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ABSTRACT 

The ever-increasing demand for good communications/toll 

quality speech has created a renewed interest into the 

perceptual impact of rate compression. Two general areas are 

investigated in this work, namely speech quality assessment 

and speech cOding. 

In the field of speech qualit~ assessment, a model is 

developed which simulates the processing stages of the 

peripheral auditory system. At the output of the model a 

"running" aUditory sprectrum is obtained. This represents 

the auditory (spectral) equivalent of any acoustic sound such 

as speech. Auditory spectra from coded speech segments serve 

as inputs to a second model. This model simulates the 

information centre in the brain which performs the speech 

quality assessment. The second model produces a 

multidimensional distortion space as its output. Each speech 

segment is represented by a point (or vector) in this space. 

The origin of the space is occupied by the uncoded speech 

segment. Distortion directions (axes) are identified within 

the space. The projection of the vector corresponding to a 

speech segment, onto a distortion axis, gives a measure of 

the amount of that particular distortion 'contained within the 

speech segment. Comparisons with subjectively determined 

distortion spaces confirm the validity of the approach. 

Perceptual knowledge is also integrated into the general 



area of speech cOding. Variable rate coding subject to 

perceptual criteria is investigated. A new speech algorithm 

is developed. The new algor1thm is shown to be a logical 

development to the line of thought of RELP coders. These 

employ a LPC vocoder model where the excitation signal is 

provided by a waveform coded, baseband signal. In the 

proposed algorithm multiple "basebands" are used whose 

location and number are made to adapt to the speech signal's 

short time spectrum. Efficient rate compression algorithms 

such as subband coding, vector quant1zation and mult1pulse 

LPC are utilized in the new algorithm to produce good 

communications quality at bit rates around 4.8 Kbits/sec. 
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CHAPTER l' 

INTRODUCTION 
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CHAPIER J: INTRODUCTION 

In recent years and particularly throughout the 

1980' s a tremendous amount of research 

has been carried out internationally 

Digital Speech Coding. 

and development 

in the field of 

New applications areas such as the Integrated 

Services Digital Network (ISDN) and digital mobi le radio 

provided the resources to fuel research in this 

field. Nevertheless, the impetus has been provided by the 

excellent Digital Signal Processing (DSP) chips that have 

been made available 

Particular emphasis has 

in the range of 4.8 to 

to rate compression workers. 

been placed upon low bit rates 

9.6 kbi ts/sec with the obj ecti Ve 

of providing Toll to good Communications qual i ty speech: 

The cost of a Telecommunications Network is the sum of 

the source 

providing 

compression cost 

the transmission 

plus the 

path. 

actual cost of 

The increased 

availability of DSP chips has resulted in a reduction in 

the source compression cost. In response to this 

reduction, organizations involved in the provision of 

Telecommunications services strived to push down the 

transmission rate (whilst maintaining 

quality speech) in order to utilize 

bandwidth as profitably as possible. 

"acceptable" 

the available 

As bit rate is reduced the minimum achievable 

reconstruction noise increases. It is therefore important 

at these rates to operate as close to rate distortion 

bounds as possible,through the use of complex and 

sophisticated algorithms. The newly developed Delayed 

Decision Coding Algorithms such as Code Excited Linear 

Predictive Coder (CELP) and the Multipulse Linear 

Predictive Coder attempt to fulfil this objective. 

Also of paramount importance, is an understanding of 

the concept of a perceptually meaningful distortion 
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cri terion. The ultimate test of each and every coder 

structure is its subjective quality. Speech coders should 

therefore be optimized and assessed through the use of 

subjective tests. Unfortunately, such tests are time 

consuming and expensive to conduct. Furthermore, their 

outcome usually provides limited information, relevant 

only to the particular conditions and coders used in each 

test. General conclusions cannot usually be drawn (or the 

results are not very useful) for optimizingthose coders 

under test or others. Al though the use of 

multidimensional diagnostic tests, such as the ones 

carried out and presented in the latter part of chapter 

4, offer some improvement toward this situation it is 

only through the use of perceptually meaningful objective 

tests that rapid growth and improvement can be expected. 

In order to be able to construct a useful obj ect i ve 

measure, capable of postdiction and prediction of 

subjective tests and results, it is necessary to have a 

deep knowledge and understanding of the mechanisms of 

aUditory perception. Two distinct aspects of auditory 

perception can be identified: One is related to the 

peripheral auditory processing which is carried out 

within the ear itself up to the auditory nerve. This 

constitutes a front end processor to the second part 

which resides in the higher aUditory pathways and in the 

brain. This latter part forms the Information processing 

and cognition centre of perception; Very little is known 

about the second part, traditionally of interest to 

social scientists (e.g. psychologists), but now becoming 

the subject of Information Technology. Due to its 

peripheral nature, it has been possible to investigate 

auditory processing 

peripheral auditory 

area compared to 

coding speCialists, 

is undoubtedly due 

to a greater degree. Even so, the 

processing part is still a very dark 

other fields of interest to speech 

for example, speech production. This 

to the severe nonlJ.nearties of the 

system which make it very difficult to model. One 
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additional limitation is the complexity of isolating the 

effects of the peripheral front end part from those of 

the central part in any relevant experiment. 

Knowledge about the peripheral auditory system (PAS) 

comes from two different research 

The first is physiological and concerns 

and physiological measurements. These 

methodologies: 

direct physical 

are usually 

obtained 

recording 

auditory 

through surgery and 

from the auditory nerve 

information from the 

subsequent electrical 

fibres. These carry the 

ear to the brain in 

electrical form. Due to their nature, nearly all 

experiments of this type (with perhaps the only exception 

being that of cochlear implants) involve non-human 

subjects. In both types of experiments (physiological as 

well as psychophysical) the procedures used are almost of 

equal importance to the results obtained, since it is 

very difficult to draw any conclusions outside the 

context of the experiments themselves. In the first part 

of chapter two a comprehensive range of physiological 

phenomena and measurements are described. These relate to 

the motion of the hydromechanical parts and in particular 

the Basilar Membrane, the mechanical to neural 

transduction in the hair cells and finally, to the nerve 

fibres which convey the information to the brain. The 

emphasis is on the response of each part to various 

stimuli and i·ts aim is to show how each part affects the 

shape and transforms the nature of the acoustic waveform 

signal as it passes successively through the different 

stages to arrive, in electrical form,at the nerve fibres 

on its way to the brain. In order to describe the system 

wi th any degree of accuracy, and in the absence of any 

linear behaviour, it becomes necessary to provide the 

response of the system to a broad selection of stimuli. 

The first part of chapter two is supplemented with a 

small section on various models that have been devised to 

simulate phY'3iological behaviour. 
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Having obtained a certain knowledge about the 

physiological response of the PAS one is now able to 

understand and utilize the other form of knowledge that 

is available about the PAS, which derives from 

psychophysical experiments. Psychophysical experiments 

involve one or more physical stimuli and the 

corresponding response from the subject. This is usually 

according to the a rating of the impact of the stimuli 

subject's own psychophysical scales. The averaging of 

subjects (were data among 

information on the response of 

permissible) 

the If average" 

provides 

observer. 

The last half of chapter two deals with a range of 

psychophysical phenomena 

evaluation. These include 

relevant to speech quality 

the more conventi onal Loudness 

and Masking effects of constant or time independent 

stimuli as well 

temporally variable 

as the 

sounds. 

equi valent phenomena 

The emphasis is on 

for 

the 

evolution of auditory representations with time as 

opposed to the tradi tional "static" representations, so 

that the information is relevant to speech signals which 

have a high information content and thus vary both in 

time and in frequency. 

The contents of chapter 2 derive from a selection of 

journals and conference publ icatioDs from a broad range 

of fiel us including physIOlogy, psychophysics, phonetics, 

acoustics, as well as engineering. It intends to serve 

both as a necessary review and introduction to the rest 

of the thesis as well as a reference source for those who 

need to acquire a broad knowledge and understanding of 

auditory perception as applied to speech coding. 

Chapter 3 starts with a brief discussion of speech 

production and speech phonetics. This aims to describe 

the type of signal that one is faced with in the speech 

processing domain. The main part of chapter 3 is devoted 

to speech coding. Since several good texts now exist on 

speech coding only those aspects of speech coding used in 
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subsequent chapters are to be found here. For the 

purposes of completeness there is a brief mention of 

other areas whilst certain general structures such as 

Del ta Modulation are not mentioned at all. Nevertheless 

the author's objective is to present the subject through 

a logical progression and ascent in algorithm complexity, 

as soon as the .basic concepts are covered. In addition, 

resul ts are presented with a perceptual perspective in 

mind, whenever possible. 

Chapter 4 is a treaty on distortion measures. Rate 

distortion theory serves as an introduction and a fairly 

comprehensive list of distortion measures that have 

appeared in the literature is given, together with the 

extent of applicability of each measure. The need for a 

perceptually motivated objective measure is justified and 

various such measures are developed and tested. These are 

based firmly on the theory presented both in chapter 2 

and chapter 3. Towards the end of the chapter 

mul tidimensional scaling is used to decompose and 

diagnose perceptually distinct types of distortion as 

measured in both objective and subjective tests. 

Procedures for obtai ni ng such subj ecti ve tests are 

presented. 

Chapter 5 deals with variable rate coding subject to 

perceptual criteria. ·Algori thms for both "real-time" and 

"background task" type applications are developed and 

tested. 

Chapter 6 

which combines 

presents a 

perceptual 

new speech coding structure 

knowledge with efficient rate 

compression algorithms. Although one particular 

implementation is pre,sented here, the concept of the 

coder itself J.s more general and provides a new, 

general ized approach to speech coding. These ideas are 

expanded more in the last chapter, chapter 7 which 

provides the concl usions to the present work and 
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indicates the research areas which the author considers 

worthy of more investigation and research. These are 

related to most of the work covered in this thesis. 

Finally, the first two appendices, A and B, relate to 

sound and sound Intensity measurements and are a 

necessary prerequisite to the reading of chapter 2. The 

rest of the appendices are related to specific parts 

wi thin the rest of the thesis and are not intended for 

general reading. The reader is advised to turn to these 

appendices when particular mention is made in the 

relevant part in the thesis, to clarify the particular 

part in question, or satisfy himself of a proof to a 

particular equation. It should be noted that most of the 

appendices cover original work by the author. This is the 

case, for example, for the bit allocation procedures 

described in appendices C and D. 
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2. 1 PHYS IOLOG I CAL OBSERVATI ONS AND MEASURE.!1EJ1'ffi 

2.1.1 Anatomy of the Auditory System - An Overview 

A pictorial description of the ear is shown in figure 

2.1-1a. It is generally divided into three regions, the 

outer, middle and inner ear, as shown in figure 2.1.1c 

Sound is transmitted through the external auditory 

meatus (the ear canal) and causes the tympanic membrane 

to vibrate. This vibration is transmitted via the 

ossicles (figure 2.1.1b) through the oval window to the 

fluids which fill the cochlea (figures 2.1-1c and figure 

2.1-2) . 

The movement of the cochlea fluids cause travelling 

waves to be formed on a membrane running along the length 

of the cochlea, the Basilar membrane (BM) (figure 2.1-2). 

The waveS originate from the stapes and travel round the 

spirals of the cochlea towards its end at the helicotrema 

(figure 2.1-3). 

The travelling waves bend the outer and inner hair 

cells <figure 2.1-2c) which constitute the mechanical to 

neural transducers of the peripheral Auditory system 

(PAS) . 

The (electrical) signals generated there are 

transmi tted through the nerve fibres connected to them, 

to higher audi tory pathways. These fi bres consti tute the 

auditory nerve. 

2.1.2 The outqr and middle car 

The outer ear enhances the acoustic signal in the 

2000 to 6000 Hz region. This enhancement is of the order 

of 10 dB( al and is one factor that contri butes to the 

ears maximal sensitivity to frequency signals in this 
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region. This can be seen in a plot of the threshold of 

hearing versus frequency (figure 2.1-4). 

The middle ear acts as an impedance transformer. It 

reduces the impedance mismatch between the air outside 

the ear drum and the cochlea fluids. Together with the 

outer ear they behave as a lowpass filter with an 

"overshoot" in the 2 to 5 KHz region reaching about 8 dB 

at 3.5 KHz [cl 

2.1.3 The inner ear 

2.1.3.1 The Basilar membrane; 

When the oval window is set in motion by an incoming 

sound, a pressure is applied by the fluids of the cochlea 

essentially simultaneously 

BM. This is due to the 

cochlear fluids [160,000 

along the whole length of the 

high speed of sound in the 

cm/sec, hence, for a 10 KHz 

sinosoid the wavelength is 16 cml, and the small size of 

the cochlear duct (about 3.5 cm in man). 

The response of the BM to sinosoidal stimulation 

begins as a bulge at the basal end (near the stapes). The 

bulge takes the form of a travelling wave which moves 

along the basilar membrane towards the apex (near the 

helicotrema). The amp'l i tude of the wave increases slowly 

at first and then decreases rather abruptly. This is 

shown in figure 2.1-5. The position of the peak in the 

pattern of vibration varies according to the frequency of 

stimulation. High frequency sounds produce a maximum 

displacement of the basilar membrane near the basal end 

so that there is little activity on the remainder of the 

membrane. Low frequency sounds produce a pattern of 

vibration which extends all the way along the BM but 

which reaches a maximum before the end of the membrane. 

Figure 2.1-6 shows the envelopes of the vibration 

patterns for several different low frequency sinosoids. 



From figure 2.1-6 it 

vibration to a low 

ampl i tude can "swamp" 

frequency sinosoid of 

11 

can be seen that the mode of 

frequency sinosoid of sufficient 

the vi brati on produced by a high 

smaller amplitude ([ dJ p. 93). In 

response to steady sinosoidal stimula'tion each point on 

the basilar membrane vibrates in a sinosoidal manner with 

a frequency equal to that of the input waveform ([ dJ 

p18) . 

Several workers have produced tuning curves for the 

Basilar membrane (figure 2.1-7>. It should be noted that 

the results shown have been obtained using different 

methods and also different species by each worker. 

Most of the pioneering work on vibration patterns 

along the BM was done by Von Bekezy. These early 

experiments revealed rather broad tuning curves for the 

equivalent BM "Filters". This presented a problem for 

auditory theorists since the observed frequency 

selecticity was insufficient to explain various 

psychoacoustical phenomena which implied a much better 

frequency resolving power. The methods used by Bekezy 

suffered from certain shortcomings: Bekezy used human 

cadaver ears. Later it was found that soon after death 

the mechanical properties of the BM change significantly. 

[5J. Also, the vibration amplitudes had to be at least of 

the order of one wavelength of visible light. This 

required very high sound levels (about 140 dB SPL>. If 

the response of the BM at these levels was non-linear, 

the tuni ng curves might have been much sharper at lower 

(normal> levels. Recent techniques do not have to rely on 

direct visual observation of the BM. For example, the 

Mossbauer technique measures doppler shift in the 

emmitted radiation of gamma rays, from a very small 

radioactive source placed on the BM. At high frequencies 

C7KHz> normal SPL levels (70-80 dB> can be used to 

produce reasonable results. In these experiments live 
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animals were used, with auditory systems similar to that 

of man (guinea pig and squirrel monkey>. 

Rhode [4J produced both amplitude and phase curves 

for the BM, versus input frequency. All his measurements 

were made at points maximally sensitive to about 7-8 KHz. 

From the amplitude versus frequency curves he deduced 

that the low frequency slope of the amplitude curve was 6 

dB/octave. As frequency was increased and the maximum 

amplitude was approached the slope increased to 24 

dB/octave. The 

ampli tude was 

of 

slope of the curve beyond the maximum 

about 100 dB/octave. Also, near the 

maximum displacement (characteristic frequency 

frequency> he found an amplitude nonlinearity. 

From the phase 

frequencies (100-400 

plots he deduced that at low 

Hz> the phase was TT /2. For these 

frequencies the whole BM vibrates in phase. 

For higher characteristic frequencies the phase is a 

linear function of frequency over most of the lower 

frequency range. Near the cutoff region the phase 

increases at a faster rate. 

For frequencies greater than the frequency 

corresponding to the maximum amplitude response the phase 

approaches a constant value. 

Another important aspect closely related to the phase 

response is the velocity of propagation of the travelling 

wave. Rhode's results show that the velocity of 

propogation of the travelling waves is approximately 

constant for frequencies up to the maximum amplitude 

point. Above the maximum the velocity decreases slightly 

but then, at very high frequencies, it increases 

dramatically (the range of velocities before the 

maximally effective frequency was from 12-9 m/sec>. Note 
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that all the above effects refer to only a small region 

on the BM, and that the independent variable here was the 

input frequency and not the location on the BM. Typical 

curves from Rhode are shown in (figure 2.1-8). 

From indirect measurements Anderson et a1 (2) deduced 

that a linear relationship (on the average) existed 

between frequency and phase response. This relationship 

was used to find a time delay to each point on the BM 

(which was independent of frequency). They found that the 

travel time decreased exponentially with increasing 

distance from the oval window (and was independent of 

input frequency). 

The main implication of travel time being independent 

equivalently a linear 

is that the waveform 

of frequency (or 

frequency plot) 

stimulus tends to be preserved when 

phase versus 

of a complex 

mechanically 
propagated along the cochlear partition. 

Dallos (3), also from indirect measurements, found 

that the travelling wave velocity was frequency 

independent. They calculated that the travel time for a 

point 10 mm from the stapes was 0.62 msec, whereas, for a 

point 14 mm away the time was 1.4 msec (for a guinea pig 

cochlea). For the former value this was true for a range 

of frequencies form 10·0 Hz to 5 KHz. 

Several workers seem to disagree with the linear 

phase versus frequency relationship [7,6) although their 

views are largely dependent on Bekezy's experiments (1). 

These were made at low frequencies where the helicotrema 

appears to have some effect [9]. 

With 

velocity 

respect to variations 

of propagation decreases 

with distance, 

exponentially 

the 

with 
distance from the stapes (as does the travelling time). 
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Also the wavelength of the travelling wave decreases 

monotonically with distance [llJ. 

The above experiments although performed using simple 

stimuli (sinosoids) indicate the fashion in which the BM 

can be represented, as a spectrum analyser, with finite 

frequency resolution; Components of a sound, sufficiently 

far apart in frequency, will be resolved without too much 

interaction. For components relatively close in 

frequency, however, the patterns of vibration of the BM 

will interact and when the components are sufficiently 

close in frequency, then, there will no longer be a 

separate maximum for each component in the vibration but, 

instead, a single broader maximum. 

Above 500 Hz the resolution 

proportional to centre frequency. 

of the 

This 

analyser is 

has important 

implications for harmonic complex sounds such as the ones 

occurring in speech and music. Since the spacing of the 

harmonics is constant the lower frequency harmonics are 

much better resolved than the higher harmonics. This is 

shown schematically in figure [2.1-9J. Note that the 

periodici ty of the sound can either be determined from 

the place of occurrence of the first harmonic or, 

alternatively, from the time patterns at higher frequency 

ranges. Therefore 

frequencies does 

information since 

the broader response at higher 

not necessarily imply a loss in 

the time waveform within these broad 

filters may be reserved. 

2.1.3.2 The onter and jnner hair cells: 

These receptors are arranged in an orderly fashion 

along the extent of the BM. They form part of the organ 

of cordi. There are about 25000 outer hair cells arranged 

in three rows with about 140 hairs protruding from each. 

The inner hair cells are fewer, about 3500, in a single 

row, and have about 40 hairs each. 
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The motion of the BM is thought to cause these cells 

to bend «(el p.28) and release a signal (series of 

spikes) picked up by fibres in the auditory nerve. It is 

generally accepted that the firing of a hair cell depends 

on the motion of the BM and it is not'frequency specific 

itself. Then, an a simple threshold rule, the tuning 

curve for a cell should be the mirror image of the tuning 

curve for the BM «(el p.57) figure (2.1-10) (compare with 

figures 2.1-6 and 2.1-12). 

Studies on 

indicate that 

the hair 

they are 

patterns of 

views that 

displacement 

the firing 

cell tuning curves «( dl p.25) 

more sharply tuned than the 

of the BM. This seems to support 

probability of a hair cell is 

proportional to same derivative of the BM motion «( fl 

p. 25). 

It's not exactly known how this transduction 

operates. Some results indicate that the response of the 

outer cells is proportional to displacement whereas the 

response of the inner hair cells is proportional to 

velocity (121. Also the bending of the hair cells is 

produced by longitudinal and radial shear forces (the 

latter arising from the BM being fixed along both sides 

of its length, figure [2.1-11]. It is possible that the 

inner or the auter cells may be less sensitive (or not at 

all) to one' or the" other shear forces (91. Several 

workers tried to explain additional sharpening of the 

"tuning curves" from these modes of stimulation of the 

hair cells and form interactions between outer and inner 

hair cells. For example, tuning curves due to the 

shearing displacement appear to have steeper slopes than 

those from the travelling wave [11,12], Also, sharpening 

of the "filters" slopes could result from the directional 

sensitivity of the cells (141 or the different phase 

response of the inner and outer hair cells [131. 
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2.1.3.3 Nerve fibres in the auditory nerve. 

There have been extensive studies upon the response 

of single fibres to various stimuli. The responses are 

functions of all of the stimulus attributes, namely, the 

variation in amplitude in both the frequency and time 

domains. The fibres also show spontaneous activity in the 

absence of any sound stimulation. Values of 10 to 50 

spikes/sec are typical. 

2.1. 3. 3a Intensity and Frequency Effects 

First, regarding the dependence of the response upon 

frequency-intensi ty variations of the stimulus, the 

fibres show considerable frequency selectivity. This can 

be seen in tuning curves in figure [2.1-12]. These 

represent a cell's threshold as a function of frequency. 

The threshold is defined as the lower level of a sinosoid 

for which the experimenter by auditory and Visual 

monitoring of the' activity of the fibre can detect a 

change in the activity of the fibre. Stimuli are usually 

tone bursts so that changR:,; can be detected more easily. 

The frequency at which the threshold is at its lowest is 

called the characteristic frequency (CF). 

A single fiber seems to derive its output from a 

particular part of the BM. Also, fibres with high CF are 

found in the periphery of the auditory nerve bundle with 

an orderly decrease in CF towards the centre of the 

bundle [151. 

To describe the characteristics of single fibres at 

levels above 

contours can 

threshold ei ther isorate or 

be plotted. The former are 

iso-intensi ty 

plots of the 

intensity of sinosoidal stimulation required to produce a 

predetermined firing rate as a function of frequency. 

They are generally similar in shape to tuning curves. 
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Iso-intensity contours show firing rates at equal 

sound levels as a function of stimulus frequency. These 

are very different from the tuning curves [16, 20J 

<figure 2.1-13). A broadening of the frequency response 

can be seen at high intensity values. This in a sense 

reflects the relationship between intensity and firing 

rates. 

The effect of intensity can further be seen in figure 

[2.1-14]. The figure shows both the spontaneous firing 

rate and the nonlinear relationship between firing rate 

and intensity which leads to saturation within 30-40 dB 

of the input stimulus (17). 

It appears that the 

saturation within 40 dB 

majori ty of 

of threshold 

fibres reach 

whereas the 

20 dB amongst 

range of about 

Recently though 

threshold values have 

fibres [15, 17), Hence 

a range of about 

only an intensity 

60 dB seems to be coded in the fibers. 

fi bres wi th much higher thresholds have been reported 

[18J although they only represent a small percentage of 

the total. Another small number of fibres seem to show a 

change in slope of firing rates versus intensity instead 

of a saturation effect, thus increasing their dynamic 

range to about 60-70 dB. (19J Also at higher stimUlUS 

intensities neighbouring fibres with close CF values may 

start to fire (as' suggested by the iso-intensity 

contours, figure 2.1-13) which may be another alternative 

to coding intensity at higher stimulus levels. 

Comparisons with the tuning curves from the BM [21-

24J revealed that the curves from nerve fibres are more 

sharply tuned than the eqUivalent ones from the BM 

measurements. This fact led to speculations about a 

possi ble "second filter" between the BM and the nerve 

fibres. One line of thought places this "second filter" 

within the hair cells as mentioned in the previous 

section. 
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As a first approximation, it seems that the 30,000 or 

so fibres in the mammalian cochlear nerve can be 

considered functionally 

overlapping narrow (~ 

filters, each followed 

to represent a bank of (heavily) 

1/3 octave) bandpass linear 

by a nonlinear probabilistic, 

analogue to rate converter. The filtering process seems 

to be due to a two stage system where the BM provides an 

ini tial low-pass response, followed by a second stage of 

a narrow bandpass filter located between the BM and the 

cochlear nerve, whose exact location is as yet 

undiscovered. 

Direct measurements of the filters bandwidths seem to 

correspond (to a first approximation) to the critical 

bands (in later sections) in man. These constitute a 

psychophysical measure of frequency selectivity (or 

resolution) for simultaneously analyzed components of a 

complex sound. This is not to be confused with the 

ability for frequency discrimination for sequentially 

presented frequencies (jnd) which is approximately 30 

times finer and probably related to the steep cutoffs of 

the "filters" instead of their bandwidths. There have 

been some recent studies on the response of many single 

neurons to a limited set of stimuli [25-261. At low 

levels the response is a high level of activity from 

fibres with a CF close to the stimulus with activity 

dropping off on either side of this as predicted in [ e1 

p65-68 (fig. 2.1-15,2.1-16) . At high stimulus levels the 

effects of saturation come into place producing a plateau 

of uniform high level of activity over a wide range of 

CFs on both sides of the CF corresponding to the stimulus 

frequency, with activity falling off at CFs far removed 

from the stimulus frequency. This again agrees with 

speculations made by Whi tfield [e1 (figure 2.1-16). 

The distribution of neural activity as a function of 

CF (over all the fibres) is called the "excitation 

pattern". It represents the effective amount of 
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excitation produced by a stimulus as a function of CF. 

(shown schematically in figure 2.1-17). The determination 

of these excitation patterns for different stimuli is of 

great importance to loudness calculations and it has 

become accepted as an internal representation of the 

spectrum of the stimulus. This is the last stage of the 

PAS processing accessible to physiological measurements. 

The time domain response of the auditory nerve fibres 

has also been studied extensively. Some results are given 

below. 

2.1.3.3b Gross time behaviour 

The Gross time behaviour is examined through the plot 

of post stimulus time (PST) histograms. To determine a 

PST histogram the sound is presented many times and the 

numbers of neural impulses occurring at various times 

through the course of the sound (and its repetitions) are 

·counted. Zero time is reset each time the sound is 

applied. These are plotted in the form of a Histogram 

[151. Figure (2.1-18a.b) shows the typical time course of 

the discharge of cochlear fibres to short duration tone 

(A) and noise (B) stimuli. The rate of firing reaches a 

maximum within a few msec of stimulus onset and adapts at 

an increasingly slower rate with time. At the end of the 

stimulus the firing rate drops below the average 

spontaneous rate. This behaviour is characteristic of all 

the fibres and is relati vely independent of the nature 

and parameters of the stimulus 1. e. tone. noise. 

frequency and intensity. The details of the exact shape 

of the response are level and duration dependent [271. 

2.1. 3. 3c Detailed time behaviour 

One way to observe the fine time behaviour of the 

fibres is through an interval histogram. This is a 

histogram of the distribution of times between successive 
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The time axis is divided into a number of 

number of spikes with interarri val times 

each bin is accumulated and plotted. 

Interval histograms for the same fibre taken at several 

different stimulus frequencies are shown in figure [2.1-

19) [28). 

It can be seen that the discharges are locked to the 

cycles of the input waveform and occur at intervals which 

group around the integral multibles of the period of the 

stimulus frequency. The time structure of the discharges 

is largely independent of the best frequency of the fibre 

or the SPL of the stimulus as long as the stimulus is 

above threshold, [30). Al though the spikes seem to be 

locked to a cycle, not every cycle is an effective 

stimulus. Locking occurs with stimulus frequency up to 

3000 HZ but histograms become increasingly more blurred 

above 2500 Hz. This highest frequency is important in 

order to determine whether "place" or "time" theories of 

hearing are correct (in a subsequent section). It is not 

clear though whether the low pass effect is due to 

injuries of the fibres during measurements. In addition 

there is a certain j i tter associated with the timing of 

each fibre which obscures measurements at higher 

frequencies. 

Phase locking is'what could be expected to occur as a 

resul t of the transduction process: when the BM moves 

upwards, towards the tectorial membrane, the hair cells 

are bend and a neural response is initiated. No response 

will occur when the BM 

firings tend to occur on a 

moves downwards. Thus nerve 

positive deflection of the BM 

produced by the rarefaction phase of the stimulus. From 

the interval histogra~s it seems that the probability of 

a fibre firing on any period of the stimulus is some 

fixed value P and that successive periods of the stimulus 

can be treated as independent events at least for low 

frequency «2000 Hz) stimuli. Although the phase-locking 
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of fibres to a single tone is impressive it can only be 

useful to the auditory system if something analogous 

occurs for complex sounds as well. 

When two pure tones not harmonically related are 

sounded together and no constant phase relation exists 

between them then the responses can be locked on 

the primary or secondary or both tones. Which mode 

prevai Is depends on their relative strength [31l. This 

interaction indicates that the activity of one fibre in 

response to one tone can be suppressed by the presence of 

a second tone. This has been called two-tone inhibition 

(suppression). The phenomenon is investigated by 

presenting a tone at or near the CF of a fibre. A second 

tone is then added to the stimulus. The suppressing tone 

has its greater effect when its frequency is just above 

or below the fibre'S tuning curve. (figure 2.1-20]. 

More controlled conditions can be created when 

harmonically related tones phase locked to each other are 

used. Then, a stable complex periodic waveform is 

generated which can be systematically affected by a 

change in amplitude or phase of the component frequenCies 

(29]. In this case the discharges can be related to the 

period of the complex sound by constructing histograms 

modulo this period: The zero of the time axis is reset 

(as in PSTsJ once every period in synChrony with the 

stimulating waveform, figure (2.1-21]. Phase-locking is 

also evident' here. Over a wide range of input intensities 

(30-100 dB) the distribution of spike activity resembles 

very closely the amplitude distribution imposed by the 

stimulus. 

It seems that the transduction does not operate on a 

fixed amplitude threshold. This would be inconsistent 

wi th the fact that the waveform is portrayed so 

accurately over such a wide range of SPLs. It appears 

that the fibre'S response follows the normalised 
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ampli tude of the stimulating waveform. This is already 

evident in period histograms for single tones when the 

SPL is varied. Since no shifts are shown in the peak 

response [28) within the period of the stimulus, the 

mechanism is unlikely to be an amplitude threshold 

device. The data point to a phase sensitive device with a 

probabili ty of .firing monotonically increasing with the 

positive (or negative) phase of the stimulus but with the 

variation in amplitude as a function of time within a 

period, normalized by the peak response of the vibration. 

It can also be deduced that there is no direct 

relation between the total rate of firing and the 

stimulus 

stimulus 

intensi ty. In 

will actually 

certain 

suppress 

cases turning on the 

the total firing rate 

below the spontaneous rate especially for fibres with 

high spontaneous rates. 

The phase of the stimulus at which the probability of 

discharge is maximum differs systematically from fibre to 

fibre according to the CF, and, for a single fibre, 

according to the stimulus frequency [ 32, 2). In [ 32) 

Pfeiffer and Molnar computed the phase lag of the 

fundamental component from Fourier analysis of period 

histograms obtained from cat cochlear fibres. For fibres 

of CF lower than 2 KHz this was an approximately linear 

function of frequency although for certain fibres a 

better fit to the data was obtained by two straight lines 

intersecting near the CF [figure 2.1-22). From more 

limited data linear phases versus frequency were obtained 

[2) from which a total time delay was derived to each 

fibre. This enabled Anderson et al. to obtain estimated 

"travel times" of the cochlear disturbance to the points 

of innervation of the BM. The delay .times ranged from 

0.3 msec for CFs around 10 KHz to about 5 msec for fibres 

with CFs of about 200 Hz. These calculations didn't take 

into account the "response time" of the cochlear fi 1 ter 

[33) . 
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2.1. 3. 3d Responses to Impulses 

To study the fibres's response to clicks (impulses), 

pulses of approximately. 100 ~sec duration are applied. 

The responses are analysed with a PST Histogram. Two 

quantities can be derived from the histograms. The first 

is the latency from the onset of the click until the 

occurrence of the first neural acti vi ty. The latency is 

longest for the low frequency fibres and shortest for the 

high frequency fibres. A series of pulses can be seen at 

regular intervals in the PST. The interpeak intervals 

appear to be related to the characteristic frequency of 

the fibre. 

The latency is again related to the finite velocity 

of the travelling wave from stapes to the helicotrema in 

response to the impulsive stimulus. The first impulse 

reflects the time of arrival of activity at that position 

in the cochlea. Two or three msec is typical for low 

frequency fibres (the disturbance has to travel the 

entire extent of the membrane). The successive spikes 

after the first reflect the sharp tuning of the fibres. 

In effect, frequencies very near the CP of the fibre have 

a dominating effect in the response which resembles the 

response of the fibre to a sinosoid of frequency equal to 

the CF of the fibre. Interspike intervals are 

proportional to the' reciprocal of the characteristic 

frequency of the fibre [15]. 

The polarity of the click affects the histogram. The 

click could either be an outward excursion of the 

earphone, (a condensation click) or an inward motion of 

the earphone (a rarefaction) clic1<. The histogram 

obtained with a condensation cl ick roughly equals that 

obtained with 

are shifted 

a rarefaction click except that the times 

by half a period (half of the interspike 

interval). This fact once agaIn shows that only one half

cycle of the relative motion of the BM excites a fibre. A 
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"compound" histogram can be obtained by inverting the 

histogram obtained with the condensation click and adding 

it to the rarefaction histogram (34J. This histogram now 

resembles the pattern of vibration caused by the click 

stimulus (figure 2. 1-23J. 

Speech coding in the auditory nerve 

In (40, 41J, observations on four formant steady 

state vowels suggested that the profile of average 

discharge rate across the tonotopically arranged <1. e. 

arranged according to the CFs) array of aUditory nerve-

fibres was 

frequencies 

discharging 

a poor candidate for 

because virtually all 

at high rates, for 

representing formant 

the fibres would be 

stimulus levels well 

within those normally used in conversation. Although the 

debate as to whether average discharge rates are useful 

for vowel coding is still going on, more recent studies 

(35-39J have concentrated on how formant pattern and 

fundamental frequency could be represented in the fine 

time patterns of discharge of the most sensi ti ve 

audi tory-nerve fibres. (Fibres with high thresholds were 

discarted). The animal used in the experiments was the 

cat. Two formant steady state vowels were used as stimuli 

at a constant 

locations of the 

fundamental - frequency 

formants were obtained 

(pi tch) . The 

in perceptual 

matching experiments·· with natural vowels. The stimuli 

were repeated at the rate of 100/min 

stimulus time (PST) histograms. The 

to obtain post

bin width was 

0.05 msec (which gives a frequency resolution for up to 

4kHz). There were 250 to 500 presentations of the 

stimulus per histogram. Period histograms were computed 

by adding histogram waveforms for each period. The DFT's 

of the period histograms were used. to estimate the 

synchronisation indices for each harmonic of the 

fundamental up to 5 kHz. 
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The synchronisation index which varies between zero 

and one indicates how well the fibre discharges are 

synchronised to a particular frequency component. It is 

defined as the magnitude of the Fourier component at that 

frequency divided by the DC component which is the 

average discharge rate. Plots of synchronization index 

against harmonic frequency are called normalized harmonic 

spectra (NHS). The NHS obtained [35J varied from fibre to 

fibre with respect to the CF. The largest spectral 

component in the response patterns are harmonics that are 

close in frequency to a formant, the fundamental or the 

CF. The principal factor that determines which of these 

will be the largest is the relation of the fibre's CF to 

the formants. To portray a representation of the stimulus 

across frequency, fibers from regular intervals along the 

CF dimension can be used. For this purpnse the axis of 

CFs was dividcd into bins and the response of the fibres 

within each bin was arranged to obtain "band-average" 

spectra. Note that at this stage there is a "band

average" NHS for each of the different frequency bins. 

These represent "typical" NHS for the range of fibres 

with CF falling into the corresponding bin. The next step 

is to map the response of the whole array of fibres 

tonotopically arranged. This represents the complete 

mapping of the stimulus onto the physiological dimension 

at the level of the audi tory nerve. In [35J a pseudo

perspecti ve represen'tation was adopted where each band

average power spectrum was plotted with frequency along 

the oblique axis and ampl i tude along the vertical axis. 

The horizontal axis represents the different CF bins 

tonotopically arranged [figure 2. 1-24J. 

At a first glance it can be seen that different patterns 

are obtained from each vowel. A schematic pattern is also 

shown in figure [2.1-25). High responses obtain for 

frequencies at the CF (f = CF) and also for the formant 

frequencies as well as for the fundamental. Since the 

frequency selective elements especially at high 
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frequencies do not resolve indi vidual harmonics of the 

frequency their 

envelope modulation 

Rectification of this 

fundamental 

considerable 

frequency. 

stages of 

frequency 

processing produces a 

The results 

outputs would show 

at the 

modulation 

prominent 

from [35) 

fundamental 

at later 

fundamental 

show large 

components 

different 

component. 

at FO. 

GFs for 

The larger components 

different vowels. Another 

occur at 

important 

issue from the speech bit rate compression point of view 

is to what extent harmonics in regions other than the 

formants have an effect on the NHS. This seems to vary 

with how closely the formants are in the frequency 

domain; for formants close together little 

synchronisation can be seen for in between regions, but 

for spread vowels large components were found form fibers 

with GFs in the interformant regions. 

Synchronisation spectra can be obtained with noise 

like stimuli as well. In (37) experiments were performed 

to describe how the spectra of certain voiceless 

fricatives are represented in the discharge patterns of 

audi tory-nerve fi bres. These sounds have an "incomplete" 

formant pattern as not all the resonances of the vocal 

tract are excited by the turbulence noise. Most of the 

energy of frigative sounds is located in specific bands 

of the frequency spectrum. This information could either 

be represented in the aUditory nerve in the profile of 

average discharge rates against GF or alternatively (or 

in addition) the spectral information could be coded in 

the fine time patterns of fibre discharges. 

White Gaussian noise was used to generate the sounds 

by passing them through one to three bandpass filters. 

In order to estimate the profile of the average 

discharge rates against GF two sets of PST histograms 

were computed with the rather large bin width of O.25ms. 

Two different windows were used to sum the histogram 
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bins. The first, a trapezoidal weighting window beginning 

at the onset of the stimulus and having a central 

duration of 50ms and a total duration of 200ms was used 

to determine the "steady-state" rate. The "onset" rate 

was measured wi th a second wi ndow of val ue 1 from 0 to 

10ms and then decreasing linearly to reach 0 at 50ms. 

To estimate power spectra through synchronization 

indices a second set of PST histograms was computed with 

a small bin of 0.025 ms for the central 100 ms segments 

of the stimuli. 

This bin width is sui table for measuring frequency 

components up to 8KHz. Power spectra were obtai ned by 

averaging the DFTs <magnitude) obtained from 16 

overlapping 12.8ms segments of the histogram weighted by 

a Kaiser window. "Band averaging" amongst CFs was used as 

in [35J 

From a study of the average discharge rates the 

profi les agai nst CF for either the onset or the steady 

state conditions provide a rough indication of the 

frequency regions where the stimuli have most of their 

energy. 

Synchronization rates, through band averaged power 

spectra show a stron"1!; component at the CF of each fibre. 

Although fibre time patterns of discharge tend to differ 

amongst the stimuli no prominent response components are 

found at formant frequencies. 

It seems that for the noise-like stimuli average 

discharge rates reflect differences in the stimuli better 

than data from synchronization rates. This is aided by 

the fact that fricatives have lower intensities than 

vowels, so that saturation levels of the rate-intensity 

functions are less likely to be reached. Also for vowels, 

the intense components near the first formant frequency 
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seem to suppress (mask) the discharge rates of fibres at 

the higher formants. This is not so for frigatives. 

For sounds with dynamic characteristics [38J, 

discharge rates of aUditory fibres in response to formant 

transi tions were found to be dependent on the preceding 

context. They also contained cues about the nature of 'the 

transitions. It is possible that peaks in discharge rate 

occurring in response to rapid changes in amplitude or 

spectrum might be used by the speech processing centre as 

pOinters to portions of speech signals rich in phonetic 

information. 

Cues for distinction among vowel stimuli must persist 

in the presence of background noise. These should reflect 

the ability of subjects to distinguish amongst nonsense 

syllables in noise. Intelligibility is high for nonsense 

syllables as 

5-l0dE for 

long as the signal-to- noise ratio is above 

broad band noise. In [39J responses of 

auditory-nerve fibres to steady-state, two formant vowels 

in low-pass background noise (SNR = lOdE) were obtained. 

These results showed that strong effects of noise on the 

fine time patterns of discharge were limited to CF 

regions far from formant frequencies: The discharge 

patterns contained many cues for distinctions among the 

stimuli, consistent with psychophysical performance at 

moderate SNRs. 
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de"ved /,om a cochlea. mOdel. The p8ue,n mOves from '''ft 10 right. bUIlding "I> 9"dullly 
... ,Ih dISTance. and decaYIng ,ap.dly beyond Ihe l'O,nl of ma~,rnll di,pllumenl. The doned 
"ne '''presenIS \he ,n"elope trlCed oul by Ih" .mplltude pea~. In II'IIWlvelorm. 
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Figure 2.1-7 [dJ 
EnvelOpes 01 Plne.ns of vlb'aloon on Il'Ie bUlla, membr,"e for a "umber 011_ j'l'Cue~C'> 
sou"ds. Solid lines ,"dlellle Il'Ie 'nullS of .elull measuromenl5, I"'hll' '~e o .. ~.o l,ne. a'l 

von Be"es·,..s UlllpOl,lIons. f'om f.()~"""en"". HU""9 bv vD" B .. n .... G '1960' 
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Figure 2.1-8 (-4] Amplitude of .... ib,Qtion of the malleus Qnd Qf the bQ,i!Q' 
memb'Qne QS a funclion of frequency. The meQsu'emt!nh in the vicinity of 
the maJlimum rolio were mQde 01 80 dB SPl, while those at lowe, 
f,equencies we,e mode 01 highe, intensifies and hOl/e beon linearly eJl
"opolaled fa, a stimulus of 80 dB SPL. In this and 011 fiouro •• oaeh poinl is 
an eJlperimenlally determined value, and each /ine is a f,ee.hand fit 10 
these points. 11: Input/output ,atio, in decibels. fa, the malleus and Ihe 
basila, membrane. C: Phose differences between the motion of the bosilo, 
membrane and the motion of the malleus. Negative numbers signify tha' 
the motion 01 the basila, membrane lags Ihe motion of the maUeus. The 
arrows IndicollS the values of the (urves at the ma"imolly effoctive fre_ 
quoncy. NailS Ihot '''e ... olue of thIS phase diffe,ence is 1.6 rod, about 90·, 
at f,equendes len f"an 300 HI (Animal 70·IS). 

Figure 2.1-6 [42J 
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Sehematic representation oftha response of the basila, membrane 10' series of periodie 
imputses. Time is plonecl along the t aXIs on • linea~ scale: ,''''Quencv If) and amplllude 
(ampl.) scales are logamhm,c. The "'8~form 01 th" SI,muluslS.ndicalec1on the leh and lIS 
spectrum is al the bonom. for the centra,' part of the figure the '",quencv aWlS may be 
considered as equivalent to a POsil'OI'l axis, mdlcating d,stance 110"0 Ihe ba$,llrmembrane. 
This pari of the figure shows Ihe envelOPeS 01 the trllvellinllwave pane,ns Bl8 f1.tnct,onof 
lime and position 

Figure 2.1-9 [d) 

A 

'" 

HypolhttiC2.l rrequ~ncy response curve of. single hair cell Ch) 
(udial innervation). The upper drJwing depicts (full line) the vibruion 
envelope on me b3,ibr m~mb .... ne at say 40 db above threshold for the 
frequency (e which mon strongly u:cites the ha.ir cell. At the same 
mcensi[),. the highest frequency which will iust exdle Ihe hair cell i, fit. 
and. the JOweH frequency i, (~ (inlelTupted curvel). The lower drawing 
depIcts the ~suJtant threshold/frequency response ctUVe for this hair 
~U. The thre-shoJd (or fr~qu~ncies fL and fH will, by definition, be +40 
db, while the thrClhold at re will be 40 db below this level. Thus the 
Ihtesholdffre~uen~ responlC curve milTOn th~ basila, membrane 
d'$[urbinee -

Figure 2.1-10 (e) 

S 100 • 
I " 
I " 
i " 
J , . 

• .. , 
" 

Trave!inj(-wa\'e lmtlerns: (a) executed by .. nn)"theti<:·~t rib\">I\-!i.ke iY"rti 
lioll; (b) observed a/on!!" the single_Ja~'er partition of a cochlear moueL Scales art 
arbitrmy in both <I,.Iwinf!s, and rnagnit,,?es are ella~j(erated. 

A sample of runing curves (frequency threshold curve.) 01 S,n'lle "bres in Ihe aud,rory nerve 
01 ana<!Sthcttlcd <:ats. fo< cacti \,\l,s l\le t\l'nlml(\., plolted as .. 'unCI,on 01 sl1mulat,ng 
f'equency Ilog""thm,c scalel. The doned and da.hed cur ... eS.1 Ihe bouom show COrre •• 
pond'ng measu,ements Ilom Ihe bas,)a,m"mb,,,n,,. The sound level ,equlled to o'oouce. 
COOSlant ampl,tude 01 ... rbrauon al a p""cul., poonl on Ihe baS'lar m"mb, ~ne IS plorleO liS, 
funct'on 01 f,equency. The pos,,"on 01 rhese cu, ... es on Ihe ord,nare ,5 ,rb,IIary; rhey h .... e 
been sh,iled downwa,ds 10' (I""IV. 

