3,204 research outputs found

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0

    Development of low-cost sensors for structural health monitoring applications

    Get PDF
    (English) There is increasing interest in developing low-cost sensors for economical structural health monitoring of civil engineering infrastructures. In addition to their price, they have the additional benefit of being easily connected to low-cost microcontrollers such as Arduino. A reliable data acquisition system based on Arduino technology can further lower the cost of data collection and monitoring, enabling long-term monitoring at an affordable cost. This thesis proposes the following four high-precision low-cost monitoring systems.Firstly, to correctly measure structural responses, a Cost Hyper-Efficient Arduino Product (CHEAP) has been developed. CHEAP is a system made up of five synchronized accelerometers connected to an Arduino microcontroller that works as a data collecting device. CHEAP is a uniaxial MEMS accelerometer with a sampling frequency of 85 Hz. To validate its performance, laboratory experiments were carried out and the results were compared with those of two high-precision accelerometers (PCB393A03 and PCB 356B18).Secondly, a unique low-cost inclinometer is presented, the Low-cost Adaptable Reliable Angle-meter (LARA), which measures inclination through the fusion of different sensors: five gyroscopes and five accelerometers. LARA combines a microcontroller based on Internet of Things technology (NODEMCU), allows wireless data transmission, and free commercial software for data collection (SerialPlot). To confirm the precision and resolution of this device, its measurements under laboratory conditions were compared with the theoretical ones and with those of a commercial inclinometer (HI-INC). Laboratory results of a load test on a beam demonstrate LARA's remarkable accuracy. It is concluded that the accuracy of LARA is sufficient for its application in detecting bridge damage.Thirdly, the effect of combining similar range sensors to investigate the increase of the accuracy and mitigation of the ambiental noises, is also elucidated. To investigate the sensor combination theory, a measuring equipment composed of 75 contactless ranging sensors controlled by only two microcontrollers (Arduinos), was built. The 75 sensors are 25 HC-SR04 (analog), 25 VL53L0X (digital), and 25 VL53L1X. (digital). In addition, the impact of various environmental conditions on the standard deviation, distribution functions, and error level of these sensors (HC-SR04, VL53L0X, and VL53L1X) is determined.Finally, a novel remote versatile data acquisition system is presented that allows the recording of time with microsecond resolution for the subsequent synchronization of the acquired data of the wireless sensors located at various points of a structure. This functionality is what would allow its application to static or quasi-static load tests or to the modal analysis of structures. The system developed has a noise density of 51 g/Hz and a sampling frequency of 333 Hz. This device was used to identify the eigenfrequencies and modal analysis of several structures (polvorín footbridges in Barcelona and Andoain Bridge, Donostia-San Sebastian). The comparison of the modal analysis of the Andoain Bridge using the acquired data of the developed accelerometer and data acquisition equipment with those of commercial accelerometers (PCB 607A61) were satisfactory.The low-cost accelerometer, inclinometer and data acquisition system developed and validated in this thesis can make SHM and infrastructure damage detection a reality at low cost, long term and remotely.(Español) Cada vez hay más interés en desarrollar sensores baratos para conocer de manera económica el estado de las infraestructuras civiles. Además de su precio, estos sensores tienen la ventaja añadida de poder conectarse fácilmente a microcontroladores de bajo coste como Arduino. Un sistema fiable de adquisición de datos basado en la tecnología Arduino puede disminuir aún más el coste de la recogida de datos y la monitorización, lo que permitiría una monitorización a largo plazo a un coste asequible. Esta tesis propone los cuatro siguientes sistemas de monitorización de alta precisión y bajo coste.En primer lugar, para medir correctamente las respuestas estructurales, se ha desarrollado el Cost Hyper-Efficient Arduino Product (CHEAP). CHEAP es un sistema compuesto por cinco acelerómetros sincronizados de bajo coste conectados a un microcontrolador Arduino que hace el papel de dispositivo de recogida de datos. CHEAP es un acelerómetro MEMS uniaxial con una frecuencia de muestreo de 85 Hz. Para validar su rendimiento, se efectuaron unos experimentos de laboratorio y sus resultados se compararon con los de dos acelerómetros de alta precisión (PCB393A03 y PCB 356B18). En segundo lugar, se presenta un inclinómetro de bajo coste, un Low-cost Adaptable Reliable Angle-meter (LARA), que mide la inclinación mediante la fusión de distintos sensores: cinco giroscopios y cinco acelerómetros. LARA combina un microcontrolador basado en la tecnología del Internet de las Cosas (NODEMCU), que permite la transmisión inalámbrica de datos, y un software comercial gratuito para la recogida de datos (SerialPlot). Para confirmar la precisión y resolución de este dispositivo, se compararon sus mediciones en condiciones de laboratorio con las teóricas y con las de un inclinómetro comercial (HI-INC). Los resultados de laboratorio de una prueba de carga en una viga demuestran la notable precisión de LARA. Se concluye que la precisión de LARA es suficiente para su aplicación en la detección de daños en puentes.En tercer lugar, también se dilucida el efecto de la combinación de sensores de rango similar para investigar el aumento de la precisión y la mitigación de los ruidos ambientales. Para investigar la teoría de la combinación de sensores, se construyó un equipo de medición compuesto por 75 sensores para la medición de distancias acoplados a dos microcontroladores de Arduino. Los 75 sensores son 25 HC-SR04 (analógicos), 25 VL53L0X (digitales) y 25 VL53L1X (digitales). Además, se determina el impacto de diversas condiciones ambientales en la desviación estándar, las funciones de distribución y el nivel de error de estos sensores.Por último, se presenta un novedoso y versátil sistema de adquisición de datos a distancia que permite el registro del tiempo con una resolución de microsegundos para la sincronización posterior de las lecturas de los sensores inalámbricos situados en diversos puntos de una estructura. Esta funcionalidad es lo que permitiría su aplicación a pruebas de carga estáticas o quasi-estaticas o al análisis modal de las estructuras. El sistema desarrollado tiene una densidad de ruido de 51 g/Hz y una frecuencia de muestreo de 333 Hz. Este dispositivo se utilizó para identificar las frecuencias propias y los modos de vibración de varias estructuras (pasarelas polvorín en Barcelona y Puente de Andoain, Donostia-San Sebastian). Los modos calculados en una de ellas, el Puente de Andoain, a partir de los datos obtenidos con el acelerómetro y sistema de adquisición de datos desarrollado se comparan satisfactoriamente con los de sensores comerciales (PCB 607A61). El acelerómetro, el inclinómetro y el sistema de adquisición de datos de bajo coste desarrollados y validados en esta tesis pueden hacer realidad la SHM y la detección de daños en infraestructuras a bajo coste, a largo plazo y de forma remota.Postprint (published version

