bayesian matched case-control from this step was named Model-3. A discussion and comparison 

between the results of the three developed models in this study is provided in the following 

sections.  
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Figure 7-2: Flow chart representing the data analysis 
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7.4 Bayesian Matched Crash Non-Crash Analysis 

 

As mentioned earlier, the purpose of the proposed matched crash-non-crash analysis is to 

explore the effects of traffic flow variables on VR crashes while controlling for the effects of 

other confounding variables such as crash time (e.g., peak or off-peak hours, season) and the 

geometric design elements of freeway/expressway sections (e.g., horizontal, vertical alignments, 

on-ramp and off-ramp vicinity locations, etc.). Matched case-control logistic regression using 

classical statistic approach has been adopted in epidemiological studies. In addition, it was used 

in few transportation related studies such as Abdel-Aty et al. (2004) and Hassan and Abdel-Aty 

(2011).  

Bayesian matched case-control logistic regression approach was adopted using SAS 

package 9.2, procedure PHREG.  This procedure provides Bayesian analysis in addition to the 

standard (classical) analysis they have always performed (as discussed in Chapter 6). Procedure 

PHREG generates a chain of posterior distribution samples by the Gibbs Sampler and provides 

summary statistics, convergence diagnostics and diagnostic plots for each parameter. It also uses 

the adaptive rejection sampling (ARS) algorithm to sample parameters sequentially from their 

univariate full conditional distribution (SAS Institute Inc. 2009).  

The advantages of using the Bayesian approach include that (1) it provides a natural and 

principled way of combining prior information (if it exists) with the data, within a solid decision 

theoretical framework to yield a posterior belief (when new data become available, the previous 

posterior distribution can be used as a prior), (2) it presents full distributional profile of 

parameters rather than single coefficient estimates to fully account for the uncertainty associated 

with single parameter estimates in classical statistics, (3) it gives inferences that are exact and 
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conditional on the data, without reliance on asymptotic approximation and hence, small sample 

inference proceeds in the same manner of a large sample,  (Rao 2003, SAS Institute Inc. 2009). 

Due to the absence of informative priors, a uniform prior distribution was assumed and 

used to estimate the first two models developed in this chapter. The uniform prior is a flat prior 

which assigns equal likelihood on all possible values of the parameter. However, the third model 

presented in this study were estimated twice (using uniform prior and using the results of Model-

2 as informative priors) as explained in the following sections. The convergence of the generated 

Markov chains of all developed models was assessed by examining the trace plot, the 

autocorrelation function plot and the posterior density plot. It was found that, all the models have 

converged reasonably. The DIC, a Bayesian generalization of AIC, is used along with the 

classification accuracy of the three models to measure the models complexity and goodness of fit 

(Spiegelhalter et al. 2003). 

 

7.5 Predicting VR crashes on Freeways Using LDs Data 

7.5.1 Using Time-Mean Speed Data 

 

As indicated earlier, to predict the real-time crash risk of VR crashes on Freeways (I-4 

and I-95) using time-mean speeds’ data, the first dataset was used. The first dataset includes 402 

observations (67 VR crashes and 335 non-crash cases). Automatic search technique: stepwise, 

forward and backward were used to identify significant variables. All three search techniques 

resulted in two significant variables. The estimates of beta coefficients, credible interval, 

associated summary results; model fit statistics and classification results of actual and predicted 

VR Crashes obtained from the final model (Model-1) are presented in Table 7-2.   
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The results indicated that a decrease in the average speed at the nearest downstream 

station (ASDS1_2, β=-0.1409, 95%CI (-0.2010, -0.0898)) coupled with an increase in the 

logarithm of coefficient of variation in speed (Standard deviation/average speed) at the nearest 

upstream station (Log. CSUS1_2, β=0.3979, 95%CI (0.0671, 0.8536)), all at time slice 2 (5-10 

minutes before the crash time) increase the risk of VR crash occurrence in between. The results 

from the model may imply that lower average speed at the nearest downstream station (possible 

due to higher occupancy) coupled with higher standard deviation in speed at the nearest upstream 

station, all at time slice 2 pointing to potential queue formation under turbulent speed conditions, 

which could be a cause for high VR crash possibility. 

Note that the hazard ratio corresponding to parameters estimates are shown in Table 7-2. 

Hazard ratio, equals the exponent of the beta coefficient, is an estimate of the expected change in 

the risk ratio of having a VR crash versus non-crash cases per unit change in the corresponding 

factor. For example, hazard ratio of 1.53 corresponding to (Log. CSUS1_2) means that the risk 

of a VR crash increases about 1.5 times for each unit increase in (Log. CSUS1_2). 

As previously explained, the odds ratio in Equation [6-3] can be used to classify VR 

crash and non-crash cases. Therefore, the mean of the two significant variables of all five non-

crash cases within each matched set were estimated. The vector X2j in Equation [6-3] was then 

replaced by the vector of non-crash means for the jth matched set. The odds ratio for each 

observation in the data set was then estimated by substituting the beta coefficient from Table 7-2 

in Equation [6-3] where the vector X1j is the actual observation in the data set. A threshold value 

for these ratios was then set to determine whether the location has to be flagged as a potential 

“VR crash”. Using a threshold of 1.0 for the log odds ratio, over 73% crash identification was 

achieved (as shown in Table 7-2). The table shows that the sensitivity, proportion of VR crashes 
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that are correctly identified as VR crashes by the model is 73.13%. Also, the specificity, 

proportion of non-crashes that are correctly identified as non-crashes by the model is 60.30% 

(Agresti 2002). 

 
Table 7-2: Results of Bayesian matched case-control logistic regression (Model 1)  

(Based on LDs data; time-mean speeds)  
 

Parameters Estimates 

Parameter Mean Standard 
Deviation 

Credible interval 
2.5% 97.5% 

ASDS1_2 -0.1409 0.0283 -0.2010 -0.0898 
Log. CSUS1_2 0.3979 0.2350 0.0671 0.8536 

Hazard Ratios 

Parameter Mean Standard 
Deviation 

Credible interval 
2.5% 97.5% 

ASDS1_2 0.8689 0.0245 0.8179 0.9141 
Log. CSUS1_2 1.5304 0.3659 0.9351 2.3481 

Model Fit Statistics 
DIC 143.088 

pD (Effective Number of Parameters) 1.989 
Classification results of Actual and Predicted VR 

Crashes 
 Predicted Y  

 

Frequency 
Percent 
Row Percent 
Col Percent 

0 1 Total 

Actual Y 

0 

202 
50.25 
60.30 
91.82 

133 
33.08 
39.70 
73.08 

335 
83.33 

 
 

1 

18 
4.48 
26.87 
8.18 

49 
12.19 
73.13 
26.92 

67 
16.67 

 
 

 Total 220 
54.73 

182 
45.27 

402 
100.00 
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It is worth mentioning that this threshold may be changed to achieve desirable 

classification accuracy for both crashes and non-crash cases. In other words, accuracy can be 

easily increased by accepting higher false alarm rate and be on the conservative side. If freeway 

traffic turbulence is identified, even if does not lead to a crash, it would be useful to reduce 

turbulence and improve flow. This point could be left to implementation and the preferences of 

the specific traffic agency. To sum up, the predictive power of the model might be evaluated 

using the rate of crash misclassification or overall misclassification or some combination of the 

two. 