Figure 2.1-11 [11) 

150 

Iso·,nlnn .. !¥ COnl"I}'S I", D srn~'" hllr" ,n rhr ~,"I'IOI'" n~' ... e '11 M ;"'.r"h~I"~<l ~'1u"'el 
""o,,~e1· NOlI! th~1 me lrf'qlJ~nc~ p'oduc,nq m""m~1 t,,,nq ... ~'ws as a 1""CI'Qn ot ~".el 

figure 2.1-IJ [IQ] 
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Figure 2.1-12 [27) 

p.p STAPES MOTlON (.um) 

140,rIOC' __ ~~~10~·_' __ ~~"Or·_'~~~"'OC·~· ____ .O'OC·'~ ____ "'10' 

"0 
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60· 

'0 

UNIT 419_21 

CF=S.83 kHz 

0 
0 

o 
o 0 

A" "~~mple 01 how Ih" « • .eh"'<]Q ,a." 01 • '''''ll~ au,jrl"'v "<"vI' (,tllP ~.,,, ....... ~ a lime I .. ", nt 
SIIm"lus In ..... I. I", a c()nt'nu"lJ~ '''",,,1.11'''11 I"" .... ,11 II'~ Cf nT 11." n,>,"""" rh,. 1'1".,.", .. 1 I}' 
IIlI! ne"",,,,, '" Ih .. In,'''''1 ~n,""ll"v<·, ,11 ",h'~h rh,·",,. iI <l"'~CI.'hh' cl""",., on ""'''1 '.,'" .,,,,, 
's """CJrpd bv Ih~ I.,UP'S AVUll''''''ru.'''",1 ''''''''''''n 1 ....... 1l Ab"" .. a ( •. <t.,," ~"""'II"'""I 
"lCf"'~"" 'n Ihel fin nlll J""'I,,"~ ",,,pa,,'~ ,n """'1 'a'p.. Ihr ,,,"n,,,,,'" ,.",,,.,,,'11 It,~ 
,an,,,, oll'·vel. h~I"""'"" "" .. ,11'11<1 and ~a"".lI'''n 's ~nnwn .'~ rh" ·,jVII"",.< '.""1" and 'S 
IVII·eall ... 30-40 'Ill The ~n"'''' le .... "'~ W~C,h'.1I ,n '!il wilt> "n .lII .. II"'¥ rl'lN#Oncc "'v~' 11 ... 
I ..... ~..,I "I the P<'I'" malk<'O A ..... Dl. <I}"~'IJ!)n,!< 10 "lx,"1 2 'Ill ~I'l 

Figurc2.1-1-l [17J 



(a) 

The distribution of activity in the arr~y of auditory nervc 
fibres lor two different stimulus frequencies (a), (b). Each v(meal bar 
represenn a $mall gre"l' of adiacent fibre,> and itt Might the, mu!\ 
discharge laIC of those fihru. (,) represents the response to a sumu!u! 
of the umc frequency as (a) but of higher intcnsily. The response 
involves both higher discharge fllCS and morc: fibres. 

Figurc2.\-\5 [e] 
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-EO 

The d($cribulion of pulse rateS in the active uray may \'ny 
accotnmg 10 the intcnsity/ratc curves of the fibres involved. 

Figure 2.\-\6 [e] 

CharacterIstic frequency (Ht) 
(Log scale) 

Aschematic and idealill!d representation allhl! 'e~citalion pane.n' evakeel bv a CUre tone. 
The pattern represents the eHeeliv! level 01 the Slimulus ,n dB III cacn cI'ar.cretoS!O~ 
f~uencv. 

Pigurc 2.1-17 [d] 

103!. kHz 

I sec 

-5Q _~:J cS 

TiIlW.'·O,H,,· (Of ""1"""" "I' "a! """loI""r lilo",. r" ,<>,,,' "",) ""i ... · I,ur",. 1'~T 
hi~t"~'a!11s •• \: .\ d,lh'rem lil",(," ,,' 1 h,< ! 'F i"dl<'"I\"1. l.il,,·.,r onllll.,I,· ~,·.iI,'. numl"., ,,' "";,,,., 
I",r hill: :! 111'11 ,1,\\,,: '""''''' ! '1". 11.'-' "·",1,,,..'11<>11. !'n·,,·m .. ,l I "','. JI: 1,:11"", '" h·, d '" " ",,,,,,,. 
un I,m""',,,,r,,' l,illlllar r"r "'11<', and ,,,,, ... ' l",r"'I, ;.,' Ill"',' 11'11'" I,ur,' 1"'''''I'"'n", "l'l""~ 
:!.:; mw,' ull"r ,,'ru lill'" "f ,',.';T. r"l"""'"'' r.'1<': 1"_,,"'. 1:"'.\1,,-,· "~l<aJ )"",·lu,dll','lnl.,I,,,,,, 

l'ad! 1'."'1' h""'~r.UII. 

Figure 2.1-1 g {27] 
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Figure 2.1-19 [28] Interspike imervab for a single auditory neuron of a squirrd 
monkey m response to I sec tones at 80 dB SPL. Stimulus fn?(!uency is ~IIO\'·1I 
abo\·e each graph. The dots below [he absci~sa are integral muhiplt:s (ll" Ihl' 
period 0[" Ihe stimulus. (N is the nllmberof intervals plotted plus the numllcr 01 

imen·als with values greater than shown on the abscissa.) 

,.. schcrnalic d;allram sho\\ing nm·lone inhihition. In the lOp figure (7.:!.3a1 
Ihe I'ST his!oo::r"m 10 tune A prc""nlcd alonl' is shown on the left. If a IicI'ond 10nl! of 
the CUITC<:I rrt''luency and in!cn~iry lIone III is added 10 the lint lone !lone ,'I, Ilm 
d",c'h~r'::l! rmc of 'he ne,",'t! filler can he rcdu('cd t/urinlllhe linm tone 0 is added 10 tone 
.. \ .• J he ImUmn ti"urc 11.23bl dl'picls Ihe t~1)j(-aJ I\\O-Iunc inlubilion resull in terms of a 
1"l1in<l I·" ..... ·e llim.(r.:un. The 110nha~hed ~rea ~h()\\"!1 Ihe frt.·qucncic5 and inllm"ilil's of 
,"'''' ,\ lh;11 (!\t·ilC Ihe 1lf' ..... 1l. ·1111' h.,.~hcd ilor,,;as ~how Ihe frf''Iucncics and ill"msili(~s of 
lonc 11, \,hkh "Iwo lidded 10 10111' A, d(~cn.-~"c linhihilllhe Ibcharlle rale of Ihe nc ..... ll 
rc"pondinl-: 10 lone A. 

Figure 2.1-20 [43] 
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Tone frequency 1kHz) 

Phaso;> of I'('~ponse s~'nrhronization relath'e 10 round window rorhlc:-ar mi~rophonjc 
potential for 11 rol'hleur fib!'t'$ from the cat. Compmc:-u b~· J:'ollr;.:-r transform of pt'riori hi.<to. 
grams obtainl'd nt diH'crcm frcqupn('ies of eontinllOus lone stimulation nl constant jntellsit,-, 
Cl-' offilm.'s (in kHzf Fin'n above {,:lrh plot. XOle break-point o<.'eurrin)!, at about Cl;-' fnr ('n~h 
fibre. 11, lII. 1\': phase cbaraNeristi('s of ('oehl!."ar microphalli\' potential I't'roT<ird b~' dit}",:r. 
ential electrode.$ in second, third, and fourth turn, respeelin'!Y. of guinea pig coclil(,ll. 

Figure 2.1-22 (32) 

__ ~ llll 
RAREFACTION 

~ 

i II / :.._~U ll..~_ 

COMBINATION 

CONDENSATION 

. Composite of larefaclion and condenSJ.lion ~hch. The T('C("f'lOrs ale mnimally 
5CnSllive durin~ a palUculJI half,<ycle of stimulation, and thus, orpo'JI~ ""brill' did" I~nd 
10 ~encrale p~mtimulul hl5lograms that are sunilJ.l' but dda}l'd (lOin on~ an"thcl by 
onc·half the period of the charactclIslIC frequency. By in\'CIl1n~ the lU\lO~um "bt~m~d 
v,jlh one pola1lly ;utd 3ddin~ 10 lhe ()lhcr hi\10cram. a ,nmbmaoan h"ln~tam IS "bIJln,'d. 
TIlls 'anslfuClion ~"es UI a better pi-c\ure of mcmbrane rc'panlc hy, In dicel, r,'m"\'an~ a 
major nonlaneallty uf tile Iramduchon placeu. 

Figure 2.1-23 raj 
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Py.udo-pen;pec:tive repr~nblion of normalized band-avcrnse power \pectn for O.SS oct CFband~ in rC'lJl'OTl'IC to the nine ~owel ~timuli pr<:'Scored 
~ :~d9 SPL The n,)rtnalilcd I>o .... er ~peelrum is t~r .<1'1\13'-0: of the nOM1lJlized harmOniC ~.pectrum. Each band-averilse polio,:, spectrum is plolled .. -,:~ 
~oquu,cy along thcobli'ltlc his. and amplilOde .alllllg the venit;).1 al.,. Spectrum points .... ,Ih an amplitude lo ..... er than 0.05 arc omilted for clollit~. n.e 
Cl~el0il<'!>" oflhe venicallines have b«n drawn for CJ~h PO" er spectrum in order !O improv(' visual continuity. The center frcquencle'S ofthe CF b_nds ale 
~ t'Otryl[u;utcrOCluc.ll(\ri~ontal dalhed lines show Ihcpositions. nfthe r undamental frequency FOand the formam frequencic.-<F I and F 2 alonG ch 
I· ... tietley uis. Obliq~e dashed lines mark the rla.;e!; of the fom'-ln( frcq;Jcncle5 along the Cl' dimen$ion. The curved dMhtd line is Ihe locus of p<lint$ for 
'-hi.eb frequ~ney is equal 10 CF. 

F;gurc 2.1-24 [JS] 
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0.1 CF.FI I CF.F2 10 
CHARACTERISTIC FREOlJENCY (~Hl) 

Schcmalic dil~rlm oflhe Ii~e CF regioM u,cd in IIIC d~crip!,on of 
rc~puns~ 10 I~e vowcl,. The honlOn1J.i ~nd "er1ic~1 3,n 'oJrrr.jXlIlJ 10 Ihe 
horizOfltai and ol1li,!U( 'nc~of Fi~. 6. rcsp.<~ljnly, n.lIk areas repre<cflllne 
br';<'S1 ·"'pon..e ,omronen!1. The da~hed hn~ "oJtf""pond 10 Ihe S.lII\C 

l .. adm.1rk\ "-'> in Fi~. b. For t!1e purro,e "r (lp'";!,,,n. the nter.l~ of I~e 
d,!fercnt CF ft'g,""1 are greatly t'l"ger3ted, Jnd do nOI COfTt'>ronJ 10 
t~,o'e ob,c(\'cd ("f any ,"owoI 

Figure 2.1-25 (35] 
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2.2 MODELS OF PHYSIOLOGICAL CHARACTERISTICS 

PERIPHERAL AUDITORY SYSTEM 

2.2.1 MODELS OF HYDROMECHANICS: 

OF THE 

Models of hydromechanics aim to describe the modes of 

vibration of the BM in response to various stimuli. 

Several different approaches can be identified. 

workers [1,2) approached the problem 

constructing mechanical models of the cochlea. 

Some 

by 

These 

constructions are necessarily many times larger than the 

cochlea itself. To make a useful model, the real 

structure has to be stripped to its essentials and thus 

be simplified, yet retain enough to have a functional 

model. After deciding upon the appropriate important 

parameters, dimensional analysis has to be applied. This 

allows the comparison of different-sized similar 

structures in their response to a given form of 

stfinulation. The resulting "model" often bears little 

physical resemblance to the original structure: The 

functional i ty of the model stems from its simi lari ty of 

responses with the original. Through these models the 

nature of the fluid motion in the cochlea could be 

studied and its effect on the BM vibration analysed. The 

advantage of mechanical models is that the response can 

be observed·· directly as opposed to mathematical models 

where the results are sometimes obscured in the 

equations. The increased use of computers in recent years 

has changed this situation since extensive results can be 

obtained in graphical form which enables direct 

observation. Hence the more recent models were 

mathematical ones [3). 

Mathematical models thernsel ves are divided into two 

categories. First the "physical" models use anatomical 

and physical data from the inner ear, in conjunction with 

the laws of physics (hydrodynamics) to describe the 
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interactions of the various parts. In essence these 

models are no more than a mathematical description 

(through the 

contrast the 

model) only 

cochlea, 1. e. 

laws of physics) of the cochlea itself. By 

other type of model (the .. computational" 

attempts to model the function of the 

its input/output characteristics, with no 

necessary connection with actual anatomical and physical 

properties or laws. 

Physical models tend to exhi bi t behaviour which is 

qualitatively similar to experimental observations. 

No model to date though has managed to 

quantitatively all the experimentally 

describe 

derived 

characteristics of the B~f vibration. One example which 

serves to highlight the shortcomings of the models is the 

size of BM displacements predicted at threshold 

stimulation. The largest value is that obtained by Rhode 
o 

(4) of O.06A when the molecular dimensions involved are 
o 0 

of the order of lA (lA = 10-'" "m) ! 

computational models have the advantage of being able 

to predict responses to stimuli other than those used to 

formulate the model. One such example is Flanagan's model 

(5). Disagreements of that model with experimental data 

now seem to be due 

recent 

resul ts. 

experimental 

to experimental errors, 

data (4) confirmed 

since more 

Flanagan's 

A brief description of most mathematical models can 

be found in (3). More recent models can be found in 

[6, 7, 81. 

2.2.2 Models incorporatjng mechanical to neuraL 

transduction mechanisms. 

The mechanisms of mechanical to neural transduction 

are not known to their entirety. It is not known for 
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example whether BM displacement or some derivative of it 

is the input to the neural transducers. 

An important distinction is that of "place" theories 

as opposed to "periodicity" (or volley). theories. In the 

former all the information is encoded in the location of 

the maximal vibrations on the BM. The mean discharge rate 

versus characteristic frequency is the relevant variable. 

One problem 

the range 

saturation 

stemming from this model is the limitation on 

of intensities that can be coded due to 

of the fibers. For the volley theory the 

frequency of sinosoidal vibrations is coded not by place 

but by the periodicity in the neural response. The 

intensity is assumed to be coded in the number of fibers 

responding to a particular stimulus. Since not all fibers 

need be firing on every cycle of the stimulus the 

refractory 

the model. 

period 

The 

of a fiber need not be a limitation to 

main variable here is the degree of 

synchronization to the stimulus over all the fibers. Some 

degree of phase-locking is essential to this model so 

there is some controversy as to how frequencies above 

about 5KHz are coded since for these high frequencies 

phase locking is not observed in the nerve responses. 

Specific models of physiological behaviour tend to 

draw attention to either mean discharge rate or 

synchronization index according to which model the 

particular author (s) support. It should be noted though 

that it is not necessary for a model to rely on ei ther 

place or volley theory alone. It is quite possible that 

both theories play some role in the coding of auditory 

signals. 

In [9] the linear part of the model comprises of two 

filters. One is due to the BM displacement and is 

generally of a low pass nature and the other is a narrow 

bandpass "second" fll ter. Wi thi n 40 dB of the thre8hold 

the response of the flbers can be described as linear. 
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Therefore responses can be predicted from the effective 

bandwidths of the tuning curves and the shape (especially 

near the tip) of the fi ber' s tuning curves. A complex 

signal is then analysed by the equivalent of a 

filterbank. Frequency components of the stimulus are 

encoded in the discharge rates (place theory) and for low 

frequencies «5KHz) in the temporal patterns of the 

discharge (periodicity theory). For low frequency signals 

«5KHz) the waveform and for low and high frequencies the 

envelope of modulation are represented in the temporal 

patterns through phase locking. As we have seen earlier 

in "phase-locking" the probability of discharge is 

approximately linearly related .to the filtered half-wave 

rectified signal. The time "jitter" present in this 

signal 1 imi ts the temporal resolution to corresponding 

frequencies of 4-5KHz. 

A physiological model must also incorporate the 

various nonlinearities in the transduction process: 

Saturation limits to less than 50 dB the range of 

intensi ties that can be coded in terms of mean square 

rate. (normal speech levels are around 70 dB above 

threshold). As this is a serious problem of place coding 

of multicomponent stimuli information may be coded in the 

fine structure. 

Another nonlinectrity is that arising in two tone 

stimulation. The suppression effects arising in these two 

tone masking experiments seems to have a small effect on 

multicomponent signals. 

The stages in a model to predict linear and nonlinear 

behaviour could then be as follows [9]: 

1. A linear bandpass filter (to simulate cochlear 

filtering characteristics represented in the fiber's 

tuning curves). 
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2. A half-wave rectifier (to simulate excitation by 

unidirectional excursions of the BM). 

3. Logarithmic amplifier (to portray a linear relation 

between mean discharge rate and the logarithm of 

signal voltage above threshold). 

4. An amplitude limiter (to produce saturations of mean 

discharge rate). 

5. 

6. 

AC coupling 

suppression) 

Probabil istic 

relationship 

(to simulate adaptation and off 

transform (to 

between probability 

produce a linear 

of discharge and 

signal amplitude with spontaneous discharge). 

7. A monostable with dead time (to simulate action 

potential spikes and their refractory period). 

In addition stage 1 could be split into a lowpass 

fi 1 ter and a bandpass fil ter with 

"sandwiched" between the two 

suppression results. 

a cubic nonlinearity 

to produce two-tone 

Modelling of higher stages of the aUditory system, 

higher than the level of aUditory fibers would involve 

more specialized processing such as selectivity for 

direction and rate of change of frequency for the 

detection of frequency modulation. 

More work on models can be found in 

[7, 8, 10, 11, 12, 13, 14), whereas specific applications 

of such models have been implemented in [15, 16, 17, 18, 

19, 20). 

Also interesting is the work presented in (21) which 

uses linear filtering theory to interrelate latency, 
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group delay and tuning characteristics of auditory 

fibers. 
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2.3 PSYCHOPHYSICAL OBSERVATIONS AND MEASTlREMENTS 

2.3.1 Loudness of slmple sounds (tones and narrow bands 

of noise) 

2:3.1.1 Loudness leyel 

The loudness level 

level of the equally 

reference tone (1KHz). 

of any sound is the intensity 

loud (subjectively determined) 

The unit of loudness level is the 

phon [dl. e. g. if a sound is subjectively assessed to be 

equally loud to a 1000 Hz tone at 65dB SPL then this 

sound has a loudness of 65 phons. In this fashion the 

loudness level of pure tones at various fixed intensity 

levels over all frequencies can be determined. What is 

normally done is to determine the intensity level of 

tones at fixed loudness levels over all frequencies or 

alternatively, the sensation level of tones at fixed 

loudness levels over all frequencies. Two such plots are 

given in figures 2.3-1 and 2.3-2. Since the curves in the 

above figures are essentially flat, for the range between 

500 and 5000 Hz, then for this range the intensity level 

and loudness level are equal. 

2. 3. 1 . 2 Loudness 

The loudness level helps in constructing a scale for 

loudness: One starts with a standard loudness (1000 Hz 

tone at 40 dB SPL). This represents 1 uni t of loudness, 

(i. e. 1 unit of loudness = 40 phons). The observer is 

asked to increase the level of the tone until it is 

judged to be t,.ice as loud. This represents 2 uni ts of 

loudness. Other val ues of loudness can be obtai ned by 

similar procedures. The unit of loudness is the sone. It 

should be noted that the loudness of a sound heard 

binaually is judged to be twice as loud as the same sound 

presented monaurally. 
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Various workers have attempted to produce a 

relationship between loudness and loudness level of 

simple sounds. This has been established to be a power 

law. Stevens [3, aJ suggested the following formula 

0. 03P-1. 2 

L = 10 2.3-1 

where L is the loudness in sones and P the loudness level 

in phons. 

is that 

This gives L = 1 for P = 40 dB. A simple rule 

the (percei ved) loudness doubles when the 

1ntensi ty is increased by 10 dB. In terms of intensity 

(I) (P- 10Iog(I», from above 

L = (I11o)0.3 2.3-2 

10 is the reference intensity corresponding to 40 dB SPL. 

This value of loudness refers to the sound heard 

binaurally. 

2.3.1.3 Masking effects 

It is a common experience that when any sound is 

impressed upon the ear it reduces the ability of the ear 

to sense other sounds. If while a sound A is being 

impressed upon the ear, another sound B is gradually 

increased until the sound A can no longer be heard, the 

sound A (maskee) is said to be masked by sound B 

(masker) . 

Masking is usually presented as a (masked) aUdiogram 

which shows the threshold of the maskee over the 

frequency range 

masker, in the 

considered in the presence of the 

absence same way 

It 

threshold in the 

is believed in fact that 

fixed 

of a 

this masker is presented. 

absolute threshold is due to internal masking (i nside 

the ear), the masker being noise of cardiovascular origin 

(On the low frequency side). 
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Any sound of intensity below the threshold has a 

loudness of zero by definition. Such an audiogram is 

shown in figure 2.3-3. The lowest curve in the absolute 

threshold. Of the upper curves the continuous one in the 

masked threshold for a pure tone masker, the dashed one 

is for a noise band, and the dash double dot gives the 

frequency characteristics of the noise band. For 

simplicity the masked aUdiograms are usually plotted for 

the threshold shift (masked minus absolute threshold) or 

masking, figure 2.3-4. 

2.3. 1.4 Shape of the 10lldness curve near threshold 

The function relating subjective loudness to sound 

pressure was shown to be a power function: 

2.3-3 

where N is the magnitude of the sensation and I the 

stimulus magnitude. 

Although a power function relation can be obtained 

from most observers in general, there is a variability 

concerning the exponent of the function and the values 

quoted in a previous section represent a statistical 

average. The average exponent from 10 or 12 observers 

seems to be quite stable and reproducible [1]. 

The loudness function departs from a power law near 

threshold, whether this is the absol ute threshold or the 

masked threshold. The departure from a power law starts 

at a sensation level of about 40 dB. Through very 

elaborate experiments to reduce variability amongst the 

data [2] it was found that the loudness curve 

approximated a power function between loudness and 

sensation level (dB above threshold) between 30 and 100 

dB SL. Below 30 dB it becomes progressively steeper and 

at around 4 dB it approached proportionality between 
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loudness and sound intensity. The exponent of the power 

low was found to be 0.54 between loudness and sound 

pressure. Note that whether the sound is presented 

monaurally or binaurally does not affect the exponent but 

only the constant of proportionality between the power 

function and the loudness. 

In [2) the shape of the curve for loudness near 

threshold was determined but no attempt was made to 

provide an analytical formula. 

In [3) 

relationship 

the argument 
N = K(!)t,. 

is followed 

represents the 

that if the 

fundamental 

relation between stimulus and loudness, the reduction in 

loudness at threshold is equal to ND = K (10) too where 10 is 

the intensity of the sound at its threshold (i.e. when N 

= 0). This is so, since its loudness at intensity 10 

should have been No = K(Io)"'. Since the loudness is 

actually zero, the reduction is given by the above 

formula. This reduction was attributed to masking from 

physiological noise in the ear itself. Further, the 

assumption was made that this reduction is constant 

throughout the sound's audible range, hence the resultant 

loudness should be given by 

2.3-4a 

(I > 10, zero otherwise) 2.3-4b 

This equation was found to fit the results of [2] 

remarkably well [figure 2.3-5]. 

When, in addition to the internal physiological 

noise. external 

masking due to 

noise 

the 

is present, 

external 

there 

noise. 

is addi tional 

The origi nal 

assumption that the I nternal noise is responsi ble for the 

reduction in loudness and the fact that the internal and 

external noises are uncorrelated allows one to equate 10 
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in the above equation to <Ip + le) where lp is the 

intensity of the internal noise and le the intensity 

of the external noise. Hence the general form of the 

loudness function can be given by: 

b b N = K [I - (Ip + le) J 

experimental results presented in 

showed a general agreement with 

Further experiments reported in [4J 

2.3-5 

[3J figure [2. 3-6J 

the above equation. 

though failed to show 

agreement with the above equation. The difference between 

binaural (used in [3J) and monaural [in 4J masking may 

account for the discrepancy. 

2.3. 1.5 Maski ng of Pure tones by Pure Tones 

To obtain the effects of masking of one tone (the 

maskee) by another tone (the masker), the masker tone is 

kept at a constant sensation level while the maskee tone 

is gradually increased in intensity until it is just 

perceptible in the presence of the masker tone. The 

level, expressed in decibels, that the maskee tone is 

raised above its threshold level in the quiet is called 

the threshold shift or the masking. The results of such 

measurements are shown in figure [2. 3-7J. The frequency 

of vibration of the masker is given by the number at the 

top of each chart and its sensation level by the number 

on each curve. The frequency of the maskee is given by 

the abscissa and its threshold shift (masking) by the 

ordinate. 

The most prominant characteristic of the curves is 

the asymmetry In masking, especially at high masker 

levels: the masking is a lot more effective for low 

frequency maskers and high frequency maskees than vice 

versa. The asymmetry is increased as the intensity of the 

masker is increased. 
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The peculiar shape of the curve around the 

frequencies where the maskee frequency is close to the 

masker frequency or its harmonics is primarily due to 

beats. Beats occur at the harmonics due to nonlinearities 

of the auditory periphery, figure [2.3-8). 

The results of figure [2.3-7) can be plotted in a 

different way [figure 2.3-9). The abscissae represent the 

sensation level of the masker tones whose frequency is 

indicated near the top of each of the charts. The amounts 

of masking are plotted as ordinates. The most important 

effect that can be seen from these figures is that the 

curves for different frequencies intersect. This impl ies 

that if a complex sound is changed in intensity then the 

prominance of its different components will also change: 

The sensation produced by a complex sound is different in 

character when the sound is increased in intensity. In 

general as the tone becomes more intense, the low tones 

will become more prominent because the high tones are 

masked. Although this effect will be different when all 

the tones are sounded simultaneously, as the data were 

taken for two tones only, the general picture will still 

be true. 

The 

Coding 

implications for 

noise at lower 

speech coding are as follows: 

frequencies will become more 

prominent as opposed t·o codi ng noise at high frequencies, 

when the intensity of the decoded speech is increased in 

any subjective test. 

2.3.2 Physiological correlates - The crjticaJ band 

When e1 ther the masker or the maskee have a broader 

spectrum than that used in the above experiments the 

effects become more complicated. The shape of the stimuli 

spectra come into play through the selectivity of the ear 

itself. Even from the masking curves for pure toes, the 

effects of the selecti vi ty of the system can be seen. 
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These are closely related to the pattern of aural 

activity at the cochlea [5, 6]. Recently, 

psychoacoustical tuning curves have been obtained [7]. To 

obtain a physiological tuning curve the SPL of a tone is 

increased until the spike rate of a single fibre reaches 

a particular value just above spontaneous activity. Since 

a single fiber is strongly related and is maximally 

sensi ti ve to a particular characteristic frequency (CF) 

it can be simulated psychoacoustically by using a very 

faint pure tone (called a CF-tone) at the characteristic 

frequency. The role of the tone used to obtain the 

physiological tuning curves is taken by another tone 

(called the f-tone) which <just) masks the CF tone. The 

SPL of the f-tone necessary to just mask the CF tone as a 

function of the frequency f represents the 

psychoacoustical tuning curve. The analogy with the 

physiological tuning curve comes about through the 

following argument: Since the CF-tone is very faint it 

produces little (amount of) excitation which is confined 

around a small area on the BM and thus excites a small 

number of fi bers. Hence one can consider the faint CF

tone to excite only one hypothetical fiber with CF at the 

frequency of the CF-tone, to a first approximation. Since 

the f-tone just masks the CF-tone its excitation at the 

CF of the hypothetical fi ber is also small. The SPL at 

which the f-tone just masks the (very faint) CF-tone can 

therefore be considered as that SPL which just produces a 

response on the hypothetical CF fiber. Hence the variaton 

of this SPL wi th frequency is directly analogous to the 

variation of SPL in the case of physiological tuning 

curves. The similarity between the physiological and 

psychophysical curves obtained is obvious [figure 2.3-10, 

2.3-11). This similarity was also obtained in (8). 

When the maslmr has a broader spectrum than a tone, 

the effects of beats are not so pronounced and 

measurements can be made more accurately. Experiments 

wi th narrow noIse bands (9) also seemed to confirm that. 
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masking, can be related to the spread of cochlear 

activity as the intensity of the masker is increased 

above the threshold. 

The concept of an auditory filter becomes more 

relevant as the bandwidth of the maslrer increases: If the 

effect of the maskee is confined to a certain region on 

the BM and hence to a range of fibers with CFs near the 

stimulus then the effect of the masker is significant 

only over this region of CFs. If the bandwidth of the 

masker is increased beyond this effective region, the 

masking effect should not change since it does not affect 

the excitation due to the maskee any more than it did 

before. In other words, only the components of the noise 

falling within the bandwidth of the auditory filter will 

have an effect upon the detection of the maskee tone. It 

is assumed here that the auditory filter is centered on 

the stimulus one is trying to detect. Indications in 

favour to 

expe'riments 

found that 

the above argument were found in masking 

with wideband (white) noise [5]. Fletcher 

only a limited part of a wide band (whi te) 

noise was actually instrumental in masking a tone 

presented in noise. Fletcher made the assumption that 

this band of noise was just wide enough to contain an 

amount of power equal to the -power of the just masked 

tone. On this assumption a "critical" bandwidth could be 

calculated from the ratio of the power of the signal at 

masked threshold to the power of 1 Hz-wide band of noise. 

This was later found to be about 40% as wide as the 

bandwidth of the auditory filter and was later termed the 

"cri tical ratio" reserving the name "critical bandwidth" 

for the actual width of the auditory fi 1 ter [1 OJ. To 

measure the size of the critical bandwidth and to provide 

further proof for the concept of an, auditory filter, 

Greenwood [11] measured masked thresholds of pure tone 

signals in the presence of bands of masking noise. 

Detailed audiograms were mapped out by measuring the 

threshold of several frequencies in and near the band of 



59 

noise. Follmdng the assumptions of an auditory filter, 

the masked threshold of a tone at the center of the band 

will not increase as the bandwidth grows beyond critical 

width. Furthermore, since an extension of the band beyond 

the critical width will add "surplus" noise components on 

each side of the critical band, there wi 11 exist within 

the limits of 

interval over 

a supracritical band of 

which the signal can 

noise a frequency 

be varied without 

changing its masked threshold. This follows because, 

wi thin a supracri tical band, a tone need not be at the 

center for it to be surrounded by a critical band of 

noise. In other words audiograms produced by critical and 

supracritical bands of noise should produce respectively, 

"triangular" and "trapezoidal" masked audiograms. This 

technique enables the calculation of critical bandwidth 

wi thout the need to specify the center of the critical 

band. Typical results are shown in [figure 2. 3-12J. A 

narrow band masking stimulus produces a 

audiogram. As its bandwidth, and therefore 

triangular 

its total 

power is increased, the height of the audiogram increases 

by an amount that 

power. As long as 

cri tical, the height 

approximates the increase in total 

the noise bandwidth is less than 

continues to be proportional to the 

total power in the masking noise. When the bandwidth of 

the masking noise exceeds a -critical bandwidth, the 

audiogram broadens into a trapezoidal form without 

further increase in' height. The values of critical 

bandwidths were found to be about the same as those 

measured in other experiments [12J. 

When the aUdiograms are plotted on the critical band 

scale, the width of the flat top of a trapezoidal 

audiogram is approximately equal to the amount, by which 

the supracritical band exceeds critical bandwidth. 

In general, masking stimuli that are equal fractions of 

multiples of a critical band produce comparable 

audiograms anywhere in the frequency range investigated 

i. e. from 400-4500 Hz. The results showed that in any 
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frequency scale, masked threshold is 

the total power within a critical band. 

When the amount of masking is plotted as a function of 

the level of the masking stimulus, functions with slope 

equal to unity are obtained [figure 2,3-13J. The vertical 

jog shown in the figures occurs when a transition level 

is reached. At this level the triangular aUdiograms 

abruptly flatten. This seems to happen for both 

subcritical and subracritical noise bands. Nevertheless, 

the critical bandwidth appears to be independent of the 

level of the masking stimulus. 

Greenwood also used pure tones to mask narrow (60 Hz) 

bands of noise. These experiments are more relevant to 

the field of speech coding where the speech harmonics 

would mask coding noise. The audiograms of one and two 

tone maskers were similar to the audiograms of 

subcri tical noise maskers of equal power apart from the 

fact that they were about 3 dB lower. The three tone 

audiogram was nearly identical in height as well as shape 

to the audiogram produced by noise [figure 2.3-14). 

The effects of moving the two tones in the two tone 

masker case can be seen in [figure 2.3-15]. The form is 

triangular when the tones are . close together, rounded as 

the tones are moved further apart and double peaked when 

the tones exceed·· critical separation. For these 

experiments fairly low level tones were used (- 50 dB). 

At high levels [figure 2.3-16] some irregularities appear 

in the audiogram. Also the peak of the audiogram is about 

10 dB lower than that produced by a critical band of 

noise of equal power. This asymmetry of masking between 

noise and tone will be addressed again later. To 

summarize Greenwood's results, the .data support the 

hypothesis that a tone at threshold in a wide spectrum 

noise is masked only by the components of the noise that 

are near it. The audiograms show that (at least for low 

SPLs of the masker) components added to a band of 
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critical width do not add to the masking of a tone at the 

peak of the audiogram, but the subtraction of components 

from a masking stimulus of critical width lowers the 

threshold by an amount equal to the power contained 

in the subtracted components. The frequency components 

falling within a critical band are sumed to produce an 

effect dependent on total power. The dip that appears in 

the masked aUdiograms produced by two pure tones can be 

interpreted to mean that the critical bandwidth is the 

frequency interval that must separate two tones in order 

for them to produce "unsummed" or separate effects. 

Masking can now be seen as intensity discrimination: The 

power of the signal falling within the critical band will 

be integrated with the power in the noise. The masked 

threshold of a pure tone is then the intensity required 

to produce a just noticeable difference in the intensity 

of the critical band of noise with which the tone is 

summed. It should be noted that the duration of the tone 

bursts (167 msec in this case) has some effect upon the 

results and that this effect is frequency dependent. 

An interesting result form the point of view of 

constructing models of masking was that, independent of 

the level of the masking noise, and for subcritical 

maskers, the masked aUdiograms produced were the same a 

long as the noise was of equal power and of the same 

centre frequency (1.e. they were independent of the 

actual bandwidth of the masker). 

Using the above results Greenwood also concluded that 

the critical band, .. idth was that frequency interval OVAr 

which the cochlea sums power and that critical bands 

represent equal distances on the BM, one critical band 

corresponding to one milimeter [13), Critical bandwidth 

is equivalent to the first derivative of the 

characteristic frequency position function along the BM. 
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The concept of critical bands is a recurrent one in 

all areas of psychoacoustics. Greenwood [111 showed that 

masking patterns of subracritical stimuli were different 

than those of subcritical stimuli. Since masking is 

essentially a reduction in loudness similar effects 

should be expected for the loudness of wideband stimuli. 

In [10] a detailed study of loudness of groups of tones 

and bands of noise was undertaken. In particular it 

concerned how the loudness of a group of tones depends on 

the spacing of the tones in the complex and how the 

loudness of a band of noise of constant SPL depends on 

the width of the band. For a four tone complex the 

spacing of the (equally intense) components was changed 

and its loudness compared with a variable comparison 

signal of known loudness Figure [2.3-17] shows the effect 

on loudness produced by changing the overall spacing l:>f 

of four tones spaced around the frequencies 500,1000 and 

2000 Hz .. The overall spacing corresponds to the frequency 

difference between the highest and lowest tone. 

The different symbols (T and C) correspond to 

two different 

to match the 

adjusted to 

procedures 

loudness 

used: T = si ngl e tone adj usted 

match the 

of the complex 

loudness of the 

and C = complex 

tone. The lines 

through the data show clearly a knee in the response when 

the overall spacing l:>f exceeds a critical value. The 

results agree with the hypothesis that within a 

critical band the loudness is independent of the spacing 

of the tones. When the overall spacing l:>f exceeds a 

critical value the loudness increases. This phenomenon 

was observed at all levels of the SPL of the complex 

where the knee occurred at the same overall spacing 

independent of level, apart from at very low SPLs 

(-20 dB) where no knee was observed. They concluded that 

at these low levels the subjects had changed their 

loudness cri terion for the comparisons. They found that 

the subjects instead of "integrating" the loudness of the 

components, they tended to judge the total loudness to be 

equal to that of a single component in the complex. It 
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seems that for low levels and wide spaci ngs "loudness 

integration" may break down. 

Another interesting result was obtained when the 

overall spacing was kept constant but the relative 

spacing of the tones was changed. They found that uniform 

spacing produces greater loudness than nonuniform 

spacing. The difference could be as high as 3 dB. This 

could be of some significance to RELP coders (see chapter 

on speech coding) where band folding or band translation 

is performed for regeneration. At the band edges there is 

a discontinuity in the harmonic structure, but within 

each band the harmonics are regularly spaced. It may be 

that the loudness of a "discontinuity" band is lower than 

the loudness of a "continuous" band a fact that would 

enhance the quality of the dedcoded speech. Similar 

experiments with bands of noise revealed that the 

loudness of the noise of constant SPL is invariant with 

bandwidth provided that the bandwidth is smaller than a 

critical band. [2.3-18J. When the bandwidth of the noise 

is increased its loudness increases although its SPL is 

held constant. 

This, again is relevant to speech coding: It is well 

known that a flat (white) noise is perceptually louder 

than a noise which is shaped according to the shape of 

the speech signal. "Although this effect is at least 

partly due to the more efficient masking of the noise by 

the speech signal, even if the coding noise was presented 

on its own i. e. the speech signal removed, its loudness 

when flat would be higher than when it is shaped. this is 

because shaped 

bandwidth (the 

noise is confined 

formants) which 

within 

would 

areas of small 

be subcri tical 

instead of being summed over the ",hole spectrum. A 

similar argument applies when the noise concentration is 

performed in frequency domain coders such as subband 

coding. 
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In [143 Scharf performed similar experiments under 

masking. In his experiments he did not use white (flat 

spectrum) noise but uniform masking noise. This was 

produced by passing the output of a white-noise generator 

through a filter whose power attenuation increased 

proportionately with frequency above about 500 Hz. Such 

noise raises the thresholds for most of the audible 

frequencies to approximately the same level. Note that 

from the experiments of Greenwood [113, noise at constant 

SPL within a critical band produced the same amount of 

masking irrespective of bandwidth. If white noise was 

used with a flat spectrum, the SPL falling within each 

critical band would increase with frequency simply 

because the bandwidth of a critical band increases wi th 

frequency. Therefore the amount of masking introduced by 

the noise would likewise increase with frequency. This 

can be kept constant if the spectrum of the noise 

decreases in accordance with the increase in critical 

bandwidth, so that a constant SPL is achieved within each 

critical band. 

This again reflects upon noise shaping in speech 

coding. The maslting effect of noise is reduced if its 

spectrum is made to follow the (lowpass) spectrum of 

speech. 

Scharf found that when noise was not excessive 

compared with the tone complexes his results were similar 

to the previous study (10). 

It is important to note that the increase in loudness 

as the bandwidth is increased at a constant SPL is 

closely related to the power law function of loudness. If 

one accepts that the loudness of 

fixed function of the sum of 

a complex sound is a 

the loudness of the 

component cri tical bands, an increase in loudness with 

bandwidth of constant SPL will only be present if changes 
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in loudness are smaller than changes in intensity. Take 

the case of a band of noise. If its bandwidth is one 

critical band, then 

N 
c 

2.3-6 

where Ne is the loudness and I the intensity of the 

noise. If now the noise is split into two critical bands 

wi th the overall i ntensi t y the same as before the new 

loudness is given by 

c.:_ 0.3 
+ . C.:_> 

0.3 
C.:> 

0.3 
2 N

2c 
= > = ----

210 210 10 (2) 0.3 

2.3-7a 

hence 

N
2c 

N 
2 2.3-7b = 

c ----
(2) 0.3 

therefore the loudness is increased because 2> (2),,·°" or 

0.3<1. The increase in loudness can be attributed to the 

compressing nonlinearity of transformation from intensity 

to loudness. 

Since the shape of the loudness versus intensity 

curve changes near threshold (approaches 1 ineari ty near 

threshold) the effect of loudness increase would be 

expected to be less prominent. This is indeed the case as 

was found in (14l. 

2.3.3 Partial Masking 

In the experiments of Greenwood (lll as in all 

studies aimed at obtaining aUdiograms or masking curves 

(6, 7, 8, 9l the interest is centered upon complete 
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masking or determination of thresholds. In complete 

masking, one sound interferes with a second sound so much 

so as to make it inaudible. In loudness calculation 

partial masking is also important. This is the case where 

the first sound while not completely masking the second 

sound, reduces its loudness. Experiments on partial 

masking are reported by Scharf i~ (15J. His aim was to 

show how the partial masking of a pure tone by a narrow 

band of noise depends upon the respective SPLs of the two 

sounds and upon their frequency separation. He used the 

same masking noise, one critical band wide and centered 

at 980 Hz throughout. The tone to be masked was at one of 

five frequencies, 690, 830, 980, 1155 and 1355 Hz (spaced 

one critical band apart). The SPL of the masked tone was 

held constant at 25, 45, 65 or 85 dB and its loudness 

measured as a function of the SPL of the masking noise. 

Figures (2.3-19, a-eJ show how the loudness of the masked 

tone decreased as the SPL of the masking noise increased. 

Each figure represents the curves for a different 

frequency. The parameter on the curves is the SPL of the 

masked tone while the ordinate gives the SPL of the 

comparison tone (the tone that was found to have the same 

loudness in the quiet as that of the masked tone). 

The curves are horizontal· over the range of noise 

levels at which the noise was too soft to reduce the 

loudness of the ma5ked tone. On these portions of the 

curves, the masked and comparison tones always have the 

same SPL, since being of the same frequency they must be 

equally loud when equall y intense. The curves depart form 

their horizontal course to follow the experimental paints 

down to the masked thresholds, represented by the symbol 

T. The symbol T has the value on the ordinate of the mean 

absolute threshold for the comparison tone in the quiet; 

its value on the abscissa is the minimum noise level 

reqUired to mask completely the tone when set at its 

parametric SPL. Generally th," threshold measurements and 

the loudness measurements are in good agreement in 
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that they all fall on the same smooth curves. The same 

auditory process appears to determine the outcome of both 

types of measurements. 

Note especially the rapid growth' of the loudness of 

the masked tone as the noise is reduced to the level of 

complete masking. Although the results from the threshold 

values show that high frequency tones are completely 

masked by less intense noise than the low frequency tones 

(as expected), the tones lying above the frequency range 

figure [2.3-19d,e) of the noise grow more rapidly in 

loudness as the noise level is reduced than do tones 

lying below (fig. 2.3-19a,b). 

This difference can be accounted for by the same 

asymmetrical spread of activity within the auditory 

system. Consider the schematic representation of these 

patterns: Figure 2.3-20 shows the idealized spectrum and 

the assumed neural activity which will be refered to as 

the excitation pattern for the band of noise (the masker) 

and also for the tone lying two critical bands above the 

center frequency of the noise and for the tone lying two 

critical bands below it. The abscissae are marked in 

critical band units [12). The ordinate gives the relative 

ampli tude for the spectra and the level of (neutral) 

excitation in dBs for the excitation patterns. The shape 

and level of the pat'tern were determined from a masking 

curve produced by a narrow band of noise. If effects due 

to beats and harmonics are excluded, the masking pattern 

for the tone is similar to that of a narrow noise band. 

These patterns change 1 i tt 1 e over the 

of frequencies shown here [ 11 J • The 

excitation patterns (neural activity) 

limited range 

derivation of 

from masking 

patterns is justified by recent experiments [7,8J 

Ta explain partial masking the assumption is made 

that this occurs only when the excitation patterns 
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overlap and further that within the areas of overlap the 

pattern at the higher excitation level suppresses the 

pattern at the lower level. The size of the shaded 

"suppressed" area indicates the relative degree to which 

the tone is masked the larger the shaded area the, 

greater the partial masking. A comparison of the shaded 

areas for the low frequency with those for the high 

frequency tone shows clearly that the partial masking of 

the high frequency tone decreases more rapidly as the 

noise intensity decreases than does the partial masking 

of the low frequency tone. 

These differences result from the skewness of the 

excitation patterns. The implication here is that for 

partial masking, as the noise level is increased, the 

noise begins to partially mask the low frequency tones at 

lower levels than the high frequency tones. 

In [16J by direct analogy with threshold audiograms 

Scharf produced partial masking audiograms. His results 

are shown in figures (2.3-21, a-e>. The abscissa 8i ves 

the frequency of the signal. The ordinate gives the 

amount of masking, defined as the amount by which the SPL 

of the signal had to be increased, owing to the presence 

of noise, in order to stay at a given criterion level. In 

complete masking the cri terion was threshold. In partial 

masking, the criterion was the' loudness level of the tone 

in quiet, which is the parameter on each curve, so that 

the curves are similar to equal-loudness contours. The 

amount of masking is always the difference between the 

SPL of the tone in noise and the equally loud tone in 

quiet. The top contour is the threshold curves. The 

rectangle with diagonal lines centred on 1000 Hz 

It can be indicates the frequency 1 imi ts of the masker. 

seen that the threshold curve and the 

loudness> curve are parallel. This is not 

first <low 

a tri vial 

resul t since for the second case the curve was obtained 

through loudness matchIng whilst the threshold curve 
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involved no such 

increased and the 

masking diminished 

procedure. As the loudness level 

masking reduced, the asymmetry of 

and the patterns become fairly 

symmetrical or even skewed toward the low frequencies at 

the highest loudness levels, as was· also found in the 

previous study [15J. 

The asymmetry in partial masking increased with the 

level of the masker in the same way as the threshold 

curves. A reduction in the bandwidth of the masking noise 

narrowed the spread of masking. This is at variance with 

the assumption that subcri tical bands of noise at equal 

SPLs produce the same amount of masking and loudness. 

This may be due to the time fluctuations of the noise 

band (the broader band permits faster fluctuations than 

the narrower band).The subject may have been able to hear 

the signal in the time "valleys" of the noise. The 

effects of time fluctuation on masking by noise will be 

addressed again later. Before we move into time effects 

mention should be given to some recent experiments 

concerned with the masking of noise by tone. Hellman [17J 

addressed the problem concerning the partial masking of 

noise by a tone. Amounts of partial and complete masking 

produced by the tone on the noise were obtained for 

subcritical, critical and 

In the first instance a 

noise 925-1,080 Hz wide, 

Hz wide and a broadband 

supracri tical bands of noise. 

1KHz tone masked a narrow band 

an octave band noise 600-1,200 

noise 75-9,600 Hz wide. Masked 

and unmasked noise bands were matched in loudness, to 

produce 

matched 

average 

the measurements. Median values were used (these 

geometric means) for the determination of the 

SPLs of the noise. The results are shown in 

figures [2.3-22, 2.3-23J. The data show the SPLs required 

for equal loudness between a band of noise in the 

presence of a pure tone and the same noise in the absence 

of the tone. Figures [2.3-22 a,bJ show the masking effect 

of the tone on broad-band and octave band noise 

respectively. The effect of the tone on the narrow band 
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noise is shown in figure (2.3-23]. The parameter on the 

curves is the SPL of the masking tone. Over the range of 

intensities used, the loudness-matching functions are 

power functions. For the wide band signal the slope 

(exponent of the power function) is· shown to vary form 

about 1.1 for a masking tone at 80 dB. SPL to about 1.35 

for a tone at 100 dB SPL. It can be seen that when the 

tone is below 90 dB SPL it has practically no masking 

effect on the wideband noise. The masking effect 

increases when the signal bandwidth is decreased to an 

octave. The slopes vary from about 1.25 for the 80 dB SPL 

tone to about 1.45 for tone at 100 dB SPL. 