    A novel wireless low-cost inclinometer made from combining the measurements of multiple MEMS gyroscopes and accelerometers

    Get PDF
    Structural damage detection using inclinometers is getting wide attention from researchers. However, the high price of inclinometers limits this system to unique structures with a relatively high structural health monitoring (SHM) budget. This paper presents a novel low-cost inclinometer, the low-cost adaptable reliable angle-meter (LARA), which combines five gyroscopes and five accelerometers to measure inclination. LARA incorporates Internet of Things (IoT)-based microcontroller technology enabling wireless data streaming and free commercial software for data acquisition. This paper investigates the accuracy, resolution, Allan variance and standard deviation of LARA produced with a different number of combined circuits, including an accelerometer and a gyroscope. To validate the accuracy and resolution of the developed device, its results are compared with those obtained by numerical slope calculations and a commercial inclinometer (HI-INC) in laboratory conditions. The results of a load test experiment on a simple beam model show the high accuracy of LARA (0.003 degrees). The affordability and high accuracy of LARA make it applicable for structural damage detection on bridges using inclinometers.The authors are indebted to the Spanish Ministry of Economy and Competitiveness for the funding provided through the research project BIA2017-86811-C2-1-R directed by José Turmo and BIA2017-86811-C2-2-R. All these projects are funded with FEDER funds. The authors are also indebted to the Secretaria d’ Universitats i Recerca de la Generalitat de Catalunya, Catalunya, Spain for the funding provided through Agaur (2017 SGR 1482). It is also to be noted that funding for this research has been provided for Seyedmilad Komarizadehasl by Spanish Agencia Estatal de Investigación del Ministerio de Ciencia Innovación y Universidades grant and the Fondo Social Europeo grant (PRE2018-083238).Peer ReviewedPostprint (published version