7.5.2 Using Space-Mean Speed Data 

 

As discussed previously, the first dataset (freeways LDs data) was converted from time-

mean speeds into space-mean speeds. This step was done for two mean reasons. First, to 

calibrate a prediction model for VR crashes using a dataset that is equivalent to AVI data (named 

Model-2) and therefore, it might be possible to compare between the results of Model-2 and 

Model-3 (Expressways’ VR crashes prediction model based on AVI data). Second, the results of 

Model-2 may be tested using the Expressways’ AVI data.  

Table 7-3 shows the results of the Bayesian matched case-logistic regression (Model-2) 

that was estimated based on Freeways’ LDs data (space-mean speeds). As expected, similar to 

the results of Model-1, the results of Model-2 revealed that the average speed at the nearest 

downstream station (ASDS1_2, β=-0.1573, 95%CI (-0.2253, -0.0984)) and the logarithm of 

coefficient of variation in speed at the nearest upstream station (Log. CSUS1_2, β=0.4434, 

95%CI (0.0926, 0.9775)), all at time slice 2 (5-10 minutes before the crash time) were found to 

have significant effect on VR crash risk on Freeways. As shown in Table 7-3, using a threshold 

of 1.0 for the log odds ratio, over 71% crash identification was achieved. Considering the results 
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shown in Tables 7-2 and 7-3, the results indicate that Model-1 (based on time-mean speeds) is 

slightly better that model 2 (based on space-mean speeds) as it achieved higher classification 

accuracy of identifying VR crashes (73.13%) and better fit statistic (DIC=143.088 compared to 

DIC=156.733 of Model-2). 

 
Table 7-3: Results of Bayesian matched case-control logistic regression (Model 2)  

(Based on LDs data; space-mean speeds) 

Parameters Estimates 

Parameter Mean Standard 
Deviation 

Credible interval 
2.5% 97.5% 

ASDS1_2 -0.1573 0.0322 -0.2253 -0.0984 
Log. CSUS1_2 0.4434 0.2729 0.0926 0.9775 

Hazard Ratios 

Parameter Mean Standard 
Deviation 

Credible interval 
2.5% 97.5% 

ASDS1_2 0.8549 0.0274 0.7983 0.9063 
Log. CSUS1_2 1.6174 0.4533 0.9116 2.6578 

Model Fit Statistics 
DIC 156.733 

pD (Effective Number of Parameters) 1.986 
Classification results of Actual and Predicted VR 

Crashes 
 Predicted Y  

 

Frequency 
Percent 
Row Percent 
Col Percent 

0 1 Total 

Actual Y 

0 

177 
44.03 
52.84 
90.31 

158 
39.30 
47.16 
76.70 

335 
83.33 

 
 

1 

19 
4.73 
28.36 
9.69 

48 
11.94 
71.64 
23.30 

67 
16.67 

 
 

 Total 196 
48.76 

206 
51.24 

402 
100.00 
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Then, using the expressways AVIs data (234 observations; 39 VR crashes and 335 non-

crash cases) the results of Model-2 were tested. It was found that about 64.6% and 63.1% of VR 

crashes and non-crash cases, respectively, were correctly identified. It can be noted that this 

classification accuracy (64.6%) is relatively comparable to the accuracy 71.64% obtained 

previously by Model-2 which may imply that Model-2 is performing well in correctly predicting 

the occurrences of VR crashes. One possible explanation for having relatively lower 

classification accuracy when using the tested dataset is the differences between LDs and AVIs 

arrangements (configurations). As shown in Figure 7-1, LDs sensors are spaced at approximately 

0.5-0.8 mile compared to AVIs sensors that are spaced at approximately 1.0-1.5 mile. 

 

7.6 Predicting VR crashes on Expressways Using AVIs Data 

 

An issue that has not been addressed in prior studies is the possibility of predicting the 

occurrence of VR crashes using traffic data collected from AVIs sensors installed on 

Expressways. Therefore, using space-mean speeds data collected from Expressways SR408 and 

SR417 for a total of 39 VR crashes and 195 non-crash cases, a Bayesian matched case-control 

logistic regression model was estimated (Model-3). Table 7-4 shows the parameter estimate, 

hazard ratio, goodness of fit indices and classification accuracy of Model-3. The results revealed 

that the logarithm of coefficient of variation in speed (β=0.7588, 95%CI (0.3489, 1.2062)) at the 

crash segment (see Figure 7-1) during time slice 2 (5-10 minutes prior to crash time) was found 

to have a significant effect of VR crash risk. These results imply that lower average speed 

observed at a certain segment coupled with higher standard deviation in speeds at the same 

segment; all at time slice 2, increase the probability of VR crashes occurrences. 
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One may wonder if both average speed and standard deviation are significant predictors 

when used separately instead of combining them into coefficient of variation (standard deviation 

/ average speed) as one variable. To address this issue, we estimated another model using these 

two variables however; this model showed lower accuracy in identifying VR crashes correctly. 

Also it showed higher DIC than the model that has Log. CSC_2 and thus we concluded that the 

best model is the one that has only (Log. CSC_2). No variable from the upstream or downstream 

segments is found to be significant. This should not be surprising since reduced visibility due to 

fog/smoke or heavy rain is most likely localized. As indicated earlier, the lengths of AVIs 

segment vary from about 1.0-1.5 mile, so it is logical to get significant variable(s) from the crash 

segment only. 

 As shown in Table 7-4, a hazard ratio of 2.19 corresponding to (Log. CSC_2) means that 

the risk of a VR crash increases about 2.2 times for each unit increase in (Log. CSC_2). Also the 

table shows that the sensitivity and the specificity of the model are 69.23% and 61.03%, 

respectively. As discussed earlier, due to the absence of informative priors, all the three models 

presented in the present study were estimated using uniform prior which is favored by many 

statisticians (SAS Institute Inc. 2009). However, it is worth mentioning that we re-estimated 

Model-3 using the results of Model-2 as informative priors (specifically, Log. coefficient of 

variation in speeds). Note that the datasets used to develop Model-2 and Model-3 is comparable 

as both of them are space-mean speeds data. It was found that the results of Model-3 had not 

significantly improved when using the informative priors possibly because the configurations of 

LDs and AVIs are different. The LDs stations are spaced approximately at 0.5-0.8 mile while the 

lengths of AVIs segments vary from 1-1.5 miles. Also, LDs have upstream and downstream 

stations only while, AVIs has crash segment in addition to the upstream and downstream 
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segments. The results imply that it may not be advisable to use informative priors from other 

corridors that probably have different characteristics. Therefore, the results based on uniform 

prior of Model-3 are only presented here. 

 

Table 7-4: Results of Bayesian matched case-control logistic regression (Model 3)  
(Based on AVI data; space mean speeds) 

Parameters Estimates 

Parameter Mean Standard 
Deviation 

Credible interval 
2.5% 97.5% 

Log. CSC_2 0.7588 0.2177 0.3489 1.2062 

Hazard Ratios 

Parameter Mean Standard 
Deviation 

Credible interval 
2.5% 97.5% 

Log. CSC_2 2.1877 0.4943 1.4174 3.3406 

Model Fit Statistics 
DIC 91.122 

pD (Effective Number of Parameters) 0.990 
Classification results of Actual and Predicted VR 

Crashes 
 Predicted Y  

 

Frequency 
Percent 
Row Percent 
Col Percent 

0 1 Total 

Actual Y 

0 

119 
50.85 
61.03 
90.84 

76 
32.48 
38.97 
73.79 

195 
83.33 

 
 

1 

12 
5.13 
30.77 
9.16 

27 
11.54 
69.23 
26.21 

39 
16.67 

 
 

 Total 131 
55.98 

103 
44.02 

234 
100.00 
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7.7 Conclusions 

 

This chapter aimed at identifying patterns (i.e., turbulence in the traffic flow) in the 

expressway AVIs traffic data that potentially precede VR crashes. Also, it investigated which 

traffic data is advantageous for predicting VR crashes; data collected from LDs sensors installed 

on freeways or data collected from AVIs sensors installed on expressways. Statistical links 

between turbulent traffic conditions and VR crash occurrences were established through a 

detailed analysis of LDs/AVIs traffic data corresponding to VR crashes that occurred on 

freeways (I-4 and I-95) and on expressways (SR408 and SR417) in central Florida during the 

study time. 