A sharp increase in the masking effect of the tone is 

produced when the noise bandwidth is further reduced to 

155 Hz. The slopes increase from about 2.25 for a masking 

tone at 60 dB SPL to about 2.6 for a tone at 90 dB SPL. 

This steepening of the power functions can be attributed 

to the fact that the spread of excitation of the tone and 

noise is more nearly the same. Signal to noise ratios for 

the narrow (925-1080 Hz) signal at threshold are about 

-20 dB when the masking tone is at 60 dB SPL increasing 

to -30 dB when the tone is at 90 dB SPL. By contrast when 

the role of noise as signal and tone as a masker are 

reversed, the signal to noise ratio at the tone threshold 

is of the order of -4 dB. 

To a 

(2.3-22, 

good approximation, the functions in figures 

2.3-23] show that the tone no longer masks the 

noise when the energy of the tone and the energy in the 

155 Hz noise band surrounding the tone are equal. 

This means that for this noise band, partial masking 

ceases when the tone and the noise are at the same 

overall SPL, while for the octave band the overall SPL of 

the noise is about 6 dB above that of the tone and for 

the broad band noise it is about 18 dB above that of the 

tone before masking ceases. Hence masking ceases when the 
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masked and masking stimuli are equally intense within the 

effective area of masking. This area is the critical band 

for the tone. The ear filters out the energy contributed 

by frequencies of noise outside the critical band for 

the tone. Note that along the steep portion of the masked 

loudness function mutual masking between tone and noise 

occurs. The asymmetry in (complete) masking found here 

(around 20 dB) between tone as masker upon noise and 

noise as a masker upon tone could be due to the rate of 

fluctuation in the time structure of the noise. Indeed, 

the asymmetry seems to disappear when the tone is 

frequency modulated at a rate of 251Hz (20]. 

In (18,19] the same problem of using a tone as a 

masker was addressed. An explanation to the asymmetry of 

masking was provided which is essentially the same as 

that from 

for the 

the previous authors although numerical values 

asymetry were successfully predicted. Their 

argument is as follows: The noise power N as measured by 

the human ear has an uncertainty L;N given approximately 

by L;N = NI JTW where T is the integration time of the ear 

and W the analysis bandwidth. With T = O.ls and 

W = 160 Hz (at 1 kHz) L;N = N/4 or -6 dB. Thus a tone 

whose level is 6 dB below the noise level would be hard 

to detect since the measured- noise fluctuations are 

equally large <in reality, a l-kHz tone is inaudible at 

-3dB). By contrast a" cri tical band noise added to a pure 

tone is perceived at much lower levels because, even 

minute deviations from a pure tone are easily detected by 

the ear. The added noise will cause the instantaneous 

ampl i tude and frequency 

time instead of being 

modulated 1kHz tone at 

different from a pure 

of the tone to fluctuate with 

rigidly constant. An amplitude 

60 dB SPL will be perceived as 

tone if the modulation index 

exceeds about 8% independent of the modulation frequency. 

A modulation index of 8% will be caused by an additive 

noise of level -22dB below the tone, which is a value 

close to the measurements obtained from experiments in 
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(18]. These additional experiments on the effects of tone 

as a masker are presented below: for the results shown in 

fig. 2.3-24 a continuous tone at an SPL of 80 dB was used 

to mask a noise burst fixed i.n frequency at 1kHz (centre) 

wi th a bandwidth of one critical band. The intensity of 

the noise burst was varied so that it was just above 

threshold as the frequency of the masker tone was varied. 

Note that for a tone of frequency of 1 kHz the noise 

intensity at threshold is 24 dB below the tone intensity. 

The shape of the aUdiogram has a "reversed" character 

since the maskee (probe) location was fixed as the masker 

was varied. The opposite is true for conventional 

(masked) audiograms. Partial masking curves were then 

obtained [figure 2.3-25]. Here again, the 80 dB SPL noise 

burst is used as a fixed probe of bandwidth of one 

critical band and centered at 1 kHz. The insert on each 

plot 1s the frequency of the masker tone. These results 

are similar to the ones obtained by Hellroan (17]. It 

should be noted though that these curves were obtained 

from only one subject. The usual practise is to use at 

least 3 subjects but usually 5 and average the results in 

a statistically meaningful way. 

2.3.4 Temporal effects 

2.3.4.1 Temporal Summation 

The (masked) threshold as well as the loudness of a 

sound are independent of its duration when the durati on 

exceeds about 500ms. However for durations less than 

about 20 ms the threshold increases and the loudness 

decreases as the duration of the sound (e.g. tone bust) 

is decreased. Over a reasonable range of durations the 

ear appears to integrate the energy of the stimulus over 

time. (to a first approximation) (21-25]. To decouple 

bandwidth effects from the studies care is taken in 
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experiments of temporal integration to confine the 

spectrum of the si gnal to wi thi n a cri t i cal band. Note 

that this restriction limits the minimum duration to 

be used since reducing the signal further would 

necessarily imply an increase in its effective bandwidth. 

Using tone bursts as test-sounds, the results can be 

represented by a simple graph, which holds for thee masked 

threshold as well as for the threshold in quiet. 

In the graph [figure 2.3-26J the SPL, LT (TT) of a 

test tone is shown, versus its duration T··r. The asymptote 

represents the threshold of a long duration <>500 msec) 

tone LT (oo). The vertical axis un1 ts measure 6LT where 

6L,.· = LT (TT) - LT <oo). This is the difference between the 

threshold of the tone of long duration and the threshold 

of a tone of duration T·r for the same masker conditions. 

It can be seen that for long durations (TT > 500msec) the 

"normal" threshold 1s reached. For durat10ns shorter than 

about 200 msec, 6LT rises 10 dB 1f the duration 1s 

shortened by a factor of 10. This holds for the masked 

threshold as well as for the threshold in quiet and for 

both tone bursts and narrow bands of voice. The general 

behaviour of the threshold can be described by the 

following equation 

6LT = L (T ) - L (oo) = 1010g10 T T T ~ 
___ ~ ____ dB 

1-EXP (~~:r:) 
0.2 

2.3-5 

when time is measured in seconds. 

This simplifies to 

0.2 dB 2.3-9 

for short durations. (from the Seri8G expansion of eX). 
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The effect of duration upon loudness is very similar 

figure [2.3-27). TT is, again, the duration of the tone 

burst (or narrow band noise) and <'IL", is the difference in 

loudness level between along duration signal and its 

counterpart, of duration TT, for· the same masker 

condition. 

constant 

It can be seen that the loudness level is 

for long durations (above 200 msec) . It 

decreases for shorter signals about 10 phon per factor of 

10 of shortening. For such an approximation, 100 msec is 

the limiting duration as shown in figure [2.3-27), by the 

intersection of the asymptotes. 

The departure of the curve 

short durations «5 rosec) is 

from the asymptote 

due to the spread 

at very 

of the 

signal's bandwidth outside the critical band. Besides the 

temporal effect, a spectral effect comes into play. 

2.3.4.2 Transient effects in masking: Backward Mask) ng, 

Forward Masking and overshoot 

In the previous section the effects of varying the 

duration of the maskee in relation to its masked 

threshold and loudness <1. e. effects of complete and 

partial masking) were investigated. In the above 

experiments a continuous masker- was used. Many other 

temporal effects in masking can be observed and measured, 

if now, themasker has a strong 

these time-dependent masking 

duration (but contained within 

time structure. To obtain 

patterns, a very short 

a critical band) tone is 

used as a probe. This is then moved within the time 

evolution of the masker (which for the time being will be 

considered to be noise) and the threshold for each 

relative position of the probe is measured. A distinction 

must be made between narrow band and. wideband masl<ers. 

We have already seen that tones and critical band noises 

produce different masking patterns. 
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This seems to be contrary to the conceptual idea of a 

critical band auditory filter which implies that the two 

stimuli should give rise to the same masking pattern when 

at the same SPL. 

It has already been indicated that this may be due to 

the slow time fluctuations that a narrow bandwidth 

imposes upon the time structure of the masker. The 

subject can then hear the probe tone in the "valleys" of 

the noise. When the noise bandwidth is increased the 

corresponding fluctuations become 

that the subj ect is not able to 

Fastl [26J performed some masking 

critical and very narrow band 

faster and it seems 

follow them any more. 

experiments with both 

noises. He used high 

frequency ranges in his experiments (8.5 kHz) since at 

these frequencies the critical bandwidth is large (1800 

Hz) which allows large variations in the bandwidth of 

subcritical maskers. His results generally agree with 

Greenwood's [llJ in that the tone masker is not as 

effective as a critical band marker. Fastl's wider 

cri tical bandwidth enabled him to use very narrow band 

noise as compared with critical bandwidth (1/18 and 11180 

of critical bandwidth). For these maskers the masking 

patterns were essentially the same as that of the tone. 

The effects of narrow and wideband maskers will therefore 

be considered separately. 

The set up used for time varying maskers is usually 

as shown in figure [2. 3-28J. Bursts of noise of equal 

width TM and presented at equal intervals T"" are used as 

maskers. A probe tone of duration TT is used to measure 

masked thresholds. lit is the interval from the onset of 

the noise burst to the onset of the tone burst. Note that 

lit can exceed T,>, since masking effects are present even 

after the cessation of the masker (forward masking, 

post masking) or lit can be negative since the masker has 

some effect on the threshold of the tone before the 

masker is presented (baclrward masking, pre-masking). This 
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may seem paradoxical but it can be explai ned by the 

fini te analysis window of the auditory channel and the 

appropriate delay associated wi th it. The general shape 

of the masked threshold around one of the noise bursts 

can be seen in figure [2.3-29). 

Transient effects occur also in the case of 0(6t(TM 

i.e. simultaneous masking [21, 27. 28), If one ignores 

effects smaller than 2 or 3 dB then the threshold of a 

short signal pulse, masked by a burst of the masker, 

shows a transient with an overshoot when considered as a 

function of the delay time between the onset of the 

masker and the onset of the signal, provided that the 

signal and masker have different shaped frequency 

spectra. This overshoot does not show up if signal and 

masker have the same or similar frequency spectra. The 

similarity must hold around the frequency of the (maskee) 

Signal. The more the two spectra differ from each other, 

the more overshoot one gets. 

No overshoot occurs if signal and masker both have 

narrow frequency spectra. This holds even if masker and 

signal are located at different centre frequencies. The 

amount of the overshoot depends very little on the level 

of the masker but falls to zero near absolute threshold. 

The overshot is also influenced by the size of the time 

gap between the burst-s of the masker, and in the case of 

a continuous background masker present, it also depends 

on the level difference between the gated and continuous 

masker. 

The overshoot disappears for signal (probe) durat10ns 

larger than 10 msec and grows to as much as 15 dB for 

durations of 2msec. The effect lasts for up to 100 msec 

where the steady-state condition is reached <provided the 

masker duration T", is long enough). When the masker burst 

is short, the thresholds of short pulses with small delay 

between onset of masker and onset of sIgnal are not 
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affected by the amount by which the masker outlasts the 

signal, except when the duration of the masker becomes 

smaller than 10 msec. 

Fastl [30-32l performed a very extensi ve series of 

experiments to determine the parameters that affect the 

magnitude and extent of the above transient events. Three 

different types of masker were used, broadband, critical 

and sinusoidal. His results were very illuminating and a 

summary is presented in the following sections. 

2.3.4.3 Transient Masking effects: Broadband Noise Masker 

In [31] Fastl used masker impulses out of uniform 

masking noise (a noise that produces the same degree of 

masking at every frequency). Impulses with Gaussian rize 

and decay cut out of pure tones were used as test signals 

(probes). The durations of masker and signal were chosen 

in such a way that their reciprocal was never greater 

than the critical bandwidth at their corresponding 

frequencies. His aim was to produce a complete map of the 

masking effects of the uniform masking noise burst. He 

therefore studied all of backward masking, simultaneous 

masking and forward masking. His results are summarised 

below: 

2.3.4.3a Simultaneous Masking: 

Since short test tone impulses must be used to gain 

insight into the fine structure of temporal masking 

patterns, its first experiment was to study the effect of 

shortening the test time on the shape of the patterns. At 

long test durations (500 ms) the masked threshold was 

found to be independent of test tone frequency as was 

expected with a uniform masking noise. At short test 

tones (10 ms) however the masked threshold decreased with 

increasing frequency. The difference was at most 10 dB. 

He then performed some experiments to study the overshoot 



78 

effect. He found that the magnitude of the overshoot 

increases as the delay between onset times is decreased 

reaching 20 dB in some cases and that the effect is more 

pronounced with short test tone impulses. The steady 

state condition is reached for impulse duration times of 

at least 200 ms when no overshoot is present. Hence it 

seems that the time between the onset of the masker and 

the end of the tone is the relevant parameter in terms of 

onset delay. 

In terms of test tone frequency, the data showed an 

increasing overshoot with increasing test tone frequency. 

The maximum difference was about 9 dB but the effect was 

not consistent amongst individual subjects. As far as the 

masker level is concerned, the overshoot effect is 

distinct provided the masked threshold of the test 

impulse lies more than 10 dB above its threshold in 

qUiet. Finally with a test tone of 1 ms duration, the 

masker duration was varied through the values 2, 5, 10, 

20, -50,- lOO, 200 and 500 ms. The onset delay was 1 ms. At 

all masker durations the masked thresholds were the same 

wi thin 3 dB. (comparable to the accuracy of measurements). 

This means that at the start of a masker impulse the 

thresholds of simultaneously presented test tones are 

nearly the same for 

different durati ons despi te the 

impulses 

fact that 

impulses differ considerably in loudness 

loudness integration). 

2.3.4.3b Forward masking: 

of extremely 

these masking 

(because of 

A typical 

(2.3-30]. The 

forward masking curve is shown in figure 

level LT of the just audible test tone 

impulse is plotted as a function of the delay time Tv. 

Test tone impulses with frequency fT = 8 kHz and duration 

TT' = 1 ms were used. Masker impulses with duration T,v, = 
500 ms were cut out of a uniform ~~sking noise with level 

L,v, = 60 dB and a bandwidth 6f,~ = 16 kHz. The arrow at the 
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left ordinate marks the threshold in quiet of the test 

tone impulse. Temporal and spectral relations between 

masker and test tone are indicated by inserts. 

seen that the forward masking function 

approximated by a straight line, when 

It can be 

can be 

using two 

logarithmic scales, for loudness level and time. The test 

tone level at short delay times tv in a forward masking 

paradigm is nearly equal to the test tone level at long 

delay times in a simultaneous masking paradigm (top left 

of figure (2.3-30). It was found that at any (fixed) 

delay time the masking effectiveness of a preceding 

masker with respect to short test tone impulses hardly 

depends on their durations. This is not to be taken to 

mean that the threshold was the same at all durations, 

but rather that the level difference between (forward) 

masked threshold and threshold in qUiet for the same 

duration test tone is almost independent of duration. 

When the masker level was now varied, the results 

showed that the forward masking function reaches the 

threshold in quiet at a fixed delay time, irrespective of 

masker level. This means that for high masker level 

steeper forward masking functions 

masker levels. This bears some 

show up than for lower 

effect on the masking 

pattern of an uniform masking noise impulse as a function 

of frequency. Consider a medium delay, say 12 ms. Since 

the value of the th~eshold in quiet is not constant but 

varies with frequency, having a minimum at around 3 kHz, 

the forward masking curves will be steeper around 3 kHz. 

Therefore at the fixed delay the threshold at 3 kHz will 

be lower than at the other frequencies and the forward 

some degree the frequency 

qUiet. 

masking pattern resembles to 

dependence of the threshold in 

Finally the effect of masker duration on forward 

masking was discussed. The forward masking effect was 

found to be more pronounced for long masker impuls,~s than 

for short masker impulses. For masker durations longer 
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than 100 ms, no further increase in masking effectiveness 

was noticed. Whereas in forward masking experiments, 

shorter maskers elicit lower masked thre'3holds, the 

simul taneously masked threshold at short delay times was 

found to be nearly independent of masker duration. Thus 

at short masker durations, near the end of the masker 

impulse very steep forward masking functions have to be 

expected. 

2.3.4.3c Backward masking: 

A typical backward masking function is depicted in 

figure [2, 3-31J. The test tone level Lo' is plotted as a 

function of the delay time 6t. Since 6t is measured from 

the start of the masker impulse to the start of the tone 

impulse, only negative values of 6t occur for backward 

masking. Both spectral and temporal relations between 

masker and test tone are indicated in figure 2.3-31. The 

arrow at the left ordinate marks the threshold in quiet 

of the test tone impulse with frequency f'r =' 8 kHz and 

duration t'T' = 1 ms. This short test tone duration was 

chosen in order to reach a sufficient temporal resolution 

within the backward masking function. Threshold 

discrimination in backward masking was found much more 

difficult than either simultaneous or forward masking. 

Experimental variability as high as 10 dB was not 

uncommon. From figure 2.3-31 the backward masking 

function shows a very steep slope near the start of the 

masker impulse (25 dB in 3 ms). When 6t reaches -20ms the 

masked threshold is already very near the threshold in 

quiet. Masking functions were obtained for test tone 

duration T',-, test tone frequency fT masker level L'4 and 

masker duration T'4' The results can be summarized as 

follows: Backward masking is found for short test tone 

impulses, presented up to about 200 ms before the start 

of the masker impulse and might depend to some extent on 

test tone duration. At medium delay times, the backward 

masking pattern of an uniform masking noise impulse 
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resembles the frequency dependence of the threshold in 

qUiet. No extremely nonlinear relation between masker 

level and test tone level shows up in backward masking. 

At long masker impulses, more backward masking occurs 

than at short maskers. 

2.3.4.3d Transient masking pattern 

To give a survey about relations between backward 

simultaneous and forward masking patterns in fig. [2.3-

32J a transient masking pattern is depicted. The test 

tone level LT at threshold is plotted as a function of 

both critical band rate Z (the frequency scale compressed 

such that critical bands are shown to be of equal width) 

and time t. The masker impulse was cut out of uniform 

masking noise, starting at t = 0 ms and terminating at 

t = 300 ms wi th an SPL of LM = 60 dB (L .. f,~ = 16 kHz). The 

test tone impulses had a duration of TT = 10 ms with a 

rise time Tr<;I = 2 ms. Negative val ues of t refer to 

backward masking effects while t = 300 ms denotes the end 

of simultaneous masking and the beginning of forward 

masking. At t = -20 ms and t = 400 me the respective 

backward or forward masking pattern represents the 

pattern of the threshold in quiet within 5 dB. This can 

be taken to be the start and the termination of the 

pattern respectively. This pattern can be assumed to show 

the spectral and ten!poral representation <of the masker) 

in the ear. 

Using the above data as an atlas of temporal masking 

effects produced by a single <of duration larger than 

500 ms) broad band masker impulse, thresholds of test 

tone impulses masked by broad band noise of various 

temporal structures can be estimated. 

In figure [2. 3-33J a masking noise burst is 

represented by hatched areas. The burst consists of 

single impulses with duration 1 ms separated by gaps of' 
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duration 2 ms. Using alms test tone impulse, the 

threshold LT is plotted (dots). Calculated values are 

shown by crosses. The values were calculated using the 

data from before. Good agreement obtains; differences are 

no more than 5 dB. An important conclusion is that in 

temporal masking functions, the ear cannot resol ve gaps 

at" 2 illS (but note that the test tone impulse used was of 

comparable time length). 

A similar experiment using a masker burst consisting 

of impulses with duration 2 ms separated by gaps of 20 illS 

is shown in figure [2.3-34]. Again calculated and 

measured data are in good agreement. Note the fast decay 

of forward masking tone due to the short duration of the 

masker. Finally the effect of varying the gap between the 

impulses was studied [fig. 2.3-35]. Longer decay of 

forward masking can be observed corresponding to longer 

duration maskers. Measurements agree well with 

calculations except 

masking interact. 

in regions 

In these 

where backward and forward 

cases the threshold is 

elevated more that the predicted values suggest. Another 

resul t that can be observed is that a .. deep valley" 

preceding a second respective masker impulse (due to the 

fact that the preceding first impulse was sufficiently 

far away for masking to decay_considerably) gives rise to 

a high threshold value (large overshoot) whereas a 

"shallow valley" (due-·to the preceding impulse being near 

enough in time) leads to a lower threshold (small 

overshoot) . 

2.3.4.4 Transient effects in masking; Critical band noise 

A similar set of experiments was carried out in [32]. 

In these experiments masker impulses _were cut out of 

critical band noise instead of a broad band noise. A 

masker centre frequency of 8.5 kHz was used which would 

enable impulses of sufficiently short duration (1 ms) to 

be contained within a critical band. 
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Th8 results can be summarised as follows: 

2.3.4.4a Simultaneous masking: 

The shape of the masking pattern of a continuous 

cri tical band noise masker is independent of test tone 

duration. Thresholds of test tone impulses, masked 

simul taneously by a critical band noise masker impulse, 

dependent on delay time as follows: test tones centred 

in the cri tical band noise are almost not affected by 

variations of delay time. Test tones at the lower slope 

of the masking pattern show decreasing threshold values 

wi th increasing delay time. At the upper slope of the 

masking pattern, this decrease is observed only at low 

masker levels. At the start of short and long critical 

band noise masker impulses, respectively, almost the same 

threshold values show up. With increasing masker level 

the pattern exhibits a "nonlinearity of its upper slope" 

both at short and long delay times. 

2.3.4.4b Forward masking: 

From experiments on forward masking the following 

have been concluded: 

Forward masking patterns of a critical band noise 

masker impulse exhibit steeper slopes than 

corresponding simultaneous masking patterns. The maximum 

of the forward masking pattern shows up at a higher 

frequency for medium delay time than for short del.ay 

time. With increasing masker level the masked threshold 

of test tones at the upper slope of the forward masking 

pattern of a critical band noise masker i ncrease'5 more 

than proportional. At a fixed delay time, short critical 

band noise maslwr impulses el ici t less forward maski ng 

than long maskers. 
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Again, 

difficult to 

experiments 
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Backward maskipg: 

the backward 

collect, since 

masking data proved 

the reproducibility of 

was distinctly inferior to 

more 

the 

the 

reproducibility found in both simultaneous and forward 

masking. Conspicuous results on backward masking are 

summarized below: Backward masking functions of critical 

band noise masker impulses show, near the start of the 

masker impulse, a horizontal course. Backward masking 

patterns of critical band noise masker impu lses at short 

delay times are therefore quite similar to corresponding 

simul taneous masking patterns. The "nonlineari ty of the 

upper slope of the masking pattern" exists in backward 

masking too. 

At a constant delay time, very short critical band 

. noise masker impulses elicit less backward masking than 

longer impulses. 

2.3.4.4d Transient masking patterp: 

The transient masking pattern of a critical band 

masker is shown in figure [2.3-36] . The level of the 

masker was 70 dB its centre frequency was 8.5 kHz, its 

bandwidth 1800 Hz and its total duration 500 ms. The test 

tone impulse· was of 1- ms duration. Regarding figure (2.3-

36] , the similari ty of neighbouring backward and 

simultaneous masking patterns as well as the masked 

differences of simultaneous and forward maski ng patterns 

are obvious. Forward maski ng ·pa t terns exhi bi t steep 

slopes towards both low and high frequencies whereas 

simultaneous and backward masking curves show steep 

slopes only towards low frequencies. The transient 

masking pattern represents a common startIng point for 

the description of hearing sensations of both static and 

dynamic character. 
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When more than one critical band noise masker impulse 

is used, thresholds of test tone impulses masked by a 

critical band of a strong temporal structure can be 

estimated. The results are shown in figures 2.3-37 and 

2.3-38. Circles connected by solid lines mark measured 

thresholds, dashed lines represent estimated masking 

functions. The estimations were based on the data 

collected from the single impulse masker. Estimates can 

be seen to agree fairly well with the measured data over 

the regions where forward and backward masking do not 

interact. 

2.3.4.5 Transient Masking Effects: Sinusoidal Masker 

In [30l similar experiments were carried out, 

masking impulse cut out of a sinusoid. The 

frequency was 8.5 kHz, the SPL L,., = 70 dB 

using a 

masker 

and the 

duration t,~ = 200 ms. The test tone impulses were of 

duration T-r = 2 ms. The transient masking pattern 

obta1n-ed is shown in figure (2.3-39). Al though results 

are somewhat similar to the results of a critical band 

masker two main differences can be noticed: (a) The 

transient masking pattern of the sinusoidal masker sows 

steeper slopes than the pattern of the critical-band 

masker. (b) The masking produced. by a sinusoidal masker 

1s inferior to that produced by a critical band masker. 

The whole transient masking pattern of the sinusoid lies 

10 dB below that of the critical band masker (the shapes 

at both ends of the transient masking pattern are 

influenced by the shape of the threshold in qUiet). 

In physiological experiments (e. g. to obtain tuning 

curves) sinusoidal sounds are used. It is not therefore 

known whether di fferences in maski ng patterns between 

sinusoids and critical band mas)rers appear also in 

physiological data. 
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2.3.4.6 Statistical changes: 

To investigate to which extent the ear is able to 

follow random temporal changes of SPL, Zwicker and 

SchUtte [331 used a computer generated pseudo random 

noise with a large repetition period (-1 sec). With this 

type of noise repeatable time functions can be produced 

with little rhythm. 

The temporal characteristics of such a noise can be 

changed by altering the bandwidth: for large bandwidths 

the changes in amplitude and 

qUickly. For very small bandwidths, 

frequency occur very 

the amplitude changes 

appear so slowly (frequency changes can be neglected in 

that case) that a quasi steady state condition is 

reached. The masking patterns would therefore be expected 

to follow the changes of the sound pressure for very 

small bandwidths whereas for large bandwidths the masking 

pattern may not be able to follow the quick changes and 

may therefore average them in a way so that another 

steady state condition is reached. 

A short tone-signal was used to map the masking 

patterns of the artificial noise. Its duration was 2 ms. 

Care was taken so that its bandwidth did not exceed a 

cri tical bandwidth. The artificial noise was fi 1 tered by 

narrow band - filters' of different widths, mostly at a 

centre frequency of 4 kHz. The masked threshold L-.,.. 

measured at delay times LIt within a certain range of the 

time evolution of the masker is compared with the 

instantaneous sound pressure level LN"-"~' The rate of the 

ampl i tude changes of the narrow band noise is restricted 

by the limited bandwidth. The short signal represented by 

its masked threshold LT is able to follow the slow 

changes quite well (figure 2.3-40) while it cannot follow 

the quick changes of the masker at large bandwidths 

<figure 2.3-41). A statistical analysis of how well the 

masked pattern follows the instantaneous envelope of the 
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noise was performed for different noise bandwidths. Let Y 

represent the measured threshold levels L,.,- and X the 

instantaneous levels LN""'" (at the same delay time ~t). 

Two statistical measures were used, first the linear 

regression factor m defined as 

m = 

n 
1: (Xi -"ic> (y i - Y) 

i=l 

n 
1: 

i=l 

2.3-10 

note that m given as above is the least squares estimate 

for m in Y = mX + b. 

The second factor used was the correlation coefficient r 

given by 

r = 

n 
1: (Xi - X) (Y i - Y) 

i=l 

n 
1: <Y -

i=l i 

2.3-11 

- ? 
Y)~ 

Note that whilst r could be large (good correlation) 

m can be far from on)3 (if the amount of change of L-r' is 

larger or smaller than L"""N). 

The measurements were made at a cent er frequency of 

4 KHz. Bandwidths of 12, 32, lOO, 400 and 1000 Hz were 

used. (The critical bandwidth is about 1 kHz at that 

frequency). The results are shown in figure (2.3-42) as a 

function of bandwidth. 

For small bandwidths m and r are very close to 1. 

This means that LT and L"'E'''' change in the same way for 

the same amount. At a bandWidth of 100 Hz the correlation 

coefficient is still 0.85 indicating that Lr and L""".", 
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have a similar temporal pattern but the extent of the 

changes of L'T" 

6f = 400 Hz and 

indicating that 

start to diminish (m = 

greater, both r and m 

the threshold LT no longer 

temporal variations of the envelope. 

0.5). For 

are small, 

follows the 

In the above experiment the centre frequency of 

masker and signal were the same. For signal frequencies 

below the masker center-frequency the behaviour is 

similar to the one in the above experiment. For signal 

frequencies above the masker frequency the correlation 

coefficient behaved as above but m was larger than 1 for 

some bandwidths, indicating that masking grows faster 

with masker level there than around the centre frequency. 

Concluding, the masking pattern was shown to follow the 

temporal pattern of the instantaneous sound pressure of 

the stimulating sound almost completely up to a bandwidth 

6f of about 100 Hz of the masker. This can be related at 

a first approximation to a rise time 1/6f = 10 ms. In 

(34) H. fastl extended Zwicker's and SchUtte's results 

from masking into loudness measurements. We have seen in 

previous sections how the masking pattern can be related 

to neural acti vi ty. Loudness is also related to neural 

activity and masking patterns can be used to derive the 

loudness of a sound as will be shown in the chapter on 

psychophysical models. 

Firstly Fastl determined the loudness of narrow band 

noise as a function of the noise's bandwidth. The SPL of 

the noise was kept constant and all the bandwidths used 

were less than a critical bandwidth. The noise was 

centered at 8.5 KHz and bandwidths of 10, 30, 100, 300, 

700, 1800 Hz were used. Although previous studies 

indicated otherwise (10), loudness did change wi th 

bandwidth. For bandwidths up to 300 Hz the loudness was 

the same as that of a sinosoid of equal SPL. Above 300 Hz 

the loudness of the noise increases to reach levels 10 dB 

higher than that of a tone at the same centre frequency 
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and SPL, for a critical band noise <1800 Hz). The 

loudness difference between a sinosoid and an equally 

intense critical band noise decreased with increased 

loudness of the sounds. 

Taking into account the width of the critical band as 

a function of 

frequencies of 

frequency 

about 2 KHz 

( 12] this means that up 

(cri tical bandwidth "'f = 

to 

300 

Hz) the loudness of sinosoids and equally intense 

cri tical (or subcri tical) noise bands should be almost 

the same. Masking patterns between sinosoids and critical 

band noise are also known to be different (30]. 

Going back to masking effects, Fastl used the data 

from Zwicker and Shlitte to explain how the effects of 

non-simultaneous masking could be used to derive masking 

patterns 

superior 

masking 

different 

of narrow 

masking of 

of narrow 

frequency 

noise bands. 

wide noise bands 

noise bands of 

of occurrence of 

He attributed the 

as compared to the 

equal SPL to the 

envelope maxima in 

the time course of each noise band. For narrow noise 

bands the maxima do not occur frequently enough for 

nonsimultaneous masking to have any noticeable effect. On 

the contrary, for sufficIently wide band noise, the 

maxima occur sufficIently frequently to enable forward 

and backward maski ng to bridge together the "valleys" 

between the· envelope· maxima. In this way the wideband 

noise produces higher masking thresholds than the equal 

in SPL narrow band notse. He substantiated his 

assumptions with some numerical calculations: for a gIven 

bandwidth "'f of a narrow band noise, the average number N 

of envelope maxIm21 per second can be given by 

N = 0.641'>f 2.3-12 

The probability P(I'>L) , for a maximum of the envelop" 

being less than the effective (r.m.s.) SPL of the noise 

plus a level t.L can be calculated. Then, tbe average 
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temporal distance D ~ 11N of envelope maxima, lying at 

least LlLdB above the effective SPL of the noise can be 

calculated as follows 

D ~ 1 1 2.3-13 
Llf 0.64 (l-P(LlL)] 

In table (2.3-T1) the average temporal distance D of the 

envelope maxima, lying at least LlL ~ 0, 3, 6, 10 dB above 

the effective SPL is given for noise bands with 

bandwidths of Llf ~ 10, 30, 100, 300, 700, 1800 Hz. From 

knowledge on nonsimultaneous masking (32] it can be 

estimated that envelope maxima with temporal distances 

D>20ms will hardly be weighted by backward and forward 

masking functions. On the other hand for D shorter than 

about 6 ms, the weighting functions would more or less 

bridge the gaps between adjacent envelope maxima. From 

table 2.3-T1 maxima with a distance D ~ 2.90 ms lie at 

least LlL ~ 6 dB above the effective SPL of the noise for 

a noise bandwidth of 1800 Hz whereas for a bandwidth of 

300 Hz no appreciable maxima can be found with a 

separation smaller than about 8 ms. Since the gaps are 

bridged through nonsimultaneous masking it can be assumed 

that a 1800 Hz wide masker produces at least 6 dB more 

masking than an equally intense 300 Hz wide masker. This 

is true whether the maskee is a short duration signal «2 

ms) or a long dura't"ion signal 0500 ms). Si nce masking 

ability and loudness are interrelated through the neural 

activity they emanate from, a similar difference is 

expected in terms of their loudness. These calculations 

agree fairly wel.l with the threshold (33] and loudness 

(34] measurements. 

2.3.4.7 Masking Period Patterns 

In the previous sections we studied the effects that 

noise bursts produce in masking experiments. These 

studies were extended by "zooming" into the noise bursts 
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themselves 

examining 

using a very short duration 

the masking ability of the 

probe tone and 

detailed time 

envelope fluctuations of the masker and its effect on the 

masking ability of noise on longer duration signals. To 

finalise our review of the effects of a masker's time 

structure on masking we will report on a series of 

experiments [35-38] which produce maski ng patterns which 

are essentially the psychoacoustic equivalent of period 

histograms. These patterns give a rather detailed account 

of the phase sensi tivi ty of the auditory system. Phase 

changes of a partial of a complex tone produce changes in 

its period's time pattern. 

Experiments to investigate the masking effects of a 

complex tone regarding its temporal fine structure were 

performed within the masker's period. To avoid averaging 

across subjects only one single subject would normally 

take part in such experiments. The test tones were passed 

through 1/3 octave filters to ensure that the stimulus 

bandwidth is confined within one critical band. In the 

first (exploratory) set of experiments [35] the masking 

patterns of individual tones, a two tone complex, and, 

DC impulses were investigated. For the first experiments 

both the masker and maskee were of long duration. In this 

respect they were different . from the more recent 

experiments we reviewed where the maskee was a very short 

C 2 ms) tone probe. 

In the first experiment "octave rnasl{t ng" was 

investigated. This represents masking patterns of one 

tone upon a tone of twice the frequency. Tone pairs of 

100 & 200 Hz, 200 & 400 Hz, 400 & 800 Hz, 800 & 1600 Hz 

and 1600 & 3200 Hz were used. The duration was 600 ms for 

both tones in anyone pair. The SPL of a just masked tone 

(the second in the pair) was obtained for different SPLs 

of the maslrer and different phase relationships between 

the masker and IIlcCl.,3kee. The result was that the masked 

threshold of the maskee can change by as much as 15 dB 
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when the only variable that changes is the relative phase 

of the masker and the maskee tones. This effect was more 

pronounced for the lower frequency pairs and seemed to 

disappear for masker frequencies above about 800 Hz. 

Experiments with a "two-harmonic-masking" combination 

as a function of the phase angle of the test tone (masker 

comprised of two tones, 100 Hz and 200 Hz and maskee at 

400 Hz) revealed phase effects of simi lar magni tude as 

before whether the relative phase of the maslrer 

components was varied or the relative phase between 

masker and maskee was changed. Other combinations of 

maskee and maskers were investigated. When the effect of 

the phase of 

eliminated (by 

results clearly 

the test tone on their results was 

appropriate 

indicated 

choice 

that 

of 

the 

frequencies) the 

masking effect 

depended on the phase angle between the two masker 

components. In other words masking was found to depend 

upon the time structure of the sound pressure within one 

period of the masker. To investigate the effect further 

small test tone durations were used as in [30-34J. 

Several complications arise from the characteristics of 

the stimuli to be investigated and the aUditory system 

itself. Since the test signal must be short in relation 

to the period of the masker, for a ratio 1/5 and assuming 

a single masker frequency of 100 Hz, the duration of the 

test tone becomes 2 ms. Since the test tone must serve as 

a probe, it must also have a narrow bandl.,ridth where 

"narrow" means that It must lie within one critical band 

(any additional narrowing of 

instrumental). For this reason 

bandwidth would not be 

the frequency of the test 

tone impulse must be greater than about 2 kHz, so that 

the spectral spread arisi ng from wi ndowtng the tone to 2 

ms duration is contained within a critical. band. The 

maski ng functions produced wi th such "contai ned" probe 

tones are called masking period patterns. 
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The results obtained using a 70 Hz single masker are 

shown in figure [2.3-43). Its period was about 14 ms. A 

test tone impulse with duration 2.5 ms was used as a 

probe cut out of a tone of frequency 1960Hz. Since the 

time function of the sound pressure- of the masker is 

repeated after each period T of about 14 ms a train of 

impulses with a repetition rate fr = liT can be used. The 

pulse train sounds rough but is perceived as a steady 

state (continuous) signal. The time pattern of the masker 

as well as the test signal is shown on top of figure 

[2.3-43). 

The value ~t is defined as the time difference 

between the location of the maximum of the masker and the 

centre of one of the impulses. Its range is from 0 to T. 

The (just masked) test signal level L-r- is given as a 

function of the time difference ~t. The level L, of the 

70 Hz masker is the parameter on the plots. the left 

horizontal arrow marks the threshold in qUiet of the test 

Signal (train of tone impulses). For a masker level of 70 

db a high maximum is reached at ~t = (/8) T while the 

minimum at ~t = (5/8) T remains near the threshold in 

quiet: The difference between maximum and minimum values 

of the threshold reaches 28 dB with only the phase of the 

masker as a variable! Patterns seem to change shape with 

changing SPL of the masker. Note that the 2 KHZ probe 

tone is located at- the high frequency end of the 

"shallow"high frequency slopes of the masking pattern of 

the masker which are known to exhi bi t a strong noninear 

behaviour. 

At the right side of figure [2.3-43) !l1.,>sked 

thresholds LT produced when a continuous tone is used as 

a "probe" are indicated. The arrow to_the right denotes 

the threshold in quiet for this frequency. The difference 

between the level of the two arrows, the one on the left 

and the one on the right can be attributed to the 

intensity integration effect which we have seen above 
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(21-25]. For higher masker level the masked threshold LT 

rises quite nonlinearly but there seems to be a 

correlation between the thresholds measured with 

continuous test tone and the minimum of the masking 

period pattern. 

More impressive correlation between the tone pattern 

of the masker within a period and the masking period 

pattern can be seen in figure [2.3-44]. The masker 

consisted of two components both at 65 dB SPL of 

frequencies 112 Hz and 140 Hz (fourth and fifth harmonics 

of 28 Hz). The frequency of tue test tone was 2772 Hz. 

When a DC pulse was used as a masker the result shown 

in figure [2.3-45] was produced. The solid curves belong 

to a DC- pulse which would be called a "rarefaction 

pulse" while the dotted curves belong to the 

"condensation pulses" (the different polarities were 

obtained by reversing the electrical connection of the 

earphone) . 

From these results it seems that the ear is able to 

listen into or between the "tops and valleys" of the 

temporal masking pattern produced by the temporal fine 

structure w1 thin the period of the masker. Al though the 

available "time window" that the subject uses is 

determi ned by the tEimporal resol ving 

its location seems to be variable at 

power 

will 

of 

so 

the 

that 

ear, 

the 

best location of the time window can be found, for the 

ear to look through and extract information. This can be 

seen from figure (2.3-43] where the threshold for 

continuous tones 

obtained at the 

"valleys" of the 

true for medium 

is nearly equal to the threshold 

best locations for detection 

masker. Note that this effect 

SPLs when the masking period 

or the 

is only 

pattl2rns 

follow the shape of the masker period. When the maski ng 

period pattern is nearly flat, no "best locations" exist 

within the period and the threshold of continuous tones 
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is related to that of the tone impulse through the 

intensity integration over time (up to 7 dB difference). 

In [36] a careful study was undertaken to determine 

the best parameters for the probe test tone used to 

obtain masking period patterns. The duration T-r- the 

repeti tion rate fF" and the frequency f,· of the test tone 

were varied in order to select the optimal parameters for 

the best test signal. For these measurements the masker 

tone with frequency fM = 110 Hz and SPL at the entrance 

of the ear canal, L,~ = 91 dB was kept constant. 

The period TM of the 110 Hz masker is about 9 ms. 

Using a test tone frequency of 2640 Hz it was found, as 

expected, that through a range of test tone durations T··,-

of 0.5 to 6 ms the threshold difference between maxima 

and minima of the pattern diminished with increasing T·r, 

becoming almost zero at 6 ms. It was also found that the 

difference between maxima and minima was fairly constant 

from very short durations (0.5ms) up to 3 me (= 1/3 TT). 

Therefore, the maxi mum difference seems to be obtainable 

even if the test tone duration is as large as 1/3 of the 

masker's period. 

The repetition rate of the test impulse was not found 

to have any effect apart from those attributed to 

intensity integration (i.e an overall shift in level for 

more frequent repetitions). 

Tests with the test-tone frequency as a variable 

revealed that the shape of 

relatively invariant with 

the masking period pattern was 

frequency as long as fT was 

longer than about seven times the masker frequency and 

the threshold in quiet remained several decibels below 

the minimum of the pattern. Summarizing, the best range 

for test tones was; for the duration T-r- of the test tone 

a range. of 115 T,~ > Tr > 1/10 TM, the repetition rate 
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can be fp ~ fM and for the test tone frequency fT, 10fM < 

<fT<20f,V!. 

After establishing the best parameters for the test 

probe, masking results for a 50, 100 and 200 Hz tone were 

obtained. These results are shown in figure [2.3-46] in a 

comparative way that might be used to derive data for 

constructing a model of masking period patterns. The 

maximal level L-,-,,,,,,,, reached wi thi n the pattern [2. 3-46a] 

as well as the temporal position ~tmax [2.3-46b] of this 

maximum within the period are plotted as a function of 

the masker tones. The parameter is the masker frequency 

f,V!. As seen in figure 2. 3-46a and for values about 10 dB 

above threshold in quiet, a square low relation exists 

between the level of the masker LM and L""rmax (dashed

dotted line). Although the 100 and 200 Hz maskers 

produced the same levels of threshold maxima, the 50 Hz 

tone produces maxima that are the same levels as the rest 

of the maskers only if the masker level is elevated by 8 

dB. 

From figure (2.3-46b) can be seen that the temporal 

location of the maxima is level dependent. 

The dependence of the difference ~LT between the 

maximum and the minimum of the masking period pattern 

upon the masker frequency is shown in figure [2.3-47]. 

Note that parameters were not kept the same for all 

pOints, but rather, they were chosen differently for each 

case, so that they were optimal with respect to test tone 

attributes as was determined at the beginning of the 

experiments (i.e. conditions were sought which would 

produce maximal ~LT at each case). Whilst most subjects 

produced simi lar resul ts one subj ect (dots) shoHed 

results which differ consistently showing that individual 

differences exist. From figure [2.3-47) it is clear that 

masking-period patterns shoH a similar shape for masksr 

frequencies below 100 Hz, whilst for higher frequencies 
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the difference between maxima ad minima becomes 

progressively smaller. At masker frequencies of about 500 

Hz the masking period pattern for most subj ects becomes 

flat, whilst a few subjects produce a pattern which only 

becomes flat at higher frequencies (1000 Hz). The masker 

frequency of 500 Hz has a period TM = 2 msec. The strong 

decrement of 6LT with increasing masker frequency cannot 

be related to experimental conditions, rather there seems 

to be some kind of limit operating "psychoacoustically" 

in the ear. 

In (37) more experiments were carried out with 

complex tones. These were either a distorted sine wave 

(obtained by adding to the fundamental a second and (or) 

third harmonic) or a beating tone by adding two adjacent 

higher harmonics of about the same level without any 

fundamental. In the latter case the phase relations play 

a secondary role, while they are most important in the 

former. In addition experiments using Gaussian-shaped 

impulses (having the property of small time and frequency 

spreading) as maskers were performed. 

Comparisons were made between neurophysiological 

period histograms and masking period histograms. It 

should be noted that neurophysiological data are usually 

plotted on a linear scale whereas masking patterns are 

tradi.tionally plotted on log scales. The two approaches 

are shown in figure [2.3-43). These two figures also show 

the good agreement between the masking period patterns 

(m. p. p.) and the "rectified" time waveform. 

Several mpp were therefore reploted on linear scales to 

allow a pictorial comparison with physiological period 

histograms, as well as with the time waveforms that were 

used as maskers. The masking effectiveness of the variow:; 

components was used to deri ve appropriate scali ng fO!

each tone component before their time waveforms were 

added together to produce a comparison time waveform. In 
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figure [2.3-49a,b) a 50 Hz sinosoid plus a 100 Hz 

sinosoid are scaled as above and added together to 

produce the time waveforms shown by dotted lines. The 

parameters for each graph are the level and phase of the 

second (100 Hz) harmonic when the first (50 Hz) was fixed 

at 100 dB SPL. 

The agreement between the positive parts of the 

calculated time functions is very good, at least near the 

peak values. The masking period pattern and the 

calculated time function differ on the other hand, at 

such parts of the period where large negati ve val ues of 

the calculated waveform should lead to vary small 

values of the m.p.p. In contrast to this expectation, the 

patterns show a distinct rise in these areas, pointing to 

the fact that the condensation part of the time function 

also produces an increase in the threshold. However this 

increase is much less than that produced by a 

corresponding rarefaction. From these and similar plots 

it seems that smaller maxima of the time function tend to 

produce peak values in the patterns which are smaller 

than expected. This may be due to the fact that the 

relationship between mpp and the time waveform is a 

square law rather than linearity. 

Finally in [38) an attempt was made to relate masking 

period patterns directly to the movement of the Basilar 

membrane rather than to physiological period histograms. 

In particular, the experiments 

m.p.p. are produced from p(t), 

aimed to determine whether 

the sound pressure at the 

of this, pit) (first 

pit). The first conclusion to 

eardrum or some derivative 

derivative) or other e. g. 

the experiments was that 

stimuli «20 Hz) the whole 

at 

of 

least 

the 

for 

BM is 

low frequency 

stimulated in 

phase. It was found necessary to produce a great many 

types of sounds with intricate waveforms which possessed 

some characteristics for Pit) (1. e . .. 
waveform) but not for Pit) or P(t), or 

the actual 

that Pit) 

time 

was to 
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produce a particular response that could not be accounted .. 
from P(t) or P(t) etc: It was found that the second .. 
derivative P(t) had direct correlation to the m.p.p., if 

it is assumed that positive values of P(t) produce larger 

values of masked threshold than negative values of P(t) 

of same size. 

Some idealized patterns used and obtained in [38J are 

shown in figure [2.3-50], These show that P(t) is more 

relevant than P(t) or P(t) for the production of m. p. p. 

This was true for frequencies below 40 Hz but the m. p. p. 

were more correlated to the first derivative of pressure, 

P(t) for frequencies above 40 Hz. Also a careful study of 

the ensemble of mpp indicated that the higher peak in mpp 

belongs 

to the 

to a kind of suppression which would correspond 

displacement of the BM towards one direction, 

while the lower peak would belong to the excitation which 

would correspond to the displacement of the BM towards 

the other direction. 