    Low-cost wireless structural health monitoring of bridges

    Get PDF
    Nowadays, low-cost accelerometers are getting more attention from civil engineers to make Structural Health Monitoring (SHM) applications affordable and applicable to a broader range of structures. The present accelerometers based on Arduino or Raspberry Pi technologies in the literature share some of the following drawbacks: (1) high Noise Density (ND), (2) low sampling frequency, (3) not having the Internet’s timestamp with microsecond resolution, (4) not being used in experimental eigenfrequency analysis of a flexible and a less-flexible bridge, and (5) synchronization issues. To solve these problems, a new low-cost triaxial accelerometer based on Arduino technology is presented in this work (Low-cost Adaptable Reliable Accelerometer—LARA). Laboratory test results show that LARA has a ND of 51 µg/vHz, and a frequency sampling speed of 333 Hz. In addition, LARA has been applied to the eigenfrequency analysis of a short-span footbridge and its results are compared with those of a high-precision commercial sensor.The authors are indebted to the Spanish Ministry of Economy and Competitiveness for the funding provided through the research project BIA2017-86811-C2-1-R directed by José Turmo and BIA2017-86811-C2-2-R. All these projects are funded with FEDER funds. The authors are also indebted to the Secretaria d’ Universitats i Recerca de la Generalitat de Catalunya, Catalunya, Spain, for the funding provided through Agaur (2017 SGR 1482). It is also to be noted that funding for this research has been provided for the Seyedmilad Komarizadehasl by the Spanish Agencia Estatal de Investigación del Ministerio de Ciencia Innovación y Universidades grant and the Fondo Social Europeo grant (PRE2018-083238).Peer ReviewedPostprint (published version

    Using Low-cost IoT-based inclinometers for damage detection of a Bridge model

    Get PDF
    Nowadays, researchers are paying close attention to using inclinometers for Structural Health Monitoring (SHM) applications. Moreover, the applications based on using inclinometers can detect the magnitude and location of bridge pathologies. However, as these applications are based on expensive commercial inclinometers, their use is typically exclusive to the SHM of structures with a high monitoring budget. There is a gap in the literature with the development and validation of low-cost accurate angular-meters for decreasing the monitoring cost of inclinometer-based damage detection applications. This work aims to develop low-cost IoT-based inclinometers for detecting damage in bridge structures. The Low-cost Adaptable Reliable Angle-meter (LARA) is a novel inclinometer that accurately measures an induced inclination by combining the measurements of five gyroscopes and five accelerometers. The accuracy, resolution, Allan variance, and standard deviation of LARA are examined through laboratory experiments and are compared with those obtained by numerical slope calculations and a commercial inclinometer (HI-INC). For further experimental validation, a robotic vehicle model is designed and developed to simulate a moving load over a bridge model. The vehicle model integrates IoT technology and can be utilized in different damage detection experiments. The outcomes of a load test experiment using a simple beam model demonstrate the high accuracy (0.003 degrees) of LARA measurements. LARA may be used for structural damage identification and location in bridges utilizing inclinometers because of its low cost and high accuracy

    Wireless Sensing System for Load Testing and Rating of Highway Bridges

    Get PDF
    Structural capacity evaluation of bridges is an increasingly important topic in the effort to deal with the deteriorating infrastructure. Most bridges are evaluated through subjective visual inspection and conservative theoretical rating. Diagnostic load test has been recognized as an effective method to accurately assess the carrying capacity of bridges. Traditional wired sensors and data acquisition (DAQ) systems suffer drawbacks of being labor intensive, high cost, and time consumption in installation and maintenance. For those reasons, very few load tests have been conducted on bridges.;This study aims at developing a low-cost wireless bridge load testing & rating system that can be rapidly deployed on bridges for structural evaluation and load rating. Commercially available wireless hardware is integrated with traditional analogue sensors and the appropriate rating software is developed. The wireless DAQ system can work with traditional strain gages, accelerometers as well as other voltage producing sensors. A wireless truck position indicator (WVPI) is developed and used for measuring the truck position during load testing. The software is capable of calculating the theoretical rating factors based on AASHTO Load Resistance Factor Rating (LRFR) codes, and automatically produces the adjustment factor through load testing data. A simplified finite element model was used to calculate deflection & moment distribution factors in order to reduce the amount of instrumentation used in field tests. The system was used to evaluate the structural capacity of Evansville Bridge in Preston County, WV. The results show that the wireless bridge load testing & rating system can effectively be implemented to evaluate the real capacity of bridges with remarkable advantages: low-cost, fast deployment and smaller crew