The approach adopted in this study involves developing Bayesian matched case-control 

logistic regression using the historical crash, LDs and AVIs data. To achieve these objectives, 

three models were estimated and discussed. 

Historical VR crashes along with traffic data (time-mean speeds) collected from LDs on 

freeways were used to calibrate the first model (Model-1). The second model (Model-2) was 

calibrated using the same data but after converting it into space-mean speeds (to make it 

equivalent to AVIs data). The results of both models indicated that the average speed observed at 

the nearest downstream station coupled with the coefficient of variation in speed observed at the 

nearest upstream station, all at 5-10 minute prior to the crash time, were found to have significant 

effect on VR crash risk. It has been shown that Model-1 and Model-2 achieved over 73% and 

71% of VR crash identification, respectively. The performance of model-2 was then tested using 

historical VR crashes and AVIs traffic data (space-mean speeds) collected from expressway 

(SR417 and SR408). It was found that about 65% of VR crashes were correctly identified. It can 

be noted that this classification accuracy is relatively comparable to the accuracy 71.64% 
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obtained previously by Model-2 which may imply that Model-2 is performing well in correctly 

predicting the occurrences of VR crashes, however, one possible explanation for obtaining 

relatively lower classification accuracy when using the tested dataset is the differences between 

LDs and AVIs arrangements (configurations).  

Also historical VR crashes and space-mean speeds data collected from AVIs sensors 

located on expressways (SR417 and SR408) were used for developing prediction model of VR 

crashes on expressways (Model-3). The results of the model revealed that an increase in the 

coefficient of variation in speed at the crash segment, 5-10 minutes before the crash time 

increases the likelihood of VR crashes. No variables from the upstream or downstream AVIs 

segments were found significant possibly because the effect of fog/smoke or heavy rain is most 

likely localized and the longer Expressway segments. Model-3 achieved over 69% of VR crash 

identification. 

Considering the results of Model-3 and compared to the results of Model-1 and Model-2, 

it can be realized that LDs data is slightly better than AVIs data regarding the prediction of VR 

crashes possibly due to three reasons. First, the configuration (arrangement) of LDs and AVIs 

sensors is different as discussed above (i.e., the distances between LDs sensors are less than the 

lengths of AVIs segments). Second, AVIs measures space-mean speeds by tracking the speed of 

vehicles through successive AVIs sensors while, LDs measures time-mean speed (spot speeds) 

of vehicles at certain point (LDs stations) on a roadway. Third, the AVIs sensors can only record 

and archive traffic data for vehicles that have AVIs tags (i.e., transponders, E-pass, etc.).  It is 

well established that about 80% of vehicles using expressways have AVIs tags. On the other 

hand, LDs record and achieve traffic flow data for all vehicles travelling on the roadway. 
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It is worth noting that the first model presented in this chapter (based on LDs data; time-

mean speed data only) achieved slightly higher classification accuracy than the first model 

presented in Chapter 6 (based on LDs data; speed, volume and occupancy data) possibly due to 

the use of Bayesian approach as it is probably more realistic than the classical statistical 

approach. One of the advantages of the Bayesian approach is that it accounts for the uncertainty 

associated with parameter(s) estimates and provides exact measures of uncertainty on the 

posterior distributions of these parameters and hence it overcomes the maximum likelihood 

methods’ problem (in classical statistics) of overestimating precision because of ignoring this 

uncertainty (Goldstein, 2003; Rao, 2003). 
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CHAPTER 8.  CONCLUSIONS AND RECOMMENDATIONS 

This research is concerned with improving safety and drivers’ behavior in poor visibility 

conditions. Two ways to improve safety in reduced visibility conditions are to improve drivers’ 

behavior under such adverse weather conditions and to predict the occurrence of VR crashes 

using real-time traffic data collected from LDs or AVIs sensors installed on Freeways and 

Expressways.  

This chapter presents key findings, conclusions and recommendations that were extracted 

from the survey-based study and from the real-time assessment of VR crash risk. 

 

8.1 Conclusions Based on the Survey Study 

 

Warning messages and reduced speed limits displayed on well-designed CMS and VSL 

signs may achieve more homogenous speeds and help to reduce accidents that may occur due to 

sudden onset/appearance of fog, smoke or heavy rain. Therefore, this research investigates 

drivers’ behavior, attitudes and preferences under different traffic and fog conditions, and 

suggests some recommendations to improve drivers’ compliance with advice displayed on CMS 

and VSL signs.  

A multiple approach survey was designed to collect opinions and stated data from 

motorists in Central Florida. A total of 566 responses were used in the analysis. Conducting this 

survey using three approaches (handout, interactive, and online questionnaire) achieved a well 

representative sample (i.e., the sample was apparently broad and fairly uniform across age, 

gender, and education).  
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Several categorical data analysis techniques were applied to understand commuters’ 

behavior at adverse visibility conditions. These methods include conditional distributions, odds’ 

ratio, and Chi-Square tests. The results revealed that participants’ response to CMS and VSL 

signs’ instructions vary by gender, age, familiarity with CMS and VSL signs, past experience 

with driving at adverse visibility condition and involvement in FS/HR related crashes. 

To improve our understanding of the preferences of respondents in following VSL and 

CMS instructions at such adverse visibility conditions, Multivariate and Bivariate Probit Models 

were estimated. The advantages of using BPM and MPM analysis in the present study include 

that the simultaneous estimation of the models would improve the coefficient estimates by 

accounting for the correlation between the unmeasured factors (Das et al., 2008). In addition, 

correlations between several equations can also be accounted for. Moreover, using MPM, all 

dependent and explanatory factors affecting drivers’ responses to CMS and VSL signs at 

different traffic and visibility conditions were shown and discussed in one model framework.  

The findings of MPM indicated that compared to males and young drivers (18-25 years 

old), females and old drivers (51 years old or more) claim to be more likely to reduce their speed 

in response to CMS and VSL instructions when driving in different visibility (heavy or very light 

fog) and traffic conditions (low or medium-high). This may imply that females and old drivers 

are more cautious than males and young drivers especially while driving at such adverse 

visibility conditions.  

The results also indicated that drivers who are familiar with VSL signs claim to be more 

likely to follow their instructions at heavy fog condition than those who are not. One possible 

explanation is that drivers, who are familiar with VSL signs, usually are aware of its importance 

for safety and hence, they are less likely to ignore its instructions. 
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Concerning the type of road, the findings showed that the stated likelihood of reducing 

speed in response to CMS and VSL signs increases when driving on a two-lane road at adverse 

visibility condition compared to a freeway possibly due to the absence of a median. 