2.3.5 Discrimination 

Discrimination describes the smallest perceivable 

difference between two stimuli, or alternatively, by 

how much a stimulus dimension can be changed before an 

observer can perceive a difference: The observer is 

presented with a . stimulus having an attribute of 

magnitude S, where S may be its frequency or intensity or 

some other variable, and is asked to compare 8 with 

8 + 6S for a range of 68. For lower 68, 8 + 68 is 

perceived as the same magnitude as 8, but when a certain 

threshold 68 is reached, 8 + 68 is perceived as a new 

magnitude. This quantity is called the difference limen 

(DL) or the just noticeable difference (jnd). Note that 

the process here is nothing else than masking, since the 

stimulus with attribute 8 + 68 can be split into the 

stimulus with an attribute 8 and a new stimulUS of 

attri bute 68. When S + 68 is merely perceived as 8 we 
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have complete masking of the stimulus (with attribute) 6S 

by the stimulus S. 

2.3.5.1 Intensity discrimination 

The intensity DL is sometimes expressed in dB. This 

quantity is defined by: 

61 in dB = 10log10[ <I + 6!)1I] 2.3-12 

which,for small 61 becomes 

61 61 in dB '" 4.3 
I 

<through the power series 2.3-13 

expansion of the logarithm) 

An important concept in psychophysics is Weber's law 

which states that 61/1 (the Weber fraction) is a constant 

(K) independent of I. 

i. e. 61/1 = K Weber fraction 2.3-14 

This law is almost exactly true for a wide band noise, 

except near the absolute threshold of hearing. figure 

[2.3-51] [39]. It can be seen that for a range of nearly 

90 dB, 61/1 is constant. 

For narrow band sounds the results are complicated. 

For sinasoids, Riesz [40], found that the Weber fraction 

61/1 changed little with the frequency of the sinosoid 

but it was not independent of intensity I i.e. 6I11 was 

not a constant. Contrary to Weber's law 6I/1 decreased 

with increasing intensity, especially at low SLs and the 

curves became flatter at moderate and high SLs (6I/1 

approaching 0.3). 
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This discrepancy is referred to as "near miss" to 

Weber's law. More recent results (41), figure [2.3-52) 

confirmed Riesz' s findings (at a frequency of 1000 Hz). 

In (42), through experiments on pulsed tones, it was 

found that the dependence of ~I/I on frequency 

was even less than Riesz had measured and that a straight 

line could be used to show ~I1 I as a function of SL. 

(Straight line in figure 2.3-53). The existence of a DL 

for intensity stems from the probabilistic nature of the 

transformation from intensity to loudness. The path of 

the intensity information goes through the nerve fi bers 

which show a probabilistic behaviour (neural spikes). In 

[a) p257 the magnitude of the DL is related to the 

inherent variability of the neural transduction. 

2.3.5.2 Frequency discrimination 

The most widely cited study of differential frequency 

sensitivity had been Shower and Biddulph [43), mainly due 

to the wide range of frequencies and sensation levels 

used in the study. A recent comprehensIve study is that 

of Wier et al. (44). Their results are shown in figure 

[2.3-54) together with some of those of the earlier study 

(43) . 

It can be seen that the DL for frequ"mcy ~f, is 

relatively flat fm' 'lower frequencies «500 Hz) and this 

increases with frequency. Values as low as 1 Hz can be 

discriminated at most favourable ranges whereas at higher 

frequencies e.g 4000 Hz, 8000 Hz, it is roughly 16 Hz and 

68 Hz respectively. Also note that the sensitivity 

changes with the sensation level (parameter in figure 

[2.3-54), 

2.3.5.3 Discrimination of complex sounds 

In [45l a study was undertaken to determine the 

number of frequency components that can be heard as 
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"separate" from a multi tone signal. Essentially, the 

subject was presented with a comparison single tone, and 

the multicomponent signal and asked whether the 

comparison single tone 

mul ticomponent signal. (The 

was also present in the 

exact procedure was slightly 

different to enable statistical analysis and numerical 

resul ts). 

together 

Plomp's 

with the 

resu I ts are shown in 

critical bandwidth as 

figure 2.3-55, 

a function of 

frequency (10). Results from harmonic complex tones (open 

points), inharmonic complex tones (solid pOints) and two 

tone signals (crosses) are shown. Note that the results 

are almost independent of the nature of the stimulus 

apart from the two tone signals at low frequencies, where 

the minimum frequency spacing to identify the two tones 

as being present, correctly, was two to three times 

smaller than with multicomponent signals. He concluded 

that the ear is able to distinguish a simple tone in a 

complex sound if the frequency distance to the adj acent 

tones exceeds the critical bandwidth. The same author 

also performed a masking el<periment with a complex tone. 

The masker consisted of the first 12 harmonics of 500 Hz. 

The test tone was a 20 msec tone pulse. Its frequency was 

varied through all multiples of 50 Hz between 300 and 

4000 Hz. The results are shown in figure 2.3-56. (it is 

worth noting that for each subject the measurements took 

about 10 hours!). It can be seen that the first five 

harmonics are "resolved" in the masking pattern; but not 

the higher harmonics. This agrees with the 

critical bandwidth being about 500 Hz around 3000 Hz. 

More experiments with complex tones were performect in 

(46). The experiments aimed to determine difference 

limens for frequency and intensity and were more in line 

with classical DL studies [42, 44) than Plomp's study 

(45) but were also concerned with complex sounds. The 

complex tones used in (46) all had fundamental 

frequenCies of 200 Hz and all the harmonics were at 60 

dB SPL. The different complexes used were formed from the 
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following combinations of harmonics! 1-7, 1-12, 5-12, 6-

12, 7-12. Only one harmonic component was changed at a 

time (either in frequency or intensity) and the DLs were 

determined in the presence of the other components. 

Therefore some masking from the rest of the complex sound 

was expected to be evident. 

The results were as follows: The frequency DLs for 

the equal amplitude harmonics within the complex tone 

were s=ll (less than 1%) for low harmonic numbers and 

increased markedly around the fifth to seventh harmonic. 

Nevertheless the highest harmonic in the complex was 

generally well discriminated. 

The intensity DLs were again smallest for the lower 

harmonics and increased for harmonics above the fifth. 

The intensity DL for the highest harmonic was again small 

figure [2.3-57). 

Finally to conclude the section on discrimination we 

report on some data on jnds for speech envelopes. 

Flanagan [47] undertook extensive investigations to 

integrate speech perception knowledge into formant 

vocoder design. Flanagan measured jnds for formant cent er 

frequency, bandwidth and intensity using sustained 

synthetic vowels. 

formant center 

bandwidth 20-40% 

also found that 

His results 

freql.tencies 

and the jnd 

the jnd for 

showed that the jnd for 

was 3-5%, the jnd for 

for intensity 1-3 dB. He 

intervalley intensity was 

around 10 dB and thus far larger than that for formant 

intensi ty. Recent studies [48) suggest that these values 

may be considerably 

Klatt showed that 

higher for runni ng speech. 

for natural speech the 

In 

j nd 

( 48) 

for 

fundamental frequency was 1.7% compared to that for 

stationary synthetic speech which was much lower 0.25%). 

Similar results could be expected for formant jnds. Also, 

the acuteness of the ear is known to decrease at higher 
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frequencies for frequency discrimination with obvious 

implications for the higher formants. 

A more recent study (49) assumed that all j nds are 

frequency dependent in the same fashion that frequency 

jnds are. They also assumed that the minimum jnds (at a 

frequency of 1.5 kHz) were multiples of Flanagan's 

values. The multiplication factor was found to be around 

4 to 5. These results are summarized in figure 2.3-58. 

The jnds have the values 12% for formant frequencies, 80% 

for bandwidth, 4 dB for intensity and 10 dB for valley 

intensity, at a frequency of 1.5 kHz and follow the graph 

shown for other frequencies. Al though this study showed 

that a distribution of jnds following a frequency 

dependent course gave better results than a flat 

distri bution it was not examined whether one or more of 

the jnds could have had a flat characteristic with 

frequency whilst the others could have been frequency 

dependent. Their resul ts were derived through a scalar 

LPC parameters quantization paradigm which also showed 

that the quantization based on jnds was superior to the 

one based on Log Area Ratios (50).The quality 

judgements were performed on the unquantized 

filtered through the quantized filters. 

LPC residual 

This method 

ignores the effect of quantization on the magnitude of 

the prediction error power, or other prediction error 

characteristics, which may be of equal if not greater 

importance in a real coding situation. 

2.3.6 Phase perception 

The first systematic study on phase perception was 

the classical work of Mathes and Miller [51). The 

experiments centered upon small groups of harmonics of 

fundamental pitches in the voice range (But identical 

results were obtained with inharmonically related but 

equally spaced frequencies), 
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The effects observed were concerned with a change 

from rough to a smooth sounding quality as the envelope 

shape of the complex wave changed from one in which large 

maxima and minima existed in the time structure to one 

for which the envelope was more near1y uniform in time. 

It was found that the change from roughness to smoothness 

could be accomplished by changing either the amplitude or 

the phase of a particular component or set of components. 

Amplitude 

used, but 

and frequency modulated signals were mostly 

also other more complex envelopes for the sound 

were employed in the experiments. 

to 

They found that the degree 

the relative length and 

of harshness was related 

depth of the recurrent 

depressions in the envelope 

modulated wave, and stating 

roughness could be made to 

wave. With the amplitude 

from a rough signal, the 

disappear by changes in the 

phase alone of one of the components of the complex wave. 

This change towards smoothness was also accompanied by a 

change to the envelope of the wave towards uniformity 

with time. A most important result was that these changes 

from rough to smooth occur only if the modulating 

frequency is lower than a fixed percentage of the carrier 

frequency (- 40%) • In order for the phase effect to be 

isolated it was necessary to ·use head phones for 

listening. With loudspeakers it was possible by changing 

the position of the head in relation to the standing 

wave patterns, to observe either the rough or smooth 

sensation. This may be one of the reasons why encoded 

speech segments sound di fferent when heard through head 

phones rather than loudspeakers. Also, the fact that the 

separatIon of frequency components reduces roughness, can 

explain why female voice is generally regarded as more 

melodious than that of the male. This· is so because in 

the former case a specific speech resonance (formant) 

includes fewer and lower order harmonics. 
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The next maj or study was performed by Zwicker but 

unfortunately the references are in German. Some of the 

results can be found in Goldstein [52J who confirmed and 

extended these results. Zwicker performed a variant of 

the AM/FM phase-perception experiment in which he found 

that a carrier tone with just noticeable sine amplitude 

modulation has essentially the identical spectral 

composition as a similar carrier with just noticeable 

sine frequency modulation, provided that the modulation 

frequency exceed some critical value. The critical value 

is dependent only upon the carrier frequency and not upon 

its amplitude. It was found to be about half the 

critical bandwidth (12). Since phase is the only 

significant difference between the AM and particular FM 

stimuli used, that could cause differences in the 

thr~shold perception of the different modulations, one 

concludes that phase is ignored when the modulation 

frequency exceeds half a critical band or, eqUivalently, 

when the stimulus bandwidth exceeds one critical band. 

Hence limited aUditory frequency resolution seems to be 

responsible for phase perception. Some of Zwicker's 

results are shown in figure [2.3-59J. In (52] Goldstein 

reports that Mathes and Miller experiments (51] indicated 

a critical modulation frequency of 40% whereas Zwicker 

found a critical value of 10% This was attributed to the 

differences in the experiments which indicated that for 

these effects auditory filtering may not be modelled in 

general by filtering wi.th an ideal rectangular passband 

fil ter with critical bandwidth. Goldstein reported the 

two sets of experiments from the two sources. 

For the Mathes and Mi ller experiment the stimul i 

could be described by the following equation 

2.3-15 
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where the phase angle t1 is zero for AM and TT/2 for QFM 

(quasi - FM). The carrier frequency is w', the modulation 

frequency is w". 

The two stimuli are shown in figure 2.3-60. The 

modulation frequency was varied for a range of SPLs and 

subjects were asked to decide whether the perceived 

sounds were identical or different. The results are shown 

in figure (2.3-61J. The critical band scale (12J is 

also shown. The course of the data versus carrier 

frequency is remarkably similar to the critical-band 

function but a level dependence is also evident. For 

modulation frequencies in the lower region of the graph, 

the QFM was perceived as temporally much smoother and 

steadier than the AM. Below modulation frequencies of 

about 20 Hz a warble or pitch fluctuation could be heard 

in the signal. The AM signal was described as having 

loudness fluctuation, a chirp, or a buzz. This holds up 

to a frequency of 4 KHz. As the carrier is increased 

beyond this frequency the quality distinctions become 

increasingly more subtle. 

Subsequently, experiments similar to those performed 

by Zwicker were carried out. An AM signal with modulation 

depth m can be expressed as: 

AM2.3-16 

A QFM signal will modulation depth b may be defined as: 

2 
b cos (w -w )t + cos(w t -

1 2 1 ~)+ 
2 

QFM 

2.3-17 

which approximates a sine FM tone with small modulation 

index (b"'«l>. 

2.3-18 
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The threshold FM signals in Zwicker's results figure 

(2.3-59) are approximated by QFM at most modulation 

frequencies. Therefore any differences in the sensation 

of the two stimuli must be attributed to the phase angles 

of the stimuli. Zwicker's experiments were simulated 

using QFM instead of FM. The results were very similar to 

those obtained in Zwicker's study, figure (2.3-59). 

Goldstein concluded that the resul ts could be 

explained if the ear was operating as in practical 

spectrum analysers (47) where the short time ampl i tude 

spectrum is obtained through a set of bandpass filters 

followed by quadrature detection which is approximated by 

ideal envelope detection. Further, he showed that the 

modulation is optimally detected on the steepest part of 

the bandpass filter and that the slope of this part of 

the filter was the only relevant feature of the filter 

related to 

detection) . 

modulation 

The relation 

thresholds (and hence phase 

between modulation thresholds 

and critical bands simply means that this filter slope is 

(approximately) independent of place (frequency) when 

frequency is expressed in critical band units or any 

other unit proportional to the critical band scale. The 

value of this slope was about 30 dB per critical band. 

The ideal envelope detection hypothesis predicts that 

"linear" phase transformations of the type: 

8' = 8 + (X + bf 2.3-19 

where 8' and 8 are the new and old angles respectively, f 

is the frequency and (x, b, are arbitrary constants, would 

produce identical short-time spectra [52,53J. The term bf 

is trivial since it only causes a simple delay to the 

whole spectrum. The term a though will alter the waveform 

although leaving the envelope intact. Although some 

experiments in monaural phase perception support the 
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envelope detection hypothesis others do not. The 

divergence of the ear's behaviour from this model could 

perhaps be accounted for by known nonlinearities in the 

ear (combination tones) [53J. Finally, it should be noted 

that the experiments carried out in [35-38J 

concerning masking period patterns are also very relevant 

to, and are examples of, phase perception. 

2.3.7 RQughness 

We have seen that phase differences become detectable 

through changes in the roughness of sounds. Roughness 

is a distinct senpation or attribute of a sound as is its 

loudness or pitch: If a steady sound is amplitude 

modulated with a low frequency of e.g. 5 Hz, one easily 

recognises the amplitude fluctuations as corresponding 

fluctutations of lougness. As the modulation frequency is 

increased beyond about 20 Hz, the fluctuations are 

still well perceived, however one does no longer 

distinguish the succeeding maxima and minima as separate 

events. Rather, the loudness of the sound is constant, 

and the fluctuations are perceived as an unpleasant 

disturbing component which usually is called "roughness", 

.. raucousness" or 11 harshness" . Studies on roughness 

attempt to measure the magnitude of roughness and its 

. dependence upon the stimulus's physical charcteristics. 

One such typical study is from Terhardt [54J. It is known 

that for AM signals the magnitude of roughness depends 

upon the modulation index. To determine a quantitative 

relationship Terhardt performed an experiment where the 

subjects had to listen to two AM tones which differed by 

their modulation indices (m). In one experiment the 

subjects had to judge whether the second AM tone was more 

or less than half as rough than the first one. From the 

distributions of answers, those m-values of the second AM 

tones were determi ned at which the anshler "more than .. " 
and "less than .... " had equal probabilities. Those m

values were considered as the resulting values mo.,·., 
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corresponding to half the roughness of an AM tone with 

the m value m,. In another experiment subjects were asked 

to determine the tone being "twice as rough" as the test 

tone. This was now the m, tone where the test tone was 

Three AM tones were investigated (1) carrier 

frequency f = 268 Hz, modulation frequency fn-,c,",,' = 40 Hz; 

(2) f = 1 KHz, fm.~.=, = 70 Hz; (3) f = 4 KHz fm".d = 70 Hz. 

The SPL was 70 dB in all cases. The results are shown in 

figure [2.3-62], The results reveal that mo."dm, does not 

depend on m-" carrier frequency or whether is determined 

with the criterion "twice as rough" or "half as rough". 

The arithmetic mean of all resulting values IIb_s/m-, 

shown in the figure is 0,707. This means that on the 

average, the degree of modulation has to be changed by a 

factor of 0.7 in order to change the roughness by a 

factor of 1/2, Therefore the relation between roughness r 

of a sinosoidally amplitude modulated tone and the degree 

of modulation m can be described by the equation 

r = const. m2 2.3-20 

The SPL of the AM tone has an effect upon roughness, but 

an SPL variation of 40 dB (with the m value being 

constant) produces a smaller difference as the change of 

the m value by a factor of two. The exact relationship 

depends heavily upon the sequence of the presentation of 

the test tones. 

Comparisons bet\~een FM and AM tones yielded similar 

results to that of [52J . The "const U in the equation 

mentioned above depends on center and modulation 

frequency, The relative roughness as a function 

of modulation frequency fm"'.~, ..... i th carri er frequency, 

f"",-. as parameter Is shown in (fig. 2.3-63) for a given 

SPL and modulation indeJ{. At low modulation frequency no 

sensation of roughness Is created although a loudness 

fluctuation can be perceived. Roughness seems to begin at 



III 

about 20 Hz and rises very quickly for higher modulation 

frequencies. The peak value is reached at modulation 

frequencies which depend on the carrier frequency. For 

carrier frequencies below 2 KHz the maximum is reached at 

lower modulation frequencies and is not as high as for 

carrier frequencies above 2 KHz. For the higher 

frequencies, the modulation frequency for maximal 

roughness as well as for vanishing roughness does not 

depend on the carrier frequency. For these frequencies 

the roughness peak is reached at 70-80 Hz modulation. For 

higher modulation frequency the roughness decreases 

quickly and reaches, at 250 Hz, 1/10 of the peak value 

which means that it almost vanishes. 

The jnd of roughness as a function of modulation 

frequency 

a 4 KHz 

for an AM tone can 

center frequency. 

be seen in figure 

The dashed line 

modulation 

modulation 

roughness 

jnd. The two are different over 

frequency range since effects 

serve to perceive modulation 

2.3-64 for 

shows the 

the higher 

other than 

at these 

frequencies. The monotonic increase of the 

threshold with growing fn'''''''' must be ascri bed 

roughness 

mainly to 

the influence of "low pass characteristics" of the neural 

system since the AM tone's amplitude spectrum is well 

within the critical bandwidth (- 700 Hz). The neural 

system seems to transmit the envelope fluctuations of the 

neural stimulus with' a frequency characteristic similar 

to that of a simple RC-network with a time constant of 

about 13 ms (solid line in figure 2.3-64). From this 

figure the maximum modulation frequency that can be heard 

is around 300 Hz. From experiments on more complex sounds 

he deduced that for the summation of roughness of complex 

sounds the following are true: 

The entire 

raughnesses 

roughness is composed 

which aro contributed by 

of the 

adjacent 

partial 

critical 

bands. The entire roughness is therefore the sum of the 

partial roughnesses which are determined by taking into 
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consideration the effective degree of modulation in each 

band, after the effects of the critical bandwidth and the 

low pass characteristic (figure [2.3-64]) are taken into 

account. 

In [55] Vogel through masking experiments reached the 

conclusion that the fluctuation of the entire neural 

activity pattern (excitation pattern) was responsible for 

the sensation of roughness and that roughness over a 

large frequency range can be summed in the same way as 

loudness to give an overall sensation as will be seen in 

the section on psychoacoustic models. 

2.3.8 Pitch 

Like loudness or roughness the word pitch denotes a. 

perception with which we are all familiar. Pitch is the 

psychophysical correlate of frequency such that high 

frequency tones are heard as being "high"in pitch and low 

frequencies are associated with low pitches. A scale for 

pitch can be obtained in a similar manner as for other 

psychophysical attributes, by requesting subjects to find 

stimuli with a pitch half as that or twice as that of a 

standard. Several other methods can be employed to obtain 

a pitch scale by using different relationships between 

stimuli and requesting different tasks to be performed by 

the subjects. Note tlfat different methods yield slightly 

different results. The unit of pitch is the mel. By 

convention, 1000 mels is the pitch of a 1000 Hz tone 

presented at 40 phons. The intensity is specified since 

pitch also depends slightly upon stimulus intensity. One 

such scale relating pitch to frequency is shown in figure 

2.3-65. which is talten from [56]. Approximately 150 mels 

correspond to the critical bandwidth [57]. 

A single tone gives rise to a pitch sensation which 

is usually refered to as spectral pitch and is strongly 

correlated to its frequency. A complex sound on the other 
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hand <e.g. a selection of harmonics) also gives rise to a 

pi tch which can be matched to the pitch of a pure tone, 

but the relationship between the psychophysical sensation 

and the physical components of the stimulus is less 

clear. It is possible for example for a complex sound to 

have a pitch matched to a sinosoid of frequency F without 

the complex 

This pitch 

periodicity 

sound itself having a component near or at F. 

phenomenon is refered to as virtllal pitch" 

pitch, or residue. 

The mechanisms by which the physical stimulus is 

processed by the auditory system to produce the sensation 

of residue have been the argument of heated debates for 

over a century now and various theories have been 

proposed. It seems 

whose effects are 

that after the 

common to all 

preprocessing stage 

other psychophysical 

phenomena, a pattern matching procedure is followed to 

determine virtual pitch. An excellent review of the 

subject is given in [58]. 

Al though a study of the mechanisms of virtual pitch 

is beyond the scope of this work we will report on a few 

experiments that may be of interest to speech which, 

after all, is an example of the virtual pi tch phenomenon 

and speech coding, especially to a class of coders 

employing regeneration of the harmonic structure in 

certain frequency bands at the decoder, by means of 

spectral folding or spectral translation [59]. 

We have seen that the ear performs some kind of 

bandpass frequency analysis and that the waveforms within 

these bands are to a certain extent preserved. The 

outputs from one such bank of bandpass filters is shown 

scemat ically in figure 2.3-66. The input is a periodic 

pulse train of period 200 Hz. It can be seen that the 

lower channels resolve the individual harmonics, whereas 

the upper channels reflect the periodicity of the input 

waveform. Assume now that individual harmonics that fall 
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into one of the higher frequency filters are shifted in 

frequency by a constant amount i.e. 

f' 
i = fi + L>f = Lf 

o + L>f 

where f'. is the new ith harmonic, 

2.3-21 

f. the old ith 

harmonic, f", the funadamental and L>f the frequency shift. 

It is easy to deduce that the output waveforms shown in 

figure 2.3-66 will change very little. This follows from 

the fact that the same pattern is now "seen" by a fi Iter 

centered at F + L>f which was "seen" by a filter centered 

at a frequency F before the frequency shift. 

Since the outputs of successive filters at higher 

frequencies are more or less similar (with respect to 

envelope periodicity> the deduction follows. The 

frequency shift by L>f for a number of harmonics 

corresponds exactly to the regeneration process mentioned 

above [59J. 

De Boer [60J performed some experiments concerning 

such "frequency shifted" harmonic signals. His signals 

only involved the higher harmonics and were generated by 

a modulation process and carrier injection similar to AM. 

For a carrier frequency f and modulation frequencies g, 

2g and 3g, the following components were obtained 

f-3g, f-2g, f-g, f, f+g, f+2g, f+3g 

g was held constant at 200 Hz throughout the experiment 

and f was varied. At f = 2000 Hz a harmonic series is 

obtained 

1400, 1600, 1800, 2000, 2200, 2400, 2600 Hz 

This is because f = 2000 Hz an integral multiple of 

g = 200 Hz. When f = 2200 Hz then, again, a harmonic 

series is obtained. For intermediate values of f the 
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si tuation of "frequency shifted" harmonics or inharmonic 

spectra is obtained. De Boer notes that the inharmonicity 

was not observed at all; 

different, but the pitch 

the residue did not sound much 

was slightly different. For 

example at f ~ 2030 Hz the components are at 

1430, 1630, 1830, 2030, 2230, 2430, 2630 Hz 

The residue is found to be tonal for this combination, 

with a slightly different pitch of 205 Hz. Figure [2.3-

67l shows the results of pitch matches as a function of 

the ratio fig. There are two pitch courses visible in the 

figure, and, somewhere in the centre of the interval, the 

attention of the listener seems to switch over from one 

to the other pitch. Clearly pitch is ambiguous in this 

region. Both of these pitches however are near 200 Hz. 

For the middle point f ~ 2100 Hz, the components are 

1500, 1700, 1900, 2100, 2300, 2500, 2700 Hz 

This waveform has a tone periodicity of 100 Hz. The pitch 

that is heard though is near 200 Hz 

the combinations. 

as for the rest of 

The waveforms of the three conditions 

in figure f ~ 2030 Hz, f ~ 2100 Hz are shown 

can be seen that "the envelopes 

modulation components at g. 2g, 

f ~ 2000 Hz, 

[2.3-68l. It 

are the same (same 

3g) but that a 

pseudo period near to the envelope period can be seen 

correspondi ng to the "sampl ing" of the envelope by the 

fine structured waveform. This could be a clue as to how 

the ear perceives the pItch of such complex tones. 

In the above experiments only the higher harmonics 

were present. I t is import.ant to know what happens when 

the low frequency harmonics are also present but not 

shifted. Although this exact condition was not examined a 

s1 milar condition .(here a complcl{ ,30und consists of lower 



116 

harmonics belonging to a fundamental frequency fD up to a 

cuto:ff frequency fc and then upper harmonics belonging to 

a different fundamental fD + t:,f was set up in [6ll. 

The stimulus structure is shown in figure 2.3-69. The 

experiments found that the pitch corresponded to the part 

of the sound with the harmonics at the lower part of the 

spectrum. They found that even a foursome of harmonics of 

frequency fc:) against a multitude of components (all 

components of a pulse train above the fourth) with a 

fundamental f e) + t:,f forced the total sound to have a 

pitch corresponding to f o . The lower components assumed 

dominance onCe they were above a sensation level of 

10 dB SL. 

The above two experiments indicate that frequency 

shifts of harmonics in the upper bands of the 

speech spectrum would have little perceptual impact as 

indeed is the case as found in [59J. (See also chapter 

six) . 

2.3.9 Timbre 

Timbre is the attribute of auditory sensation in 

terms of which a listener can-judge that two sounds 

having the same loudness and pitch are dissimilar [62, 

63J.Timbre is that sensation which distinguishes between 

two different instruments e. g. the violin and the piano 

when playing the same note at the same loudness. The most 

important verbal attribute of timbre is sharpness, [64) 

which in turn is largely determined from the 

characteristics of the spectral envelope. It is thus 

important for the classification of speeCh sounds. [65, 

66, 67J. It is difficult to define exactly what timbre 

is, and although the short time envelope is one of the 

strongest physical correlates, phase information (i.o. 

the time course) of the stimulus is also relevant (62). 

The difficulty to define timbre is perhaps understandable 
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hearing sensation that is 

is therefore expected to 

This is reflected in the 

not 

have 

fact 

"loudness" or "pitch", It 

many physical correlates. 

that multi-dimensional analysis 

Timbre. 

techniques are often 

employed in the study of 
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masked ~gna.l wu a 6O-q>s band oi noise, appro..umately equal to 
OM:~ventb of :L critit:l.\ b::I.nd. Signal thrnhold "11.' ploued as .. 
function of center frequency. Tbe single and two-tone audi(>l!"Ims 
art llt;J.rly the same hei~ht but the three-tone a\ldiogram IS the 
s:lmc in height :IS the noise :ludiogra.m. 

Figure 2.3-14 [11] 
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Frequency in cps - Critical band scale (revised) 

Figure 2.3-15 [11] 

T\\'~h·e n>ashd audiol:rams 
!>ro,Juced by a ("O·lone stHlluius as a 
function 01 the frequenc\, scpalatioq 
(1/ th~ lwo to.r,(S_ Con;ponent fre_ 
'luenCICS 01 the "'asking stimuii are 
gi .. ~n !>tie.., tach .~t 01 audio.!:.ams, 
which arc shifted Ml the mdinate for 
clan!}' 01 pr~'entati"m. The ma,ked 
si.!:nal .was a (.o·cps l>and of noise, 
appro"matcly ~'l~,,1 to one·~c'·entn 
01 a ulllcal banJo ~i~nal thr~shold was 
"loUed at a IU(lCll"'1 of (ente. Ire
'lucncy, Th~ dip In the "udio~ram 
a",,('US klow the mid",,;nt of the 
i!ltn'-al ,erara!i (I~ thc tones when the 
scparatlun "llhe I"(les reaehes or juS! 
nctcds critical .... ;dth. As Ihe scpara_ 
tion .o:'''w., I he h'" peaks come to 
r~,em"le d<l<d~· the peak of the audio
gram I"o.)u<'(d Ly a sin~le rUle tone. 
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Dependence of h,uclneS!. on the sr~cinl: of the components 
in a four-/o;lc e<>mpk.¥. The Ipur IOnes ,,"ere N"'cW :lp("o.tlmardy 
uniformly in frequency about Ihe ccnt~r ir~(]uenq' indicated. 
Loudnc~s hlanccs between the (enter frc'lutncy and the (nmple>; 
• .-cre made by ,<:roups of fr"m 10 to 22 "ubje<.:\$. T mc.ln! The tone 
was adjusted and C means the c<Hnplcx was adjusted. The lines 
tflr,:u~h the l1.lta /\a,:e a, break at the pOint predicted by the 
c.jural·band hypot hc~\s. 

figure 2.3-17 [tOl 
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rigurc2.l-16 [11) 

i\(ash<f 3udio;::ams of 
subject DP produ~d b,' b:lnds of 
noise of equal power and the same 
eenter frequency. The bands were 
eentered around SOO lInd lJ IS CPS' 

bandwidths I'lI.nged from su~ 
critical to supracritical width. To 
determine the' masked audiof;Tams 
produced by pure ton" 500 and 
1118 'ps, dU': signa.! used was the 
tiO·cps band of noise shown at the 
botlomQ{ the graph; the thr~hold 
of the noise was plotted as I 

function of t.he c~nler frequenc,v. 
Jiantls of critical or lesser width 
produced 3.udiograms IbM are 
nearly Superimposable, tending to 
coincide most closely nea~ the 
,bscissl, those produced by pure 
tones of equal power are quite 
comparable in e.~tent. Tbe extra 
extent of (iudiogralll5 productd by 
supracritic.:r.l b:lnds is al.>out equal 
to the amount bv "'hich the b:lnds 
exceed Critical lIidtb. 

CENTER FREOUENCY '1420cps 
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nrprn,J~nre of I"udne., on Ihe t_~".\ "idth "f ;1 nn;.." of 
COnstant $f'L haV\\l~ a crnter frr'l\len,r "t 1 ~:.) C:\S. (''''''1'3'\'"n 
DO~'lCS of t ... " hand "j'lth,. 2h) Cl" l(i'~lr~1 and 2310 q-s 'trio 
.n~I.~), "'.re matched In 1""I<Ine ... It> ~.I~h b.l~<l "'1<111' .:;,./0" ~t a 
COnstant SI'I.. 

Figure 2.3 -I t\ [101 



30 40 SO 60 70 80 90 100 dB 120 
».r4 press..n IeYf!j of m.oll<irog IIO<S!_ 

il Parlial masking of a 690 cls lone as a funclion 
of the SPL of the masking noise. Partial mask· 
ing is Ihe difference between the SPL of the 
masked lone, whose level is the parameter on 
the curves, and Ihe SPL of the equally loud 
comparison lone. Both tones had the same fre
quency, but the masked tone wa9heard-';gainsl 
'. naffOW band 'of .noise;·.while the comparison 
lone was heard hi the quiet. Eam. 'point is the" 
median -of foui: loudness' iniiches by lour sub· 
jects who adjusted Ihe level of the comparison 

,tone. The interquartile ranget are also shown. 
The symbol T indicates on the ordinale the me· 

I dlan absolute thre~bold for Ihe lone in Ihe 
, ciu~Oil'"ilie"itbsCl$", the minImUm noise 
~.vel re~!red to '!I.ask complelely Ihe lone set 
ati1~~ 

I 

I 
OL;'O'-~~7,o~t~~.OOCC;"O~BOo-t,'O"'~OO,"O'B-""~O 

Sound pressure ",et 01 mdll.mq OQ.le-

b Partial masking of an 830 cls tone as a func· 
tion of the SPL of the masking DC/ise. Eam. 
point is the median of 10 loudness matcllf~S by 
5 subjects, each of whom made two matches. the 
first by adjusting the level of the comparison 
lone, and the !econd by adjusting the level of 
the masked lone. 

P;gurc 2.3-19 [IS) 
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C Partial masking of a 980 cls tone as a function 
of the SPL of the masking noise. Each poinl is 
Ihe median of 8 loudness matches by 4 subjects. 
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~d ~I!ure 1~'fI of mJlk;n9 M'le_ 

d Partial masking of a 1155 cl' lone as a func· 
lion of the SPL (If the masking noise. Each 
point is the median of 8 loudness matches by 
4 subjects. 

lCO,--
ilSi SPl. of 
9Jt ""l'ed 10 .... 

1]5S els 

oL;J,;-~',;-~~"'~oOO-CJ"-o,c)-o",,C-"C'-c!~'.J 
Sc....,~t>",.""'"p .~,~. ~I "'''.''"l"''~-

C Partial 111(1,1.,.;0:; 01 ~ l;l,;.~ 1;' lon-c a~ a function 
of the SI'I. of thl' rna,kin).! noi .. e. EJdl point. 
except on Ih ... 6.) dB cunl'. is the median 
"I 11 JOlldne'~ mal"III"~ Lr .~ ~1I!,jC(·I". On 
tl,,~ 6.; dl! rurl"<'. \',1<:11 point i .. Ill ... nll·dian "I 6 
","Id){~~ h)' ,j ~llbj':l·I~. The {"unh "d,ject had 
all unu~"atl,· hi::h n13,kr<l Ih,..,]wl,l for the 
(,:; ,1I11<>n(' '0 Ih"t hi, ]')11.1",·" luolgll,,"UI, ""·r .. 
r"",id'·r .. !.!y J, ... low till"" of Ill(" ".1,... thr"I' ~lIb. 
j"I'ls and ""'r!' lIot int"iud"d ill tI,,· r,·,ult.;. 
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Figure 2.3-22 [17} Relative SPl of masked noise 

(a) Loudnes.·matching (unctkmll obtainoo by equatinl!' in loudnea • 
masked and unmasked hand of noise. Noise bandwidth: 75-9,600 Hz. Ma.s.king 
frequency: 1,000 Hz. The cro_. indicate group geometric me.na obtained by 
adjustment of the unlMsked noise, and the un.{illl!d circles indicate tho$e 
obtained by adjustment of tht: masked noise. The Plltameter- is the SPL of the 
1,OOO'llz ma&king tone. The nUmbeu along tbe ablJCisq indicate the SP14 of the 
noise tnasked by the lowest intensity tone. To det~ine the SPL, of each 
IUccessive functiOD, IJUbtract 20 or 40 dB. respectively. from the abscissa vaJu~ 
(b) Analogoul to (a), except t~t the noise band '\Vu 600-],200 Hz wide. 

AnaIOMou'to Fill'. la, u:':ept 
that the noise band was 925·1.080 Hz 
wide. To determine the SPLs of the 
noise ma&lr.ed by the 90od8 SPL tone, 
.ubtract; 60 dB from the .lblCiIIa 
valu~. 
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Figure 2.3-24 (19) FREQUENCY OF MAS)(ING TONE IHU 

Auditory threshold for acrilical·band noise hursl ccnlTl:d at 11.Hz ma,ked hy 
"a toneofinlcnsity BOdS SPL. The frequc:ncy band o.:cupied oy the n<li, .. · is indi,c;lteJ h~ 
the rcclan~ular shaded area. Note Ihat for a tonc frcl.\ucncy nf Il Hllhe n<'1SC ml"·IN1~ 
al Ihreshold is 24tJB below the fO~ inun.~il}'. The mash·d thrnh,.ld df"'P~ 111.'rc 
ste<:ply when Ihc lone frequency is raised lhan when it is lo"cred. wrr,,·'pl'ndill~ !(llhe 

usual frequency asymmetry of auditory m;lsl.ing. Suhj,-..:t: JUt 
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1·· 23 '5 [19J INTENSITY OF MASI(EO NOISE BuRST (dSS~l) ·cg,urc . -_ 
Stlrrathre~hold loudlle~s mea~urcmcnlS t'.'r a etlllcat·h.ul.1 n,\\~e r-UT~t 

centred ut 1 k III masked by a lone .. finlCn\IIY XO dB S Pl :lnd frc"'ll~n':>.1> 1I)(lh:.U,'J In 

C"~ch p~ncl. NOIc Ihat (or a (une frcl.\ucnq' ut' J UJI the l1I;ltchlf1!! H1tcll'lt~ ,>1 Ihe 
unm;l~kcd nOI\C bUTst dccrc:"es 1'1Ih ;1 ~I,>~ of .\JII <Ill "h':11 :hc Ult .. 'n\ll~ ,>1 Ih ... 
masked noise burst IS reduced hclol'!.' XOJB S/'L in Jpcclllenll'!.lth b.jn l'h"lIh r '"' : 

SUO)<. ... 't: JUl. 

rigure 2.3-23 (17) 
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for ;IIJ t~'I)('s of 11I1skrr 
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Fij!.6. For .. ard ma'~i"l: ul Ip,1 I"'''~ imp"I,,·, I,)' & ullifnrm 
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11.,,,,,-: 11"",1,»1,1 ill 'I""" "I k-l ,,,,,,. llIll",I,.,. 

rigure ".3-"6 ["5] 

rigure 2.3-27 [25] 

Figure 2.3-28 [25] 

rigure 2.3-29 [25] 

Figure 2.3-30 13 I J 



flat'k ... ;).,,1 n'8>~jn~ ()f h'SI I"',e i"'I'"I,,·.~ Ioy a "lIi. 
I",,,, "'a'~;"1t noise j"'I'"J,c u> a /u"clinn uf <Id.,' lime. 
L)[~'b(),m, .Jhl=16~Hz, 1'~I=';OOIllS, . 
fr"'8 lHz, 1'T=l ms. 1'.(;=0.5 ms, 
arrn ... : IlIn'hlwld in quict of II.'~I tone impulse, 

Figure 2.3-31(31) 

m'r---------------______ __ 

Mh~ing of ~i,,£k 11.'.1 lone i"'pu""$ hy hurots of 
ullif()rm muki,,&: noi~e. 

L;( =60 dB, ,11.11= 16 kll't. T)1 ... 300 ms, 
1'p=SOO ms, 1';_1 "'5, 1',,=:? 'liS, 
fr-8kHz, TT=l "". 1'r,:-O.5",s, 
cros~: calculall'd Ihreshuld", d()I!: mru"retl '),rt',hold .. 

Figure 2.3-33(31) 
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:o.fa'~i,,~ of oin"l" t~SI lone i"'l,ulses by ""Ns 01 
uniln,nl ma'~i"" nni,c. 
1')1 .. f,(J dUo .1/\1 = 16 ~lIl. T.\I =.~OO III~. TJ' -500 ms. 
r, '= 11) "". 1'"" 5, 10. :lIl, .~II. 100 Ill". 
h"":! ~11l. TT ~.'> Ill'. T,,: = ~ "'". 
,·i,d,·,; III"a"""d 11",·,10,,1')<, da_h.·" ru,,,'s: r'l"""l<'d 
",~,~",~ 1""rI,,,"o, 

Figurc 2.3-35 (31 J 
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Figure 2.3-32(31) 
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Maskinjl.' of sin,!!:le 1t'S1 lone impulses by burs .. ()f 
unilonn ma"king noise. 
L)! =60dB • .:I/l,"" 16k"~ T.u_300 ms, Tp=SOO ms. 
1';_Zm ... 1',,=20 m •• 

I"r.,,8 ktlt. 1'T= 1 nl., 1',G=O.S ms, 
m .. asu,rd lh .... holol.: "01, and ~olid lines, caicuJ.ted Ihrelih. 
old~: cro.~. and dash"d lin .... 

Figure 2.3-34(31) 
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Fi ... u ' '. re 2.3-37 [l2J 

Figure 2.3~40 [33J 
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Figu re 2.3-38 [32J 

1 Transi pu se at 21 ent maskin 
• TM ~ 200 ms' T a sinusoidal L

M

" 70 dB_·5 Bark. g pattern of 
• T" 2 illS; ta .. 1 ms 

Pi" 2 .ure .3-39 [30J 

figure 2.3-41 [33) 

Threshold lev I 1klluouc c Lr(XXX) 
narrow ban,;n~l:ul~cs ma<kcd ~f 2 rns long 
a band"IJtb re centered at 1 karllticlai 

i""""'"'' ":,, 1 ,11, """ ."h II .. "h unCllon of 11 Lsu-x (-01 d Ihe)n' 
tl\f!' l~\d of:f ,I, lav lime ..... :. T~ur~d as lelll~skll1" ~ _ n("~t' Is .0 dB 

Figure 2.3--12 [JJ] 
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.h·,-r")!I· 1l'l1Il'ur,,1 tlisl,m,.., 0 "r (·llI"..!"l"· maxima, 

.. H.=utlU .If.=:!clll J.l .. =tidB ::"/.= IUdR 

'1 " " " D 
Ih; m~ m~ rn. rn. 

10 lOO 252 520 :WOG 
30 G:l.5 84.0 113 1302 

100 19.1 2.').2 52.1 3!J0 
:11111 G.:I!) RAU 17.4 130 
7t10 2.72 :1.611 7.44 55,11 

lXIII' 1.00 UII 2.911 21.7 

Table 2.3-Tl [34] 
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dB 
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0 1 111111 

8482848 
4ttT--

-' )Id$king p"riod pnUl'rn of u IwQ·!on ... ·nmsk •• r with. 
L, = ~~5 dB 1/4 = 112 If,,) [llu~ I .. ~ "" G.'i riB (/~ = un Ih). 
Tl' .• t sigmll: IT = :!j,,):! Hz; /,:= 1..1 mg: IrI; = H.;"; nUl; (){". 
t,we nt 2.11 kH?: ,. = 28 H~. ,-'rro,,": thrt'Shohl in qui!."l. 
l'pJX'r j!n'ph: linll' patlt-rn of Ih~ \'ohngl' produdng Iht' 
maskrr. 

Figure 2.3-44 [35] 
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lal ~'a~lm~ll~vl'll.t",,-, wHhln the m!l.,skln.:-pcriod 
pll.ltern~ and Ihl"'mporuL ,)c,·orr,'nl'e~ ...... of tht' value "lItllo 
the I"'rlnd ~s fuo<"tlOo 0( the nl~~M"r levrll,~. Param"ter (, 

tl .... fn'qu"n,'Y I" of tlo" ma~k .. r. For d"!a\l~. M!" l<!xt. 

Figure 2,3-46 [36] 
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Comp:lrlson lJetwcen maskin~ period pattern ellclted 
bY:I 50-Hz. lOO_dO m:lsk"r (Sf'C 1'l!:9. I :lnd 5) and time (lino: 
tlon of the 50-Hz tone with corresponding peak v.11ue, shifted 
by ..... .III::IO". \:1) line:,r ordlnll!e scale as uacd In neurophylo: 
ICI!:IC:lIl~' m(,3sured period higt,,~ram8. (b) 10000nrHhmLc ordl
n;o);e sc"le :,,' \Ised in p",~d\""c!lUslic,,\ly mC:lsurl'd masklol: 
,,,,rlod patte'rn,;. ell"elt's: :I\'crm::~'d data (r(Jo, It mcasurtl_ 
mc'Ats on the saml' >lulli"ct nbl:l;lnl'd throu!:hout :I period of (lone 
}'I!ar. nolts, dnln from Fll!. :;, 

Figure 2.3-48 [37J 
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c"kulaU-<!llnw fUnl'llon ... (hn~"d "n Ih.' data .:,,'pn "t U,,' bot_ 

tom), l'"r,l"W(pr I~ (h.· ph""" ;oOI!'" "'", hf "'" "'(',,,,,j "',r. 
noOOO(' "f 11,.. ",a~~('I'. "9 lI"hr,.t .. ,t, 
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Masking period pattern. (dots) shown In FIK. 1, re_ 
plotted on linear ordinate scale. Parameter is the level L"l 
of the second harmonic (100 Ht) as Indicated, For cornpanaon, 
calculated time fUnction. based on the level relation of the 
m.sker compooeota aod 00 the phase shifts 1"' .. (as lodlc:!ted) of 
the patterlUl elicited by IIlngle masker componeots are drnwn 

'U dubed 1I00ell, The patterns as well as the time fuoctlons 
t':'e nnrmaJlted for each diagram separately. 

Figure 2.3-49 a [37J 
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Figure 2.3-50 [lSI 
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SL (X's) are shown for comparison, 
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Estimated values of the fonnanl parameter JND'r; u • funelion 
of frequency_ X represenrs the fonnant parameters: center frequency F. 
bandwidth B. pcik power I, and valley power V, . 

Figure 2.3-5& [491 

~ (0 , 

'[, b 
~

" ' 

A:'>[ ~il:Tla! (/"{» is Iransf~)Tmed to a 91':'>1 ~kl1a! Ib,)II",,,) 
by A- pha.,c Challl:e. 'J he ,\;\1 s'~na! <""tall'S oHI_" amplllude 
modulallOn, "he"'35 the (Jr.\1 is bJth aOlphtude_ and fr~'lu'·ncy. 
mndulat,·,1. h" Ih,' 51~'11all shown, J,ff,y 10 and the 1\.\1 Is 
m"dub~ed J(.I(J~'~. 
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mhar~onic co~p1c%cs of Innes (Fig. 8), and the crosses for two
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The ratio mo.riml whim corresponds 10 the 
roughneS1l ratio 0.5: I, as a function of m,. 
mo.S. mt: degrees of modulation of sinusoidally 
amplitude modulated tones (AM tones) ; /: cu. 
rier frequency. 
Resulting points with vertical hars: criterion 
"half as lough", remaining points: criterion 
"twice as rough", 
The han represent the interqu8niles (25% and 
75% of the answers, respectively). 
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Figure 2.3-61 [52) 

Comparisons of M.! an<.l QF~f (H)()% 
modulation) as a funclion of carrier frequency ft, 
m,,<.lulalion frequency i., and carrier level. The 
results 01 the four subjecu were logarithmically 
averagc<.l for each of the carrier levels 20. 40, and 
60 dB SI •• (At the carrier 250 Ht, the carrier levels 
were 15,31, and 4i' dB SL, corresponding approJi. 
mately to 20. 40, and 60 phon.) The curves suggest 
lOme relation to the critical·band scale ( ___ ), but 
there is a clear dependence upon carrier level. 
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2.4 Models of psychophysical phenomena 

Many models have been devised throughout the years to 

explain and predict psychophysical responses. Early 

models were concerned with the intelligi bili ty of speech 

signals and the closely related Articultion Index [6, 3, 

4, 5, 6). The degredations studied were usually due to 

filtering or noise masking. These first experiments 

helped to establish acceptable noise conditions for 

telephone circuits as well as the bandwidth of the 

telephone band, 300 Hz - 3.4 KHz. 

