137 research outputs found

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Design of a portable observatory control system

    Get PDF
    In this thesis, we synthesize the development of a new concept of operation of small robotic telescopes operated over the Internet. Our design includes a set of improvements in control algorithmic and hardware of several critical points of the list of subsystems necessary to obtain suitable data from a telescope. We can synthesize the principal contributions of this thesis into five independent innovations: - An advanced drive closed-loop control: We designed an innovative hardware and software solution for controlling a telescope position at high precision and high robustness. - A complete Telescope Control System (TCS): We implemented a light and portable software using advanced astronomical algorithms libraries for optimally compute in real-time the telescope positioning. This software also provides a new multiple simultaneous pointing models system using state machines which allows reaching higher pointing precision and longer exposure times with external guiding telescopes. - A distributed software architecture (CoolObs): CoolObs is the implementation of a ZeroC-ICE framework allowing the control, interaction, and communication of all the peripherals present in an astronomical observatory. - A patented system for dynamic collimation of optics: SAPACAN is a mechanical parallel arrangement and its associated software used for active compensation of low-frequency aberration variations in small telescopes. - Collimation estimation algorithms: A sensor-less AO algorithm have been applied by the analysis of images obtained with the field camera. This algorithm can detect effects of lousy collimation. The measured misalignments can later feed corrections to a device like SAPACAN. Due to the constant presence of new technologies in the field of astronomy, it had been one of the first fields to introduce material which was not democratized at this time such as Coupled Charged Devices, internet, adaptive optics, remote and robotic control of devices. However, every time one of these new technologies was included in the field it was necessary to design software protocol according to the epoch’s state of the art software. Then with the democratization of the same devices, years after the definition of their protocols, the same communication rules tend to be used to keep backward compatibility with old - and progressively unused- devices. When using lots of cumulated software knowledge such as with robotic observing, we can dig in several nonsenses in the commonly used architectures due to the previously explained reasons. The described situation is the reason why we will propose as follows a new concept of considering an observatory as an entity and not a separated list of independent peripherals. We will describe the application of this concept in the field or robotic telescopes and implement it in various completely different examples to show its versatility and robustness. First of all, we will give a short introduction of the astronomical concepts which will be used all along the document, in a second part, we will expose a state of the art of the current solutions used in the different subsystems of an observing facility and explain why they fail in being used in small telescopes. The principal section will be dedicated to detail and explain each of the five innovations enumerated previously, and finally, we will present the fabrication and integration of these solutions. We will show here how the joint use of all of them allowed obtaining satisfactory outstanding results in the robotic use of a new prototype and on the adaptation on several existing refurbished telescopes. Finally, we dedicate the last chapter of this thesis to resuming the conclusions of our work.En esta tesis, presentamos el desarrollo de un nuevo concepto de operación de telescopio robótica operados a través de Internet. Nuestro diseño incluye un conjunto de mejoras de los algoritmos de control y hardware de varios puntos críticos de la lista de subsistemas necesarios para obtener datos de calidad científica con un telescopio. Podemos sintetizar las principales contribuciones de esta tesis en cinco innovaciones independientes: - Un control de motor avanzado en bucle cerrado: Diseñamos un hardware y software innovadores para controlar la posición y movimiento fino de un telescopio con alta precisión y alta robustez. - Un software de control de telescopio (TCS) integrado: Implementamos un software ligero y portátil que ocupa bibliotecas de algoritmos astronómicos avanzados para calcular de manera óptima y en tiempo real la posición teórica del telescopio. Este software también proporciona un software innovador de modelo de pointing múltiples simultáneos. Esto permite alcanzar una mayor precisión de seguimiento y así ocupar tiempos de integración más importante ocupando un telescopio de guía mecánicamente apartado al telescopio principal. - Una arquitectura de software distribuido (CoolObs): CoolObs es una implementación de software ocupando la plataforma de desarrollo ZeroC-ICE la cual permite el control, la interacción y la comunicación de todos los periféricos presentes en un observatorio astronómico. - Un sistema patentado para la colimación dinámica de la óptica: SAPACAN es un sistema mecánico de movimiento paralelo y su software asociado. Se puede ocupar para compensar activamente las aberraciones ópticas de bajo orden en pequeños telescopios. - Algoritmos de estimación de colimación: Se desarrolló un algoritmo de óptica adaptiva sin sensor en base al análisis de imágenes obtenidas con una cámara cerca del plano focal del telescopio. Este algoritmo puede detectar efectos de mala colimación de las ópticas. Los desajustes, una vez medidos, pueden posteriormente ser aplicados como correcciones a un dispositivo como SAPACAN. Astronomía es un terreno propicio al desarrollo de nuevas tecnologías y, debido a esto, los protocolos de comunicación entre periféricos pueden ser obsoletos porque se han escritos en etapas tempranas de existencia de estas nuevas tecnologías. Las mejoras se han hecho de a poco para mantener la compatibilidad de los sistemas ya existentes, ocupando un planteamiento general de la problemática de control de telescopios robóticos, proponemos un nuevo concepto de observatorio robótico visto como una entidad y no una lista de periféricos independientes. A lo largo de esta tesis, describiremos la aplicación de este concepto en el campo de telescopios robóticos e implementarlo en varios sistemas independientes y variados para mostrar la versatilidad y robustez de la propuesta.Postprint (published version

    Remote Sensing

    Get PDF
    This dual conception of remote sensing brought us to the idea of preparing two different books; in addition to the first book which displays recent advances in remote sensing applications, this book is devoted to new techniques for data processing, sensors and platforms. We do not intend this book to cover all aspects of remote sensing techniques and platforms, since it would be an impossible task for a single volume. Instead, we have collected a number of high-quality, original and representative contributions in those areas

    George C. Marshall Space Flight Center Research and Technology Report 2014

    Get PDF
    Many of NASA's missions would not be possible if it were not for the investments made in research advancements and technology development efforts. The technologies developed at Marshall Space Flight Center contribute to NASA's strategic array of missions through technology development and accomplishments. The scientists, researchers, and technologists of Marshall Space Flight Center who are working these enabling technology efforts are facilitating NASA's ability to fulfill the ambitious goals of innovation, exploration, and discovery

    11th Annual Undergraduate Research Symposium

    Get PDF

    The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    Get PDF
    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed

    Space Station Systems: a Bibliography with Indexes (Supplement 8)

    Get PDF
    This bibliography lists 950 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1989 and December 31, 1989. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included

    Flight Mechanics/Estimation Theory Symposium, 1994

    Get PDF
    This conference publication includes 41 papers and abstracts presented at the Flight Mechanics/Estimation Theory Symposium on May 17-19, 1994. Sponsored by the Flight Dynamics Division of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers

    Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994

    Get PDF
    The Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS 94), held October 18-20, 1994, in Pasadena, California, was jointly sponsored by NASA, ESA, and Japan's National Space Development Agency, and was hosted by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology. i-SAIRAS 94 featured presentations covering a variety of technical and programmatic topics, ranging from underlying basic technology to specific applications of artificial intelligence and robotics to space missions. i-SAIRAS 94 featured a special workshop on planning and scheduling and provided scientists, engineers, and managers with the opportunity to exchange theoretical ideas, practical results, and program plans in such areas as space mission control, space vehicle processing, data analysis, autonomous spacecraft, space robots and rovers, satellite servicing, and intelligent instruments
    corecore