A further objective of this study was to investigate whether drivers would rely on and 

follow warning messages displayed on CMS/VSL signs at adverse visibility conditions. Only 

37% of the respondents reported that they would reduce their speed immediately or reduce their 

speed and put blinkers on when encountering a CMS, which advises them to reduce their speed 

due to reduced visibility condition, at low traffic volume while driving on a freeway. Also, it was 

found that only 35% of the respondents were willing to follow VSL instructions (reducing their 

speed to 40 mph or less) while driving on a freeway at very light fog and low traffic volume. 

Moreover, the results show that as the visibility distance deteriorates and traffic volume 

increases, drivers claim to be more likely to follow CMS/VSL instructions.  

  In addition, a structural equations modeling (SEM) technique was used in this study to 

distinguish variables that affect drivers’ compliance and satisfaction with advice or warning 

messages displayed on VSL and CMS under different traffic and visibility conditions. The SEM 

models were developed and proved statistically that they have an acceptable fit. The advantages 

of using the SEM approach in this study were that it verified the research hypotheses, measured 

the degree of effect through path coefficients and analyzed both direct and indirect effects 

through the analysis of casual relationships between latent and manifest variables. 

  The findings revealed that drivers’ satisfaction with VSL and CMS was the most 

significant variable that positively affected drivers’ compliance with VSL and CMS instructions 

under different fog and traffic conditions followed by driver factors. This result indicates that 

higher satisfaction with VSL/CMS instructions and higher scores for driver factors (i.e., older 
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age, longer driving experience, less number of traffic citations and higher usage of freeways/2-

lane roads) contribute to increase drivers’ compliance with advice or warning messages 

displayed on VSL/CMS under reduced visibility conditions.  

In addition, it was found that roadway type affected drivers’ behavior in response to VSL 

instructions only under medium and heavy fog conditions. However, roadway type did not 

significantly affect drivers’ behavior in response to VSL under very light or light fog. The 

findings also indicated that roadway type affected drivers’ compliance with CMS only when 

some vehicles are ahead. Furthermore, drivers’ familiarity with VSL signs and driver factors 

were the significant factors affecting drivers’ satisfaction with VSL/CMS advice under reduced 

visibility conditions. 

Based on the findings of the present study, to increase drivers’ compliance with advice or 

warning messages displayed on VSL and CMS signs, the following recommendations are 

suggested: 

 

1- Accurate and real-time detection of visibility conditions is essential and critical to 

improve drivers’ satisfaction and compliance with VSL/CMS instructions. In this regard, 

the results of the SEM models revealed that drivers’ satisfaction with CMS/VSL signs 

was the main factor that significantly affected drivers’ compliance with warning 

messages or advice displayed on CMS and VSL signs. Obviously, one way to improve 

drivers’ satisfaction with CMS/VSL signs is to ensure that the signs continuously display 

accurate and real-time advices based on the actual visibility conditions. Numerous 

respondents to the current survey study reported that speed limits displayed on VSL signs 

cannot be relied on since fog thickness is changeable every minute, and thus, the sign 

would not reflect the accurate safe speed limit according to the current visibility 
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condition. This is consistent with NHTSA (2009) which indicated that speed limits 

should be set carefully, taking into account environmental conditions; if not, many 

drivers may lose their trust in and exceed the speed limit. 

2- “Caution-fog ahead-reduce speed” was perceived as the best warning message 

(selected by about 38% of respondents) that would achieve the best safety and drivers’ 

compliance in case of reduced visibility due to fog. Since most of CMS can display 2 

pages of messages alternatively with each message containing 3 lines of up to 8 

characters. Thus, the best message that can easily be displayed on CMS may be “Caution-

Fog-Ahead” on the first page with "reduce-speed" on the second page. 

3- Using CMS and VSL signs together is recommended in reduced visibility conditions. 

About 64% of respondents claimed that this is the best way to improve safety during such 

inclement weather conditions. This is logical because warning drivers about reduced 

visibility using CMS should be followed by informing them what they should do using 

VSL signs (the safe speed at each visibility condition). This could lead to accomplish 

more homogenous speeds in such adverse visibility conditions. This result is consistent 

with prior studies such as Perrin et al. (2002). 

4- Using two successive CMS signs prior to FS zones is also recommended (reported by 

the majority of respondents; 83%) as it could provide drivers with another chance to read 

the content of the second CMS if they missed the first one (i.e., if the sign was occluded 

by other traffic or due to poor visibility conditions).  

5- Enforcement: deterrence through more traffic law enforcement, especially for young and 

male drivers, should increase drivers’ compliance with reduced speed limits and warning 

messages displayed on VSL and CMS, respectively. In this regard, the results of the 
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MPM showed that males and young drivers claimed to be less likely to follow CMS/VSL 

instructions compared to female and old drivers. In addition, the findings of the SEM 

models indicated that drivers with more number of traffic citations are less likely to 

comply with CMS/VSL instructions. Thus, strict penalties for repeat offenders including 

increased driver’s license points, license suspension or revocation, higher fines, could 

improve drivers’ behavior in such adverse conditions.  

6- Economic Incentives: on the other hand, incentives could promote safer behavior (for 

example, lower insurance premiums for drivers who were not involved in any at-fault 

crashes or who did not get any traffic citation within a certain period). These drivers 

already save money for their community by avoiding crashes and hence they deserve to 

be rewarded.  

7- Education or Communication Campaigns: special education courses for young drivers 

in particular or aggressive drivers (i.e., drivers who have been involved in at-fault crashes 

due to reduced visibility or who got traffic citations due to exceeding speed limits) may 

be conducted to emphasize the importance of obeying VSL/CMS instructions and the 

strong relationship between rule violation and crash risk especially under low visibility 

conditions.  Campaigns can be used also to increase the awareness and familiarity of 

drivers with VSL signs as the results of the MPM pointed out that drivers who are 

familiar with VSL signs are more likely to follow its instruction compared to drivers who 

are not familiar with it.  Similarly, the results of third SEM model indicated that drivers’ 

familiarity with VSL sign was one of the factors that significantly affected drivers’ 

satisfaction with CMS/VSL signs. 
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To sum up, these recommendations might improve drivers’ compliance with CMS and VSL 

instructions and consequently achieve more homogenous speeds in reduced visibility conditions. 

This may help to reduce the risk of visibility related crashes. 

The limitation of this survey-based study is that the use of self-reported (stated 

preference) studies in examining drivers’ behavior and preferences would seem to be a problem 

if there were a large variance between self-reported data and actual behavior. However, various 

prior studies (e.g., Loomis 1993; West et.al 1993; Yannis et al. 2005) reported good harmony 

between self-reported responses and actual ones. While actual values or percentages should be 

regarded with care (i.e., be more on the conservative side), the directions and indications of the 

results would be valid. The combined use of data from self-reported questionnaires as well as a 

driving simulator experiments might be recommended in future studies to address this concern.  

It is also recommended to examine whether there is any difference between drivers’ 

behavior in response to warning messages or advice displayed on the permanent changeable 

message signs and their responses to the portable signs in reduced visibility conditions. Finally, 

studying driving behavior of motorists who had been involved in visibility related crashes 

separately is recommended in future studies to examine the possible relationships between risky 

driving behavior and involvement in visibility related crashes. 
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8.2 Conclusions Based on Real-time assessment of VR crash Risk 

 

The main contribution of this part is the systematic identification of relationships between 

historical VR crash occurrences and real-time traffic flow characteristics collected from LDs and 

AVIs installed on freeways and expressways, respectively. In addition, argument concerning 

which traffic data (LDs or AVI) is better for predicting VR crashes is also provided and 

discussed in this Chapter. 