Other models attempted to predict specific phenomena 

such as masking [b) temporal summation (integration) 

[1,2), loudness calculation [7, 8, 9), Monaural phase 

perception [10), backward masking [11, 12) or pitch [13). 

Some of them made use of physiological phenomena [1, 

2, 10, 11, 12J such as the probabi 1 istic nature of the 

neural transducer whilst others builded upon strictly 

psychophysical phenomena. Nearly all of them made use of 

some mechanisms of auditory selecti vi ty. In the remaining 

parts of this section we will concentrate on a model 

which aims to encompass all "the known psychophysical 

phenomena and explain them through the use of only a 

limi ted number of concept elements. These concepts are 

the critical band, the excitation pattern and some recent 

time related elements which form the excitation critical 

band rate-time pattern. 

and predict masking 

This model can be used to explain 

jnds loudness, pitch, timbre, 

periodici ty pitch, roughness and other phenomena. I t is 

mainly due to Eberhard Zwicker and was originally 

to predict loudness summation proposed 

developed 

describe 

years into a 

phenomena 

without losing its conceptual simplicity. 

critical band can be found in [14). 

in the last 20 

of the multitude 

and maski ng but 

model able to 

mentioned above 

A review on the 
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2.4.1 The Crjtlcal band scale 

Analytical expressions have been given to transform 

from a frequency scale to a critical band scale. The 

equivalent unit of measurement on a critical band scale 

is the Bark. Some values are given in table (2.4-T1). For 

frequency f in KHz, critical-band rate Zc in Bark and 

arctanO in radians the following expression has been 

proposed [15]. 

Z = 13.0 arctan (0.76f) + 3.5 arctan c 

2 
<-~- ) 
7.5 

2.4-1 

which transforms the linear frequency scale into the Bark 

scale. 

The critical bandwidth CBe is given by [15] 

CB = 25.0 + 75.0 [1 + 1.4(f)2) 0.69 
c 

2.4-2 

where f is in KHz. The above are applicable over the 

whole audible frequency range. 

Another set of expressions c:an be found in [16J which 

provides good fit for frequencies less than 5 KHz. 

f = 650 sinh (Z 17) 2.4-3 
c 

CB = (650/7) cosh (Z 17) 2.4-4 
c c 

where f is the frequency in Hz and Zc the critical band 

number (or rate) in Bark. 

A rule of thumb is that the critical band is of width 

of 100 Hz below 500 Hz and one-sixth of the center 

frequency above that. A plot of critical band rate as a 
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function of frequency is shown in figure [2.4-1]. It is 

generally accepted 

to a filter with 

"predicted" from 

shown schematized 

that the critical bandwidth is related 

finite slopes. The filter shape was 

masking patterns (audiograms) and is 

in figure [2.4-2]. 

These patterns were derived by Zwicker through 

masking experiments. The frequency difference between the 

two 3-dB points corresponds to the critical bandwidth 

[17]. The slopes of the patterns towards lower 

frequencies are independent of center frequency and level 

and have a steepness of about 27 dB/Bark (27 dB/critical 

band). The slopes of the patterns towards higher 

frequencies depend clearly on level [ 17] . It is 

interesting to note that first, a critical bandwidth was 

calculated from psychophysical measurements and then, 

this bandwidth assigned to this filter whose shape was 

determined form masking audiograms. Some authors argued 

that the shape of the auditory fi 1 ter would affect the 

value of the critical bandwidth in the first place: For 

the same psychophysical measurements, different sets of 

bandwidths and shapes could be used to account for the 

data [18]. Some of the experiments disputing the shapes 

of the fi 1 ters and the size of the cri tical bands are 

very recent [19, 20. 

show how little is 

21, 22, ·-23,24, 25] which goes to 

known about the psychophysics of 

auditory system, indeed about its most basic 

characteristic, that of the critical band, and therefore 

the difficulty of constructing models with predictive 

powers with any degree of certainty. 

2.4.2 A modp] of loudness summation 

The model of loudness summation by.Zwicker and Scharf 

[26] will now be described. Its aim is to permit the 

calculation of loudness from the physical spectrum in the 

presence of masking noise. Figure 2.4-3a, b traces the 

transformations that are assumed to occur when the ear is 
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stimulated by pure tone [2. 4-3a) and by whi te noise 

[2.4-3bJ. The physical spectra are shown on the top. The 

first stage is the envelope of stimulation of the BM 

(second from the top). It can be seen that even the pure 

tone with a line spectrum produces a displacement over a 

wide area of the BM. The next step is the excitation 

pattern and represents the level of neural acti vi ty due 

to the displacement of the BM. It can be seen that this 

is much narrower than the BM displacement curve. (The 

excitation pattern is derived from masking data). Note 

that from here on values along the horizontal axis are 

plotted against the critical band rate or tonalness (Z). 

The excitation pattern is then transformed into a 

loudness pattern through an equation relating Specific 

Loudness N' to Excitation E. Finally, the total loudness 

produced by the original stimuli is the integral of the 

area under the specific loudness pattern. Note that, in 

the case of white noise, 

in the upper frequencies 

than the part in the lower 

the part of the noise spectrum 

contri butes more to loudness 

frequencies. 

The loudness of the noise can be reduced j fit is 

sui tably shaped so that it has a lowpass spectrum. We 

will now look at the transformations taking place in more 

detail. The excitation patterns (and loudness patterns) 

which are assumed to correspond to activity in the 

nervous system are "derived from masking patterns. This 

idea is not new (b). The masking pattern for a given 

sound is the plot of the masked threshold of every narrow 

band stimulus as a function of its frequency. It is not 

necessary to measure masked thresholds of every sound. A 

set of standard masking patterns and their derived 

excitation patterns can be used which represent the 

masking patterns of any sound narrower than or equal to a 

critical band (but remember the effects of envelope 

fluctuations for very narrow bands). Combinations of 

patterns centered at different frequencies can reprc>sent 

the masking patterns of sounds wider than a critical band 
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[27J. A set of such masking patterns are shown in figure 

2.4-4. It is then necessary to determine from the masked 

threshold the excitation level within the nervous system 

produced by the masking sound. The two can be related 

through self masking or the intensity jnd. Since in such 

measures the excitation patterns of the masked noise l>I 

and the masking noise I are almost identical, their ratio 

l>I/I may be taken to express the ratio between the 

excitation of the just masked stimulus and that of the 

masking stimulus. The range of the intensity jnd is small 

and can be taken to be between 1/2 (3 dB) and 1/4 (6 dB). 

Therefore 

completely 

the minimum excitation required to 

is twice to four times the intensity at 

mask 

the 

masked threshold. Hence the addition of 3 - 6 dB to the 

masked threshold gives the value for the excitation 

level. The excitation level can be expressed in dB as LE: 

= 1010g",,, (E/Eo) where Eo is a reference value 

to Io corresponding 

patterns of (fig. 2.4-4) can 

watt/cm""'. 

now be 

The masking 

replotted as 

exc! tation patterns (figure 2.4-5). Note the change from 

frequency to critical band rate on the abscissa. 

Although the excitation patterns shown in figure (2.4-5) 

are for a critical band of noise centered at 1200 Hz and 

having the SPL shown as the" parameter on the curve, 

exci tation patterns for subcri tical bands of noise (or 

tones) at higher or lower frequencies are similar (by 

virtue of the similarity of their masking patterns). The 

next step is to convert from excitation E to specific 

loudness N'. The psychophysical equation expressing this 

relation is based upon Stevens's Power law [28J, which in 

one form, says that equal intensity ratios yield equal 

loudness ratios. It is also based on the assumption that 

the loudness of any sound is the integral of the specific 

loudness over the Z (bark) scale. In this sense every 

sound involves the summation of loudness, since as seen 

in figure [2.4-3aJ even a pure tone produces an 
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excitation pattern which spreads over a considerable 

portion of the Z scale. 

Stevens law may be expressed as: 

L;N 

N 
= K' 2.4-5 

where I is the intensity of a tone and N is the loudness. 

In terms of excitation we can assume that the equation 

applies over a small region on the Z scale where the 

excitation can be assumed to be constant. For this small 

region 

L;N' 

N' 
= k 

L;E 

E 
2.4-6 

where N' is now the "specific" (or incremental) loudness 

and E the excitation of a particular location on the Z 

scale. 

Near threshold where intensity discrimination is poor 

an adjustment term must be added to the denominators of 

the above equation. This constant Egr can be thought to 

represent the excitation produced by the ear by an 

inaudible physiological background noise. This excitation 

can suppress a weak' excitation produced by an external 

stimulus thereby setting a lower limit, the absolute 

threshold, for the ear's sensi ti vi ty. The corresponding 

inaudible specific "loudness" is N'gr 

L;N' 
= K 2.4-7 

N' + N'gr E + Egr 

Treating the above equation as a differential 

equation and integrating, we have 

log (N'gr + N') = klog (Egr + E) + log c 2.4-8 
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or 

N'gr + N' = C <Egr + E)k 

C can be calculated from N' = 0 for E=O giving 

C = 
N'gr 

Egrk 

k N'gr = C (Egr) 

2.4,-8a 

2.4,-9a 

2.4,-9b 

The evaluation of the constant Egr depends upon the 

same assumption used to convert from masking to 

excitation patterns, namely, that the masking excitation 

must be twice to four times the excitation produced by 

the just masked tone. It is assumed that the internal 

background excitation is twice (to four times) the 

excitation E~ produced by an external tone at the 

absolute threshold 

Egr = 2 Et 2.4,-10 

Using equations 2.4,-9 and 2.4,-10 to substitute in 2.4-8: 

N' = N' gr [ (~+ 1)k - 1] 

2E
t 

2.4,-11 

in order to express the value N'gr in relative values of 

exci tation Et.lE", the reference val ue N' grc, is introduced. 

With 2E .... replacing Egr in equation 2.4-9a we obtain 

N'gr = 

N' !2:'"r 
W 0 

N' gr = N' gr ( o 
E o 

or 2.4,-12a 

2.4-12b 
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Equation 2.4-11 may now be written 

N' ~ N' gr ( 
o 

k 

) x 
K 

+ 1) 1] 2.4-13 

The value of k can be calculated by matching the loudness 

of, first, a uniform masking noise (a noise with the same 

SPL in each critical ,band) to the loudness of a 1 kHz 

tone for various SPLs. 

These values were then predicted from equation 2.4-13 

by calculating the total loudness of each sound through 

the integral 

N ~ 

Z~24 

I 

Z~O 

N'dZ 2.4-14 

for various values of k. The best fit was found for a 

value of K ~ 0.23 

The value for N' gre, can be calculated by forcing the 

integral IN'dZ to be equal to 1 sone where N' is the 

specific loudness of a 1 KHz tone at 40 dB SPL. 

After some smoothing at low levels the final equation 

is given by: 

0.23 0.23 

[(~ E + 1 ) 
Et 

N' ~ 0.08 ( ) -1] (11) 

2 Et 2 E 
o 

2.4-15 

The equation can be seen j.n (figure 2.4-6) with both Rt. 

and E expressed in dB as Lt. and L,.;:. Note that the 

ordinate of fig [2.4-5] should not be labelled L. but (L. 

a). a takes into account the frequency dependent 

attenuation introduced by the middle ear. 
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The model can be appl ied as it is to calculate the 

loudness of any complex sound provided E and E· •.. are known 

in each cri tical band. These can be derived from the 

masking pattern of the complex tone. This is not 

necessary though. The loudness can also be determined as 

follows: The SPL in each component critical band of the 

stimulus is measured. Each band is treated as an 

independent stimulus that gives rise to an excitation 

pattern like the one shown in fig [2.4-51. the 

overlapping patterns thus obtai ned have a common upper 

envelope, which determines the excitation level; wherever 

two or more patterns overlap, only the highest excitation 

level is used. 

The model can also predict partial masking if .the 

slopes of the curves in figure [2.4-6] are adjusted as in 

figure [2.4-7]. In place of the excitation level L at 

threshold, the excitation level L,~ of the masking 

stimulus is the parameter on the curves. Note that 

although the model is designed specifically for loudness 

calculation (summation) the basic elements <e.g. the 

critical band scale and the excitation patterns) can 

serve to model many other psychophysical phenomena. The 

model predicts values in good agreement with experimental 

results on loudness sumation [29) and partial masking 

[30) • 

The procedure has been standardized into a graphical 

form [9). Figure [2.4-8] shows an example of factory 

noise whose octave band levels are shown. The area 

corresponds to the total loudness of the noise. The total 

area <the integral under the curve) is shown by the level 

of the horizontal line, two thirds down from the top. 
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2.4.3 The excitation pattern in other phenomena 

[31. 32) 

Lets first review the elements of the model which 

will be relevant for the rest of' the psychoacoustic 

phenomena to be examined. The first element is the 

cri tical bandwidth. To a first approximation, the 

critical band can be understood as a bandpass filter with 

infini tely steep slopes (rectangular filter). From the 

bandwidths, a scale can be derived such that one unit on 

this scale corresponds to the critical bandwidth. There 

is a nonlinear relationship between this scale and the 

frequency scale since the critical bandwidth increases 

wi th frequency. After the critical band scale is 

constructed one can do away with the rectangular shape 

fi 1 ters and use the psychoacoustical excitation patterns 

instead. The advantage of the use of the excitation 

pattern on a cri tical band scale can be seen in figure 

[2.4-9). The excitation for critical band wide noises of 

different center frequencies but equal SPL is shown. The 

curves are very similar and can be derived from each 

other by shifting them up or down the Z scale. The 

derivation of the excitation pattern for a narrow band 

noise, a broad band noise and 11 harmonics is shown in 

fig [2.4-10). Another important- fact is the nonlinearity 

of the upper slope of the excitation pattern as shown in 

figure (2.4-2). The asymetry of the filter increases with 

level. 

2.4.3.1 Dlfference Limens 

The difference limens for both intensity and 

frequency can be explained with the following assumption: 

"The ear is able to detect any change in a steady 

state sound if the excitation level L. is changed 

anywhere along the critical band scale by the value LlL", > 
1 dB." 
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The jnd for intensity jndI can be understood by 

taking into account that the tone evokes a broad 

excitation pattern including lower and upper accessory 

excitations. As was shown earlier the upper accessory 

excitation increases nonlinearly with intensity. This is 

the reason why the jndI is around 1 dB only for low 

loudness levels of 30 - 50 phon, 

the j nd I drops down to 0.2 dB. 

while at higher levels 

In (figure 2.4-11a) the 

excitation for a tone with an intensity I and excitation 

level LE. is sown together with the excitation for a tone 

with an intensity I + <'>1 and excitation L.,+<,>,,:. It can be 

seen that at higher levels where the upper accessory 

excitation is highly nonlinear a change in intensity has 

a larger effect on the exci tatlon that at lower levels 

where the excitation behaves in a more linear fashion. 

The jnd, for frequency can be interpreted in a 

similar way (figure 2. 4-11b). For changes in frequency 

the excitation pattern is shifted back and forth along 

the critical band scale. No nonlinearity is involved in 

this case. The largest change of the excitation level 

during the sifting occurs at the lower accessory 

exci tation with the steep slope. Since the steepness of 

this slope is almost independent of both the lovel and 

the frequency of the exei ting ... tone, the j nd. should 

depend on frequency in the same way as the critical band 

scale z depends on frequency f. An average value for the 

slope of the lower accessory excitation is 27 dB/Bark. 

Assuming, again, a change <,>L", = 1 dB for jnd, and sinCf3 1 

unit on the z scale corresponds to one critical band the 

jnd. is given by 

= 1 db :_~::.:~ = 1 2.4-16 
27 dB 27 

where <'>fo is tho critical bandwidth at frequency f. The 

agreement of this prediction with experiment can be seen 

in (fig. 2.4-12). 
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2.4.3.2 Pltch apd Phase Perception 

The pitch scale (mel scale) is linearly related to 

the critical band rate scale (Bark). We have also seen 

that the steepest slope of the excitation pattern could 

be used to predict phase effects in monaural perception 

[10). (Section 2.3.8) 

2.4.3.3 Rougpess 

In [33) Vogel proposed a model or roughness summation 

similar to the loudness model of [26). He found that the 

roughness of a single amplitude modulated tone decreased, 

when partially masked and therefore concluded that the 

fluctuation of the whole psychoacoustical excitation 

pattern is analysed for the sensation of roughness. He 

assumed that the excitation level fluctuates according to 

the degree of modulation at about the same amount at each 

place (neglecting the upper slope nonlineari ty). Figure 

(2.4-13) shows the fl uetuation of the exei tation level 

pattern as a hatched area. He further assumed that the 

roughness r is composed of specific roughness r' which 

can be summed over the bark scale to give the roughness 

r. In equation form: 

r(t) = J r' (z,t) dz 
z 

2.4-17 

note that both the roughness and specific roughness are 

functions of time. 

2.4.4 Modelling Tlme Effects 

Al though the model in [26) was adequate to descri be 

the loudness of steady sounds an extension to the model 

was necessary to encompass time dependent phenomena. 

First attempts to introduce a new part to the models to 

descri be temporal effects in loudness and threshold can 

be found in (34). 
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There are various time constants involved in 

pschoacoustical phenomena [ 17] such as the time constant 

for loudness integration (around 200 ms) the time 

constant which limits the roughness sensation at high 

frequencies (around 15 ms) or the maximum time that is 

bridged over by forward and backward masking (around 2 

ms). It is difficult to describe all the above phenomena 

with a single time constant and, therefore, in [34] a 

more complicated approach was taken. This model is shown 

in figure 2.4-14. The sound pressure p (t) is transferred 

to a filter bark which models the selectivity of the ear 

as in [26] by the excitation E as a function of tonalness 

z (critical band rate). Instead of using a very large 

number of outputs of the bank as would be the equivalent 

of the ear with its very many nerve fibers only 24 banks 

are used in regard to the 24 critical bands. Within or 

connected to the bank are rectifiers and square low 

transformers (note that this would give the short time 

envelope of the signal, see [35] p146 in combination with 

the following low pass filter). This gives the excitation 

Ev(t) which is transferred to a RC network with a 

relatively short time constant T', (about 35 ms) 

integrating over a relatively short time (compared to 

loudness integration). It is then transformed into 

specific loudness and after ... passing it through a 

proportional differential transfer function it is finally 

passed through the last RC network with a time constant 

of T,;" = 10 ms. This final value is the specific loudness 

as a function of time N' (t) 

The effects of the transformations can be seen in 

figure [2.4-15]. Note especially how the decay time is 

prolonged by 4 times when going from excitation through 

the power function to specific loudness. That this is so 

can be easily verified with an input Ae .... ',,/T for the 

excitation E(t). After the nonlinear compression this 

becomes 



N' (t) =A
1/4 

. 
-t/4T 

e 
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which obviously decays with a time constant 4 times than 

before. Note that the final value i.e. the time dependent 

specific loudness N' (t) only reaches the asymptote value 

for durations longer than 100 ms. It is important to note 

that the relevant output here is the peak of the N' (t) 

and naL the integral of N' (t) over time. Temporal 

integration has already being performed and the result is 

the peak val ue of N' (t). This model appeared to describe 

loudness of variable sounds relatively well. 

It now becomes interesting to know what the output of 

the filterbanks looks like when a stimulus with strong 

time structure is fed through. We are therefore concerned 

with the input to the time model described above. Some 

results can be found in [31]. These are very similar to 

the outputs of the filters shown in the section on pitch 

(figure 2.3-65). They also help to explain some effects 

on timbre found by Plomp and Steeneken in [36]. 

A more comprehensive model but with essentially the 

same elements was presented in [37]. A good review of the 

time dependent phenomena that the model attempts to 

predict is also included. The model is as follows: The 

short time envelope', of the incoming sound is obtained 

through analysis by a bank of critical band filters, a 

rectifier and a low pass filter. Specific loudnesses are 

obtained by amplitude compression and summed. The created 

value is then passed through two undescribed devices, a 

rectifier-non-linear-lowpass (NLLP) filter to simulate, 

postmasking effects and a 

fi 1 ter whose constants 

"special" third order 

are optimized in 

low pass 

order to 

reproduce temporal partial masking. Unfortunately the 

reference relating to the special low pass filter is in 

German and no further mention of the NLLP is made in this 

paper. A full description of the NLLP is given in another 

paper though, In the form of an analogue circuit [38]. 



The model was 

sounds that vary 
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used to predict the loudness of many 

both spectrally and temporally. The 

output of the device (loudness meter) to an input of tone 

bursts is shown in figure 2.4-16. Note that since the 

input can be confined to only one critical band this 

output represents what is analogous to an impulse 

response from a linear system. It can be seen that the 

results are not far different from those of fig [2.4-14) 

[34]. Again, the peak value represents the perceived 

loudness. This value correlates well to the perceived 

loudness of the different duration bursts. It also 

predicts well the loudness of AM tones, narrow band 

noise. temporally partially masked tone bursts, FM tones 

[39] and connected speech [40]. The latter is shown in 

(figure 2.4-17) together with the loudness of speech 

like-noise which elicits, according to Fastl (40), the 

same loudness. Again although the running speech shows a 

loudness pattern with a quite strong temporal pattern, 

the hearing system seems to perceive speech, in such a 

way that the loudest parts of the spoken sentences are 

responsible for loudness. Once again the loudness is 

determined from the peaks of the loudness meter output. 

An extended model to the above was presented in [38]. 

This model is in a sense much more interesting from the 

one in (37) since it is constructed for use in automatic 

speech recognition and obtains values for loudness, 

roughness, pitch, signal duration and timbre through a 

front-end model very similar to that in [37]. Again 

review of the different sensations the model attempts to 

predict is given in the paper. The entire model is given 

in figure 2.4-18, whilst the front end processor is 

shown in figure (2.4-19). The main difference form the 

model in [37] is the shift of the non-linear low pass 

filter (here denoted as NLD-nonlinear device) before the 

point of l.oudness sumrnati on and thus to each channel 

individually. Also additional stages are included to 

produce roughness, and sharpness as well as loudness. The 
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NLD is shown in figure [2.4-20] . Since the circuit 

contains elements which behave in a nonlinear fashion it 

cannot be analysed through z-transforms. It can be 

digi tally simulated by splitting it into three separate 

phases, either e,(t) = e,;;,(t), or, ·if e,(t)<e2(t) then 

into e;:;,(t) <e:., (t) or e~,(t) = e.;,(t). e",(t) is the voltage 

at the common point of the 1J.lF capacitor and the 20 K 

resistor. Each phases's new sample e~,,(t,) can be 

calculated from each past sample e_o, (to) through 

difference equations. 

The outputs of 

input stimuli are 

Limi ted success is 

speech recognition. 

the front end processor from different 

shown in figure 2.4-21 and 2.4-22. 

reported from use of the model for 

To end the review of models by Zwicker, we mention a 

model to predict :masking period patterns [41]. This is 

not unlike the previous ones [37, 38] but more care is 

new elements such 

the non 1 ineari ty of 

patterns are taken 

taken on phase conditions and, some 

as an interfering noise source and 

the upper slopes of the excitation 

into account. 

2.4.5 Schroeder's et a] model 

In [42J Schroeder offered some algebraic formulas for 

the various transformations given graphically in Zwicker 

and Scharf's model [26J. These concerned a transformation 

from the frequency scale to the tonalness (Bark) scale 

and an expressi on 

subcritical stimuli. 

provide an algebraic 

for the excitation pattern of 

These expressions were later used to 

model for predicting the loudness 

of quantization noise in speech signals. This mod'~l was 

based large 1 y on the mode 1 in [26J but, also, some new 

resul ts were incorporated from [43J concerning the 

masking ability of tone signals upon noise. The model was 
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then applied in a predictive coder [41J (figure 2.4-23) 

to reduce the perceptual impact of quantization noise. 

The time varying feedback filter F in figure 2.4-23 

was iteratively optimized for each frame to minimize the 

objective noise loudness as given by the model. The model 

is as follows: 

The power spectra of the speech signal S(f) and the 

Noise N(f) are computed over time windows of 

approximately 20 ms duration. 

The power spectra obtained are then transform~d into 

"critical band densities". Note that !?J(f) is the power 

density function dJ/df where J is the total power in the 

speech signal given by 

'" J = ! S(f)df 2.4-19 

F 

"-
where F is the frequency regi on where S (f) has a 

significant contribution to the integral. If now, we wish 

to express the power density over some other scale 

related to the frequency scale, and in this case over the 

critical band rate scale, x then 

sex) = dJ dJ df 

dx df dx 

= S(f) df 
dx 

the relationship between f and x is given by 

f = 650 sinh ( x ) 
7 

2.4-20 

2.4-21 

and, if the final expression for SeX) is to contain only 

x explici tly 



S(X) = S'(f(X» df 
dx 

similarly for the noise 

N(x) = N(f (x» df 
dx 
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2.4-23 

Next, excitation patterns are computed by controlling the 

critical band densities with a "spreading" function B(X) 

which describes the excitation pattern of subcritical 

stimuli 

E(X) = S(X) * B(X) 2.4-24 

An expression for B(X) is 

1010g10 B(X) = 15.81 + 7.5 (X + 0.474) 

- 17.5 (1 + (X + 0.474)2)~ dB 2.4-25 

and the noise excitation pattern is derived in a similar 

way: 

Q(X) = N(X) * B(X) 2.4-26 

Then, the loudness of the speech signal is computed from 

1s = C J [E(x)] 0.25 dx 

X 

sane 2.4-27 

where again X is the range of X for which the integral 

yields a finite value. 

The constant C can be chosen so that the uni ts of 

]Olldness can be cal.culated in sones, 
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At the threshold of hearing, the loudness is zero. A 

formula to describe the effects near threshold is given 

as 

L = C JMax ([E(x) - 8(X»)O.25; O} dx 
s 

x 

2.4-28 

where 8 (X) is the threshold of hearing at each value of 

X. 

The loudness of noise is reduced due to partial 

masking. A proposed formula for its calculation Was given 

as: 

LN= C J( 

X 

where p " 2 

Q(X) )0.25 dx 2.4-29 

1 + lE(X)/Q(X»)P 

Note that the range X for the noise loudness need not be 

the same as the range for the speech loudness. 

To include threshold effects for the case of the 

speech masker, the masked threshold is calculated from 

M(X) = W<X) E(X} 2.4-30 

where W(X) is a sensitivity function. 

An expression for W(X) from complete masking 

experiments carried out by the authors is given by 

10 10g10 W(X) " (15.5 + X) dB 2.4-31 

The behaviour near threshold (ei ther masked or 

physiological) is given by 



L = C J 
N 
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Max[Q -- MaX(Mj8)jO]0.25 

X (1 + E/Q)P 

The objective measure is then given by 

dX 2.4-32 

2.4-33 

as a measure of speech degradation. The division of L", by 

Ls is rather interesting since the effect of partial (or 

complete) masking due to the speech signal has already 

been taken into account. It implies that noise of the 

same loudness is more objectionable (hence louder!?) when 

the speech loudness is lower than otherwise, which 

suggests that noise loudness is not perhaps the relevant 

cri terion. 

The 

effects, 

probably 

model does 

of which 

not take into 

temporal summation 

account temporal 

of loudness is 

the most relevant. The loudness is also 

inherently time varying since the parameters are computed 

periodically. It is difficult to relate to the expression 

"loudness of speech" given by the following equation 

L = CJ[E(X)] 0.25 
s 

X 

dx 2.4-34 

when the loudness of speech is determined from the high 

energy segments over a period comparable to the order of 

seconds and not 20 msec [40,37]. 

The noise loudness would be a relevant criterion only 

when the "noise" is percei ved as background uncorrelated 

noise (i. e. hiss) typical to peM or differential coders 

of relatively high bit-rate. When this no1s'" manif,,,sts 

itself in other forms such as e.g. 

seen that other models would be 

roughness then we have 

more applicable. Worse 

still, in the more sophisticated coders, the noise is not 
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really "heard" but, instead,alters the quality of the 

speech signal in such a way that sounds different from 

the original, but cannot be described as "noisy". In such 

cases, to proceed to calculate the loudness of the noise 

would be meaningless. 

Other models using psychoacoustic knowledge also 

appeared in the literature e.g. [44), [45), but at large, 

they are mainly concerned with speech envelope 

quantization rather than the whole signal. 
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spEECH AND SPEECH CODING 

3.1 SPEECH; PRODUCTION AND PHONETICS 

3.1.1 Acoustical Speech Production 

The acoustical speech waveform is an acoustic 

pressure wave which originates from voluntary 

physiological movements of the structures shown in figure 

(3.1-1a). Air is expelled from the lungs into the trachea 

and then forced between the vocal folds (cords). During 

the generation of voiced sounds, air flow from the lungs 

is modulated by the vocal cord vibration resulting in a 

quasi-periodic pulse-like excitation. As a periodiC 

Signal, 

of the 

This 

voiced speech has spectra consisting of harmonics 

fundamental frequency of the vocal fold vibration; 

frequency often abbreviated FO is the physical 

aspect 

pitch. 

of the speech signal 

The harmonics are 

corresponding to perceived 

energy concentrations at 

mul tiples of FO. The average values for FO are around 

130 Hz for males and 220 Hz for females. 

Unvoiced sounds are generated by voluntarily holding 

the vocal cords open, forcing air past them, and then 

using the articulators to create a constriction. 

The air flow from the lungs becomes turbulent as the 

air passes through the constriction resulting in a noise

like aperiodic excitation. 

Another mode of excitation occurs when air-flow 

builds up pressure behind a point of total closure in the 

vocal tract. The rapid release of this pressure, by 

removi ng the constriction, causes a transient exci tati on 

[2]. The opening between the vocal cords is defined as 

the glottis. The vocal tract is a non-uniform acoustic 

tube which extends from the glottis to the lips and 

varies in shape as a function of time. The major 
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anatomical components causing this time varying change 

are the (articulators) lips, jaw, tongue and velum. 

During the generation of the non-nasal sounds the velum 

closes off the vocal react from the nasal cavity. The 

nasal cavity constitutes an additional acoustic tube for 

sound transmission used in the generation of nasal 

sounds. As sound generated as discussed above propagates 

down this tube, the frequency spectrum is shaped by the 

frequency selecti vi ty of the tube. This effect is very 

similar to the resonance effects observed with wind 

instruments. The resonance frequencies of the vocal tract 

are called formants. The formant frequencies depend upon 

the shape and dimensions of the vocal tract. Each shape 

is characterized by a set of formant frequencies. 

Different sounds are formed by varying the shape of the 

vocal tract. Thus, the spectral properties of the 

speech signal vary with time as the vocal tract shape 

varies. 

In the average male, the total length of the vocal 

tract is about 17 cm. The cross-sectional area, 

determined by the articulators, tongue, lips, jaw and 

velum varies from zero to 20 cm"'. Although the formant 

frequencies are primari ly related to the shape of the 

vocal tract, there is some frequency shift due to losses. 

The bandwidths of the formants are determined from these 

losses which include losses due to the softness of the 

vocal tract walls, viscous friction of the air, thermal 

losses and radiation loss. The formants are abbreviated 

Fi where F1 is the formant with the lowest cent er 

frequency. 

3.1.2 Phonemes 

Most languages can be described in terms of a set of 

distinctive sounds or phonemes. In the engl1sh language 

there are about 40 phonemes. A table of phonemes is given 

in Table (3.1-Tl). As can be seen from the table the 
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phonemes are broken into various classes. The manner of 

articulation is 

diphthongs the 

concerned 

airflow 

with 

meets 

airflow: for vowels and 

no narrow 

enough to cause turbulent flow 

constriction 

(frication) . 

but employ 

Glides 

(semi vowels) are similar to vowels narrow 

vocal tract constrictions that may cause frication. 

Liquids too are similar to vowels but use the tongue or 

an obstruction in the oral tract causing air to deflect 

around the tip. During nasal sounds the velum is lowered 

and its position allows airflow out of the nostrils. 

All of the above phonemes employ voicing and exci te 

the vocal tract solely at the glottis; these continuous, 

intense and periodic phonemes are also known as 

sonorants. The remaining obstinent phonemes are weak and 

aperiodic and are primarily exci ted at their maj or vocal 

tract constriction. Stops involve a rapid closure of a 

vocal tract obstruction, a pressure build up and a sudden 

release with a rush of air that creates a brief (e. g. 

10 ms) acoustic burst. Frigatives employ a narrow 

constriction. The vocal tract is excited by a steady flow 

which becomes turbulent in the region of the 

constriction. 

The phenomes are also characterized by their place of 

articulation. This relates the phonemes to the point in 

the vocal tract of narrowest constriction. These places 

are shown in figure (3.1-1b). The relation of the 

phonemes to the place of articulation can be seen in 

figure (3.1-2). 

3.1.3 AcoustJc Phonetics 

The phonemes are also distinguished from their 

waveform and spectral properties. The waveforms can be 

viewed directly whereas there are several ways to present 

the spectral content of each phoneme. One way is to Use 

the formant freq\lencies [3). This method is particularly 
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useful for the study of vowel sounds. Another popular way 

is through the use of voice spectrograms. These display 

time and frequency on the horizontal and vertical axes 

whereas amplitude (logarithmically compressed) is related 

to the darkness of the display. Formant frequencies 

appear as dark horizontal bands. 

The first two formants are usually sufficient to 

distinguish 

(3.1-3). A 

amongst vowels. 

diphthong is a 

This can 

gliding 

be seen from figure 

monosyllabic speech 

item that starts at or near the articulatory position for 

one vowel and moves to or toward the position for 

another. This can be seen on the F1-F2 plane in figure 

(3.1-4). Spectrograms for vowels are shown in figure 

(3.1-5) whereas for consonants and stops and nasals are 

shown in figures (3.1-6) and (3.1-7). Note that although 

for vowels we have only resonance frequencies, for nasals 

the mouth serves as a resonant cavity that traps acoustic 

energy at certain natural frequencies. As far as the 

radiated sound is concerned, these resonant' frequencies 

appear as antiresonances, or zeros of sound transmission. 

Waveforms for vowels and consonants are shown in figures 

(3.1-8) and (3.1-9). 

3.1.4 Modelll ng the speech production process 

the shape of the Although 

continuousy, 

vocal tract 

relatively it can be considered 

short periods of time quasi-stationary over 

milliseconds). This is short enough to account 

changes 

fixed or 

(tens of 

for the 

duration of stops and other phonemes which involve motion 

of the vocal tract. For vowels this duration can be 

extended from a 

time interval 

range 

of a 

of 50 to 400 ms. Over this short 

few tons of milliseconds the 

vocal tract can be modeled as a fi 1 ter which appears as 

time varying over longer durations of time. The resonance 

frequencies are primarily determin.,d by the way the 

cross-sectional area varies along the vocal tract. The 
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dependence of cross secti anal 

the vocal tract is called the 

area upon distance 

area function of the 

along 

vocal 

tract. This is determined from the position of the 

tongue, jaw, lips and velum: For each sound there is a 

positioning far each of the vocal tract articulators. 

Figure (3.1-10) shows the general black diagram that is 

representative of numerous models of speech production. 

The common element in these models is that the excitation 

features are separated from the vocal tract and radiation 

features. The vocal tract and radiation effects lire 

accounted for 

purpose is to 

by the timG varying linear 

model the resonance effects 

system. Its 

of the vocal 

tract. A widely used model 

that the vocal tract 

concentration of lossless 

is based upon the assumption 

can be represented as a 

acoustic tubes, figure <3.1-

11). The constant crass sectional areas A.< of the tubes 

are chosen sa as to approximate the area function of the 

vocal tract. The approximation improves as the number of 

sections increases. This model, of course ignores lasses 

due to friction, heat, conduction and vocal react wall 

vi bration. Closely related to the A,., is the reflection 

coefficient 

r = K 

Since A.", is 

coefficient 

positive 

rK gives 

then 

the 

-1 < ro< <1. 
relative 

3.1-1 

The reflection 

amount of the 

travelling wave (travelling from the glottis to the lips) 

that is reflected back at the junction between the tubes 

with areas A'<-+l and A • .,. The reflection coefficients at 

each junction are an alternative farm of representing the 

vocal tract model. It can be shown [2,5] that the 

relationship between input and output of the model can be 

represented by a transfer function V(Z) in the form 



V(Z) = 
N 

1 - l: 
K=1 
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G 

where G and {a",} depend upon the area function. 

3.1-2 

The resonances (formants) of speech correspond to the 

poles of the transfer function V(Z). This all pole model 

is a very good representation of vocal tract effects for 

vowels but nasal and fricatives require both poles and 

zeros. The effect of a zero can also be achieved by 

including more poles [6] since 

1 - aZ- 1 = 

l: 
n=o 

1 

n -n a Z 

3.1-3 

Since the coefficients of the denominator of V(Z) are 

real the roots will be either real or occur in complex 

conjugate pairs. Therefore, there will be at most NI2 

resonances (formants). A complex resonant frequency is 

given by 

3.1-4 

in the S plane or 

3.1-5 

3.1-6 

in the Z-plane (figure 3.1-12). 

The bandN1dth of the resonance is approximately 20',,, 

and the centre frequency is 2TIF,<. In the Z-plane, the 
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radious from the origin to the pole determines the 

bandwidth 1. e. 

= e 
-0' T 

K 3.1-7 

and the Z-plane angle determines the centre frequency 

3.1-B 

For stability 0'",)0 or alternatively IZ«I (I 3.1-9 

As long as the areas A,., are positive then all the 

poles will be inside the unit circle [5,6]. and the model 

will be stable. 

The first attempt at directly computing an acoustic 

tube model of the vocal tract from the speech waveform is 

due to Atal [7]. He demonstrated that formant frequencies 

and bandwidths are sufficient to uniquely determine the 

area of an acoustic tube having a specified number of 

sections. He also demonstrated that a transfer function 

with N poles is always realizable as the transfer 

function of an acoustic tube consisting of N cylindrical 

sections of equal length. Wakita CB] showed that the same 

acoustic tube model is equivalently represented from the 

inverse filter A(Z) obtained by linear prediction of the 

acoustical speech waveform. He also demonstrated the 

important experimental result that if the speech is 

properly preemphasized and if boundary eondi tions of the 

acoustic tube ",re properly chosen, then very re",son",ble 

vocal tract shapes can be directly estimated using the 

autocorrelation method of linear prediction. The effects 

of glottal waves and radiation can be reasonably well 

estimated by fixed preemphasis of the speech since their 

characteristics vary relatively slowly in the frequency 

domain. An analysis example of the acoustic waveform, the 
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filter's V(Z) spectral response and the area functions 

are given in figure 3.1-13. 

3.2 SPEECH CODING 

3.2.1 Introduction 

Digi tal transmission and storage of speech signals 

has become dominant over and will very soon replace, most 

analog systems. This is entirely due to recent advances 

in VLSI <and other) technology which made digital methods 

cost effective in comparison to their analog 

counterparts. The transmission bit rate is a crucial 

factor in evaluating the practicality of different coding 

schemes: The bandwidth of a transmission channel limits 

the number of signals that can be carried simUltaneously. 

The lower the bit rate for a speech signal the higher the 

number of signals that can be carried simultaneously. 

Similarly for voice storage (e. g. electronic mail) lower 

bit rates reduce the computer memory needed to store the 

speech signals. The cost of digital transmission and 

storage systems such as optical fibers and computer 

memory has seen a dramatic reduction is recent years. 

Also the suitability of digitally encoded signals for 

processing by digital single-chip computers has brought 

about a large reduction in the bit rate required with 

little loss of "quality. The wider availability 

and reduction in price of these signal processing chips 

in recent years has stimulated research into new, more 

efficient algorithms for speech coding. 

The cost effectiveness of digital processing and 

transmission does not make the 

desirable, 

digi tal coding of speech 

it merely makes them signals necessarily 

feaSible. There are several other factors which determine 

the superiority of digital over analog transmission. It 

is relatively easy to apply encryption techniques to 

digital signals and provide privacy, which is one of the 
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reasons why digital coding of speech was popular for 

mili tary applications at a time when it was not cost

effective for commercial use. Digital encoding enables 

transmission of information over long distances to be 

achieved without degredation of the speech quality. 

Analog transmission channels always distort audio signals 

to a certain extent but digital communication links can 

regenerate i.e. retime and reshape the signals at 

repeaters placed along the transmission path and at the 

terminal station. Computer memory can store speech with 

much less distortion than typical analog audio tapes. 

Time division multiplexing provides a simple and economic 

way to carry a number of signals simultaneously compared 

to frequency division multiplexing which requires complex 

filters for its implementation. Digital switching can 

also be accomplished faster and cheaper without the 

problems of analogue cross-talk and mechanical switching. 

Digi tally encoded information such as speech, video 

computer data, facsimile data can be transmitted over the 

same communication 

system known 

digital network) 

system. This 

as ISDN 

will provide 

extended communication 

(Integrated services 

end-to-end digital 

connecticity to support a wide range of services. 

There are three main factors that characterize a 

particular speech coder: Speech quality, bit rate and 

algori thm complexity" (hence implementati on cost) . The 

three are strongly interrelated. As coder complexity 

increases, better speech qualIty can be achieved at lower 

bit rates. The quality of reproduced speech can be rated 

as one of four broad categories [9]. (1) Commendary or 

broadcast quality refers to wide bandwidth (- 7 KHz) 

speech with no perceptible distortion; (2) Toll quality 

eqUivalent to a "good" analogue sample. from the switched 

telephone network (200-3300 Hz range, signal to noise 

ratio of more than 30 dB and less than 2-3% harnomic 

distortion) (3) cOlJlJllunication qual i ty which is highly 

intelligible but noticE')ably worse compared to Toll 
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quali ty (4 ) synthetic quali ty which is 80-90% 

intelligible, has substantial degradation (sounds 

"machi ne 1 ike" and often "buzzy" and suffers from a lack 

of speaker identifiabi li ty. A relationship between these 

broad categories and the bit rates at which this quality 

can be achieved are shown in figure (3.2-1). Note that 

the divisions are only approximate. The Toll quality 

barrier is likely to move towards 8 Kbl s and the 

communications quality to pass the 4.8 kb/s barrier and 

perhaps reach the 2.4 kb/s rate in the near future. The 

descriptors on the top refer to the particular type of 

coder used to achieve the specified quality at the range 

of bit rates shown. In waveform coding systems an attempt 

is made to preserve the waveform of the speech signal. 

Usually waveform coders can code equally well a variety 

of signals. They tend to be robust for a wide range of 

speaker characteristics and for noisy environments. The 

waveform coders operating at the lower bit rates exploit 

various redundancies in the signal and, also, adapt 

better to the nonstationarity of the source. Source 

coders (vocoders) on the other hand make no attempt to 

preserve the signal waveform. During the encoding 

procedure, at the transmitter, a model for the speech 

production mechanism is employed and its 

parameters determined from the speech signal. These 

parameters are usually split into vocal tract 

and excitation parameters. A very small set of parameters 

is usually used to mainly reproduce the short term speech 

envelope, related to the vocal tract model and provide a 

crude representation of the fine structure of the short 

term speech spectrum. Since intell igi bil i ty depends 

primarily On the above features, vocoders find useful 

applications where a small bandwIdth (bit rate) is a 

strict requirement rather than qual i ty. The qual i ty of 

vocoder systems is poor, mainly due to the inadequate 

modelling of the excitation part of the production model. 

Another distinction that can be made between waveform and 

source coders is that a waveform coder with uncoded 
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parameters would be indistinguishable from the original 

whereas a vocoder with unquantized parameters will still 

gi ve a distorted signal. The third category of coders, 

that of hybrid coders bridge the quality gap between 

vocoders and waveform coders <figure 3.2-2). [10]. These 

coders are similar to vocodes in that a production model 

is used but, are also similar to waveform coders in that 

the waveform of the coded speech bears close simi lari ty 

to the original. For this class of coders the 

perceptually significant 

"waveform encoded" (1. e. 

part 

both 

of the spectrum 

phase and amplitude 

is 

are 

preserved) whereas the rest of the spectrum is "vocoder 

dri ven" retaining only its broad features. Hybrid coders 

have become increasingly important in recent years for 

toll telephone quality below 16 kb/s and communications 

quality around 4.8 kb/s for mobile radio applications. 

A review of representative coders from each class 

will be given below with more emphasis on waveform coders 

and hybrid coders. 

3.2.2 Vocoders 

3.2.2.1 Channel Voco~ 

Channel vocoders obtain a short time amplitude 

spectrum representat~on of the 

filtering, rectification and 

speech signal by bandpass 

lowpass filtering [9J, an 

approximation to 

<figure 3.2-3). 

quadrature envelope detection [ ill 

The bandpass filters are usually 

contiguous and the bandwidth may increase with frequency 

to reflect the ear's frequency resolution in relation to 

frequency. The aim, at least for the low frequency range, 

is to isolate each harmonic within one band and hence 

reproduce the correct amplitude of that harmonic at the 

synthesIzer. When more than one harmonic is present, the 

channel output wi 11 be an average of the ampl i tudes of 

the harmonics within that frequency band and therefore 
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the amplitude spectrum at the synthesizer will be 

somewhat distorted. At higher freqencies, individual 

harmonic amplitudes cannot be resolved since the ear 

integrates energy within a critical band and produces an 

average value, much as the analysis part of the channel 

vocoder does. Note that the low-pass filters have a high 

enough cutoff (20 Hz) to convey the necessary loudness 

fluctuations of each component but also low enough to 

prevent any roughness forming in any channel, at least 

from the vocal tract representation. The outputs of the 

rectifiers (or the low pass filters) are sampled every 

20 ms which requires a bandwidth of 1/ (2 x 20 ms) = 25Hz. 

For the excitation, a voiced-unvoiced detector determines 

whether white noise or a series of pulses is to be used 

at the synthesizer, and in the latter case a pitch 

detector determines the spacing between these pulses. 

Utilizing time and frequency redundancies, 

information can be transmitted at about 

the required 

1. 2 kbs/sec 

[ 121. Variable frame rate transmission [131 can also be 

used: During quasi-stationary segments of speech spanning 

more than one frame of side information only the 

beginning and end frame of the segment need be 

transmi tted and the rest can be derived through 

interpolation. In addition vector quantization techniques 

can be used to further compress the required rate. 