    Cost-Effective Monitoring of Railroad Bridge Performance

    Get PDF
    The railroad network carries 40 % of the freight in the US. Railroad bridges are the most critical part of the network and they need to be properly maintained for safety of operations. Railroad managers need to inspect the bridges in order to assess their structural condition. Railroad managers are interested in measuring displacements under train crossing events to prioritize their bridge management and safety decisions. However, bridge displacements are difficult to collect in the field, because they require a fixed reference from where to measure. Accelerations can be used to estimate dynamic displacements but to this date, the pseudo-static displacements cannot be measured using reference-free sensors. This study proposes a method to estimate the total displacements of a railroad bridge under live train loads using acceleration and tilt data without a need for fixed reference. Researchers used real bridge displacement data representing different bridge serviceability level under train traffic. This study explores the design of a new bridge deck-pier experimental model that simulates the vibrations of railroad bridges under traffic. This experiment configuration includes the use of a shake table to input the recorded signal from the field into a railroad pile bent. Reference-free sensors measured both the inclination angle and accelerations of the pile cap. The different acceleration readings are used to estimate the total displacements of the bridge using data filtering. The estimated displacements are then compared to the true responses of the model measured with displacement sensors. The results show that this method can cost-effectively measure the total displacement of railroad bridges without a fixed reference. In addition, this paper studies the use of a low-cost data acquisition platform to measure reference-free dynamic displacements of railroad bridges by combining low-cost microcontrollers and accelerometers. Researchers used the new system to measure accelerations and reconstruct reference-free displacements from several railroad bridge crossing events. The results obtained from the proposed low-cost sensors were compared with those of commercial sensing equipment. The results show that low-cost sensors and commercial sensing systems can measure reference-free displacements with comparable accuracy. The results of this study show that the proposed platform estimates reference-free displacements with a peak error between 20 % and 30 % and a root mean square (RMS) error between 10 % and 20 %, which is similar to commercial SHM systems. The proposed low-cost system is approximately 300 times less expensive than the commercial sensing equipment. In conclusion, this study evaluates the accuracy of cost-effective systems to measure the reference-free displacement of railroad bridges. The conclusions of this study propose a cost-effective method to measure the reference-free displacement of railroad bridges that all railroad companies can afford. The ultimate goal of this research is to provide stakeholders with means to design, develop, own, and operate their own SHM systems

    Operational modal analysis of a highway bridge using acquired data of different accelerometers