Real-time assessment of traffic flow characteristics may help in reducing the chances of 

VR crashes. This study aims at identifying traffic flow factors leading to VR crashes on freeways 

in order to develop a crash likelihood prediction model using real-time traffic flow variables. 

Thus, the first research hypothesis investigated in this part was comparing crashes vs. non-crash 

cases at poor visibility conditions. 

Traffic surveillance data, collected from LDs and radar sensors installed on Intestate-4 

and Intestate-95 were used to achieve that goal. VR crashes and historical visibility 

measurements were gathered for the same study area and during the same period. A total of 67 

VR crashes were extracted that have corresponding LDs or radar sensors’ data.  

Random Forests were used to indentify significant flow variables affecting VR crash 

occurrences on freeways. With significant variables selected by Random Forests, matched case-

control logistic regression model has been estimated. The purpose of using this statistical 

approach is to explore the effects of traffic flow variables on VR crashes while controlling for 

the effect of other confounding variables such as the geometric design elements of highway 

sections and crash time. 
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The results indicated that the average occupancy at the nearest downstream station during 

10-15 minutes prior to the crash and the average speed at the nearest downstream and upstream 

stations at 5-10 minutes before the crash affected the likelihood of VR crash occurrence in 

between.  

In addition, the results revealed that using matched case-control analysis, the log odds of 

VR crash occurrence may be obtained for a given value of certain traffic flow variables. The 

threshold value of 1.0 led to the identification of over 68% of VR crashes. It is worth mentioning 

that driver’s factors and errors was not considered in the model, and therefore this identification 

percentage of VR crashes may be considered reasonable. Driver population might have been 

accounted for in the matched design, since we can assume that drivers at the same location and 

time of day could be comparable. 

Furthermore, two more research hypotheses were investigated to improve our 

understanding of the relationship between traffic flow variables and VR crashes as well as how 

these variables differ from those variables that are associated with CV crashes. The second 

research hypothesis was to compare crashes at poor visibility conditions vs. non-crash cases at 

clear visibility conditions. The third research hypothesis was to compare crashes vs. non-crash 

cases at clear visibility conditions. 

Considering the results of the first and second research hypotheses, it was found that 

compared to non-crash cases at poor visibility conditions, higher occupancy at the nearest 

downstream station during 10-15 minutes before the crash coupled with an increase of the 

average speed upstream and downstream during 5-10 minutes prior to crash time, increase the 

likelihood of VR crash occurrence. However, compared to non-crash cases at clear visibility 

conditions, lower occupancy downstream along with a decrease of the average speed 
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downstream and upstream, all during 5-10 minutes before the crash increase the likelihood of 

VR crash occurrence in between.  

Regarding the results of the first and third research hypothesis, the results suggest that 

traffic flow variables leading to VR crashes are slightly different from those variables leading to 

CV crashes. It was found that, higher occupancy observed about half a mile between the nearest 

upstream and downstream station increases the risk for both VR and CV crashes. Moreover, an 

increase of the average speed observed on the same half a mile increases the probability of VR 

crash. On the other hand, high speed variation coupled with lower average speed observed on the 

same half a mile increase the likelihood of CV crashes. In summary, using time slices 5-15 

minutes before crashes might provide an opportunity to the appropriate traffic management 

centers for a proactive intervention to reduce crash risk in real-time. 

Additionally, this study aimed at identifying patterns (i.e., turbulence in the traffic flow) 

in the expressway AVI traffic data that potentially precede VR crashes. Also, it investigated 

which traffic data is advantageous for predicting VR crashes; data collected from LDs sensors 

installed on freeways or data collected from AVI sensors installed on expressways. Statistical 

links between turbulent traffic conditions and VR crash occurrences were established through a 

detailed analysis of LDs/AVI traffic data corresponding to VR crashes that occurred on freeways 

(I-4 and I-95) and on expressways (SR408 and SR417) in central Florida during the study time. 

The approach adopted to achieve these goals involves developing Bayesian matched 

case-control logistic regression. The purpose of adopting this statistical approach was to explore 

the effects of traffic flow variables on VR crashes while controlling for the effects of other 

confounding variables such as crash time and the geometric design elements of 
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freeway/expressway sections. To achieve these objectives, three models were estimated and 

discussed. 

Historical VR crashes along with traffic data (time-mean speeds) collected from LDs on 

freeways were used to calibrate the first model (Model-1). The second model (Model-2) was 

calibrated using the same data but after converting it into space-mean speeds (to make it 

equivalent to AVI data). The results of both models indicated that the average speed observed at 

the nearest downstream station coupled with the coefficient of variation in speed observed at the 

nearest upstream station, all at 5-10 minute prior to the crash time, were found to have significant 

effect on VR crash risk. It has been shown that Model-1 and Model-2 achieved over 73% and 

71% of VR crash identification, respectively. The performance of model-2 was then tested using 

historical VR crashes and AVI traffic data (space-mean speeds) collected from expressway 

(SR417 and SR408). It was found that about 65% of VR crashes were correctly identified. It can 

be noted that this classification accuracy is relatively comparable to the accuracy 71.64% 

obtained previously by Model-2 which may imply that Model-2 is performing well in correctly 

predicting the occurrences of VR crashes, however, one possible explanation for obtaining 

relatively lower classification accuracy when using the tested dataset is the differences between 

LDs and AVI arrangements (configurations). LDs sensors are spaced at approximately 0.5-0.8 

mile compared to AVI sensors that are spaced at approximately 1.0-1.5 mile and hence, AVI data 

and LDs data may not match exactly.  

Also historical VR crashes and space-mean speeds data collected from AVI sensors 

located on expressways (SR417 and SR408) were used for developing prediction model of VR 

crashes on expressways (Model-3). The results of the model revealed that an increase in the 

coefficient of variation in speed at the crash segment, 5-10 minutes before the crash time 
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increases the likelihood of VR crashes. No variables from the upstream or downstream AVI 

segments were found significant possibly because the effect of fog/smoke or heavy rain is most 

likely localized and due to the longer Expressway segments. Model-3 achieved over 69% of VR 

crash identification. 

One objective of this study was to investigate which data (LDs or AVI) is advantageous 

for predicting VR crashes. Considering the results of Model-3 and compared to the results of 

Model-1 and Model-2, it can be realized that LDs data is working slightly better than AVI data 

regarding the prediction of VR crashes possibly due to three reasons. First, the configuration 

(arrangement) of LDs and AVI sensors is different as discussed above (i.e., the distances 

between LDs sensors are less than the lengths of AVI segments). Second, AVI measures space-

mean speeds by tracking the speed of vehicles through successive AVI sensors while, LDs 

measures time-mean speed (spot speeds) of vehicles at certain point (LDs stations) on a roadway. 

Third, the AVI sensors can only record and archive traffic data for vehicles that have AVI tags 

(i.e., transponders, E-pass, etc.).  It is well established that about 80% of vehicles using 

expressways have AVI tags. On the other hand, LDs record and achieve traffic flow data for all 

vehicles travelling on the roadway. The findings from this study led us to infer that it may be 

better to develop VR crash risk assessment models based on LDs traffic data. However, the main 

disadvantage of LDs is that it sometimes fails due to sudden hardware problems which may lead 

to large missing data. In this case, using AVI or Radar data might be a good alternative for 

predicting VR crashes. 
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One should remember that both systems (LDs and AVIs) are installed without safety 

predictive application in mind. In other words, the results of this research indicate that both 

systems could be used for safety applications, although there is room for improvement in the 

AVI system (e.g., shorten AVI segments). Given that most roadways will have either systems, 

this study showed that risk predictive models could be implemented in both cases for VR crash 

prevention.  