3.2.2.2 LPC vocoders: 

The LPC vocoder is a time domain equivalent to the 

channel vocoder. Here the vocal tract information (plus 

the radiation characteristics and the pulse shape of the 

vocal excitation) is modelled using a pT .... , order linear 

all pole filter of the form [6J 

H (z) = 

P 
1 - E 

i=l 

G 3.2-1 
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The excitation part is simi lar to that in the channel 

vocoder, involving a voiced-unvoiced decision and the 

transmission of pitch (pulse spacing) information for 

voiced segments. A schematic diagram of the model is 

given in figure (3.2-4). Since the filter represents the 

spectral envelope of speech, whereas the excitation 

represents the fine structure, a multiplication o:f the 

two in the frequency domain should produce a signal 

"close" to the spectrum of the original speech segment 

the model simulates. In the time domain this process is 

eqUivalent to convolution. 

Let the excitation be represented by U (Z) and the 

speech signal by S (Z) . The speech signal (or a "close" 

version of it) can be represented by 

S(Z) = H(Z) U(Z) 

or 

S(Z) GU(Z) 
= 

P -K 
1 - 1: aKZ 

K=l 

and as a convolution in the time domain 

p 
S(n) = 1: aKS (n-K) + Gu(n) 

K=l 

3.2-2a 

3.2-2b 

3.2-2c 

The coefficients {a,c:} can be calculated subj ect to some 

predetermined criterion. Since all the envelope 

information must be conveyed in H(Z), one reasonable 

criterion is to find the {aK} that produce a flat (in an 

envelope sense) Gu (n) in the frequency domain. It can be 

easily shown [5] that the coefficients {at<} resulting in 

a flat spectrum in Gu(n) are the same as the coeffiCients 

minimizing the energy in Gu(n) over the speech segment of 

interest 1. e. 
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minimize 2 E [Gu(n)] where N is the range 
N 

minimize E = E [S(n) 
N 

The values of a., can be found by setting 

aE = 0 for 1=1, 2 .... p 

to obtain 

Let 

E 
N 

S(n-i)S(n) 
P 

= E a 
K=l k 

E S(n-i)S(n-K) 
N 

;(i,k) = E S(n-i) S(n-k) 
N 

then equation 3.2-4 can be written as 

P 
E a K _n(i,K) =._n(l,O) 

K=l 
i=l, 2 ..... P 

of n 3.2. 3a 

3.2.3b 

3.2.3c 

3.2-4 

3.2-5 

3.2-6 

The solution of the above equation depends on the range N 

of the sumation for the ~ terms. A more detailed 

discussion of the solution will be presented in the 

section on DPCM coding. 

The appropriate pi tch period as well as the voiced 

unvoiced decision can be determined in a variety of ways 

[1,2,16]. The update of the LPC coefficients is of the 

order of 20 ms as in the case of channel vocoders. Note 

that 8 parameters (P=8) provide as good a resolution as 
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15 channel parameters in the channel vocoder [9]. This is 

due to the fact that the all-pole model is very suited to 

the kind of spectrum that vowels possess. Although nasals 

and frigatives require zeros as well, these are not as 

important, due to masking effects. For the case of voiced 

sounds, since the vocal tract filter is kept constant 

over relatively long periods of time (20 me) and the 

exci tat ion is composed from a steady state tone complex 

(a series of pitch pulses) which results in no amplitude 

fluctuation in the frequency domain, the quality of the 

synthesized speech for correctly identified segments is 

"smooth" sounding and free from roughness. The overall 

qual1 ty 

because 

of the speech is 

the analyser can 

nevertheless poor. 

sometimes identify 

This is 

a voiced 

sound to be unvoiced and vice-versa which results in 

occasional harshness and buzziness in the synthesized 

speech. Further deteriorations in quality occur due to 

errors in the estimation of the correct pitch period of 

the analysed sounds. These effects can degrade 

substantially the quality of the synthesized speech even 

when the analyser estimates accurately the exci tation 

parameters for 95% of the time. Various modifications to 

the excitation model have emerged throughout the years 

[ 14, 15]. Other vocoder structures are the homomorphic 

vocoder [17,18], the phase vocoder [2,11] the formant 

vocoder [19] and others [1]. It now seems possible to 

transmit intelligibl"e speech at rates as low as 200 bls 

[20]. Although quantization of parameters in vocoder 

systems is very important for very low bit rates such as 

those above we will reserve a discussion on quantization 

for the following section, on waveform coding. 
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3.2.3 Waveform Coding 

3.2.3.1 l:.Q1. 

In almost all waveform coders the band limited 

analogue speech. signal X (t) is first sampled at a rate 

greater or equal the Nyquist rate <1. e. 2f,·""" where f,M." 

is the hi gher frequency present in X (t» to produce a 

series of samples X(n). At this point the process is 

reversible since the original analogue 

signal can be reproduced exactly from 

version. The next step in digitizing the 

band li mi ted 

its sampled 

signal is to 

introduce some form of ampl i tude quantization into the 

signal. The simplest form of amplitude discretization is 

pulse code modulation. This is the first method 

"historically", of converting analogue speech signals 

into a digital form and is still widely used in 

commercial digital speech transmission systems. It also 

serves as a preprocessing stage to more sophisticated 

algori thms which are geared to operate on digital 

samples. 

After sampling, the amplitude continuous values X(n) 

are converted to the nearest ofa finite set of amplitude 

levels Y (n). The number of these levels determines the 

bi t rate. The spaci·ng of these reconstruction levels 

determines the quality of the reconstructed signal for a 

fixed number of levels. There are generally two types of 

quantizer characteristics, the mid-riser figure (3.2-5a) 

and the mid -tread (figure 3.2-5b). Two types of 

quantization noise arise from this process, one is 

granular noise, when the ampl i tude of the sample X (n) 

falls within the quantizer range and overload or clipping 

noise when the amplitude X(n) falls beyond the quatizer 

range, figure (3.2-5). The spacing of the levels 

determine which of the two types of noise prevails and a 

choice can be made accordi ng to perceptual or obj ect i ve 



192 

criteria provided the probability distribution function 

(Pdf) of the source is known. For a quantizer of L-levels 

the bit rate is 

R = log2L bits/sample 3.2-7 

Associated with the quantization process is the 

quantization error q(n) defined as 

q(n) = y(n) - x(n) 3.2-8 

The most important quantity for comparing the 

performances of quantizers is the quantitation error 

variance 0'.,,'" 

and E denotes expectation 

+ 00 

= I 
- 00 

2 q P (q) dq 
q 

where P (q) is the pdf of q(n) 
q 

3.2-9a 

3.2-9b 

alternatively, since the quantizer characteristic is 

fixed for a given step size and quantizer type (fig. 

3.2-5) q(n) is a function of X(n) and the noise variance 

is given by 

0' 2 = 
q 

+00 

I 
-00 

[y-x1 2 P (x)dx 
x 

where Px(x) is the pdf of the input, X(n). 

therefore clear that fYq2 depends on the 

3.2-9c 

It is 

quatizer 

characteristic (which determines y for any gl ven x) and 

the Pdf of the input signal. 
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For a 

step size 

negligible 

bounded input I XI ,X,,",,"" and sufficiently small 

~, the noise variance, provided there is 

overload, is given by [21) 

." 2 = 
q 

3.2-10 

If in addition the range of the quantizer is reduced to 

just accommodate the signal 1. e. the condition of 

negligible overload is just fulfilled, the noise variance 

is given by 

2 = 1 

3 
3.2-11 

The quantizer performance is usually expressed in the 

form 

.2 2 2-2R 2 ."'q = € * ." X 3.2-12a 

Note that to convert equation 3.2-11 to 3.2-12 a 

knowledge about the input signal's pdf is required to 

relate XIll .m..:, .. ,: to O'x. 

R can then be expressed as 

2) + 1 2 
log2 E* 

2 
3.2-12b 

bits/sample. 

The term 

2 
." 

X is the signal to quantization noise ratio: 
." 2 

q 
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0' 
x 

SNR (dB) = 10 10810 
0' 2 

q 

2 

and €*'" is related to the quatl.zer performance. 

For a given value of O'.~'" the minimum bit rate required, 

as given by rate distortion theory is of the form 

2 

min {R} = 1 
10g2 ( 

2 

O'x 
) - a

R 
bits/sample 

2 
3.2-13 

0' 
q 

where a
R 

00) depends on the statistics of the source X 

The SNR as derived from equation 3.2-12b is given by 

SNR (dB) = 6.02R - C 3.2-14 

C depends upon the particular quantizer and input 

characteristics. 

To minimize 0'.,,'" for the unbounded pdf implies a balance 

between granular and overload noise. 

'ii th the constraint of a midrize (symmetric) uni form 

quantizer of step size 6, the optimum value of the step 

size 6."p" in relation to O'x, the standard deviation of 

the signal is gi ven in Table (3. 2-Tl> for various pdfs. 

The pdfs are shown in figure 3.2-6 and defined in table 

(3.2-T2). The SNR in dB is also shown in table (3.2-T1). 

3.2.3.1a Non Uniform Quantlzation 

For nonuniform pdf uniform quantization is not the 

optimum solution. Smaller noise variance can be obtained 

using nonuniform quantization (i.e. a step size that 
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changes with X). Smaller step sizes can be used where the 

probability of occurrence of X is high at the expense of 

larger step sizes where the pdf of X is relatively low. 

The procedure of using a nonuniform quantizer is 

equivalent to compressing the signal X using a nonuniform 

compressor characteristic C(X), quantizing the compressed 

signal C(X) using a uniform quantizer, and expanding the 

quantized signal using the inverse characteristic C···" (X) 

to that of the compressor. The compressor characteristic 

is refered to as the companding law. The procedure is 

shown in figure 3.2-7. 

Pdf-optimized nonuniform quantizers can also be 

designed [22, 23). The minimum mean-squared-error (noise) 

min {O'q2} quantizer is usually called the Max or Max

Lloyd quantizer. Note that the optimization with regard 

to pdf shape includes a match of quantizer to input 

variance o-x'"'. Also the input and quantization error are 

correlated and the variance of the output of the 

quantizer is always less than that of the input variance: 

2 
0-

2 2 = 0' - min {o- } 3.2-15 
Y x q 

The optimum decision values X.I and reconstruction values 

Yj for various pdfs for pdf-optimized nonuniform 

quantizers are e;iven in table 3.2-T3 and the 

corresponding quantizer performance in table 3.2-T4. The 

effects of quantizer mismatch ei ther invariance or pdf 

shape can be found. in (21). 

3.2.3.1b Logarithmic quantization 

Pdf-optimized quantizers are also matched to a 

particular input variance (a variance of 1 in Table 

3. 2-T3) . In si tuations such as speech coding the exact 

value of the 

in addition 

input variance 

it tends to 

is not 

change 

known in advance; and 

wi th time. In such 

situations a signal to quantization noise ratio that is 
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constant over a broad range of input variances can be 

obtained by usi ng a logarithmic companding law. This is 

illustrated in figure (3.2-8). The vertical denotes 'the 

SNR whereas the horizontal gives the input variance of a 

laplacian input relative to its boundary value of Xo""". 

The dashed line gives the performance of the optimum 

laplacian quantizer for a particular I)'x/X"".,~ ratio. It 

can be seen that the optimum quantizer has a higher 

maximum SNR but a much smaller dynamic range than the 

logarithmic quantizer. 

There are two wide-spread compression characteristics 

for logarithmic quantizers: 

The first is the A-law-companding given by 

, C(X>= 

Alxl sgn(X) 
1+10ge A 

X 
max 

1+10g (AIXI/X ) 
e max 

1+10g A 
e 

O( I X I 
----
X max 

( 1 

A 

sgn (X) • 1 < I xl 

A X max 

3.2-16 

For the European PCN standard A = 87.56 and SNR" .. , l .. w (dB) 

= 6.02R-9.99 3.2-17 

The other compounding law is the p-law defined as 

Ixl loge (1 +p ) 
X 

C(X) = Xmax _______ ~:_ sgn X 3.2-18 
loge <1+p) 

For the North-American PCN standard ~ = 255 

SNR - 6.02R - 10.1 
~-law 

3.2-19 
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Commercial PCM systems are based on the use of 8 

bits/sample. With a speech sampling rate of 8KHz the 

transmission rate is 64 kb/s. An SNR of nearly 34 dB is 

maintained over a range of input signal variation of 

around 30 dB. In practice a piecewise linear 

approximatl.on is made of the companding law to convert to 

and from 8 bit log PCM to 12 or 13 bit linear PCM which 

are considered as equivalent. PCM is the best 

established, the most implemented and the most applied of 

all digital coding systems. This is due to the fact that 

it is the earliest developed system, it is simple, 

instantaneous (or near instantaneous) and it is not 

signal specific. Finally, PCM coding serves as a front

end preprocessing stage to most other more complex 

waveform coders. 

3.2.3.16 Entropy-Coding 

In the above discussion, non-uniform quantization was 

used .. to take' advantage of ·the nonuni form pdf of the 

source (input signal). Each quanti zed sample is then 

assigned a fixed number of bits as in log-PCM. 

Another \~ay of talting advantage of a nonuniform Pdf 

is entropy coding (21J. In Entropy coding a uniform 

quantizer can be used with sufficient range to avoid 

overload and a step-si ze dependent on the required bi t 

rate. The number of levels of the uniform quantizer are 

usually much larger than the quantizer of equivalent 

performance that 

to keep the bi t 

does not employ Entropy coding. In order 

bi ts is rate low, di fferent number of 

assigned to each level: Highly probable levels i.e. 

levels within the region where the pdf of X Is high are 

assigned short codewords (small number. of bits) whereas 

the outsider les8 frequent values of X are assigned 

longer codewords, with 

decreasi ng probabi 11 ty of 

the length increasing 

occurrence of that level. 

with 

Note 

that the smallest bit rate that can be achieved here is 
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again 1 btt/sample as in ordinary peN since this is the 

smallest codeword. 

If Entropy coding is now used on sequences of samples 

(rather than on single outputs) a bit rate lower than 1 

bit/sample can be achieved. Linear redundancies are 

usually removed through linear filtering prior to entropy 

quantization. This is in order to avoid processing long 

blocks of data and calculati ng joint probabi 1 i ties to 

construct the appropriate quantizer code book. An 

interesting feature of entropy coding is that a midtread 

characteristic can result in a significant reduction in 

distortion compared to a midrize quantizer, if the source 

has values close to zero with high probabilities. Finally 

a buffer must usually be employed since both the source 

and the channel operate at a constant rate whereas 

entropy coding necessitates variable rate cOding. 

3.2.3.1d Representation of noise 

For additive input independent noise q the following 

equation relating input, output and noise variances, 

2 2 2 
0' = 0' + 0' - 2E{xqJ 

Y x q 
3.2-20 

can be simplified to ~ 

2 2 2 
0' = 0' + 6 /12 since E(xqJ=O 

y x 
3.2-21 

(figure 3.2-9a) 

For the case of a pdf optimized quantizer though 

E(xqJ = min 3.2-22 

( 21J 
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A model for this kind of noise is one with a less than 

uni ty gain component a,;~ and an addi ti ve uncorrelated 

component n. (figure 3. 2-9b). Forcing n to be additive 

and input independent i.e. 

and from 3.2-22 

a = g 
2 2 1 - min {O' }/O' 

q x 3.2-23 

For low bit rates therefore, the errors in quantization 

can be considered to belong to two different classes. One 

caused by a change in level, which has little perceptual 

significance unless the change exceeds 3 dB, and one due 

to uncorrelated noise which is the main source of 

perceptual degredation. This is one of the reasons why 

the SNR is not a very good measure for low bit rates. 

3.2.3.1e Adaptive quantization 

We have seen that a log-companding quantizer is quite 

successful in reducing the required bit rate for Toll 

qual i ty speech from 12 bits to 8 bits per sample. The 

nonstationarity of the speech signal was taken into 

account by providing smaller step sizes for low levels of 

speech and increasing the step size for higher levels. 

Such a quantizer is time-invariant. A better performance 

can be achieved using a time varying or adaptive 

quantizer. This type of quantizer is essential when the 

required bit rate falls below about 5 bits/sample. 

In an adaptive quantizer the step size n changes with 

time SO that a val ue close to optimum is avai lable for 

each sample. From previous sections the optimum step size 

is proportional to O'x, the proportionality factor 

depending on the input pdf and the bit rate. Therefore 



L'>(n) = aO' (n) x 

where a is a constant. 
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3.2-24 

For a nonstationary input O'x is variable and the 

determination of an appropriate step size involves the 

continuous estimation of O'x. Two ways have been devised 

for tracking the input level in terms of O'x. One system 

is denoted by AQF <adaptive quantization with forward 

estimation) and the other by AQB (adaptive quantization 

with backward estimation). Forward estimation is based on 

unquantized samples X <n). It is therefore unaffected by 

quantization noise. It also creates an addi tional 

information <side information) that has to be transmitted 

to the receiver. This information requires relatively 

small bit rates compared with the signal rate and 

therefore permits special protection of step size 

information from channel noise resulting in a more robust 

coder. Backward estimation is based on past quantizer 

output samples y<n) and therefore is not as reliable an 

estimate as that obtained through AQF since it is 

affected by quantization noise. It does not require any 

additional side information since the past samples y(n) 

are also available at the receiver. This also makes AQB 

more susceptible to channel errors. A diagram of the two 

methods is shown in figure 3.2-10. AQF is necessarily 

block adaptive since bit rate restrictions do not allow 

an update of O'x on a sample by sample basis. This also 

results in a necessary block delay (usually around 16 ms) 

for the calculation of O'x. For this reason AQF is also 

refered to as block companding. The adaptive quantizers 

need not be uniform but can have nonuniform 

characteristics optimized for the pdf in the 

neighbourhood of the current sample (usually gaussian for 

speech inputs). 

For the AQF case, step size adaptations can follow 

the input variance via: 



= aO' (n); 
x 

0' (n) 
x 
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= [.: 
N 

N 
1: X2 (n+i> J lO 

i=O 
3.2-25 

The estimate is usually transmitted once every N samples. 

For AQB the estimate also involves a number of 

samples i.e. a time window is applied, through which the 

variance is estimated. This estimate can now be updated 

on a sample by sample basis since no transmission of the 

step size information is involved here. By using an 

exponential window the calculation burden can be reduced 

and the estimate can be given by 

2 2 aO' (n-l)+(l-a)y (n-l) 
y 

3.2-26 

for a ~0.9 we have instantaneous adaptation whereas for a 

~0.99 we have syllabic adaptation, figure (3.2-11). 

"The above formula implies that effective adaptation 

can be realized with an explicit memory of only one 

sample y(n-l> together with the quantizer hIstory 

condensed into a slowly varying parameter O'y"" (n-l) or 

equivalently of the corresponding step size ~<n-l). This 

leads to adapti ve quantizati on with one word memory [25]. 

For a midrize quantizer, if the latest output level is 

y(n-l> = H(n-l>LI(n-l)/2; ±H(n-1)=l,3,5 ... . 2 R- 1 

R?:2 

3.2.27a 

the adaptation logic deri ves the next step size LI (n) as 

the produce of LI(n-l) and the multIplier MC) which 1s a 

time invariant function Clf the latest magnitude Index 

I H<n-l) I: 1. e. 

L\(n) = M(IH(n-1)I)LI(n-l) 3.2-27b 



202 

Various constraints and modifications to the above 

equation are 

[ 25,26,27,28) . 

necessary for 

3.2.3.2 Differential peM (DPeM) 

a practical system 

Differential coding or predictive coding systems 

utilize waveform redundancy in the time-domain with the 

corresponding reduction in bit rate for a specified 

quality of digitization. In general the quantizer input 

in a DPeM coder is a prediction error or difference 

signal 

d(n) = X(n) - X(n) 3.2-28 

A 

where X (n) is a prediction of X (n). In order that the 

transmi tter and recei ver parts of the DPeM system track 

and reconstruct input waveforms in synchrony, it is 

" essential that the prediction X (n) depends on previous 
-,- ~ 

quantized values Y(n) = X(n) rather than unquantized 

inputs X (n). Incorporation of this property leads to the 

closed loop or feedback around quantizer structure of 

figure (3.2-12). 

The DPeM coder uses linear prediction in the form 

where 

A 

A 

X(n) 
p "-

= E a X(n-j) 
j=l j 

{a.,), j=l, 2, . . '" p 

coefficients 

3.2-29 

is a set of predictor 

The basic equations describing DPeM, from figure 3.2-12: 

A 

d(n) = X(n) - X(n) 3.2-30 

u(n) = d(n) - q(n) 3.2-31 
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y<n) = X<n) + V(n) 3.2-32 

y(n) is the coder output, d(n) the prediction error, u(n) 

the quantized prediction 

receiver version of u(n). 

Combining 3.2-29 with 3.2-30 

X(n) = 
P 
1: 

j=l 
" a

j 
X(n-j) + d(n) 

error and v(n) the 

3.2-33 

" for fine quantization X(n-j) «X(n-j) equation 3.2-33 is 

very similar to equation 3.2-2c in the section on LPC 

vocoders with d<n) replaced by Gu<n) of that section. Due 

to the similarity, the predictor described by 3.2-29 is 

refered to as an all pole predictor. Note that the coder 

of figure 3.2-12 can be regarded as a generalized 

quantizer whose center-point keeps getting shifted to the 
~ 

latest_ value of X(n). This shifting aligns the quantizer 

with the amplitude range most likely to be occupied by 

X(n) and enables the encoder to use finer quantization 

than in a PCH situation for a given number of 

quantization levels. Quantlzation shifting implies 

predictabi 11 ty of X(n). Clearly in the case of an 

uncorrelated input X(n), the best estimate of X(n) is the 

unconditional mean value (usually zero) and therefore no 

gain due to a DPCH structure can be obtained. 

With error free transmission of u(n) (1. e. 

u (n) = V(n» the prediction input at the transmitter is 

'" ~ X(n) = X(n) + u(n) 
A 

- X(n) + V(n) = y(n) 3.2-34-

The reconstruction error r(n) for sample n is given by 

r(n) = X(n) - y(n) 3.2-35 

From equations 3.2-35 and 3.2-30, 3.2-32, assuming error 

free transmission 
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~ ~ 

r(n) = X(n) + d(n) - [X(n) + u(n)] 

= d(n) - q(n) 3.2.36a 

and from equation 3.2-31 

r(n) = q(n) 3.2.36b 

Equation 3.2-36 reflects an important property of the 

"closed loop" predictive coding scheme of figure 3.2-12: 

The quantization noise does not accumulate (i.e. r(n) 

does not depend on previous quantization noise samples 

q(n-j». Note that in the derivation of equation 3.2-36 

equation 3.2-29 was not used and therefore 3.2-36 holds 

for any predictor structure H. 

It follows that the mse (mean-square-error) 

performance of DPCM is described by the following 

equations 

2 2 
0' = 0' r q 3.2-37 

2 2 
2 

-2R 2 
0' = E* O'ct q 3.2-38 

(by analogy to equation 3.2-12a) 

Let 2 2 
G O'x /O'd = 

P 
3.2-39 

From the above three equations the reconstruction error 

is given by 

0' 2 (DPCI0 
r 

The reconstruction error in peM is given by 

0' 2 (PCM) = 
r 

2'0' -2R 2 
t? ..... , O"x 

3.2-40 

3.2-41 
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Note that £","", the quantizer performance need not be the 

same in the last two equations. In the case of speech 

signals, the statistics of X (n) and d (n) (i. e. the pdf) 

are similar in the case of linear prediction with DPCM 

and logarithmic quantization wi th PCM [21l and the two 

quantizer performances have a ratio near to unity. In 

this case 

2 2 
0' 0' 

G x = x 
p ------

2 2 
0' (POD 0' <DPCM) 

3.2.42a 

r r 

or 

SNR (DPCM)dB = SNR (PCM)dB + 1010g10 Gp 3.2.42b 

Gp is typically greater than one. In view of the 6 dB-per 

bit SNR results of equation 3.2-14, DPCM coding provides 

a <10log1oGp.)/6 bit advantage over PCM. The factor Gf" is 

usually referred to as prediction gain for obvious 

reasons. Note that the above simplified formula 3.2-42, 

does not fully describe the performance of DPCM, since 

the effects of quantizer performance and quantization 

error feedback (i. e. predi cti on from noisy samples) have 

an effect on the resulting SNR. Predictor design usually 

aims to maximise GF'" 

The maximum value of predictor gain ~IG", is achieved 

as N-l"'. This value provides an upper bound on prediction 

gain for linear predictors and is equal to the reciprocal 

of a spectral flatness measure: 

max 
N-lW 

} = (¥ 2 )-1 
x 

where ¥x
2 

is defined as 

3.2-43 



... 2 = 
x 

1 +n 
exp(_ ! 

2TT -TT 
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log S (e j w) dwJ 
e xx 

------------------------
1 

2TT 
! 

-TT 

n 
S (e jw) dw 

xx 

3.2-44 

and S (e
jw

) is the power spectral density of the input xx 

variable X(n). Note that 

2 
0' = 

X 

1 

2TT 
! 

-n 

TT 

S xx 

is the arithmetic mean of the (power) spectrum and 

1 

2Tl 

+Tl 

! 

-n 
log S (e j~dwJ 

e xx 

is the geometric mean of the spectrum. 

By definition 

with ~ 2 = 1 for a white noise process 
x 

3.2.3.2a The Jjnear predJctor af ardpr p 

3.2-45 

3.2-46 

3.2-47 

As mentioned earlier the 1 i near predictor is defined 

by 

A 

X(n) 
p 

= l: a y<n-j) 
j=l j 

p 
= l: 
j=l 

3.2-48 
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The weighting factors a
j 

are the predictor coefficients. 

The term: 

QEF(n) 
p 

= l: a q 
j=1 j 

(n-j) 3.2-49 

represents the quantization error feedback: This term is 

ignored when designing the predictor (i. e. finding the 

coefficients {a.,}), simply because the values q (n) are 

not known at the design stage. The effect of the terms of 

3.2-49 is small for fine quantization. 

From equation 3.2-37 and 3.2-38, the reconstruction 

error variance is proportional to the prediction error 

variance. the criterion for designing a predictor is 

therefore to minimize the prediction error variance 0'.",'" 

from equations 3.2-30, 3.2-48 and the assumption of 

negligible QEF(n) 

d(n) = X(n) 
p 

- l: a X 
j=l j 

(n-j) 

and we aim to minimize 

0' 2 = l: {X(n) 
d N 

P 2 
-"1: ajx(n- j )} 
j=l 

3.2-50 

3.2-51 

Note that this formula is identical to formula 3.2-3 and 

therefore its solution is of the form 

for 

P 
l: akP n (i,k) = Pn(i,O) 

k=1 

p(i,k) = E X(n-l)X(n-k) 
N 

1=1,2 ..... P 3.2-52 

3.2-53 
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In the case of a fixed (nonadaptive predictor) the terms 

% (i, k) can be replaced by the long term autocorrelation 

coefficients R(li-kl) and equation 3.2-52 can be written 

as 

% (i, k) 
p 

= 1: a R(I i-kl) = R(1) 
k=l K 

HUp 3.2-54 

The prediction gain G,,,· is a function of the predictor 

order P but, for the case of a fixed predictor its value 

saturates for predictor orders greater than 2 or 3, 

figure (3.2-13) [21). 

Low complexity DPCN systems employ fixed predictors 

and adapti ve quantization [26). Figure (3.2-14) compares 

reconstruction error spectra in log-PCN and DPCM-AQB 

speech coders of identical SNR. Subjectively the DPCN 

noise spectrum is the prefered shape. This is undoubtedly 

due to the effect of masking of the noise by the speech 

signal. Higher masking is produced where the speech 

signal power is higher i.e. over the low frequency 

region. The quality of low bit rate DPCN can be enhanced 

by adaptive postfiltering procedures which capitalize on 

the fact that the short-time speech cutoff frequency is 

often less than the nominal 3.4 KHz [29). 

3.2.3.2b Adaptiye prediction 

Input statistics such as autocorrelation functions 

and probability density functions are time varying in the 

case of nonstationary signals and as a consequence, best 

predictor designs for inputs such as speech should be 

time varying, or adaptive as well. 

As in the case of sample quantization, adaptation can 

be achieved in a forward or backward mode. Figure 3.2-15 

shows the two different structures. For forward 
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adaptation M input samples are buffered and a set of 

prediction coefficients is calculated which is optimum 

for the 

8 KHz a 

buffered speech segment. For 

good choice for the buffer 

speech sampled 

length is 16 

at 

ms 

whereas a prediction order of around 10 is adequate. The 

depedence of gain Gf" upon prediction order is shown in 

figure (3.2-16). Note that prediction gains saturate much 

slower with increasing predictor order than in the 

nonadaptive case (figure 3.2-13). Further comparisons 

between adaptive and nonadapti ve prediction can be seen 

in figure (3.2-17): With adaptive prediction Gf> is always 

positive whereas in the nonadaptive case G,,· is sometimes 

negative. 

A comparative study of digital waveform coding 

schemes involving PCM, DPCM and ADPCM was carried out by 

NolI (30). He considered the following systems: 

1. )l = 100 log PCM with X"'~>, = 8o-x (PCM) 

2. Adaptive PCM (optimum Gaussian quantizer) with feed

forward control. (PCM-AQF) 

3. Differential PCM with first order 

and adaptive Gaussian quantizer 

control. DPCM1-AQB. 

fixed prediction 

wi th feedback 

4. Adaptive DPCM with first order adaptive predictor and 

5. 

adaptive 

of both 

Gaussian quantizer with feed-forward control 

the quantizer and the predictor (window 

length 32) ADPCMI-AQF. 

Adapti ve DPCM with fourth order 

and adaptive Laplacian quantizer, 

adapti ve predictor 

both with feed-

forward control (window length 128) ADPCM4-AQF 

6. Adapti ve DPCM with twel fth order adaptive predictor 

and adapti ve Gamma quantizer, both with feed-forward 

control (window length 256) (ADPCM12-AQF). 

In the above systems the sampl j.ng rat.e was 8 KHz and 

the quantizcr word length ranged from 2 bits/sample to 5 

bits/sample. Thus the bit rate range is from 16 kb/s to 

40 kb/s. The signal to quantization noise ratios are 
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shown in figure 3.2-18. The lowest curve corresponds to 

the use of a 2-bi t quantizer and moving upward from one 

curve to the next corresponds to adding one bit to the 

quantizer word length. Note that the curves are displaced 

from one another by roughly 6 dB. The perceived quality 

of ADP CM coded speech is better in comparison to PCM by a 

greater extent than the SNR values would suggest. 

A comparison is given in table 3.2-T5. ADPCM here is 

scheme 3 whilst PCM is scheme one [26J. 

3.2.3.2C Adaptive predictor des1gn 

For the adaptive case equations 3.2-52 and 3.2-53 

still hold, but N, the range of summation is no longer 

large but of the order of 20 mS. There are basically two 

approaches to this short-time analysis procedure, the 

. autocorrelation method and the covariance method. The 

assumption implied in equation 3.2-50 still holds. i. e. 

quantization noise is neglected. 

3.2.3.2C1 The Autocqrrelation methqd [5, 31J 

In this method, the limits of summation assume that 

the signal is zero outside the interval O~n~N-1. In this 

case the prediction error d(n) will be nonzero over the 

interval 0~n~N-1+P.·· Therefore the quantity to be 

minimized is 

&' 2 = 
d 

N+P-l ? 
E d-(n) 

n=O 
3.2-55 

From equation 3.2-50, the prediction error will be large 

at the beginning of the interval because one is trying to 

predict the signal from zero values (the prediction error 

over this region will be similar to the signal itself>. 

Likewise the error will be large at the end of the 

interval since one is trying to predict zerO values from 
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nonzero values. For this reason a tapering window is 

usually appl.ied to the data instead of the 

rectangular window implied above. Equations 3.2-52 and 

3.2-53 can be written as 

N+P-l l~HP 

If (i, k) = 1: X (n-i) X (n-k) 3.2-56a 
n=O O~K~P 

or 

N-l-(i-k) HHP 
If <1, k) = 1: X(n) X(n+i-k) 3.2-56b 

n=O O~k~P 

equation 3.2-56b can be taken to represent a short time 

autocorrelation function: 

where 

If (i,k) = R (i-k) 

N-1-k 
R(k) = 1: X(K)X(m+K) 

n=O 

R(k) is an even function hence 

If(i,k) = R(Ii-kl) 
i=1,2 ... P 

k=O,1. ... P 

Equation 3.2-52 can then be expressed as 

P 
1: akR(Ii-kl) = R(i) 

K=l 
l~i~P 

3.2-57 

3.2-58 

3.2-59 

3.2-60 

which is identical in form to 3.2-54 although R(k) is now 

a short-term autocorrelation function defined by 3.2-58, 

and X(K) is a windowed signal. The resulting short term 

prediction error variance can be shown to be 

2 
O'd 

P 
= R(O)- r. akR(K) 

k=1 . 
3.2-61 
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which can be used as a scaling factor in an AQF 

structure. 

The matrix equation corresponding to equation 3.2-60 

has a Toeplitz structure which results in a fast 

computation af the predictor coefficients. This can be 

performed with the Levinson and Robinson algorithms [5] 

al though the most efficient method for solving equations 

3.2-60 is Durbin's recursive procedure [31] which can be 

stated as follows: 

E(o) = R(o) 3.2-62 

(i-i) R(i_j)}/E(i-l) l~i~P 

The above 

i = l,2 .... P 

equations are 

and the solution 

p 

3.2-63 

3.2-64 

UjH-l 

3.2-65 

3.2-66 

solved recursively for 

is given as 

3.2-67 

Note that if the autocorrelation coeffici ents R (i) are 

replaced by a set of normalized autocorrelatian 

coefficients r(k) i.e. r(k)=R(]{)/R(O) then the solution 

to the matrix equation remains unchanged. Another 

important fact about the autocorrelation solution is that 

the resulting filter structure is guaranteed to be 

stable. 
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Fast calculation of the autocorrelation coefficients 

is also possible [5,32). 

3.2.3.2.C2 The coyariance method [6) 

For the covariance method the prediction error 

variance is minimized over the entire length of the 

speech segment under consideration: 

minimize O'd2 = 

then ~ (i,k) becomes 

N-1 

N-1 
1: d2 

(n) 

n=O 

~(i.k) = 1: X(n-i)X(n-k) 
n=O 

and with a change of summation index 

N-l-i 
~ (i, k) = 1: X(1)X(n+i-k) 

m=-i 

or 

N-k-l 
~ (i, k) = 1: X(n)X(n+k-1) 

m=-k 

3.2-68 

3.2-69a 
O~k~P 

l~i~P 

3.2-69b 
O~k~P 

HHP 

O~k~P 

Note that for the calculation of ~ (i, k), values of X (n) 

outside the interval O~n(N-l are required and used. In 

this case no need for tapered windowing arizes since the 

necessary values outsido the interval are made available. 

The resulting equatjon for solution is 

P 
1: a

k 
p(i,k) = p(i,O) 

k=l 
i=1,2, .... P 3.2-70 
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describing equation 

definite matrix. The 
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corresponding matrix equation 

3.2-70 is a symmetric positive 

resulting method of solution is 

called the Cholesky decomposition [2, 5l which provides a 

fast means of obtaining the predictor coefficients from 

(3.2-70). 

Fast procedures for calculating the covariance terms 

;<1,k) can be found in [5,331. Although the covariance 

solution does not guarantee stability, for large N, the 

solutions are always stable, since, in this case, the 

solution is virtually identical to the autocorrelation 

solution. An improvement of the covariance method is the 

stabilized covariance formulation [35, 36l. This 

modification acknowledges the fact that, the input to the 

quantizer consists of both the prediction error as given 

by equation 3.2-50, but also the quantization error 

feedback term QEF of equation 3.2-49. Therefore, the 

total power Eq at the input to the quantizer is the sum 

of -the powers in the prediction error d(n) (Ep) and the 

fil tered noise QEF <n) (E,). Assuming uncorrelated 

prediction error and quantization noise: 

E = E + E 
q P f 

3.2-71 

The power of QEF (n) is determined both by the power in 

the quantizer error q (n) (eq. 3.2-31 and 3.2-48) and the 

power gain of the predictor filter P<Z) defined by 

P(Z) = 
P 
L a Z-k 

k=1 k 
3.2-72 

Assuming a white quantization noise the power gain of the 

filter in 3.2-72 is given by 

G = 3.2-73 
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The power gain can often exceed 200. Such a high power 

gain causes excessive feedback of the noise power to the 

quantizer input, for coarse quantizers, resulting in poor 

performance of the coder. This effect also causes 

instabilities in the coder system, in spite of the fact 

that the filter itself may be stable [37l. The reason for 

the high power gain is is follows: The spectrum of the 

fil ter 1-P (Z) is the reciprocal of the envelope of the 

speech spectrum. The lowpass filter used in the AID 

conversion of the speech signal forces the reciprocal 

spectrum and thus 11-P(Z)1 to assume a high value in the 

vicinity of the cutoff frequency of the filter. The power 

gain which is equal to the integral of the power spectrum 

11-P(f)1 with respect to the frequency variable f is also 

large. This can be corrected by adding to the covariance 

matrix terms in equation 3.2-69 a correction term 

corresponding to equivalent covariance terms from a high 

passed white noise, where the high-pass filter 

approximates the filter, complimentary to the low pass 

filter used in the sampling process (35, 36l. 

The 

3.2-1) 

resulting 

is shown 

filter H(Z) (as defined by 

in figure 3.2-19 together 

equation 

with the 

standard covariance solution. The equivalent reduction in 

power gain can be seen in figure 3.2-20, and the 

correspondi ng reductIon in amplitudes of the predictor 

coefficients in figure 3.2-21. This last figure suggests 

that the high frequency correction will facilJ.tate the 

quantization of the prediction coefficients. Another 

modification to the covariance method is to correct the 

effect that the position of the analysIs frame has upon 

the prediction error and prediction coefficients. This 

results in windowing the product defined by)i<i,k) in 

3.2-69 prior to the solutIon of the matrix (381. 
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3.2.3.2.C3 Lattice sol uti ons - the Bur!;;' method 

The lattice 

algori thm for 

wi thout the 

the 

need 

solutions evolve 

calculation of 

for explicit 

correlation (or covariance) matrix. 

from a recursive 

the predictor f11 ter 

calculation of the 

As in the Durbin algorithm the coefficients {a" ,L, 

j=l, 2, .... i) are the coefficients of the ith order 

optimum linear predictor. Using these coefficients the 

i th prediction error filter (or inverse filter) can be 

defined: 

i 
1: 

k=l 
3.2-73 

This ii 1 ter has the prediction error as its output when 

the input to the filter is the speech signal itself: 

d(n) = X(n) -
i i 
1: a

k 
X (n-k) 

k=1 
3.2-74 

It is also possible to define another error signal, the 

backward prediction error which is defined by 

i i i 
b (n) = X(n-i) - 1: a

k 
X(n+K-i) 

i=1 
3.2-75 

which is the prediction error resulting from attempting 

to predict X(n-i) from the i samples of the input 

{X(n-i+k), It=l, 2, ... i} that follow X(n-i). The i samples 

involved in the prediction implied by equation 3.2-75 are 

the same ones involved in the prediction of X(n) in 

equation 3.2-74. It can be shown that (2J 

3.2-76 

and 
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3.2-77 

The above two equations define the forward and backward 

prediction errors for an ith order predictor in terms of 

the corresponding prediction error of an (1-1) th order 

predictor. A zeroth order predictor implies 

dO(n) = bO(n) = X(n) 3.2-78 

equations 3.2-76 and 3.2-77 can be depicted by the flow 

graph of figure 3.2-22. Such a structure is called a 

lattice network. 

The k". parameters can be computed directly from the 

backward and forward errors [2,39]: 

N 
~ d(i-l)(n)b(i-l)(n_l) 

n=O 3.2-79 
N-l N-l 

1: (d i - 1 (n»2 1: (b i - 1 (n_1»2}* 
n=O n=O 

The expression describes the degree of correlation 

between the forward and backward prediction error. For 

this reason the K.parameters are usually referred to as 

the partial correlation coefficients or PARCOR 

coefficients. 

If equation 3.2-79 replaces equation 3.2-63 in the 

Durbin algorithm identical results obtain for the 

predictor coefficients. 

A new approach that relates to the above has been 

developed by Burg [2, 40]. This algorithm minimizes the 

sum of the mean squared backward and forward prediction 

errors: 

N-l 
minimize 1: [(d i (n»2 + (bi (n»2] 3.2-80 

n=O 
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The solution for the k. coefficients is 

K = 
i 

N-1 
E [di - 1 (n) b i - l (n_1») 

n=O 

N-1 N-1 
E [d i - 1 (n»)2 + E [bi - 1 (n_l»)2 

n=O n=O 

3.2-81 

It can be shown [5) that the above solution always yields 

a stable filter i.e. 

3.2-82 

equation 3.2-81 can be used to replace equation 3.2-63 in 

the Durbin algorithm and hence obtain a different set of 

predictor coefficients. 

The Burg algorithm performs well even with small 

block sizes N and provides better results than the 

autocorrelation method [41). It yields a stable filter 

even without the use of a window. 

A complexity comparison between the three methods of 

obtaining the predictor filter, the Cholesky 

Decomposi tion, the Durbin Method and the Burg Method is 

given in Table 3.2-T6. 

3.2.3.2d SpIlt Band LEG 

One way to reduce computation is to spl it the 

frequency region into a number of bands. Since the 

complexity is usually proportional to the product of the 

number of samples N in the frame and the predictor order, 

which are both reduced in a split band situation, split 

band systems can model tho envelope with less complexity 

[46). The above procedure can also be used to give 

different accuracy to the model for different frequency 

regions through selective linear prediction [42). This 
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procedure is beneficial for wide bandwidth speech 

C8KHz). Different accuracy for different frequency 

regions can also be achieved without explicit band 

spli tt i ng of the input signal, [43-45, 47, 48J. Al though 

variations do exist, the general procedure is as follows: 

[ 45J 

a) window the signal and compute its spectrum 

b) warp the spectrum as desired 

c) Take the Fourier Transform of the warped spectrum to 

get the autocorrelation R(i) 

d) Sol ve for the predictor parameters from the normal 

equations 

P 
L akR (Ii-kl) = R(i) 

K=l 
HHP 

These predictor parameters correspond 

spe_ctrum and, therefore cannot be used 

Dewarping must be performed to obtain 

prediction coefficients as follows: 

to 

for 

a 

3.2-82 

a warped 

processing. 

new set of 

a) Using the predictor coefficients calculated from 3.2-

82 calculate the all-pole spectrum from 

P (w) = 1. 3.2-83 

b) dewarp this spectrum using the inverse of the 

function used in the original warping. 

c) Take the Fourier Transform of the dewarped spectrum 

to obtain the corresponding autocorrelation function 

d) Equation 3.2-82 can now be used to obtain the new 

prediction coefficients. 
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If the spectrum is warped such that high frequencies 

are compressed relative to low frequencies, low 

frequencies are better matched than high frequencies 

since the latter are compressed. This is because, in the 

warped frequency domain, spectral matching is uniform. 

Perceptual functions can be used for warping, such as the 

cri tical band .rate function. This was not found to be 

satisfactory 

perceptually 

model for 

in [45] perhaps due to the fact that 

good 

the 

match to the speech 

production process 

signal is a 

of speech. 

the 

bad 

A 

"compromize" warping function can be used for wideband 

speech. 

The above procedure is also useful for unscrambling 

Helium Speech [43], and in speech analysis [47, 48]. The 

prediction equations 3.2-50 can be written in the Z

transform domain as 

D(Z) X(Z) 
P -k 

= - L akX(Z)Z 
k=l 

3.2-84a 

or 

P -k D(Z) = X(Z) [ 1 - L a Z ] 

k=l k 
3.2-84b 

and 

X(Z) 
D(2) 

= 3.2-84c 
P -k 

1 - L a Z 
k=l k 

which is the same form as equation 3.2.2b in the case of 

LPC vocoders. The transfer function of the all pole 

filter is given by equation 3.2-84d. The al1 pole filter 

is usually refered to as the (Linear Predictive Coding) 

LPC filter: 



X(Z) 1 
= 

D(Z) P-k 
1 - 1: akZ 

k=l 
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3.2-84d 

and its spectrum is given by 3.2-83 

Note that the inverse filter 

D(Z) = A(Z) = 1 -
X(Z) 

3.2.84e 

has the power spectrum that is the inverse of the power 

spectrum in 3.2-83. The power spectrum of the inverse 

filter can be easily computed since its impulse response 

from 3.2-84e is given by the sequence 

3.2-85 

i.e. it has only P+l nonzero terms and therefore a short 

time FFT can be performed on the impulse response given 

by 3.2-85 without any errors arizing from the truncation 

of terms that would have been necessary if the (infinite) 

impulse response of the all pole filter was used for the 

computation. Any number of zeros can be appended to the 

sequence 3.2-85 to obtain a desired frequency resolution. 

Typical amplitude r~sponses of the all pole filter are 

shown in figures 3.2-23 and figure 3.2-24. for a voiced 

and unvoiced sound respectively. The time segments 

corresponding to these 

shown are the short 

segments. The correct 

noting that 

spectra 

time 

level 

? 
I X (W) 1'- = 

? 
ID(W)I~ 

are shown as inserts. Also 

spectra of these speech 

match can be obtained by 

----------------
P 

11 - E a e- jkw l 2 

k=l k 
3.2-86 
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and since D(W) is assumed to be flat for a large 

prediction order P the level matched filter 

note that 

2 
()'d 

is 

3.2-87 

3.2-88 

corresponds to the filter H(Z) used as a vocal tract 

model. <eq. 3.2-1 and 3.1-2). 

From figures 3.2-23 and 3.2-24 can be seen that the 

filter models the peaks of the short-time speech spectrum 

better than the valleys. This is a feature of the LPG 

filter, related to the fact that it is an all pole 

fil ter. 

3.2.3.2e LPG Quantization 

Quantization of the prediction coefficients ak 

directly can easily lead to instabilities in the 

resulting filters. R. Viswanathan and J. Makhoul [50J 

undertook a study to find the 11 best 11 

representing an 

equation 3.2-88, 

all pole filter of the 

parameters 

form given 

for 

in 

where " best" is related to quantization 

performance subj ect to some predetermined cri terion. The 

cri terion used was based upon the assumptions that (a) 

the quality of the synthesized speech is a function f the 

"maximum perceptual error" between the synthesized and 

original speech, and (b) that an accurate representation 

of the power spectrum is necessary for synthesized and 

original speech. Their criterion for optimal quantization 



223 

was therefore to minimize the maximum spectral error due 

to quantization. This is different form the criterion of 

minimizing 0'.,,-' in equation 3.2-51 and their quantization 

cri terion is more suited to LPC vocoder designs. Under 

certain conditions though, the two criteria can be 

considered as equivalent [51). 