    Get PDF
    Les aplicacions de monitorització de la salut estructural (SHM) estan rebent cada vegada més atenció, això és perquè mitjançant la seva aplicació es pot aconseguir la detecció i caracterització dels danys en una fase de prevenció. A més, SHM és un procés dissenyat per proporcionar informació precisa i exacta relacionada amb l'estat i rendiment d'una estructura al llarg del temps. Cal destacar que aquest monitoratge també pot ajudar en els processos de prendre de decisions per optimitzar el funcionament, proporcionar manteniment, reparar i, possiblement, substituir elements estructurals. Un sistema de monitoratge típic comprèn una xarxa de sensors encarregats de mesurar diferents paràmetres rellevants. Tot i això, l'elevat cost dels sensors comercials representa una limitació crítica per a la seva implantació. Per superar el cost elevat de la instrumentació, es poden desenvolupar i validar sensors de baix cost per a aplicacions de SHM. En aquest treball de fi de màster es fa una campanya experimental per a l'Anàlisi Modal Operativa (OMA) d'un pont de carretera utilitzant dos acceleròmetres: un prototip de baix cost (LARA: Low-cost Adaptable Reliable Accelerometer) i un de comercial (PCB 907A61). Amb la finalitat d'avaluar la fiabilitat de les dades adquirides per LARA i validar-les com a acceleròmetres de baix cost per a la monitorització de la salut estructural, es van instal·lar aquests sensors en un pont de carretera ubicat a Andoain, País Basc. Els resultats obtinguts per a cada tipus d'acceleròmetre es van comparar amb el Criteri de Garantia Modal (MAC) i es va avaluar la diferència entre les freqüències pròpies calculades. A més, els paràmetres modals obtinguts durant la campanya experimental es van fer servir per calibrar un model d'elements finits del pont en estudi. Aquest procés es va fer per obtenir una representació més propera a l'estat real de l'estructura.Las aplicaciones de monitorización de la salud estructural (SHM) están recibiendo cada vez más atención, esto se debe a que mediante su aplicación se puede lograr la detección y caracterización de los daños en una fase de prevención. Además, SHM es un proceso diseñado para proporcionar información precisa y exacta relacionada con el estado y el rendimiento de una estructura a lo largo del tiempo. Cabe destacar que esta monitorización también puede ayudar en los procesos de toma de decisiones para optimizar el funcionamiento, proporcionar mantenimiento, reparar y, posiblemente, sustituir elementos estructurales. Un sistema de monitorización típico comprende una red de sensores encargados de medir diferentes parámetros relevantes. Sin embargo, el elevado coste de los sensores comerciales representa una limitación crítica para su implantación. Para superar el elevado coste de la instrumentación, se pueden desarrollar y validar sensores de bajo coste para aplicaciones de SHM. En este trabajo de fin de máster se realiza una campaña experimental para el Análisis Modal Operativo (OMA) de un puente de carretera utilizando dos acelerómetros: un prototipo de bajo coste (LARA: Low-cost Adaptable Reliable Accelerometer) y uno comercial (PCB 907A61). Con la finalidad de evaluar la fiabilidad de los datos adquiridos por LARA y validarlos como acelerómetros de bajo coste para la monitorización de la salud estructural, se instalaron estos sensores en un puente de carretera ubicado en Andoain, País Vasco. Los resultados obtenidos para cada tipo de acelerómetro se compararon bajo el Criterio de Garantía Modal (MAC) y se evaluó la diferencia entre las frecuencias propias calculadas. Además, los parámetros modales obtenidos durante la campaña experimental se utilizaron para calibrar un modelo de elementos finitos del puente en estudio. Este proceso se realizó a fin de obtener una representación más cercana al estado real de la estructura.Structural health monitoring (SHM) applications are increasingly getting more attention. It is due to the fact that through their implementation, the detection and characterization of damage during a prevention phase can be achieved. Furthermore, SHM is a process designed to provide precise and accurate information associated with the condition and performance of a structure over time. It should be noted that SHM can also help with decision-making processes to optimize the operation, provide maintenance, repair, and possibly replace structural elements. A typical monitoring system comprises a network of sensors in charge of measuring different relevant parameters. However, the high cost of commercial sensors can be a critical limitation for their implementation. To overcome the high cost of instrumentation, low-cost sensors can be developed and validated for SHM applications. This Master's thesis carries out an experimental campaign for the Operational Modal Analysis (OMA) of a highway bridge using two accelerometers: a low-cost prototype (LARA: Low-cost Adaptable Reliable Accelerometer) and a commercial one (PCB 907A61). In order to evaluate the reliability of the data acquired by LARA and to validate it as a low-cost accelerometer for structural health monitoring, these accelerometers were mounted on a highway bridge located in Andoain, Basque Country. The results obtained for each type of accelerometer are compared by using the Modal Assurance Criteria (MAC) and assessing the difference between the analyzed eigenfrequencies. Moreover, the modal parameters obtained during the experimental campaign are used to calibrate a finite element model of this bridge. This analytical model is calibrated to have a closer representation of the real state of the structure

    Low weight additive manufacturing FBG accelerometer: design, characterization and testing

    Get PDF
    Structural Health Monitoring is considered the process of damage detection and structural characterization by any type of on-board sensors. Fibre Bragg Gratings (FBG) are increasing their popularity due to their many advantages like easy multiplexing, negligible weight and size, high sensitivity, inert to electromagnetic fields, etc. FBGs allow obtaining directly strain and temperature, and other magnitudes can also be measured by the adaptation of the Bragg condition. In particular, the acceleration is of special importance for dynamic analysis. In this work, a low weight accelerometer has been developed using a FBG. It consists in a hexagonal lattice hollow cylinder designed with a resonance frequency above 500 Hz. A Finite Element Model (FEM) was used to analyse dynamic behaviour of the sensor. Then, it was modelled in a CAD software and exported to additive manufacturing machines. Finally, a characterization test campaign was carried out obtaining a sensitivity of 19.65 pm/g. As a case study, this paper presents the experimental modal analysis of the wing of an Unmanned Aerial Vehicle. The measurements from piezoelectric, MEMS accelerometers, embedded FBGs sensors and the developed FBG accelerometer are compared.Ministerio de Economía y Competitividad BIA2013-43085-P y BIA2016-75042-C2-1-
    corecore