Using the results of this research; the risk of a VR crash may be continuously assessed 

using real-time traffic between any two loop detectors stations on the freeway or at any AVI 

segment on the expressway. Software will have to be adopted to estimate significant variables 

and the odds ratio obtained from the models developed in this study for LDs and AVIs data. 

Once a potential crash location is identified in real-time based on traffic flow characteristics 

collected from LDs or AVIs, measures for reducing speed variability before reaching the formed 

queue of traffic may be implemented in order to reduce the risk of VR crashes. 

Subsequently, the next logical step toward VR crash prevention is to investigate the 

means of notifying the drivers of the potential of a VR crash. Changeable message signs, 

variable speed limit signs, highway advisory radio, and information for in-vehicle navigation 

systems could be employed to assist drivers in these adverse conditions in real-time to reduce the 

risk of VR crashes.  These techniques would allow more proactive intervention and help reduce 

the crash potential under low visibility conditions. However, prior to field application, driver 

behavior needs to be thoroughly examined, possibly through a driving simulator experiment. For 

instance, this future effort will help to precisely determine when and how far from the upstream 

loop detector station or AVI segment to install a variable speed limit sign and will assess the 
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benefits of implementing such measures regarding achieving more homogenous speeds and 

reducing the risk of VR crashes. 

Finally, it worth mentioning that the results of this study are based on reduced visibility 

conditions due to fog, smoke or heavy rain. However, the conclusions and recommendations that 

were extracted from the current study could be valid and applicable for other reduced visibility 

conditions (e.g., sandstorm and snow).  
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APPENDIX A:  

SURVEY OF FREEWAYS 
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UCF and FDOT safety study 
 
Objective of the survey 
 
Researchers at the University of Central Florida (UCF) are currently working on a Florida 
Department of Transportation (FDOT) sponsored project intended to reduce accidents on Florida’s 
Highways. To help us achieve this goal, we would like to invite you to complete a survey. All answers are 
anonymous.  There are no anticipated risks or direct benefits to you if you decide to participate. There is 
no penalty if you decide not to participate. You can end your participation at anytime and you do not have 
to answer any questions that you do not want to answer.  The survey will take only about 5 minutes of 
your time. 
 
WOULD YOU LIKE TO PARTICIPATE IN THIS SURVEY? If yes, please begin to answer survey’s 
questions. 
________________________________________________________________________         
 
Are you 18 years old or older? (Yes, No) (if “NO” terminate survey) 
 
Please choose one answer only in each of the following survey’s questions 
 
Personal information: 
 
1) What is your gender? 

a) Male      b) Female 
 

2) Which of the following best describes your age (in years)?  
a) 18-25  b) 26-35 c) 36-50 d) 51-65 e) over 65  

 
3) What is the highest level of education that you have completed? 
 a) Graduate school or higher  b) College degree c) Some College 
 d) High School   e) Did not graduate from high school 
 
4) How long have you had a valid driver’s license?......................years 
 
5) Number of traffic citations (i.e. Traffic rule violations) in the previous 3 years?............. 
 
6) Have you ever been involved in any crash, while you were driving in fog/smoke, due to reduction in 

visibility? 
a) Yes  
b) No 
 

7) Have you ever been involved in any crash, while you were driving in heavy rain, due to reduction in 
visibility?  

a) Yes  
b) No 
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Survey Questions:  
 
8) Have you driven on any freeways/expressways during the last 

month (e.g., SR 408, SR 417, I-4, I-95)? 
a) Yes 
b) No  

 
9) How often do you use freeways/ expressways? 
     (One way trip is considered as one time) 

a) More than four times a week 
b) Two-four times a week 
c) Once a week 
d) Once in two weeks 
e) Once a month 
f) Rarely or never 
 

A Changeable Message Sign (CMS) is an electronic traffic sign often used on 
roadways to provide travelers with information about special events. Such signs 
warn of traffic congestion, accidents, roadwork zones, and inclement weather such 
as fog/smoke and heavy rain.    
 
10) Have you ever encountered CMS on a freeway/ expressway?                                  

a)Yes                                                                                                                                                                                                                       
b) No   

                                                                                                                                                   CMS                                                                                                                        
 
A Variable Speed Limit sign (VSL) is an electronically adjustable speed limit to 
help manage the traffic flow (vehicles) along the freeway/expressway under 
various traffic and environmental conditions. 
 
11) Have you ever encountered VSL on a freeway/ expressway? 
          a) Yes                                                                                                                                                                                                              

b) No                                                                                                             
 
 

                                                                                                                                                  VSL  
                                                                                                                                                                                                                                                                                                          

12) If you are provided with information on CMS and/or VSL that is designed to help avoid a potential 
accident in case of reduced visibility due to fog/smoke on a freeway/expressway, would you agree to 
follow the advice provided? 

a) Strongly Agree  
 b) Agree 
 c) Neither agree nor disagree 
 d) Disagree 
 e) Strongly Disagree 
 
13) Did you encounter any reduction in visibility due to fog, smoke, or heavy rain while you were driving 

on a freeway/expressway? 
a) Yes                                                                                                                     
b) No (if “NO” skip question 14) 
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14) What did you do in that situation?  

a) Did nothing 
b) Followed other vehicles’ speed. If they reduced their speed then you would also reduce your 

speed 
c) Drove below speed limit 
d) Drove below speed limit and put blinkers on 
e) Abandoned the journey and stopped the car immediately at the right shoulder of the road 

 
15) From your point of view, in order to warn drivers about any reduction of visibility due to Fog/smoke, 

what message would you most likely comply with?  
a) Fog ahead- Reduce Speed 
b) Caution-Fog ahead-Reduce speed 
c) Fog ahead-Reduce speed-fine doubled 
d) Fog ahead- Reduce Speed- Strictly enforced 
e) Caution - Reduce speed – Strictly enforced 
f) Others, please specify:…………………………………………………………... 

 
16) It is useful to use two successive CMS prior to Fog/ smoke zones to warn drivers about any sudden 

reduction in visibility due to fog/smoke. This could provide drivers another chance to see the 
warning message on CMS if they missed the first one. Do you agree or disagree with the previous 
statement? 

a) Strongly Agree  
 b) Agree 
 c) Neither agree nor disagree 
 d) Disagree 
 e) Strongly Disagree 
 
17) Do you agree or disagree that Changeable Message Signs (CMSs) are useful in warning drivers about 

any reduction in visibility due to fog/smoke and consequently reducing the chances of an accident? 
a) Strongly Agree  

 b) Agree 
c) Neither agree nor disagree   

 d) Disagree 
 e) Strongly Disagree 
 
18) Do you agree or disagree that Variable Speed Limit Signs (VSLs) are useful in reducing the number 

of fog related crashes by informing drivers about the safe speed limit at each visibility conditions 
(e.g., very light fog,  light fog, medium fog, and heavy fog)? 

a) Strongly Agree  
 b) Agree 

c) Neither agree nor disagree    
 d) Disagree 
 e) Strongly Disagree 
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19) From your point of view, which one of the following 
would improve safety during driving through fog/smoke 
on freeways/expressways? 

 
a) Using CMS only                                
b) Using VSL sign only  

 c) Using CMS and VSL signs together 
 d) Closing the road during such adverse weather 

conditions.                                                                                                                                
 

                                                                                                                    CMS                      VSL 
 
 
If you were driving on a freeway at a speed of 65 mile/hour, and you encounter a CMS advising you to 
reduce your speed because of reduction in visibility due to Fog/smoke in order to reduce the chances of an 
accident. What would you do in each of the following cases? 
 