In measuring spectral sensitivity the PARCOR 

coefficients ki were used as the independent variable. 

These can be shown to be the same quanti ties as the 

reflection coefficients ri as defined by equation 3.1-1 

(6) and are therefore related to corresponding area 

coefficients defined by 

1 + k
i 

1 - k 
i 

Ap +1= 1, l(Up 3.2-89 

The log spectrum S was used to represent the model and a 

spectral sensitivity was defined as 

1. e. 

as Hm I ::~I 
e.ki..,O e.ki 

3.2-90a 

+TT 
as lim [_: I IlogP(ki,w)-logP(ki+e.ki,w) 

2 TT_TT 

dw) I 3.2-90b 

where P(. ,w) is defined by equation 3.2-83. 

Typical spectral sensitivities 10log-10 (aS/a k,) are 

shown in figure 3.2-25. From this figure one can deduce 

that for a flat spectral sensitivity a nonlinear 

quantizer need be used for quantizing the reflection 

coefficients. Flat spectral sensitivity is an equivalent 

criterion to minimizing the maximum spectral error 

through optimal quantization. This is similar to the 
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si tuation where minimizing the predictien error (),,,,,,"' leads 

to a flat prediction error spectrum. Another similar 

situation is minimizing reconstruction error in frequency 

domain coders which also results in a flat error 

spectrum. 

A suitable transformation was found to be 

1 + k
i 

1 - k 
i 

which can also be written as 

Ai 
f(k

i
) = log _____ _ 

A i+l 

by virtue of equation 3.2-89. 

3.2-91a 

3.2-91b 

The quantities f(k.) are called log area ratios and 

provide an approximately optimal set of coefficients for 

quantization. Equivalent spectral sensi ti vi ties 101og1'" 

(OS/d:f(k •. > are shown in figure 3.2-26. 

Note that quantization of f (k.) always leads to a 

stable filter since .. the region -oo<f(k.)<+oo always maps 

into -Hk •. <1. 

3.2.3.2.el Optimlm bit allocation 

Assume that the P parameters for quantization are q'" 

q" .... qP each al located bi ts M" Mc, ..•. M".· respecti vel y to 

a total number of M. The number of 1 evels N is given 'by 

3.2-92 

The quantization step size for q. is given by 



o = 
i 
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3.2-93 

where q" and q.. are the upper and .lower bounds on qi 

respectively. 

The total spectral deviation 68 defined as 

P 
68 = 1: I 

i=1 

is minimized for a constant step size given by 

o = 

3.2-94 

3.2-95 

The appropriate number of levels for each coefficient 

can then be calculated from 3.2-93 and the required 

number of bits from 3.2-92. An optimum scalar 

quantization scheme can therefore be applied by using the 

log area ratios defined by equation 3.2-91 as the 

parameters q.. to be quantized. Further reduction 

bit rate required to quantize the all-pole 

in the 

f11 ter 

parameters can be achieved by taking into account of the 

fact that linear and nonlinear dependencies exist amongst 

the parameters to be quantized. One quantization method 

that takes advantage of the above dependencies is vector 

quantization [52). 
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3.2.3.3 Vector Quantizatlon 

We have seen that an optimum quantizer adjusts its 

step size according to the Pdf of the course, providing a 

smaller step size through the region where the Pdf is 

high and a larger step size where the Pdf is low. An 

optimum quantizer can also be designed for the case where 

the source is multidimensional i. e. when each successive 

source output X(n) is no longer a scalar but a vector 

quanti ty X (n) = {X, (n), X,,: (n), X:" (n) ... X"' (n)} . A scalar 

quantizer assigns each input X(n) to an output value 

Y(n). A vector quantizer performs an analogous operation 

by assigning a vector Y (n) = <Y, (n) , y,,: (n), 

Yo, (n) ... Y", (n)} to each input vector X (n). As in the case 

of a scalar quantizer there is only a finite number N of 

reconstruction code vectors Y(n) forming an alphabet or 

code book A. This is analogous to the number of 

reconstruction levels N of the scalar quantizer, and the 

number of bits required to identify each vector Y(n) is 

given by 

3.2-96 

The determination of the optimum reconstruction vectors 

in A depends on the joint probability distribution 

function P(X'" 

cri terion. In 

X"" X,,' ..... Xn) and an appropriate distortion 

the case of the scalar quantizer the 

cri terton used was the noise variance 0'.,,": and the design 

of the optimum quantizer minimIzes 

2 
0' '" q 

2 
J (y-xl P (x) dx 

x 
-co 

(equation 3.2-9c) 

3.2-97 

If now the criterion is some other function d(X,Y) of X 

and Y the formula above can be written as 
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minimize Dlx, y) = J dlx, y)Plx) dx 3.2-97 

-00 

for the m.s.e. case 

dlx,y) = [y - xJ 2 3.2-98 

by direct analogy, for the vector case, we need to 

minimize: 

Dlx,y) = ! 3.2-99 

-00 -00 

The vectors X and Y can be represented by points in an K-

dimensional space. High PIX) = PIX" X"" 

implies a dense region in the space whereas a 

implies a sparse region in the space. 

low P IX) 

Optimal 

quantization will place more reconstruction vectors Y in 

the dense region Is) of the space whereas fewer (or none) 

vectors will be placed in the sparce region (s) of the 

space. Assuming that the alphabet A is known 1. e. the 

positions of the Y vectors are known in the space, the 

quantizer QIX) assigns vector· Y1 to vector X (i.e. 

quantizes vector X to the value Y) according to the 

nearest neighbour ruie: 

QIX) = Y 
i 

3.2-100 

Note that d(X,Y) in equation 3.2-100 need not be the same 

as d(X,Y) in equation 3.2-99, although, if one distortion 

measure provides an optimal criterion the 

In particular if the distortion measure 

replaced by a function F[d(X,Y)] which 

monotonic with d(X,Y) i.e. 

other may not. 

in 3.2-100 is 

is strictly 



Q' (X) = Y' 
i 

j;ti Uj ~N 

iff 
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3.2-101 

then exactly the same quantization vector Y; will be 

chosen in both cases i.e. Q' (X) = Q(X) and Y. = Y' •. The 

same cannot be said for equation 3.2-99 where different 

alphabet A will result, in general, if d(X,Y) is replaced 

by Frd(X,Y)]' 

Equation 3.2-100 also defines a cell C,. known as 

nearest neighbour cell, voronoi cell or Dirichlet region 

for each Y. containing all the pOints X satisfying 3.2-

100. For the purpose of quantization all points (vectors) 

satisfying 3.2-100 belong to the cell C;. This condition 

also defines the vector Y; if the cell C. is known: To 

minimize D(X,Y) in equation 3.2-99 one has to minimize 

_Di(X,Y
i

) = I d(X,Y
i

) P(X) dX 

XEC
i 

for all cells Ci 

where 

since 

N 
D(X,Y) = L Di (X,Y

i
) 

i=l 

3.2-102 

3.2-103 

3.2-104 

The vector y,. minimizing 3.2-102 is called the centroid 

of the cell C, .. 

Y
i 

= cent (C
i

) 3.2-105 
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3.2.3.3a Code book generations - The LBG algorithm 

Note that knowing the cell C., the vector y" can be 

found from 3.2-102 and conversely, knowing the vector 

Y." the cell Co can be found from equation 3.2-100. This 

leads to an iterative procedure for determining the 

Alphabet A from the distribution P(X) = P(X" X'-" .... X",). 

In practice P(X) is not known. Instead a long training 

sequence of data is available {X(n), l~n~L}. Using this 

data the following algorithm can be used to obtain the 

alphabet A: 

Step: 1 Ini tialization: Set m=O. Chose an initial 

estimate of code vectors y" (0) HHN of alphabet 

A(O) 

Step: 2 Classification: Classify the set of training 

vectors {X(n), Hn~L) into the clusters (cells) 

C. according to 3.2-100 

Step: 3 Code vector Updating: m~m+1. Update the code 

vector of every cluster by computing the centroid 

of the training vectors in each cluster. 

Y., (m) = cent (Co (m» H UN according to 3.2-102 

(3.2-106) 

Step: 4 Termination test: If the decrease in the overall 

distortion D(m) at iteration m relative to D(m-1) 

is below a certain threshold, stop; otherwise go 

to step 2. 

The above is the k-means algorithm [521. 

Equation 3.2-102 has to be modified for the case of 

using (X(n), Hn~L} instead of p(X) for its calculation. 

Then 

3.2-106 
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D(m) in step 4 is given by 3.2-104 as D(X, Y(m» 

Test 4 signals the exit from the algorithm if 

D(m+1) - D(m) 

D(m) 
<E 3.2-107 

where E is a small value, say 0.1%. Any other reasonable 

termination test may be used in the algorithm. Also a 

maximum limit on m can be placed. 

One method to provide the initial alphabet A(O) for 

step 1 also results in obtaining designs for quantizers 

with N = 2''', M = 0,1, ... until an initial guess for the 

N, •• -,... level quantizer required is obtained. This is as 

follows 

1. Initialization: Set N = 1 and define Y, = cent 

({X(n), Hn~L» the centroid of the entire training 

data. 

2. Given a codebook A(N) containing N vectors {y,,; 

i=l, ... N} "split" each vector y, into two close 

vectors y, + Z and y,. - Z where Z is a fixed 

perturbation vector. The new code book has 2N vectors. 

Replace N by 2N. 

3. Is N = N·"io'''':'? if so set A(O) = A(Nn.· .... ) and exit 

A{O) is then the initial reproduction alphabet for 

the N-Ievel quantizatJ.on algorithm. If N;<N, , .... ,,:, run 

the k-means algorithm using the initial estimate 

provided by step 2 to obtain a new· codebook A OD and 

return to step 2. 

The k-means algorithm together with the splitting 

procedure described above is referred to as the LEG 
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algorithm [53, 

codebook. 

54l . If provides a locally optimum 

3.2.3.3b Applications - nearest neighbour measures 

Since the log area ratios LAR are known to have good 

quantization properties one way to apply vector 

quantization to LPC is to quantize the LAR using a m.s.e. 

measure, i. e. replace the components of the vector X by 

the LARs and use the Euclidean distance between source 

and reconstruction vectors as the distortion measure. For 

a squared error criterion the centroid of the cell is the 

Euclidean center of gravity given by 

Yi = cent (C
i

) 3.2-108 

where Ltis the number of vectors X(n) in cell Ct provided 

3.2-109 

In general a mean square criterion will attempt to make 

the distortion equal in each component of the input 

vector 1. e. the average distortion in each vector 

component will be approximately equal. In the case where 

the vector components··have widely different variances the 

components with the smallest variances will have negative 

SNRs for certain low bit rates in spite, in fact, because 

of the fact that the vector quantizer is an optimum 

quantizer. The source 

"truncated" in some cases 

have posi t i 'le SNRs of 

vector could therefore be 

to those components that will 

some prefered value for a 

particular bit rate. This is true for· the LARs si nce a 

"truncated" vector will simply represent a filter of 

lower order (provided the smallest LARs are those of 

highest indices). The bit rate of the vector quant 1zer 
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can therefore be used to decide on the useful prediction 

order than can be accommodated by the quantizer. 

Different error distributions can be achieved using 

various 

example 

transformations 

if instead 

on 

of 

the vector 

X(n) = 

components. For 

{X, (n) • X", (n) • 

X~, <n) ... X." <n)} the transformed vector X' <n) 

defined by 

X' <n) = {logX
1 

(n). logX
2 

(n), ...• logX
k 

(n)} 

is used 

3.2-110 

under a square error distortion meaSUre given by 3.2-109 

with X' replacing X. the percentage error in each 

component will be approximately constant. 

This can be demonstrated by taking two of the 

components and assuming constant average distortion in 

each component: 

-
y' = X' + d 1 1 

y' = X' + d 2 2 

or 

y' = logX1 + d 
1 

y' = logX2 + d 2 

to obtain the quanti zed version of X the 

transforms can be operated upon y' to give 

Y1 = EXP[ Y' 1) = aX1 

Y2 -- EXP[ Y' 2) = aX 2 

where 

a = EXP[ d) 

3.2-111a 

3.2-111b 

3.2-111c 

3.2-111d 

inverse 

3.2-112a 

3.2-112b 

3.2-112c 
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in practice of course the equations 3.2-111, 3.2-112 will 

hold for statistical averages. 

Therefore although Vector Quantization wi 11 produce 

an " optimum" solution careful choice of the 

representation vector should be made for a useful 

quantizer. This of course can be incorporated into the 

choice of a meaningful distortion criterion or distance 

function. 

We have seen that the aim of linear predictor designs 

is to minimize the variance O'd Co
' of the prediction error 

d(n) [eq. 

distortion 

3.2-50 and 

criterion 

3.2-51] . 

that can 

We will now develop a 

be used for vector 

quantization of the fi 1 ters which also aims to minimize 

the variance of the prediction error. 

Assume that we have a windowed sequence of data X (n) 

where X(n) = 0 for n<O and n)N-l. The prediction error is 

given by 

P 
d(n) = E aiX(n-i) 

i=O 
3.2-113 

with ao = 1 and the minus sign of 3.2-50 incorporated 

into the at coefficients. The total squared prediction 

error (residual) energy is given by 

"' ? 
c(" E [d(n)]~ 3.2-114 

n=-oo 

as in the case of the autocorrelation method. The 

coefficients {a:l. , i=1,2 ... P} have been obtained by 

minimizing the prediction error energy. This minimum 

value is given by C( above. The filter 



A(Z) 
P -i 

= 1 + 1: a
i 

Z 
i=1 
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is the filter that minimizes c(. 

uncoded filter. If {X(n)} is 

f.1lter A' (Z) given by 

P -i A' (Z) = 1 + l: a' Z 
i=1 i 

the residual energy 6 must 

minimum residual error 1. e. 

(j) P ? 

6 = l: ( l: a' iX(n-i)J~~C( 
n=-'" i=O 

Let 

passed 

be 

with equality holding iff A(Z) = A' (Z). 

3.2-115 

A(Z) represent the 

trough the coded 

3.2-116 

greater than the 

3.2-117 

The ratio SIC( is called the likelihood ratio. (51) 

Evaluation of these ratios can be efficiently carried out 

through the use of autocorrelation sequences. Let {r ... (n)} 

and {rx (n)} denote the autocorrelation sequence of the 

polynomial A<Z) and the data {XCn)} respectively. The 

minimal residual error can be computed from [51. 54). 

with 

and 

P 
0: = l: raCn) 

n=-P 
r (n) 

X 

P 
= r (0) r (0) + 2 l: r Cn) r (n) x a x n=l a 

r (n) .
a 

P-n 
l: 

k=O 
n=O,l •... P 

3.2-118a 

3.2-118b 

3.2-119 



r (n) = 
x 

similarly 

P 
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N-l-n 
1: X(k)X(k+n) 

k=O 

o = 1: r' 
n=-P a 

(n) r (n) 
x 

n=O,1. .. P(N 3.2-120 

3.2-121 

Our aim is to minimize (; the prediction error variance 

when the coded inverse filter is used. Note that <X is 

assumed to have been minimized by definition. One 

distortion measure between the derived coded fi 1 ter and 

each individual training sequence X is therefore 

d<X, A'i) = 0 3.2-121b 

where A'i represents the filter A' (2) (or l/A' (2». 

By virtue of equation 3.2-106 the centroid of a 

particular cell C .. is that filter A' .. minimizing 

3.2-122a 

which can also be expressed in the following forms 

Di(X,A'i) = 1 1: 0 

Li XECi 

3.2-123b 

1 
P 

Di (X,A'i) = l: l: r' (n) r (n) 

Li XECin=-P 
a x 

3.2-123c 

P 
(n) 1 Di (X,A' i) = l: r' h r (n) 

n=-P 
a -

XECi 
x 

Li 

3.2-123d 

or 
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P 
Di (X,Ai ) = 1: r' (n) R (n) 

n=-P a x 
3.2-123e 

or 

R (n) = 1 1: (n) r 3.2-124 
x 

Li X€C i 
x 

The centroid can therefore be calculated from the 

autocorrelation equation 3.2-60 where the autocorrelation 

terms are given by 3.2-124. We now therefore have a 

distortion measure (eq. 3.2-121) to perform a nearest 

neighbour search and a formula to calculate the cell 

centroids (3.2-60 and 3.2-124). This is sufficient to 

design a code book using the LEG algorithm. 

The magnitude of 6 does not only 

accuracy of quantization but also on 

depend on the 

the individual 

speech segments X. Therefore speech segments 

wi 11 - also have large 0 and this will 

wi th large 0: 

affect the 

quatization process through equation 3.2-123. Segments 

with large 0: will be quantized with greater accuracy and 

vice versa. This is in a sense undesirable since 0: is 

proportional to speech energy from 3.2-113 and 3.2-114. 

In effect if two otherwise identical sentences in the 

training sequence have been recorded at different sound 

levels their corresponding predictors will be quantized 

differently even though they have identical all-pole 

fi I ters. One way to overcome this is to use the 

likelihood ratio 6/0: instead of 6 as the distortion 

measure i.e. 

d(X, A'i) = 6/0: 3.2-125a 

this can also be written as 

d(A A') = 6/0: 3.2-125b 
i' i 
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which implies that the dIstortion criterion measures 

(quantization) distortion between coded and uncoded 

filters. Note that since ex is fixed by definition we are 

again minimizing the (weighted) prediction error energy 

from the coded filter: Nearest nefghbour calculations 

with either 3.2-121b or 3.2-125 will yield the same 

reconstruction vector A' , .. Equation 3.2-123 now becomes 

Di (X,A' i) 

or 

P 
Di(Ai,A'i) l: 

n=-P 

with 

1 R (n) l: = x 
Li XEC i 

or 

1 R (n) l: = x 
Li X€C i 

p 
= l: 

n=-P 
r' (n) 1 

a 

r' (n)R (n) 
a x 

r (n) 
x 
---

ex 

r (n) 
x 

---------
n=P 

l: r (n)r (n) 
n=-P a x 

r (n) x 

ex 

3.2-126a 

3.2-126b 

3.2-12703. 

3.2-127b 

Once again the centroid can be calculated from 3.2-60 

with the autocorrelation terms given by Rx(n) of 3.2-127. 

From 3.2-127b can be seen that normalized autocorrelation 

terms rx (n) can be used since they appear both in the 

numerator and denominator of the equation. Although the 

formulations above depend heavily on the autocornolation 

method, the terms rx (n) can also be derived from 3.2-60 

(This is the autocorre)ation matching property (5, 54) 



238 

if the coefficients {a,. i=l, 2 .... P} have been derived 

through some other method e. g. the covariance or Burg 

method. One then proceeds as above to quantize the 

filters without the need to calculate rx(n) from the 

speech segments directly. The above formulation using 

3.2-125 as the distortion measure is equivalent to the 

gain separated Itakura-Sai to distortion measure [54]. It 

is reported that ([52]) Vector Quantization (VQ) 

employing forms of the Itakura-Saito measure provides 

similar perceptual performance as 

distortion measure on the LARs for 

(i.e. sampling rate - 8KHz, P-12). 

the squared error 

full band signals 

3.2.3.3c Other issues in Vector Quautizatiou 

A major concern in VQ is algorithm complexity: At the 

encoder, the source vector must be compared with every 

codeword in the codebook to find its nearest neighbour in 

order to code the source vector with the minimum 

distortion. This involves N comparisons where N is the 

total number of codewords. Alternatively this involves N 

calculations of the appropriate distortion measure, and 

for complex 

complexity can 

distortion measures and large N the 

be prohibitively high. Another factor 

adding to complexity is the vector size since this will 

also increase the complexity of the distortion measure 

calculation. 

A second issue is storage: At both the encoder and 

decoder the N-member code books have to be stored in 

memory. 

Due way to reduce the complexity is through the 

binary tree search procedure [52, [54, 55]. In this 

procedure the N dimensional space is first divided into 

two regions (usi ng the k-means algorithm with k=2), then 

each of the two regions is divided into two subregions 

and so on until the space is divided into L regions. 
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Associated wi th each region at each binary division is 

its centroid. Fig. 3.2-27 is a schematic of binary 

division of space into L=8 cells. At the first binary 

division V'I and V"" are the region centroids. At the 

second binary division there are four regions with 

centroids V8' through VE.. The centroids of the regions 

after the third bi nary division are the code vectors Y i. 

An input vector X is quantized by following a path along 

the tree that gives the minimum distortion at each node 

in the path: X is compared to V'I and VO". If d(X , 

V",,)<d(X, V,) for example then the path leading to V~" is 

taken. The vectors stemming from V'I are no longer 

considered for the search, and so on through the 

remaining nodes. The total number of distortion 

computations 

can also be 

each region. 

is now equal to 21og,,,,L. Non uniform trees 

constructed by monitoring the occupancy of 

This is shown in figure 3.2-28. A 

performance comparison between scalar, binary and full 

search quantization is shown in figure 3.2-29. The 

spectral error reflects the rms log spectral deviation of 

equation 3.2-90. It can be seen that the performance of 

the binary search is only slightly inferior to the full 

search compared to the scalar case. 

Another technique aimed to reduce storage and 

computational cost is cascaded quantization. (Figure 3.2-

30). The input vecto"r X is first quantized using a B, bit 

(L,-level) VQ. The residual E between X and its quantized 

value Zi is then used as the input to a B,,,,-bit (L",-level) 

second VQ stage wi th output W, •• 

The final quantized value is the sum 

vectors Z. and W,.. The performance of this 

inferior to the conventional VQ since a 

of the two 

quantizer is 

lot of the 

dependencies between the vectors are lost through the 

operation. The KLT matrix A serves to reduce this loss 

[52] but can only improve on linear dependencies. 
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Another method of reducing complexity 

through the use of split-band codes: 

and storage is 

The spectral 

envelope is split into a number of bands and each band is 

vector quantized separately [56]. We have seen that this 

technique also reduces computation for the derivation of 

the uncoded filters. 

Other variations include product codes [57, 58], use 

of transforms prior 

code books [61, 62], 

Predicive vector 

Quantization [65]. 

to quantization [59, 60], Stochastic 

Adaptive Vector Quantization [63], 

Quantization (64) and Segment 

We have seen how, given a set of training data 

{X(n), Hn~L}, a distortion measure and a means to 

calculate centroids one can construct a code book for a 

vector Quantizer. We will now consider several issues 

concerning the training data. 

Ideally the training set of data should contain every 

possible vector that is likely to be produced by the 

source and, additionally, to provide a sample pdf that is 

identical to the pdf of the source. The last feature 

impl ies that the relative occurrence of a vector in the 

training set should match the relative occurrence form 

the source, or alternatively, the training set should 

have the same densi t-y in the multidimensional space as 

the source. For speech signals this implies that both the 

framesize and the frame rate of the training set should 

be the same as the one intended to be used in the coding. 

Note that preferential weighting to certain types of 

spectra can be given by i ncreasi ng their number in the 

training set at the expense of the other spectral types. 

This can also be achieved bye. g. increasing the frame 

rate: longer duration sounds such as vowels will then be 

preferentially encoded at the expense of shorter or 

transitional segments. The correct choice can only be 

decided through perceptu2l.l studies. The very first 
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feature mentioned above cannot be achieved in practice 

since it would imply a training set incorporating every 

possible sound from every possible speaker which is 

clearly impractical. One therefore is forced to use a 

limited amount of training data. 50 training data per 

coding vector are considered sufficient although similar 

performance can probably be achieved with a few as 20 

training vectors/codeword whereas 10 training 

vectors/codeword will probably result in a noticeable but 

perhaps acceptable deterioration. Figure 3.2-31 shows the 

rose as a function of the number of training vectors per 

level (per codeword). Clearly this is only an example and 

the necessary number of training vectors must be 

determined from a similar plot such as the above. The 

figure also shows the performance of the code book on data 

that were not used for training. Note that the two curves 

are different, exactly because not all possible training 

vectors can be used. The two plots follow a parallel 

course for high numbers of training vectors because the 

independent test data were produced by different 

speakers. The difference is related to the Robustness of 

the codebook: The code book can have a good performance 

with certain speakers and bad for others. Robustness can 

be improved by including as many speakers as possible in 

the training data. 

3.2.3.4 Backward Predictor Adaptatjon 

The coding of the LPC parameters helped to introduce 

the concept of vector quantization resulting in (locally) 

optimum quantizers for the all-pole filters. If on the 

other hand, predictor coefficients can be estimated on 

the basis of quantized and transmitted data there is no 

need for the use of a filter quantizer. This kind of 

predictor is called. a sequentially adaptive predictor. 

Since no side information is required the predictor can 

be updated as often as desired, usually from sample to 

sample. Most algorithms are based on the method of 
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steepest descent or gradient search 

structure is shown in figure 3.2-15b. 

[21]. The general 

For high bit rates 

APF and APB provide comparable performance. For lower bit 

rates, APF performs better since APB gains are limited by 

quantization effects: All pole predictors of high orders 

are more susceptible to quantization and transmission 

noise and therefore predictors of small order prevail for 

robust APB algorithms. 

3.2.3.5 Spectral Fine Structure Predictors 

We have seen that envelope predictors exploit 

redundancies in the speech signal that stem from the 

formant structure of the signal. For voiced sounds 

further redundancies can be exploited, those stemming 

from the signal's fine or pitch structure. The 

corresponding predictors are called long delay predictors 

because distant samples are utilized to obtain the 

difference (prediction error) signal, as opposed to 

envelope predictors which are also called short delay 

predictors, involving only near samples. The two 

predictors can be used in either order but, usually, 

envelope prediction is performed first and, then, pitch 

prediction is performed on the prediction error signal 

from the first stage. Coders---employing both short and 

long delay predictors are usually refered to as APC or 

Adaptive Predictive Coders. 

The long delay synthesis filter is of the form 

1 

B(Z) 
= 

1 3.2-128a 
I-P(Z) 

with the predictor P(Z) being usually of third order 

or first order, 
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3.2-128c 

The corresponding analysis filter is of course 

B<Z) = 1 - P(Z) 3.2-128d 

operating on the (first) prediction error obtained from 

envelope prediction, d(n) given by equation 3.2-50 to 

produce the second prediction error e(n) given by 

3 
e(n) = d(n) - E b

k
d(n-N+2-K) 

K=l 
3.2-129 

The optimum predictor is obtained, as in the case of 

short-term prediction, by minimizing the energy of e (n) 

over the time interval of interest i.e. 

minimize E = E[e(n)]2 
PL 

3.2-130a 

PL the minimization range is usually the whole current 

analysis frame as in the covariance method for the short 

term predictor: 

minimize E --
N-1 

E [e(n)]2 
n=o .. 

3.2-130b 

by virtue of equation 3.2-129 and using the one tap 

predictor from 3.2-128c the above equation can be written 

as 

N-l ? 
minimize E = E [d(n)-b

2
d(n-N)]

n=O 

which can be solved by setting 

3.2-131 
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N-1 
= - E 2[d(n)-b

2
d(n-M)]d(n-M) = 0 

n=O 

N-1 
E d(n)d(n-M) 

n=O 
b = 2 N-1 

E 
n=O 

2 d (n-M) 

3.2-132a 

3.2-132b 

substituting this value for b., into equation 3.2-131 

gives for the minimum E: 

E min 
2 = E [d (n)] -

N 

[E d(n)d(n-M)]2 
N 

2 E d (n-M) 
N 

3.2-133 

where the summation over the N values of n is as before. 

It can be seen from 3.2-133 that the minimum val ue of 

E,,,, . ., is obtained for that M which maximizes 

DE(M) = 

2 
[E d(n)d(n-M)] 

N 3.2-134 

The function DE(M) is calculated for an expected range of 

M values, for example, an equivalent delay of 2.5msec to 

18.5msec which, for 8KHz sampled speech gives a range of 

M between 20 and 147. The value of M can then be coded 

using 7 bits and covers the expected time length for the 

pi tch period of most speakers. Note that the val ue of M 

will frequently require past samples d(n-M) outside the 

current analysis frame for the calculation of DE(M). Once 

the value of M is found, bz can be calculated from the 

3.2-132b. 



245 

For the case of the three tap predictor equation 3.2-

130 can be expanded into 

N-1 
minimize E ~ L [d(n) 

n=O 

3 ? 
- L b d(n-M+2-K»)~ 

k=1 k 

which can be solved by setting 

== = 

3.2-135 

3.2-136a 

thus obtaining three simultaneous equations for the 

minimization problem. 

b 1X1 + b2 X2 + b3 X3 = D1 3.2-136b 

b 1 X2 + b
2

X4 + b3X5 = D2 3.2-136c 

b 1X3 + b2 X5 + b3 X6 = D3 3.2-136d 

where 

? 
Xl = L [d(n-M+l») -

N 
3.2-136e 

X2 = L [d (n-M+l) d (n-M») 
N 

3.2-136f 

X3 = L [d (n-M+1)d (n-M-l») 
N 

3.2-136g 

X = L [d(n-M»)2 
4 

N 
3.2-136h 

X = L [d(n-M)d(n-M-l)) 
5 

N 
3.2-136i 

2 X = L [d(n-M-l») 
6 

N 
3.2-136j 
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D = E d(n)d(n-M+l) 
1 

N 
3.2-136k 

D = E d(n)d(n-M) 
2 

N 
3.2-1361 

D3 = 1: d(n)d(n-M-l) 
N 

3.2-136m 

The value of M can be obtained by maximizing 3.1-134, 

al though this is only an approximation. The prediction 

errors resulting from envelope and pitch prediction can 

be seen in figure 3.2-32. The second prediction error is 

nearly Gaussian (figure 3.2-34) and looks like white 

noise during steady speech segments. 

The two analysis (and synthesis) fi 1 ters can be put 

schematically in cascade forms. One then is tempted to 

provide a composite response from 

1 1 
= 

A(Z) B(Z) 

= 

= 

P -k 
1- E a Z -

k=l k 

1 

C(Z) 

1 

P -k 
l- E a k

Z 
k=l 

1 

3 
~ b Z-M+2-k 
Lo k ' 

k=l-

1 
---------

3 
1- E b z-M+2-k 

k 
k=l 

P 
+ E 

k=l 

3 -k-M+2-j 
E akbjZ 

j=l 

3.2-137 

3.2-137 

and use the corresponding filter l/C(Z) and C(Z) for the 

synthesiS and analysis parts the algorithms 

respectively. The above procedure would be quite wrong 

si nce the predictor fi 1 ters are not time-i nvariant and 

the Z-transiorms given above are only short-time 

approximations to the infinite-time transforms for whIch 
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they are defined. The approximations hold well when the 

impulse response of the filter lasts only over time 

intervals during which the filter response does not 

change appreciably. This is true usually for the short

time predictor but not for the pitch predictor. The 

impulse response of the pitch predictor typically lasts 

over several pitch periods for voiced sounds. 

3.2.3.6 Noise Feedback coding-Noise shaping 

In the previous sections it was shown how a DPCM 

coder can be designed to encode a speech signal in an 

optimal way. The criterion of optimality was the SNR 

based on a m.s.e. criterion. A generalized DPCM coder 

will now be presented. This coder results in a higher 

m.s.e. than the equivalent DPCM coder, but the perceived 

quality is better due to noise shapj.ng and resulting 

noise masking. 

From equations 3.2-30 and 3.2-48 the prediction error 

in DPCM is 

A 

d(n) = X(n) - X(n) = X(n) 

= X(n) -
p 
E'a X(n-j) 

j =1 j 

P 
- r. a Y(n-j) 
j=l j 

p 
+ E ajq(n- j ) 

j=1 
3.2-138 

where the {a., j =1,2 ... P} are the coefficients of an all 

pole filter H(z) defined by 

H (2) = 
1 1 1 

== == 
A(Z) I-P(Z) P 

1- r. 
j=l 

3.2-139 

With 11(2) the corresponding inverse filter and P(2) the 

prediction filter. 
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The quantizer input (prediction error d(n» can be 

split into two parts, d"'" (n) which is the prediction error 

with zero quantization noise (eq. 3.2-50) and the 

quantization error feedback term QEF(n) (eq. 3.2-49). 

Schernatically, this is shown in figure 3.2-34a.; As we 

have seen from eq. 3.2-36, the reconstruction error r(n) 

is identical to the quantizer error q(n) 

r(n) = q (n); R(Z) = Q(Z) 3.2-140 

where Rand Q are the Z-transforms of rand q 

respectively. If the quantizer in DPCM is taken out and 

placed after the prediction loop the scheme in figure 

3.2-34b is obtained. For this scheme it is easy to show 

using difference equations that 

R(Z) = Q(Z) . 1 3.2-141 
1-P(Z) 

Figure 3.2-34c shows a generalized predictive coder with 

a error feedback filter F(Z). This scheme is called noise 

feedback coding NFC. (35, 36). For this system: 

R(Z) = Q(Z) 
1-F(Z) 

3.2-1112 
l-P(Z) 

(21,35). 

Clearly DPCN and D'""PCN are special cases of 3.2-142 with 

F(Z) = P(Z) and F(Z) = 0 respectively. Assuming a white 

quantizer error spectrum the reconstruction error 

spectrum for the three coders is as shown in fig. 3.2-35 

(dashed lines) for a particular speech segment, having 

the all pole spectrum shown in solid lines. Under the 

assumptions of whj te quanti zati on error the spectrum of 

the reconstruction nojse is determined only by the factor 

(l-F(Z»)/(l-P(Z») as shown in 3.2-142. Let the squared 

magnitude of thIs factor at a frequency f be M(f) then 



249 

(T is the sampling interval) 3.2-143 

equation 3.2-143 implies (35) 

fs 
1 r logM(f)df = 0 3.2-144 

f s 0 

i. e. the average value of the log power spectrum of the 

reconstruction noise is determined solely by the 

quantizer and is not altered by the filter F or the 

predictor P. The filter F can be chosen to minimize an 

error measure in which the noise is weighted according to 

some subjectively meaningful criterion (67). A fairly 

general approach is to minimize the noise power, weighted 

at each frequency by a function W(f). 

From equations 3.2-142 and 3.2-143 the reconstruction 

power spectral density is given by 

S (f) = S (f)M(f) 3.2-145a 
r q 

and assuming white quantizer noise 

S (f) = 0"' 2 M(f) 3.2-145b 
r q 

one could then aim to minimize 

f f 
s s 

E r W(f) 2 2 r W(f)}{(f) = rr M(f)=O"' 3.2-146 
q q 

0 0 

under the constraint of eq. 3.2-144. The mInimum Is 

achieved for (67, 35) 
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log S (f) 
r 

2 1 
= -logW(f)+log~q +f- logW(f)df 

or 

or 

logM(f) = -logW(f)+_~ 
f s 

f s 
J 

o 

s o 

logW(f)df 

2 2 1 logI1-F(f)1 =logI1-P(f)1 -logW(f)+ __ 
fs 

3.2-147a 

3.2-147b 

logW(f)df 

o 

3.2-147c 

therefore if the perceptually derived function W(f) is 

known the filter F can be calculated from 3.2-147c since 

its psd is known (by transforming 11-F(f)12 to an 

autocorrelation function and obtaining filter 

coefficients through the autocorrelation equation 3.2-

60). Such a procedure was undertaken in (67). 

Alternatively a choice for F(Z) can be made to obtain 

a noise spectum intermediate to that of DPCM and D'*PCM by 

letting 

3.2-148 

a is the noise factor. 

For a=1 F(Z)=P(Z) whereas for a=O, F=O. Intermediate 

values of a serve to increase the bandwidths of the zeros 

of I-F with respect to the bandwidths of the zeros of 1-

P. This approach results j,n an error spectrum such as the 

one shown in figure 3.2-35c. A filter such as the on" 

given in 3.2-).48 improves the perceptual quality of 
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speech provided the original noise level is adequately 

low as in figure 3.2-35a. A suitable value for a is 

around 0.7 [36). Such a coder as described above, 

together with a pitch predictor and appropriate 

quantization procedures for the resulting residual, forms 

the basis of APe (adaptive predictive coding) [36). 

It is difficult to explain the effects of noise 

shaping from observations on Noise Feedback coders since 

the quantizer itself introduces some shaping at low bit 

rates: The quantizer does not introduce white noise into 

the signal. The noise is correlated with the input 

signal. Effective procedures to achieve a white quantizer 

error spectrum will be described under the section on 

delayed decision cOding. 

In order to assess the effects of noise shaping, 

sui tably shaped noise can be introduced into the speech 

signal not through coding but through direct noise 

injection. Such a study was undertaken by McDermott et a1 

[68). In the above study the power spectral densi ty (psd) 

of the noise was related to the psd of the speech by the 

following expression: 

3.2-149 

where P.·, (w) is the psd of the nOise, p" (w) the psd of the 

speech, F(w) a fixed weighting function and G a constant 

specifying the SNR of the output signal. b is a bJnary 

variable taking the values 0 and 1. With b=O all 

frequencies have equal weight. With b=1 the noise 

spectrum is weighted according to the width of the 

Articulation index bands (or, equivalently, according to 

the width of the> cri tIeal. bands). G is a1 so a bi nary 

variable such that the resul ti ng SNR i.s ei ther 6 or 12 

dB. a take:3 the> values 0.0, 0.25, 0.5, 1.0. As the value 

increases from 0 to l, the shape of the spectrum changes 

from a flat distribution to one that corresponds to the 
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speech spectrum. Two speakers were used, one male and one 

female. For the 6 dB condi tion perceptual results 

(studied through multidimentional procedures) revealed 

that as the shaping increases, the effect of noise is the 

same for male and female speech: For low correspondence 

in the spectra the noise is perceived aG a hiss, an 

additive distortion in the background. As the 

correspondence increases, the distortion manifests itself 

as a distortion in the speech signal going through the 

stages of rumble, hoarse and finally burble as the 

correspondence between speech and noise spectrums becomes 

complete. 

This series of events are easy to explain through our 

knowledge about the auditory system: When the noise is 

white, regions of noise, particularly at high frequencies 

but also in interformant regions are not masked at all by 

the speech signal and therefore sound as if the speech 

signal was not there, i.e. as a 

the- -formant SNR is high enough 

hissing sound. 

such that no 

Moreover, 

effective 

modulation of the formant harmonics takes place to create 

the sensation of roughness. In other words the components 

of noise falling through the critical band (CB) centered 

around a particular formant are not high enough to caUse 

roughness. As the noise power is increased in the 

formants and decreased in the valleys the speech signal 

effectively masks th'e noise, which loses its perceptual 

attributes completely and cannot be perceived as a sound 

on its own. This is the crossover situation which the ear 

perceives as rumble. Meanwhile the power of the noise in 

the formants is increased. At some stage, sufficient 

noise power is concentrated around the formant harmonics 

to cause the sensation of roughness. This concentration 

of noise power is essential for the ·perception of the 

roughness since only the components of the noise fal.ling 

wi thi n a CB around the particular formant wi 11 ha ve a 

contribution to the sensation. Finally, as the shaping is 

increased further, the effective bandwidth of the noise 
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around the formants is so narrow so as to allow only slow 

fluctuations of the formant harmonics which are no longer 

percei ved as roughness but are sufficiently slow to be 

perceived as loudness fluctuations of the harmonics 

themse 1 ves. The loudness fluctuations of the formant 

harmonics cause fluctuations in the apparent position of 

the formants which results in the burbling sensation. Our 

knowledge about the auditory system has therefore enabled 

US to describe at least qualitatively - the series of 

events occurring through noise shaping. It should now be 

apparent that models of distortion calculation based upon 

the estimation of the loudness of noise (69) would be 

totally inadequate to describe the multitude of events 

descri bed above in their entirety. Such "unidimensional" 

approaches can be tuned though to operate around a 

particular noise shaping degree or "factor" of interest. 

Such an approach will produce a locally optimum 

distortion measure [691, tuned to a particular coding 

technique, noiseshaping range and bit rate. This measure 

will be grossly suboptimal as one deviates from the 

conditions it was optimized for. 

3.2.3.7 Delayed Declslon Godlng 

In the previous sections we have seen that the use of 

encoding delay in' estimating predictor and adaptive 

quantizer parameters resulted in improved performance 

over instantaneous coders. Further gains can be achieved 

if the prediction residual obtained from structures 

mentioned above is not quantized instantaneously. In 

conventional quantizers the output value is based on an 

instantaneous decision based only on the current input 

value (although, through prediction, the current input 

value may contain information about "adjacent" samples). 

Such coding schemes are called single-path coders. In 

multipath search coding schemes on the other hand an 

input sequence X(n) or vector X is compared with a 
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collection of possible output sequences Y, .. , (n) or possible 

output vectors Y,.,. 

The optimum output sequence is the nearest neighbour 

sequence subject to some predetermined distortion 

criterion, for example a mean square error: 

Ek = <X-Y )T(X_y ) 
k k 3.2-150 

figure 3.2-36 

Delayed decision coders not only provide a closer 

approximation to the rate distortion bound, they also 

enable the use of fractional bit rates/sample, in 

particular bit rates of less than 1 bit/sample. In 

addition they sometimes provide a stabilizing action with 

otherwise unstable coder configurations <such as 

predictive systems with coarse quantizers). 

There are three general classes of delayed decision 

coders: Code book Coders, Tree Coders and Trellis Coders. 

The reconstruction sequences Y,., for populating code books 

trees and trellises can be obtained through 

deterministic, stochastic or iterative means. These can 

be either stored at both encoder and decoder or generated 

from appropriate parameters determined at the encoder and 

transmitted to the decoder (70]. 

A codebook coder is identical to the vector quantizer 

described earlier for the quantlzation of side 

information. The codewords y" can be determined as before 

through an iterative procedure [71, 72) or selected 

stochastl.cally from the output of a random process [73, 

74). A more deterministic approach which lends j teelf to 

fast implementation is the use of algebraic codes 

borrowed from blnary error-correction theory (75, 76). 
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In tree and trellis coding the output sequences 

cannot be chosen independently but possess a particular 

structure. Figure 3.2-37 shows sequences of length L 

arranged in the forms of a tree or trellis of depth L. 

Its branches are populated with reconstruction values. 

Different sequences therefore have a number of common 

elements. Each sequence forms a path through the tree or 

trellis. The information send to the receiver describes 

how to trace through the tree or trellis. This 

information is sometimes called the path map. As before, 

deterministic or stochastic means can be used to populate 

the tree or trellis. Examples of tree encoding can be 

found in [36, 77, 781. 

Delayed decision coding has been applied very 

Such a successfully in coders employing an APC structure. 

generai approach is shown in figure 3.2-77. An innovation 

sequence y, .. , appropriately scaled by an adapti ve gai n term 

0' is fed through the synthesis fil ters l-P~, and l-Ps to 
~ 

pro-duce 

of the 

an approximation sequence 

gain term 0' depends upon 

S,·.. The determination 

the particular method 

used to represent the sequence Y.,. The predictor filters 

Pd and p$ refer to pitch and envelope prediction 

respectively. Some schemes (79, 80, 811 can operate 

successfully without pitch prediction. The approximation 
~ 

sequence S" is compared to the corresponding original 

weighted speech sequence S,·,.·' The comparison involves a 

m. s. e. cri terl.on where the weighting function is 

related to the noise shaping filters used in APC. 

various means which depend upon the particular 

used, 

usually 

Through 

method 

an appropriate sequence V" is selected which 

resul ts in a "minimum" ,,,eIghted m. s. e. Information to 

completely define the selected sequence is then sent to 

the receiver together with the side information related 

to the predictIon and the gain 0'. 

An interesting subclass of the above set of delayed 

decisi on coders whose structure has just been descri bed 
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is Multipulse - LPC [79J. For this coder the information 

about the selected inovations sequence is represented by 

the amplitudes and locations of nonzero samples in the 

sequence. Such non-zero samples usually represent a small 

fraction of the overall sequence. The "optimum" 

amplitudes and locations are determined iteratively in a 

succession of stages, each of which determines the 

amplitude and location of one pulse in the innovation 

sequence. The· optimum amplitude is obtained by setting 

the derivative of the weighted m. s. e. measure mentioned 

above with respect to the unknown ampl i tude to zero. 

The error measure is then a function only of the pulse 

location. The optimum location is then found by computing 

the m.s.e. for all possible locations and by locating its 

minimum. Additional pulses reduce this minimum further 

and are defined as above. Details of the multipulse 

algorithm can be found in appendix F. A similar procedure 

is that of regular-pulse excitation [81J. The above 

procedures automatically produce quasi-periodic 

innovations sequences for voiced speech input without the 

need of a pitch predictor (although pitch predictors have 

also been applied [82-84, 81J and produce random 

exci tations during unvoiced speech. Such coders provide 

useful systems around 9.6kbs/sec but at lower bit rates 

stochastically determined innovations sequences generally 

yield better qual i ty speech as in the CELP structures 

[74J . 

3.2.3.8 Frequency domain Coders 

The redundancy removal and corresponding prediction 

gain that resul ts form (A) DPCM and APC structures can 

also be realized in the frequency domain. The category of 

coder algorithms which have been relatively successful in 

achieving this goal is the class of frequency domain 

coders. In this class of coders the speech signal is 

divided 

(usually) 

into a set 

separately 

of frequency 

encoded. In 

components 

this way 

which are 

different 



257 

frequency bands can be preferentially encoded according 

to perceptual criteria for each band, and quantizing 

noise can be contained within bands. Two basic types of 

frequency domain coders have been proposed and 

implemented, namely subband coders and transform coders. 

In the first case the speech spectrum is partitioned into 

a set of, typically, 8 contiguous bands by means of a 

filterbank analysis. In the second case a block by block 

transform analysis is used to decompose the signal into 

typically 128 frequency components. Both techniques, in 

effect, attempt to perform some type of short-time 

spectral analysis of the input signal although, clearly, 

the spectral resolution in the two methods is different. 

3.2.3.8a Subband Coding 

Frequency domain coders operate by removing the 

redundancy in the input signal in the frequency domain 

(85). The advantage of frequency domain over time domain 

redundancy removal is that the number of bits used to 

encode each band can be variable which can provide any 

desired form of noise shaping, something that can be 

realised to some extent by using noise feedback in the 

time domain prediction. 

In a subband coder the speech signal is divided into 

a number of 2 to 02 subbands by a bank of bandpass 

filters. Prior to encoding, each band is in effect low 

pass translated to zero frequency by a modulation process 

equivalent to single-side band amplitude modulation. [86, 

87, 88). It is then sampled at its Nyquist rate (twice 

the width of the band) and then encoded using one of any 

of the speech coders that were' developed in the past to 

encode the full band signal. 

This enables a coding for each band that conforms to 

perceptual criteria specific to that band. On 

reconstruction, the subband signals are decoded and 
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modulated back to their original positions. Finally they 

are summed to give a "close" replica of the original 

signal. 

Figure 3.2-39 illustrates a basic block diagram of 

the subband coder. The coder consists of a bank of M 

bandpass filters each followed by its own encoder and a 

mu 1 t i pI exer. The rece i ver performs the inverse task of 

demultiplexing, decoding and bandpass filtering. Finally 

the subband signals are added to produce the full band 

band approximation to the input signal. Since individual 

time waveforms are "closely" approximated at each stage 

the subband coder is a waveform preserving coder. This is 

different from the channel vocoder where the object of 

the filter bank is to preserve the short time energy 

pattern in the frequency domain. 

