593 research outputs found

    A study of data coding technology developments in the 1980-1985 time frame, volume 2

    Get PDF
    The source parameters of digitized analog data are discussed. Different data compression schemes are outlined and analysis of their implementation are presented. Finally, bandwidth compression techniques are given for video signals

    Time and frequency domain algorithms for speech coding

    Get PDF
    The promise of digital hardware economies (due to recent advances in VLSI technology), has focussed much attention on more complex and sophisticated speech coding algorithms which offer improved quality at relatively low bit rates. This thesis describes the results (obtained from computer simulations) of research into various efficient (time and frequency domain) speech encoders operating at a transmission bit rate of 16 Kbps. In the time domain, Adaptive Differential Pulse Code Modulation (ADPCM) systems employing both forward and backward adaptive prediction were examined. A number of algorithms were proposed and evaluated, including several variants of the Stochastic Approximation Predictor (SAP). A Backward Block Adaptive (BBA) predictor was also developed and found to outperform the conventional stochastic methods, even though its complexity in terms of signal processing requirements is lower. A simplified Adaptive Predictive Coder (APC) employing a single tap pitch predictor considered next provided a slight improvement in performance over ADPCM, but with rather greater complexity. The ultimate test of any speech coding system is the perceptual performance of the received speech. Recent research has indicated that this may be enhanced by suitable control of the noise spectrum according to the theory of auditory masking. Various noise shaping ADPCM configurations were examined, and it was demonstrated that a proposed pre-/post-filtering arrangement which exploits advantageously the predictor-quantizer interaction, leads to the best subjective performance in both forward and backward prediction systems. Adaptive quantization is instrumental to the performance of ADPCM systems. Both the forward adaptive quantizer (AQF) and the backward oneword memory adaptation (AQJ) were examined. In addition, a novel method of decreasing quantization noise in ADPCM-AQJ coders, which involves the application of correction to the decoded speech samples, provided reduced output noise across the spectrum, with considerable high frequency noise suppression. More powerful (and inevitably more complex) frequency domain speech coders such as the Adaptive Transform Coder (ATC) and the Sub-band Coder (SBC) offer good quality speech at 16 Kbps. To reduce complexity and coding delay, whilst retaining the advantage of sub-band coding, a novel transform based split-band coder (TSBC) was developed and found to compare closely in performance with the SBC. To prevent the heavy side information requirement associated with a large number of bands in split-band coding schemes from impairing coding accuracy, without forgoing the efficiency provided by adaptive bit allocation, a method employing AQJs to code the sub-band signals together with vector quantization of the bit allocation patterns was also proposed. Finally, 'pipeline' methods of bit allocation and step size estimation (using the Fast Fourier Transform (FFT) on the input signal) were examined. Such methods, although less accurate, are nevertheless useful in limiting coding delay associated with SRC schemes employing Quadrature Mirror Filters (QMF)

    Speech coding at medium bit rates using analysis by synthesis techniques

    Get PDF
    Speech coding at medium bit rates using analysis by synthesis technique

    Predictive Encoder and Buffer Control for Statistical Multiplexing of Multimedia Contents

    No full text
    International audienceStatistical multiplexing of video contents aims at transmitting several variable bit rate (VBR) encoded video streams over a band-limited channel. Rate-distortion (RD) models for the encoded streams are often used to control the video encoders. Buffering at the output of encoders is one of the several techniques used to smooth out the fluctuating bit rate of compressed video due to variations in the activity of video contents. In this paper, a statistical multiplexer is proposed where a closed-loop control of both video encoders and buffers is performed jointly. First, a predictive joint video encoder controller accounting for minimum quality, fairness, and smoothness constraints is considered. Second, all buffers are controlled simultaneously to regulate the buffering delays. This delay is adjusted according to a reference delay constraint. The main idea is to update the encoding rate for each video unit according to the average level of the buffers, to maximize the quality of each program and effectively use the available channel rate. Simulation results show that the proposed scheme yields a smooth and fair video quality among programs thanks to the predictive control. A similar buffering delay for all programs and an efficient use of the available channel rate are ensured thanks to the buffer management and to the predictive closed-loop control

    Lexicographic Bit Allocation for MPEG Video

    Get PDF
    We consider the problem of allocating bits among pictures in an MPEG video coder to equalize the visual quality of the coded pictures, while meeting bu er and channel constraints imposed by the MPEG Video Bu ering Veri er. We address this problem within a framework that consists of three components: 1) a bit production model for the input pictures, 2) a set of bit-rate constraints imposed by the Video Bu ering Veri er, and 3) a novel lexicographic criterion for optimality. Under this framework, we derive simple necessary and su cient conditions for optimality that lead to e cient algorithms

    Improved quality block-based low bit rate video coding.

    Get PDF
    The aim of this research is to develop algorithms for enhancing the subjective quality and coding efficiency of standard block-based video coders. In the past few years, numerous video coding standards based on motion-compensated block-transform structure have been established where block-based motion estimation is used for reducing the correlation between consecutive images and block transform is used for coding the resulting motion-compensated residual images. Due to the use of predictive differential coding and variable length coding techniques, the output data rate exhibits extreme fluctuations. A rate control algorithm is devised for achieving a stable output data rate. This rate control algorithm, which is essentially a bit-rate estimation algorithm, is then employed in a bit-allocation algorithm for improving the visual quality of the coded images, based on some prior knowledge of the images. Block-based hybrid coders achieve high compression ratio mainly due to the employment of a motion estimation and compensation stage in the coding process. The conventional bit-allocation strategy for these coders simply assigns the bits required by the motion vectors and the rest to the residual image. However, at very low bit-rates, this bit-allocation strategy is inadequate as the motion vector bits takes up a considerable portion of the total bit-rate. A rate-constrained selection algorithm is presented where an analysis-by-synthesis approach is used for choosing the best motion vectors in term of resulting bit rate and image quality. This selection algorithm is then implemented for mode selection. A simple algorithm based on the above-mentioned bit-rate estimation algorithm is developed for the latter to reduce the computational complexity. For very low bit-rate applications, it is well-known that block-based coders suffer from blocking artifacts. A coding mode is presented for reducing these annoying artifacts by coding a down-sampled version of the residual image with a smaller quantisation step size. Its applications for adaptive source/channel coding and for coding fast changing sequences are examined

    New techniques in signal coding

    Get PDF

    Perceptual models in speech quality assessment and coding

    Get PDF
    The ever-increasing demand for good communications/toll quality speech has created a renewed interest into the perceptual impact of rate compression. Two general areas are investigated in this work, namely speech quality assessment and speech coding. In the field of speech quality assessment, a model is developed which simulates the processing stages of the peripheral auditory system. At the output of the model a "running" auditory spectrum is obtained. This represents the auditory (spectral) equivalent of any acoustic sound such as speech. Auditory spectra from coded speech segments serve as inputs to a second model. This model simulates the information centre in the brain which performs the speech quality assessment. [Continues.

    Digital image compression

    Get PDF
    • …
    corecore