         No car leading ahead                   car leading ahead 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
20)  a) Do nothing 21)  a) Do nothing 

b) Reduce speed immediately b) Reduce speed immediately 
c) Reduce speed after some time c) Reduce speed after some time 

       d) Reduce speed and put blinkers on  d) Follow other vehicles’ speed 
 regardless of CMS warning                                                                      
 e) Reduce speed and put blinkers on 
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If you were driving on a freeway with a speed limit of 65 mile/hour (mph), and you encounter a Variable 
Speed Limit (VSL) sign of 40 mile/hour (mph) in order to reduce the chances of accident that may occur 
because of a sudden reduction in visibility due to fog/smoke. What will you do in each of the following 
cases?  
 
Note: in case you will reduce your speed (answers b or c), please specify your reduced speed in each 
of the following questions (questions 22 through 25)? 
 

           Very Light Fog        Light Fog 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
22)  a) Do nothing  23)  a) Do nothing 

b) Reduce speed to ………..mph b) Reduce speed to ………..mph 
(Please specify your reduced speed) (Please specify your reduced speed) 

 c) Put blinkers on and reduce speed to.…..mph   c) Put blinkers on and reduce speed to.…..mph  
 (Please specify your reduced speed)  (Please specify your reduced speed) 
 

            Medium Fog                  Heavy Fog 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
24)  a) Do nothing  25)  a) Do nothing 

b) Reduce speed to ………..mph b) Reduce speed to ………..mph 
(Please specify your reduced speed) (Please specify your reduced speed) 

 c) Put blinkers on and reduce speed to.…..mph   c) Put blinkers on and reduce speed to.…..mph  
 (Please specify your reduced speed)  (Please specify your reduced speed) 
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Note: in case you will reduce your speed (answers c or d), please specify your reduced speed in each 
of the following questions (questions 26 through 29)? 
 
     Very Light Fog (some vehicles ahead)               Light Fog (some vehicles ahead) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
26)  a) Do nothing   27)  a) Do nothing 

 b) Follow other vehicles’ speed. b) Follow other vehicles’ speed. 
c) Reduce speed to ………..mph c) Reduce speed to ………..mph 

(Please specify your reduced speed) (Please specify your reduced speed) 
 d) Put blinkers on and reduce speed to.…..mph   d) Put blinkers on and reduce speed to.…..mph  
 (Please specify your reduced speed)   (Please specify your reduced speed) 
 
           
     Medium Fog (some vehicles ahead)                               Heavy Fog (some vehicles ahead) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
28)  a) Do nothing   29)  a) Do nothing 

 b) Follow other vehicles’ speed. b) Follow other vehicles’ speed. 
c) Reduce speed to ………..mph c) Reduce speed to ………..mph 

(Please specify your reduced speed) (Please specify your reduced speed) 
 d) Put blinkers on and reduce speed to.…..mph   d) Put blinkers on and reduce speed to.…..mph  
 (Please specify your reduced speed) (Please specify your reduced speed) 
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30) Suppose you encounter a sudden reduction in visibility due to fog, smoke, or heavy rain while you are 
driving on a freeway/expressway (as shown in the following pictures), which of the following best 
describe what you will do? 

 
a) Do nothing 
b) Drive below speed limit.  
c) Drive below speed limit following the instructions of variable speed limit sign (VSL) and/or 

Changeable message sign (CMS), if they are available. 
d) Follow other vehicles’ speed. If they reduce their speed then you will also reduce your speed 

regardless of CMS and VSL warnings. 
e) Drive below speed limit and put blinkers on 
f) Abandon the journey and stop the car immediately at the right shoulder of the road 
 

 
 
31) Suppose you encounter a sudden reduction in visibility due to fog, smoke, or heavy rain while you are 

driving on a freeway/expressway, rank the following responses from 1 to 6 where 1 is the safest 
action that will minimize the chance of an accident and 6 is the most dangerous action that will 
maximize the chance of an accident? 

 
Responses Rank 

Do nothing  
Drive below speed limit.  
Drive below speed limit following the instructions of variable speed limit sign (VSL) and/or 
Changeable message sign (CMS), if they are available. 

 

Follow other vehicles’ speed. If they reduce their speed then you will also reduce your speed 
regardless of CMS and VSL warnings. 

 

Drive below speed limit and put blinkers on  
Abandon the journey and stop the car immediately at the right shoulder of the road  

 
 
 

End of Survey 
Thank you for participating in the survey! 
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APPENDIX B:  

SURVEY OF TWO-LANE ROADS 
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UCF and FDOT safety study 
 
Objective of the survey 
 
Researchers at the University of Central Florida (UCF) are currently working on a Florida 
Department of Transportation (FDOT) sponsored project intended to reduce accidents on Florida’s 
Highways. To help us achieve this goal, we would like to invite you to complete a survey. All answers are 
anonymous.  There are no anticipated risks or direct benefits to you if you decide to participate. There is 
no penalty if you decide not to participate. You can end your participation at anytime and you do not have 
to answer any questions that you do not want to answer.  The survey will take only about 5 minutes of 
your time. 
 
WOULD YOU LIKE TO PARTICIPATE IN THIS SURVEY? If yes, please begin to answer survey’s 
questions. 
________________________________________________________________________         
 
Are you 18 years old or older? (Yes, No) (if “NO” terminate survey) 
 
Please choose one answer only in each of the following survey’s questions 
 
Personal information: 
 
1) What is your gender? 

a) Male      b) Female 
 

2) Which of the following best describes your age (in years)?  
a) 18-25  b) 26-35 c) 36-50 d) 51-65 e) over 65  

 
3) What is the highest level of education that you have completed? 
 a) Graduate school or higher  b) College degree c) Some College 
 d) High School   e) Did not graduate from high school 
 
4) How long have you had a valid driver’s license?......................years 
 
5) Number of traffic citations (i.e. Traffic rule violations) in the previous 3 years?............. 
 
6) Have you ever been involved in any crash, while you were driving in fog/smoke, due to reduction in 

visibility? 
a) Yes  
b) No 
 

7) Have you ever been involved in any crash, while you were driving in heavy rain, due to reduction in 
visibility?  

a) Yes  
b) No 
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Survey Questions: 
  
8) Have you driven on any two lane roads during the last 

month? 
a) Yes 
b) No  

 
9) How often do you use two lane roads? 
     (One way trip is considered as one time) 

a) More than four times a week 
b) Two-four times a week 
c) Once a week 
d) Once in two weeks                                                                      Two-lane road 
e) Once a month 
f) Rarely or never 
 
 

A Changeable Message Sign (CMS) is an electronic traffic sign often used on 
roadways to provide travelers with information about special events. Such 
signs warn of traffic congestion, accidents, roadwork zones, and inclement 
weather such as fog/smoke and heavy rain.    
 
10) Have you ever encountered CMS on a two lane road?                                                

 a)Yes                                                                                                                                                                                                                
b) No 

                                                                                                                                            CMS                                                                                                                          
 
A Variable Speed Limit sign (VSL) is an electronically adjustable speed limit to 
help manage the traffic flow (vehicles) under various traffic and environmental 
conditions. 
 
11) Have you ever encountered VSL on a two lane road? 
          a) Yes                                                                                                                                                                                                              

b) No                                                                                                             
 

                                                                                                                                             VSL                                                                                                                                                                                                                                 
                                                                                                          
12) If you are provided with information on CMS and/or VSL that is designed to help avoid a potential 

accident in case of reduced visibility due to fog/smoke on a two way-two lane road, would you agree 
to follow the advice provided? 

a) Strongly Agree  
 b) Agree 
 c) Neither agree nor disagree 
 d) Disagree 
 e) Strongly Disagree 
 
13) Did you encounter any reduction in visibility due to fog, smoke, or heavy rain while you were driving 

on a two lane road? 
a) Yes                                                                                                                     
b) No (if “NO” skip question 14) 
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14) What did you do in that situation?  
a) Did nothing 
b) Followed other vehicles’ speed. If they reduced their speed then you would also reduce your 

speed 
c) Drove below speed limit 
d) Drove below speed limit and put blinkers on 
e) Abandoned the journey and stopped the car immediately at the right shoulder of the road 

 
15) From your point of view, in order to warn drivers about any reduction of visibility due to Fog/smoke, 

what message would you most likely comply with?  
a) Fog ahead- Reduce Speed 
b) Caution-Fog ahead-Reduce speed 
c) Fog ahead-Reduce speed-fine doubled 
d) Fog ahead- Reduce Speed- Strictly enforced 
e) Caution - Reduce speed – Strictly enforced 
f) Others, please specify:…………………………………………………………... 

 
16) It is useful to use two successive CMS prior to Fog/ smoke zones to warn drivers about any sudden 

reduction in visibility due to fog/smoke. This could provide drivers another chance to see the 
warning message on CMS if they missed the first one. Do you agree or disagree with the previous 
statement? 

a) Strongly Agree  
 b) Agree 
 c) Neither agree nor disagree 
 d) Disagree 
 e) Strongly Disagree 
 
17) Do you agree or disagree that Changeable Message Signs (CMSs) are useful in warning drivers about 

any reduction in visibility due to fog/smoke and consequently reducing the chances of an accident? 
a) Strongly Agree  

 b) Agree 
c) Neither agree nor disagree   

 d) Disagree 
 e) Strongly Disagree 
 
18) Do you agree or disagree that Variable Speed Limit Signs (VSLs) are useful in reducing the number 

of fog related crashes by informing drivers about the safe speed limit at each visibility conditions 
(e.g., very light fog,  light fog, medium fog, and heavy fog)? 

a) Strongly Agree  
 b) Agree 

c) Neither agree nor disagree    
 d) Disagree 
 e) Strongly Disagree 
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19) From your point of view, which one of the following 
would improve safety during driving through 
fog/smoke on two lane roads? 

 
a) Using CMS only                                
b) Using VSL sign only  

 c) Using CMS and VSL signs together 
 d) Closing the road during such adverse weather 

conditions.                                                                                                                                
 

                                                                                                                   CMS                         VSL 
 
 
If you were driving on a two lane road at a speed of 45 mile/hour (mph), and you encounter a CMS 
advising you to reduce your speed because of reduction in visibility due to Fog/smoke in order to reduce 
the chances of an accident. What would you do in each of the following cases? 
 
      No car leading ahead      car leading ahead 

 
20)  a) Do nothing 21)  a) Do nothing 

b) Reduce speed immediately b) Reduce speed immediately 
c) Reduce speed after some time c) Reduce speed after some time 

       d) Reduce speed and put blinkers on  d) Follow other vehicles’ speed 
 regardless of CMS warning                                                                      
 e) Reduce speed and put blinkers on 
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If you were driving on a two lane road with a speed limit of 45 mile/hour (mph), and you encounter a 
Variable Speed Limit (VSL) of 25 mile/hour (mph) in order to reduce the chances of accident that may 
occur because of a sudden reduction in visibility due to fog/smoke. What will you do in each of the 
following cases?  
 
Note: in case you will reduce your speed (answers b or c), please specify your reduced speed in each 
of the following questions (questions 22 through 25)? 
 
  Very Light Fog      Light Fog 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

22)  a) Do nothing  23)  a) Do nothing 
b) Reduce speed to ………..mph b) Reduce speed to ………..mph 

(Please specify your reduced speed) (Please specify your reduced speed) 
 c) Put blinkers on and reduce speed to.…..mph  c) Put blinkers on and reduce speed to.…..mph  
 (Please specify your reduced speed)  (Please specify your reduced speed) 
   
                   Medium Fog       Heavy Fog 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

24)  a) Do nothing  25)  a) Do nothing 
b) Reduce speed to ………..mph b) Reduce speed to ………..mph 

(Please specify your reduced speed) (Please specify your reduced speed) 
 c) Put blinkers on and reduce speed to.…..mph  c) Put blinkers on and reduce speed to.…..mph  
 (Please specify your reduced speed)  (Please specify your reduced speed) 
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Note: in case you will reduce your speed (answers c or d), please specify your reduced speed in each 
of the following questions (questions 26 through 29)? 
 

Very Light Fog (some vehicles ahead) Light Fog (some vehicles ahead) 

   

26)  a) Do nothing  27)  a) Do nothing 
b) Follow other vehicles’ speed. b) Follow other vehicles’ speed. 
c) Reduce speed to ………..mph c) Reduce speed to ………..mph 

(Please specify your reduced speed) (Please specify your reduced speed) 
 d) Put blinkers on and reduce speed to.…..mph  d) Put blinkers on and reduce speed to.…..mph  
 (Please specify your reduced speed)  (Please specify your reduced speed) 
 
           
     Medium Fog (some vehicles ahead)                               Heavy Fog (some vehicles ahead) 

 

28)  a) Do nothing  29)  a) Do nothing 
b) Follow other vehicles’ speed. b) Follow other vehicles’ speed. 
c) Reduce speed to ………..mph c) Reduce speed to ………..mph 

(Please specify your reduced speed) (Please specify your reduced speed) 
 d) Put blinkers on and reduce speed to.…..mph  d) Put blinkers on and reduce speed to.…..mph  
 (Please specify your reduced speed)  (Please specify your reduced speed) 
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30) Suppose you encounter a sudden reduction in visibility due to fog, smoke, or heavy rain while you are 
driving on a two lane road (as shown in the following pictures), which of the following best describe 
what you will do? 

 
a) Do nothing 
b) Drive below speed limit.  
c) Drive below speed limit following the instructions of variable speed limit sign (VSL) and/or 

Changeable message sign (CMS), if they are available. 
d) Follow other vehicles’ speed. If they reduce their speed then you will also reduce your speed 

regardless of CMS and VSL warnings. 
e) Drive below speed limit and put blinkers on 
f) Abandon the journey and stop the car immediately at the right shoulder of the road 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
31) Suppose you encounter a sudden reduction in visibility due to fog, smoke, or heavy rain while you are 

driving on a two lane road, rank the following responses from 1 to 6 where 1 is the safest action that 
will minimize the chance of an accident and 6 is the most dangerous action that will maximize the 
chance of an accident? 

 
Responses Rank 

Do nothing  
Drive below speed limit.  
Drive below speed limit following the instructions of variable speed limit sign (VSL) and/or 
Changeable message sign (CMS), if they are available. 

 

Follow other vehicles’ speed. If they reduce their speed then you will also reduce your speed 
regardless of CMS and VSL warnings. 

 

Drive below speed limit and put blinkers on  
Abandon the journey and stop the car immediately at the right shoulder of the road  

 
 
 
 

End of Survey 
Thank you for participating in the survey! 
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APPENDIX C:  

APPROVAL OF EXEMPT HUMAN RESEARCH FROM IRB 
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