There are basically two kinds of fil ter bank 

responces which can be used 

splitting. Filters that overlap 

to perform the subband 

or filters that do not as 

shown in figures 3.2-40 a & b. The filters in figure 3.2-

40b require extremely fast roll-offs and hence increased 

delay and complexity but offer the possibility of reduced 

sampling rates. The perceptual penalty is a reverberant 

quality in the output speech due to the interband 

frequency 

roll-offs 

made less 

gaps) by 

(89) • 

gaps which can be made smaller by using faster 

for the fl1 ters. 

at 

The perceptual effect 

lower bit rates (hence 

can be 

wider noticeable 

adaptively tracking the formant frequencies 

The subband width can be different for the different 

bands as in figure 3.2-40b although this implies a higher 

complexi ty. The advantage of unequal. bands 1 i cs in the 

different perceptual importance of the different 

frequency regions. With this design the low frequencies 

can be given mare importance than the higher bands. This 

is desirable from the perceptual pOint of view as shown 

I 

I 

I 
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by the articulation index function and other perceptual 

measures. One example of dividing narrow band speech in 

the 200 to 3200 Hz frequency range into 4 bands using the 

Articulation index as the criterion is as follows: 

Subband No. Frequency range (Hz) 

1 200 - 700 
2 700 - 1300 
3 1300 - 2020 
4 2020 - 3200 

Each band contributes approximately 20% to the A. I. 

corresponding to a word intelligibility of 93% [86). 

Smaller width bands implies that the non-f1attness of 

the spectrum in that particular frequency region can be 

better exploited. Provided the quantization of the 

parameters is carefully done in each case, the only 

difference in performance when dividing a subband into a 

number of smaller bands is given by the ratio of the mean 

signal variance in that band to the geometriC mean of the 

variances of the smaller bands (see section on subband 

gain) . 

For the lower bit rates small gaps can be permitted 

between bands over and above those dictated by aliasi ng 

considerations to conserve bandwidth and bit rate as 

shown in figure 3.2-40b, although qual i ty suffers as a 

resul.t. 

In recent years an important filter bank design (the 

QMF) has the characteristic of equal subband widths. 

This, together with adaptive bit allocation based on the 

speech power in each band made the use of higher 

complexi ty unequal division unnecessary. The reason for 

this is that the speech power is hj.gher where the speech 

signal is more Important: The lower frequencies are 

important for the pitch information for voiced sounds and 

this region has also high power. The other important 
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characteristic of speech namely the speech formants are 

important to intelligibility and they are, by definition, 

higher in power than the speech in surrounding 

frequencies. Thus thousands of years of adaptation of the 

speech production and speech perception mechanisms has 

resulted in a speech signal with optimum characteristics 

for detection in noise. Another advantage of QMF is that 

no gaps exist between the bands thus eliminating another 

farm of subband specific distortion. 

3.2.3.8a1 Integer Band filter banks 

An important feature in figure 3.2-41 is that 
-
bandpass cutoffs are chosen such that each band can be 

sampled at twice the corresponding bandwidth rather than 

at twice the highest frequency of the full band signal. 

This is possible in the special situation of integer band 

sampling [90J where the lower cutoff frequency is an 

integral multiple of the bandwidth. This approach is 

particularly attractive for hardware implementation since 

it eliminates the need for modulators. 

Figure 3.2-42 shows the sequence of integer band 

implementation steps. The speech band is partitioned into 

N subbands by bandpass filters BF1 to BPn. The output of 

each filter in the transmitter is resampled at a rate of 

2fi where fi is the ·width of the subband and i refers to 

the ith subband. The decimation implies a repetition of 

the spectrum as shown in figure 3.2-42b. One of the 

repetitions will be in the base band so that the 

decimation process automatically translates the lower 

frequency edge of the band pass signal to zero frequency. 

At the receiver, the interpolator fills in zero samples 

between each pair of incoming lowpass samples so that the 

sampling rates of the decoder outputs are increased to 

the original sampling rate of the full band signal. 

Through this operation a harmonic of the signal is 

bandpass translated to the appropriate initial bandpass 
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region. Prior to additl.on the signals are again 

bandpassed through identical filters BPl to BPn which act 

a interpolating filters removing the unwanted images 

of each subband. The explicit modulation process 

mentioned above is therefore replaced by the discrete 

time processes of decimation and interpolation. It is 

assumed that the interpolation process includes an 

amplitude scaling factor. This maintains the original 

value of input variance in spite of the zero valued 

amplitudes introduced in the interpolaiton process. 

It can be shown that even-numbered bands get inverted 

in the processes. This leads to a shuffling of the bands 

at the end of a tree structured QMF to be seen later. 

The integer band constraint is assumed for minimizing 

subband sampl i ng frequencies and therefore the overall 

bit rate. 

3.2.3.8a2 Quadrature Mirror Filters (QMF) 

VIe have seen that interband gaps and the increased 

complexi ty are undesired effects of nonoverlapping 

filters. These can be aleviated by using the other type 

of fi 1 ters that result in·-· an overlapping subband 

division. Figure 3.2-40a suggests that aliasing 

effects can occur. This problem is diminished when one 

uses QMF (figure 3.2-43b [88, 91]. This figure shows the 

division of a full band signal into two of equal width by 

using a constrained pair of lowpass and highpass filters. 

By repeated subdivisions one can realize a filter bank 

wi th the number of bands, l1 gi ven by a 

Other combinations can also be realized 

branches of different depth. 

power of 

by using 

two. 

tree 

The way that the aliasing problem is solved is 

explained below: The fir,st ,stage of the tree will be 
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considered since at each branch the operations are 

identical. 

Each of the subband signals X,(n) and X,,(n) is 

resampled by a factor 2: 1. The reduct-ion is necessary to 

maintain a minimal overall bit rate in encoding the 

si"gnals. This reduction of sampling rate (resampling) is 

the one that introduces the aliasing terms because of the 

finite filter roll off. With consideration of figure 

(3.2-43b) the signal energy in the frequency range above 

the cutoff frequency of the lowpass fi Iter (which 

coincides with half the new sampling frequency) will be 

folded down into the low frequency band after resampling. 

This will appear as aliasing distortion in the signal, in 

the frequency range covered by the hatched region in the 

figure. Similarly energy folded up into the region of the 

highpass filter will appear as aliasing in this band. The 

steeper the cut off the smaller will be the hatched areas 

and so will be the aliasing. This was how the aliasing 

problem was tackled before the QMFs. To bring the 

sampling rate back to its original value after coding and 

prior to addition of the subband outputs, zero-valued 

samples are inserted between the samples. This creates a 

periodic repetition of the spectrum in the frequency 

domain which is then fj 1 teredout by the lowpass fi 1 ter 

h,(n) in the receiver. This filter interpolates the 

samples in the time domain and attainuates the images in 

the frequency domai n. In the same way, the signal in the 

upper band is repeated in frequency and is repetitions 

attainuated by the filter in that band. If ordinary 

filters were used the restoration of the full band signal 

would depend on the degree that the interpolating filters 

approximated ideal lowpass and highpass signals. For 

signals processed through the QMFs though, any remaj.ning 

components of the images are cancelled out by the 

aliasing terms introduced in the analysis. The 

cancelaticm, which is exact in the absence of coding 

occurs after the addition of the subband Signals. 
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Alias1ng terms of the quant1zat10n noise are of course 

not cancelled out since no such terms were present at the 

time of splitting into the subbands. 

The types of filters that are designed around the QM 

idea are usually FIR designs which are symmetrical for 

the lower band and antisyrnmetrical for the higher band 

1. e. 

3.2-151 

hI (n) = hI (N-1-n) n=O,l, .. . N/2-1 3.2-152 

h (n)=-h (N-1-n) n=O,l, ... . N/2-1 
u u 3.2-153 

The filters must also satisfy the condition: 

n=O,l, .. . N-1 3.2-154 

which describes the mirror image relationship of the 

filters as shown in figure 3.2-44. From the above it is 

obvious that only (N)/2 filter coefficients need be 

stored for both filters. The combined filter response 

must also exhibit an all pass characteristic i.e. 

3.2-155 

where Hl (W) and Hu(W)are the fourier transforms of hI (n) 

and hu(n) respectively. The all pass characteristic 

cannot be met exactly but can be closely approximated for 

modest values of N. To obtain the filter coefficient an 

optimization program can be used, alternatively already 

tabulated values can be used [92]. An example of the 

tabulated designs 1s shown in table 3.2-T7. Figures 

3.2-44a and 3.2-44b show the frequency responses of the 

upper and lower band. characteristics and also the 

combined all pass characteristic of the filters. 
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Due to the relatively large delays of FIR filters at 

least one design of QNFs using IIR filters has been 

proposed. This suffers from the effects of group delay 

distortions and special procedures have to be employed to 

compensate for this [105J. 

The special relationships amongst the QN filter 

coefficients leads to fast implementation algorithms [88, 

90J: From equation 3.2-154 the coefficients used for the 

upper and lower subband filters are identical <except for 

signs of alternate coefficients). This property can be 

used to reduce by factor of 

With regard to figure 3.2-45, 

two the computation load. 

partial sums of alternate 

input samples can be formed, and then added or subtracted 

together to give the output sample for the lower or upper 

band respectively. 

The above impl.y a block structure to the algorithm as 

shown in figure 3.2-46. Here odd numbered samples are 

weighted and accumulated into one buffer and even samples 

into another. Note that each shift to 

block operates at half the original 

are accumulated 

produce 

sampling 

a new 

rate. The resul.ts from the two blocks are 

processed through the DFT butterfly to produce the upper 

and lower band samples. A similar structure can be 

deri ved for the receiver as shown in figure 3.2-47. The 

subband samples are·· first processed through the DFT 

butterfly and then channelled to the two separate 

accumulators to produce samples at the initial sampling 

rate. An even more efficient approach for implementing 

QMFs is to use a parallel structure [93J. This is shown 

to compare favourably with the tree structure described 

above and should be the choice for real time 

implementation if the extra amount of execution time 

saved can be used for another part of the algorithm. 
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Finally a word should be said about the 

resulting delay though the filters and the effect of band 

inversion both for the case of the tree structured QMF. 

3.2.3.8a3 Delay 

Consider the example shown in figure 3.2-48. Assume 

that the input signal is sampled at 8Hz, giving samples 

spaced apart at 1/8 msec each. This is divided at the 

final stage of the tree into 8 bands of which only the 

upper branches are shown. Further, assume that each 

filter has 32 taps. Since the filters are FIR 

designs they introduce a constant delay of 31/2 samples 

at the input sampling rate. Since the signals are also 

decimated the sample spacings at each stage are 1/8 msec 

at A, 1/4 meec at B, 1/2 meec at C and 1 msec at D. 

Therefore: 

Signal B is delayed by 31/2 samples, spaced at 118 msec 
w.r.t.A 

Signal C is delayed by 31/2 samples, spaced at 114 meec 
w.r.t. B 

Signal D is delayed by 31/2 samples, spaced at 112 msec 
w.r.t. C 

and the total delay between A and D is given by: 

(31/2H(1/8 + 1/4 +. 112) ~ (31/2H(7/8) meec ~ 217/16 

msec. 

3.2.3.8a4 Frequenoy InversjoD 

Consider again, the splitting of the input signal 

into eight bands as shown in figure 3.2-49, from left to 

right. At each stage, the lower bands remain unaffected 

but the spectrum of the upper bands is inverted in 

frequency. In figure 3.2-49, this is followed through the 

3 stages and the final position of the bands due to the 

successive inversions are shown. 
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3.2.3.8a5 Transmission rate. SNR and gain oyer peM 

The transmission rate in SBC over and above that 

needed for any side information is equal to the sum of 

the bit rates needed to code the subbands. 

In the full band case, assuming a full band width of 

W, the sampling rate is equal to 

3.2.156 

and if R bits/sample are used, the bit rate is equal to 

3.2-157 

In the .subband case, assuming N equal width bands the 

sampling frequency is 

each subband sample can be assumed to e coded wi th R", 

bits/sample, therefore the bit rate is 

-.~.,.~--

N 
1 

N 
1 

N 
B = L f skRk= L 2WRk= L R

k
.2W sub ~ 

k=l N k=l N k=l 
3.2-158a 

or 

1 
N 

Bsub = 2WR if R = L R 
N k=l k 3.2-158b 

Therefore a subband coder with equal. width contiguous 

non-overlapping bands of an average bit rate/subband 

sample of 

N 
1 R = L Rk 
N k=l 

3.2-158c 



267 

has the same overall bit rate as the equivalent full band 

coder coded with R bits/sample, with R given by 3.2-158c. 

Using the above assumptions of nonoverlapping 

contiuous equal width bands, the variances of the subband 

inputs can simply be added to obtain the variance of the 

full band signal. similarly the variances of subband 

reconstruction errors can be added together to gi ve the 

variance of the signal reconstruction error. 

Let be the 

noise) in band k and 

0' 2 = 
q 

N 
1: 

k=l 

2 
O'qk 

quantization noise 

be the total reconstruction noise. 

(reconstru ct i on 

3.2-159 

Assuming PCM (or (A) DPCM) coding for the bands 

(although the following formula has a more general 

application through rate distortion theory): 

2 2 
O'qk =€*k 2 3.2-160 

which is the 6 dB/bit rule. 

€""",." related to quantizer performance (and prediction 

gain in the case of (A) DPCM) and wi 11 be assumed to be 

the same for each band. 0',"".,';' is the signal variance in 

band K. We aim to minimize the overall noise power by an 

appropriate bit allocation (Initially the only constraint 

is that the overall bit rate is constant). Using Lagrange 

multipliers, the solution to the minimization problem is 

the solution of 



a (1)'2 _ A(R _ 1 

aR q N 
k 

N 
1: 

k=1 
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with I)'qZ given by 3.2-159 and 3.2-160., 

3.2-161 

It can easily be shown that the solution to the above 

(constrained) minimization problem is given by 

= R + 

2 
I)'xk 

N 2 
[ TTI)' 1 ] 

1=1x 

substituting back into 3.2-160 gives 

= € .. 
2 2-2R 

N 
[ TT I)' 2] 

1=1 xl 

3.2-161 

3.2-163 

Therefore the m.s.e. minimization above results in a flat 

noise spectrum. Equation 3.2-159 can now be written as 

2 
I)'qSBC 

= N 2 -2R 
". 2 

N 
[ TT I)' 2) 

1=1 xl 
3.2-164 

The noise power from a conventional PCN coder at the same 

overall bit rate (neglecting any side information rate) 

is 

2 
I)'qPCN 3.2-165 

where 1)',,";'; is the total signal variance which can be 

expressod n terms of the subband varianco::'3 as 

I)' 
x 

2 
N 
1: 

k=1 

2 
I)'xk 3.2-166 
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therefore equation 3.2-165 can be written as 

2 2 -2R 
O'qPC:M: "E*2 

N 
l: 

k"1 

2 
O'xk 

From 3.2-167 and 3.2-164 the SB gain is given by 

Gain " 

1 N 
l: 

N k=1 
0' xk 

N 
[ TT 

k=1 

2 
0' xk J 

2 

3.2-167 

3.2-168 

i.e. by the ratio of the arithmetic to the geometric mean 

of the subband variances and 

SNR(SBC)dB = SNR(PCM)dB+10log10(gain) dB 3.2-169 

The minimum value of the subband gain is one when the 

input spectrum of the full band signal is flat. For a 

non-flat spectrum gains greater than one can be realized 

by using the bit allocation formula of 3.2-162. The 

subband gain is analogous to the prediction gain in 

(A)DPCM in that they both exploit the non uniform nature 

of the input spectrum. 

The full subband gain will only be realised if each 

and every R", in 3.2-162 is positive, since negative R,"" is 

meaningless. This only depends on R. For a sufficiently 

high value of RaIl R", will be positive and the full 

subband gain can be realIzed. As R is reduced some of the 

R"" values will becom'3 negative thus reducIng the subband 

gain. This also holds in the use of (A)DPCM coding [78J 

and is a corrolary of Rate Distortion theory [94J. 

Various modifications can be made to 3.2-162 to obtain 

only positive (integer) solutions for R,,,, (95). These and 
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also the applications of noise shaping are discussed in 

Appendix C. 

3.2.3.8a6 Speech Codjng in Subbands 

We will now attempt to follow the historical 

development of practical. realizations of SEC algorithms 

and provide comparisons with full band coders. 

In [861 the explicit method of modulation is 

described. This enables a subdivision of the signal into 

bands according to the A. I. Integer band sampling avoids 

the use of modulators but the splitting of the bands 

conforms to the A.I. only approximately (within a factor 

of 2). The subband signals were coded using APCM with the 

one word memory quantizer of JFC. Two four band designs 

were developed. In the first design, that for the 16 Kb/s 

coder, 125 tap overlapping FIR filters were used covering 

the frequency range from 200-3100 Hz. Three bi t coders 

were used for the two lower bands and two bit coders for 

the upper bands. This coder was found to give a 

performance equivalent to a 22 Kb/s ADPCM coder employing 

a one tap fixed predictor and Jayant's quantizer. For the 

9.6 Kb/s coder, nonoverlapping filters were used and 

small gaps were permitted between the bands. 175-tap FIR 

filters were used to reduce transition bands and preserve 

bandwidth. The bit"distribution was now 3,2,2,2. This 

coder was found to be equivalent to 18 kb/s ADM. 

Similar results were presented in a later paper (87J. 

The relationship between SNR per band and subjective 

preference was established (figure 3.2-50) for four band 

designs for the low bit rates (7.2-9.6 kb/s) and five 

band designs for the higher bit rates.<16 kb/s). The band 

divisions are shown on top of figure (3.2-50). Compar8 

this figure with figure 3.2-51 showing the long tnrm 

spectrum of speech. A relationship between prefered 

SNR/bad and speech pnwer/band can be seen. The exact 
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relationship is obscured because of the averaging in 3.2-

51 and the fixed allocation in 3.2-50. 

The measured frequency response of the coders is 

shown in fig. 3.2-52a,b. Subjective comparisons with 

other coders revealed that the 16 kb/s SBC was found to 

be comparable to 26.5 kb/s ADPCM (fixed prediction). The 

subjective results at the other bit rates were similar 

to those of ref. [B6) 

In an attempt to lower the bit rate to 4.B kb/s, the 

centre frequency of the two upper bands of a four band 

scheme was allowed to vary in accordance with the vocal 

tract resonances F2 and F3. The locations of the 

resonances were found by zero crossing techniques applied 

to appropriate subbands of the signal (fig. 3.2-53). Note 

that this can be considered as the first attempt to a 

variable bit allocation. 

A general comparison of various time domain coders 

and SBC [96, 97) revealed that a four band SBC gave 

equi valent performance to an ADPCM coder wi th an Bth 

order adaptive predictor (with no noise shaping). 

In [91) the QNF designs-· were introduced and were 

later tabulated. [92) 

A summary of the developments above were presented in 

(B5) in the more general content of frequency domain 

COding. 

In [88) a full description of QMF was given as well 

as a polyphase structure for fast implementation. 

Considerations for real time implementations were made in 

above and in [98). 

Adaptive bit allocation based on the instantaneous 

power in each band was found to give improved results 
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(99] and simpl i fied algori thms were presented (95]. This 

necessi tates the transmission of side-information which 

resul ts in an increase of the total bit rate (although 

the performance is better than a SE coder with fixed bit 

allocation and at the same total bit ·rate) and gives rise 

to error protectIon implications in the case of 

transmission over realistic channels. It is interesting 

to note that in (99] in order to code the suband signals, 

an ADP CM coder employing an 8th order adaptive (sample to 

sample) predictor and fixed bit allocation out-performed 

a design using an adaptive bit allocation and APCM coding 

in the subjective tests. This was true although the 

scheme with the adaptive bit allocation gave a higher SNR 

than the APCM scheme. This was attributed to the band 

suppression resulting from the adaptive bit allocation 

which has a small objective effect by definition but 

significantly affects the perceived speech quality. 

Results from real-time implementation reported in 

(100] include combination of SPC and harmonic scaling, 

requiring some sort of pitch prediction. Another pitch 

prediction technique was used in (lOll. These techniques 

attempted to remove both short and long term redundancy 

from the speech signal. Since the two are quite separate, 

both lead to improved performance over SEC without pitch 

prediction. Daumer [102] compared several coders and 

found pitch predictive ADPCM to be comparable to SEC. 

Subband coding is also reported in [103] in an APC 

coder. A two band split-band scheme with two separate 

one-tap pitch predictors was found to perform better than 

the full band 3-tap pitch predictive system. 

In [104] a more detailed study of adaptive bit 

allocation in time and frequency 

an APC system. This used three 

order predictor in each subband. 

domain is presented for 

subbands, and a fourth 

The 

energy concentration of the residual 

pi tch synchronous 

was exploited by 
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dividing the time domain signals into 4 subintervals and 

allocating different number of bits to each subinterval. 

The system provided speech quality subjectively 

equivalent to 7-bit log-PCM at 16 kb/s and 6 bit log-PCM 

at 9.6 kb/s. In the above hybrid techniques the 

performance of SBC can be significantly improved by 

supplementing it with the time domain operation of 

adaptive prediction. This removes any within-band 

redundancies that remain and therefore splits the burden 

of redundancy removal between the time domain and the 

frequency domain. 

Finally, with the application of Vector Quantization 

to speech, new coders were developed that combined VQ and 

SBC In one instance, [106J the subband samples were 

formed into blocks by synchronously taking one sample 

from each of the subbands. Note that this technique does 

not require any side information, and small SNR gains are 

reported over direct VQ. 

In another instance a more familiar design was used 

[107J of first normalising with the rms of the signal and 

then again each subband sample by its own rms. The 

overall rms was log encoded using 5 bits and the block of 

rms values/band was linearly vector quantized with 8 

bits. This vector was used in an adaptive codebook 

allocation where code books of different sizes were 

allocated to each band for codi ng the subband signals 

themselves according to the variances per band. They 

found that VQ was particularly effective in encoding the 

side information. A similar system 1s also described in 

[ 108J . 

3.2.3.8b Adaptive Transform Coding (ATC) 

In transform coding systems each block of speech 

samples is 

coefficients. 

transformed into 

These coefficients 

a set 

are 

of 

then 

transform 

quantized 
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independently and transmitted. An inverse transform is 

taken at the receiver to obtain the corresponding block 

of reconstructed speech samples. 

Assume that O'x"'" is the (short term) variance of N 

successive samples arranged in a vector X. This vector is 

linearly transformed using a unitary matrix A into a 

vector Y: 

Y = A.X 3.2-170 

with 

3.2-171 

The elements of Y are the transform coefficients of the 

coding scheme. Each of the elements is independently 

quantized thus leading to a vector Y. The vector of 

quantized transform coefficients is transmitted to the 

receiver and transformed using the inverse matrix A·_·'. 

'" -1'" X = A Y 3.2-172 

to obtain the reconstructed output samples forming X. For 

unitary matrices the reconstruction error variance is 

equal to the total quantization·error variance: 

2 ...... TA .... T ,.. 
0' q = (X-X) (X-X) = (Y-Y) (Y-Y) 3.2-173 

by virtue of 3.2-171. 

To minimize O'e,.···· an appropriate transform A must be 

chosen. In addition, the transform coefficients are 

quantized independently. The variancesof the transform 

coefficients differ in 

allocated for coefficient 

general. 

y,< of 

R,,, bits/sample 

variance O'y,.,"'. For 

average of R bits/sample overall i.e. 

are 

an 



R = 
1 N 

1: 
N k=l 
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an optimum bit assignment exists given by 

1 
= R + log2 

2 

2 
O'yk 

N 
[ TT 

1=1 

2 
0' yl ) 

3.2-174 

3.2-175 

as in the case of subband coding, although the transform 

coefficient Ye, replaces subband sample X.<. The transform 

gain over PCM is given by a similar expression as in the 

case of subband coding. 

The optimum transform is the KLT (Karhunen-Loeve 

transform). The KLT matrix has the eigen-vectors of the 

signal's X covariance matrix as 1 ts columns. It produces 

transform coefficients which are uncorrelated. 

Since speech is a nonstationary source, a different 

KLT matrix would have to be calculated for each vector x. 

This is impractical for a number of reasons and for 

realistic systems the discrete cosine transform (109) is 

usually used as the ~ecorrelating matrix A. This provides 

a performance very close to the KLT transform for speech 

signalS. An important advantage of the DCT as opposed to 

the KLT transform is that fast algorithms exist for the 

matrix transformations 3.2-170,3.2-172 [110, 111, 112). 

The transform is defined by 

Y(k) 
2C(k)N-l = ____ 1: 

N j=O 

and the inverse 

X(j)cos [~:~~:~~~l 
2N 

K=O, 1, ... N-l 

3.2-176a 



N-1 
X (j) = E C(k)Y(k)cos 

k=O 

with 

C(k) = 1/ J2 k=O 

C(k) = 1 k = 

For an adaptive bit 

prediction gain the (short 
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( ~2j~~~~~ j=O,1 ... N-1 
2N 

3.2-176b 

1,2 .... N-1 

assignment, hence 

term) variances vv~2 

a larger 

in (3.2-

175) need be known at both the transmitter and receiver. 

These are usually approximated by the squared values of 

the transform coefficients i.e. 

'" Y 2 
k 

3.2-177 

since in transform coding a very large number of these 

variances exist due to the large transform sizes <128-

256) usually employed a further approximation is used: 

The values of Y,<'"' are averaged over a number of 

neighbouring values and this average is used as the site 

information representing the ()'Yf',';' terms of the averaged 

receiver 

interpolated to produce 

the 

an 

,logari thmic 

estimate of 

averages are 

vv •. ,-'. These 

values, apart form 'being used to determine the bit 

allocation, are also used to normalize the Y", values 

prior to quantization, a structure resembling AQF. A 

block diagram of such a coder is shown in figure 3.2-54. 

The coder provides taIlor near toll quality speech 

around 16 kb/sec (113J but for lower bit rates, clicks, 

burbling distortion and blockend distortion (1. e. 

periodic clicks) become audible (114J. 

A refinement of ATC, using an LPC vocoder model for 

the site information brings the useful rate for this 

coder down to about 8 kb/sec. (85J Cepstral models for 
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the side information have also been used [100]. An 

interesting case arizes when the transform coefficients 

are grouped together into smaller block-sites and 

transformed again by smaller transform matrices to 

produce pseudo-subband time signals as in figure <3.2-

55). These pseudo-time signals can then be coded as time 

signals are, in subband coding. This scheme provides 

similar performance as SBC wi thout the additional 

complexity and delay resulting from the filterbank 

approach of SBC [115]. 

3 . 2 . 3 . 9 .. H.,J<y,-,b",r_i",d"-_",C",o,,,d .. i,,-n_g~; _-,Vuo.Li,"-c".,.e~-"a ... n...,d.L.._R=p",sui,-,d,,"1",1 a ....... l_-"E"'x"c .... i-'<t"'e""'-d 

Vocoders 

Waveform coders can provide communication quality 

speech down to around 9.6 kb/sec. On the other hand 

vocoders provide synthetic speech around 2.4 kb/sec, with 

quality saturating as the bit rate is increased beyond 

around 4.8 b/sec. This leaves a gap in the rage of 4.8-

9.6 kb/sec which is filled by hybrid coders sharing some 

features between waveform coders and vocoders. In perhaps 

all cases of hybrid coding certain band(s) of the signal 

are waveform coded whilst the rest of the bands are 

vocoder driven. They are generally divided into two 

categories the voice-excited vocoders (VEV) and the 

residual-excited linear prediction (RELP) vocoders. 

3.2.3.9a Voice Excited vocoders 

A VEV is illustrated in fig. 3.2-56. A base band range 

<typically 0-1000 Hz) is coded as with waveform coders. 

The excitation signal for the vocoder synthesizer is 

obtained form the base band by a process called spectrum

flattening. A spectrum flattener spreads out the spectrum 

of the base band signal by nonlinear distortion to cover 

the frequency band to be synthesized; then the frequency 

components generated by the nonlinear distortion are 

equalized to form a flat-spectrum excitation signal. The 
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equalization can be achieved "instantaneously" 

of a bank of contiguous band-pass filters to 

signal is applied followed by hard limiters 

by means 

which the 

(" infini te 

clippers"). Alternatively, fast automatic gain controls 

can be used. A spectrum flattener using clippers is shown 

in figure 3.2-57. Further, the output of the clippers can 

be made proportional to the corresponding spectral 

amplitude of the original speech signal. The second 

column of band-pass filters 

components introduced by 

excitation signal in VEV 

removes 

the 

has 

nonlinear distortion 

hard limi ters. The 

correct 

periodicity; for an aperiodic 

inherently the 

input the output of the 

spectrum-flattener is also 

input, the output will 

periodici ty. 

aperiodic and, for a periodic 

periodic with the same 

3.2.3.9b Residual Exclted Linear Prediction (RELP) 

coders 

The operations required for a flat excitation and 

performed through the spectral flatteners can be applied 

to the LPC residual instead of the speech signal. Such an 

approach is shown in figure 32-58. Note that this is an 

improvement to the LPC vocoder whereas the former system 

described offered an improvement-to the channel_ vocoder. 

The base band can be coded through any of the waveform 

coding approaches aI-ready mentioned, such as APC (117), 

SEC (118), ATC (119). 

The high frequency regeneration HFR can be performed 

through Rectification [120), spectral flattening as in 

the VEV described above, or through more complicated 

clipping characteristics (121), pitch-controlled spectral 

shifting [J19) or by spectral duplication (120), (116). 

The latter method above takes advantage of the fact 

that the baseband residual is already flat. In this 

regeneration method, the aim is to simply duplicate the 
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base band spectrum at higher frequencies in some fashion. 

This can be done in the frequency domain as in [l19J. In 

the time domain, similar results can be achieved. Assume 

that the signal bandwidth is 

i.e. W/B = L where 

L 

L 

times the base-band 

bandwidth is an integer. Two 

spectral folding different methods can be distinguished, 

and spectral translation, figures 3.2-59 band c 

respectively. The baseband is shown in 3.2-59 and L = 3. 

In figure 3.2-59 the spectrum in the second band (between 

Band 2B) is the mirror image (folded version) of the 

base band , while the spectrum in the third band is" a 

folded version of the spectrum in the second band, hence 

identical to the spectrum of the first band (baseband). 

In figure 3.2-59c the second and third bands have spectra 

identical to the baseband. The spectra are obtained by 

translating (and copying) the base band. 

The receivers for both cases are shown in figure 3.2-

60 (for folding) and 3.2-61 (translation) . In figure 3.2-

60 the introduction of L-l zeros after each sample 

creates the necessary images in a way identical to 

integer band filter banks in subband coding. In figure 

3.2-61 the multiplication of every other sample by -1 

inverts the spectrum. The filter H (Z) then passes the 

intervening bands (frequency inverted). The quality of 

the regenerated speech improves if the short term dc of 

the baseband signal 'is subtracted prior to regeneration. 

This can be added to the signal after the regeneration 

process [ 120, 116J. Also perturbed spectral folding 

improves the quality [ 116J . This is achieved by 

perturbing the non zero samples of the upsampled residual 

that are below a certain threshold (in order not to 

disturb the pitch structure). 

Note that the above frequency duplication only' 

assures that the spacj.ng of harmonics is maintained in 

the higher bands but not their positions, thus creating 

in a sense an inharmonic signal. The perceptual impact of 
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this is known to be small as was shown in the chapter on 

Hearing <under pitch perception). A way to avoid shifting 

the pitch harmonics is to apply pitch prediction [122J or 

shift the harmonics back to their original place through 

additional side information [119J. 

The coders under the mul tipulse-LPC structure [79J 

and Regular Pulse - LPC structure [81J can be thought to 

represent 

in RELP 

a generalized approach to 

wi th spectral foldi ng 

base band coding. 

<figure 3.2-60) 

As 

an 

upsampled signal is used to excite an LPC filter, for the 

case of Regular Pulse - LPC, and a perturbed upsampled 

signal [116J is used in multipulse LPC. The equivalent 

"baseband" signal though is not a lowpass version of the 

excitation as in RELP coders but a more complicated 

signal [8ll. 
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Figure 3.1-1 [1 J A cross-s('(tionaJ view of the vocal tract. (a) Sp«.'Ch articu_ 
lators: (1) vocal folds, (2) pharynx, (3) velum, (4) soft paJate, (5) hard 

. palate, (6) alveolar ridge, (7) teeth, (8) lips, (9) tongue tip, (10) blade, 
(11) dorsum, (12) root, (l3) mandible Uaw), (14) nasal cavity, (15) oral 
eavity, (16) no~trils, (17) trachea, (18) epioglottis. (b) Places of articu
lation (I) labial, (2) dental, (3) alveolar, (4) palatal, 5) velar, (6) uvular, 
(7) ph:U-yngeal, (8) glottal. 
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[2J E!l ~ ~ LLJ U;:;~::, lCJ 
F"collveS 

h ,e,-', f ,v, s,:, t, 3 
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u(bOOt) v (oul) ~(olll lI(tcthe') 

~~~~ 
• In IM above closs<kaloOn lel (hole), 101 (obey) ore cons,de.ed os d,phthongs 

cnd It/I(O'ew) cnd Id3/' jed ere considered cs STO~Mf"cellve Comblnehons 

CTa$5'/'<::lttOn 01 phonemu ;tccord,ng to the" manner and placa cl production, 

Figure 3.1-2 fRef. d, Ch. 2) 

n(no) 

~J-~ 

'--'p-,-, .• -., -'~I ,&?/ 
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, , 
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"I tellse ye); 
vow!'] front lax yes bit 

e vow<,] mid front tense yes bait , vowr] mid front lax Y" bet 
re Yow('\ low front teuse ye. b" 
a vow('] low back tense Y" 'ot 
;) vow('1 mid b<lck la." rOlluci<'d Y" caught 
0 vO\V{'i mid back t('me rounded Y" coat 
U vow<'l high bark lax rouuded Y" hook 
u vowrl high back trllse rounded Y" boot 
A vow('1 mid back lax Y" but , vowl.'! Y" 

vow{'] Y" 
aj Y" ;)j Y" ow 

wow 

, i 
ye. 

vrlar , 
labiodental ye. '-alve 

dcntal no thin 
dcntal yes then 

alveolar strident no sass 
alv('o\ar stridmt yC's zoos 
palatal stridl>nt no shoe 
palatal stridcnt yrs mt·ll.~1ire 

pop 
yes hib 

t no tot 
d yes did 
k \'('Iar no kirk 

VI'IM 

1 
1 

Table3.1-Tl [IJ English phorlt'lIl('lJ and corrl.'>'l'Ollding r('aulfC~. 
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Time variations of the firSllwo farmants for diphthongs. 

Figure 3.1-4 [4J 
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Time Is) 

Spt'Ctrogram of short sl'Ctions of Enp:li~h \"O\\"(>!5 from 3 
mil!f> ~pcak('r. Forrnants for parh vowl'l are nOil'd by dots. 

Figure 3.1-5 [IJ 
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/Iiif 
hl(l 
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0.8 1.' 

Time (5) 
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~1 I~ I; ., 
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':;1 ~'. 
, 

t.i i 
0.6 1.' 

Time (si 

Sp"rlro~rllln~ nf 1-1 EUj.!lish sll·ady.s! all' consonants /I,r,III,n,l/ .hL 
o os,f.\' ,h,1..3/. 

Pigurc3.1-6[11 
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ini """ ill 

3 J~I!I i'ul!( :"'\ I;' t-~tl 

I~"" ,~ .. II' ,if~ , 'i;r.'·· 
1 

i ~l' , 

1 ~Jl' 'I~j 

rimI'JI,,·f_ I!ftJhlii'''Mi~ ~ ~ 
0 , 

0 0, 1.5 
Time (s) 

• "t" idi "do 

I 
3 I ,~W;~ 

~~, " Arliil# 

~:I~ 
1 ~~,; . ~~ 

0 • ,lE ~ ea 
0 0.5 1.5 

Time (5) 

Spectrograms of English stops and n3Sals in vocalic COD
text: jini,unu,iti,utu,idi,udu/. 

Figure 3,1-7 [1) 

j } do ,M. "' AA ~ ".. QvyQ I,," , .. Time 

10 ms 
H 

I ~~~~II--'"",",A'~v+t-\/+,-M"'i'A,J'I=Q;V;-;'t/" ___ , • Tlm. 

] ~",II,IIIII~!IIU"J~ , L.i'MjI,.b.L-{,j\dMH/WWU '!\.tII'IjJ,}J-\Il1I\I,!,I,1I"--1v 

! /IHiIV'rPI,'!frflr'Mimr 1ii1TiTi I I n Tlm. 

j L ,thUJU;' '\iI\-A --A-.o/0 """"",OO,,",,,,'V (NM'OVvA'\r'v -",,-- T' • 1 rfVq1tY'~l1nr"'crrl ,m 

T~·pi(·;.1 ;(<'<mstic wav,·fnrn,s fot I,'u Eu,,!i'h "on~OllaIlIS 
/1.11.:.\' .k.){J.s. J.1.f. 

Figure 3.1-911] 

Typical acoustic wan'forms for /h'(' End:~h voy',t'ls. Each 
plot s.hows 40 inS of a ditfccl'lLt vowd. whirh cOll1pri~l'''' about 5-6 pilch 
pl'rio(\s for this sp('aker. Not(' th(' qtlasi-Jl('riodk nalllf(, of ~tlch voiced 
spcIXh as well as the varying spfflral COllh'llt for di!fl'r('nt vOI'>·('ls. 

Figure 3,1-8 [I] 

S~£::::1i 
c_ -;',;T 

Sourcc·s)'s!cm modd of spcc~h rt<:lJuClion, 

Figurc3.1-10[:!J 
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lA) 

IB) 

IC) 

~ LJfbd 
10) 

GLOTTIS LIPS 

Vocal IraCI representations. AI a mid.sagittal X.ray section. SI series of 
uniform cylindrical sectiOns. Cl discrete area funclion. Of area functiOn ,,·;th rC\'crsed 
axis. 

Figure 3.1-11 [5) 
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(~) I-plJnc; ~n<.l (h) :-plJnc rCl'rc,CnlJlIOnS of ~ "o~JI IrJ"( 
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rigurc3.1-12{2J 

Figurc3.1-13 [5] 
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HYBRID CODlt\'G 

(_ SOURCe CODING ~ 

'.0 7.2 

COMMUNTCATIO:-:S 
QUALITY 

4.8 2.4 1.2 0.5 0.05 

SYNTHeTIC 
QUALITY 

F'i8ur~ 3.2-1 Spectrum ot sp~~ch .:od'n, tran!llt1;ss;on ratn (nonlinear s<;alel 
in Kbil5lscc alld associated quality. Adapted (onn (91. 
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Blocl: diagram ofa ch~nnel Yocode,. 

Figure 3.2-3 [91 
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figure 3.2-4 [2J 
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Two ('lllnrnOll 1Jllifnrrn qlllllllll,'r rh'lra<'!"rl'!it"~: ('11 111,,1_ 
ri",'r. I j,)llIid·!r",,,I. "flu' <la.,I,,'oI 11111" ill,lkal"~ 11", i,I.·,',) nln"', 

Figure 3.2-5 (11 
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Table3.2-Tl [21] 
Optimum step size and mu!SNRJ ror uniform symmetric quanlilers with dilrcrcnl inpul pdr, (U: Uniform G: Gau~s(an L: laplacian f: Gamma) 

:::'I)PlI,,~ ma~ !SJ'VRJ (dB) 

R pdr pdr 
(bitsfsample) 

U " L r U ." L r , 1.7320 1.5956 1.4142 I.IH7 6.02 4.40 ).0\ 1.76 , 0.8660 0.9957 1.0874 1,0660 12.04 9.25 7.07 4.95 
l 0.4)30 0.5860 0.7309 0.7957 18.06 14.27 11.44 8.78 • 0.2165 0.3352 0.4610 0.5400 24.08 19.38 15.96 13.00 , 0.1083 0.1881 0.2800 0.3459 30.10 24.S7 20.60 17.49 • 0.0541 0.1041 0.1657 0.2130 36.12 29.83 25.36 22.16 
7 0.0271 0.0569 0.0961 0.1273 42.14 35.13 30.23 26.99 
8 0.0135 0.0308 0.0549 0.0743 4&.17 40.34 35.14 )1.89 

Table 3.2-T2 C2l} Four mood pdrs with a mean value o( lero. 

Name Notation p~b-) 

Uniform U 

" 
1-; %I:(--=},-=}) 

Rectangular (,,! .. .11/12) 0, ol"~""'is, 

Gaussian " " J\'(O'''~) --'-exp[_.lln,,! I 
Normal .J2;;I 

Laplacian 

" 
TUP [-.lilx l!a I ] 

Two-sided L 

Exponential 2., 

:rJ [ I Gamma r ~UP -,fjhll2"I 
~ .. a.lx I 

Table 3.2-T3 [2l} 
Optimum decision values x, and rcconllruct;on value5 J'J for pdf-opl;miled nonunirorm 

qU;l.nlizcrs (U: Uniform G; Gaussian L: laplacc r: Gamm.t/, 
Nozc IIlat in this lable. the quanllZct" chu.t<:tuistics are s~mm~lrrc~1 aooul 

zero: j .. I COrresponds to Ihe first n<)n'negative value of x or )'. and j ::. I to su~cecdll\g posit;ye 
values. 

R , 2 l 4 I 
pdr J , 

Y;.DP' XJ."fI' YJ.D{JI 
, ,. , 

'~.I)'" I i·o", ,.~ '1·"'" I.OP! , 0.000 0.866 0.000 0.4)] 0.000 0.217 0000 0.109 , 0.866 1.299 0.433 0.650 0,217 0.326 
l 0,866 1083 0433 0.542 • 1.299 1.516 0.650 0.759 ,,' 

1 
u , 

0.866 0.915 • 1.083 1.192 , 7 
1.~9'} 1.408 

8 1.516 1,624 , 
10! 'I , , , 0000 0.798 0.000 0.451 0.000 0.2-15 0.000 om 3 I 

'~-: 
, 0,982 1.510 0.501 0.756 0.:58 0,188 ! 0 ,6' i l 1.050 1.1-1-1 0.s2~ 0657 

! • 1.748 2.152 0,800 0,1}:2 ,1 ; G , 
1099 1.256 ; 10 //1 " \ , 6 1,437 1.618 : // 

: \ \. / 1 7 I MH ~ 069 i 16·[., , , \. 
8 2AOI ~.7n : . , -. -. -. 0 , • , • , 0.000 0.707 0000 0,-1:0 0,000 O.~JJ 0000 I) 11-1 

.10'", 2 1.127 I,H)" 0,53] o S31 o ~64 1)-1115 : 
l 1.~5J 1,673 0.51i' 0729 

L 
4 ~.J80 3,O~i (l9JO 1111 , 

J..1-1~ 1 515 r"u. mwd pdf. '''Ih 3 I\Ic~n ,.,Iuc "r le'" 
6 

U~~ :,17~ 
7 

~,59) 3017 , 

FigurcL!-6(:!lJ 8 ), ~ ~5 4 -132 , 0.000 O,S77 0.000 0.30 0.000 o 15S , o Om) 0073 
2 1.268 U21 0.5~7 o SQ9 i 0230 o 'k1 
l 1,-I7~ 2051 I o ~0)1 1) ;')5 
4 ]I)S9 -I 121 , 01)51 I l07 r , 

I 11.1) 1')50) • ! I.l'li) : ~:': 
7 

I H:'~ -Il)nl 

" I ~ I ~H h I~S , 
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Performance of p<Jf'<lp~imiled quantilcrs. Values of mu(SSH) (in dB), (LT: Uniform 
G: Gau.,ian L: bplJ<:e r: Gamma) 

R pdC 

(bits per ~ample) 
U G L I r 

I 6.02 4.40 3.01 1.76 , 
12.04 9.30 7.54 6.35 , 
18.06 14.62 12.64 II.S~ 

• 24.08 20.~2 IS:U pm , 30.10 26.0' 23.81 22.85 , 
36.12 31.89 29.74 28.73 , 42.14 37.81 35,69 34.67 

Table 3.2-T4 (21) 

Figure 3.2-8 [21J Dependence of SNR on If; in g.bit log_ and uniform quantization of a bounded laplacian 
input. The dashed line refers to a pdf-optimizcd quantizer . 
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Figure 3.2-9 [2t] OUJntizJtion Mile modcl~: la) purely addlli.c noise modd; and (b),modd "'Ih n,1O-unll' 
gain and ad,hu~c nOise. 
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Figure 3.2-10 [21 J Ad"l'\i~e qll~nli1.:'l\ion wilh (a) forward estimation 01 inpuI level tAQD. ~nd {b) bacb.ard 
enimalion of inpullcvcl (AQ8). 

(0) AOF 

::::::]"""" ",' CHA'INEL 

r~'!'~~'=-~~!:==:!C~~~~~L ESTtMATOR 

COOEII 

IbI AQB 

Figure 3.2-11 [24] 'speech variance estimates in (a)' instantaneous and (b) syllabie adaptation. Values or 
';,,(11) hvc been magnified {(lr clarity. bUI the scaling {aclors arc Ihe same in (a) and (b) [8arnwcll cl 
al" 1974. Reprinted with permissionJ. 
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Figure 3.2-12 [21 J mock diagram of DPe:'>f: I,,) (oder: ,I lid (bl dcc.Jlkr. 
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Figure 3.2-14 (26J COITlp.lr;"m of lUll-pe M and DPCM-M)11 speech coders. L<lg _pc.:!r" or" (~) 'r<:c~h input 
and of rec(lnmucljO" err!.lrs in (b) [}PCM-AQIl (R - 4 b,l'/,arnpl<:) and (.;) l"g.PC\j (R _ 7 
bil~/sampld 

'b, 

..2 -lOde • 16 t', tY \,.;\ 32 

1'1 -20 da 

'" '" LOG-PCM ERROR SPECTRUM .- ", } 
1 
• " 

.2dB 

FREOUE~CY I~fil) 

Figure 3.2-15 [21J Block diagram of DPCM wilh (a) forward-adaptive prediction tAPf); and (b) backward. 
adaptive pr~iclion (APB), 

<01 

lbi 

M·SAMPl.-E 
INPUT dn) BUFFOt 

." 
COEFfICIE'IT 
CALCULATOR 

+"\+, - OUANTI2ER r-r-
--{PREOICTORr4 

~ 

Jl 
SIDE INfOllMATION 

· + l- OuANTIZEf:! ~'~'~"C-~"~'~I~--{")----[~~~~--~"~"~'"-lI--; 
l' TO CHANNEL 

APe lOGIC 

Figure 3.2-16 [21] ~fa~imum prediction gain versus order N of adaptive predictor fur (a) lo"p.us_filleted 
spc.ech; and (b) bandpass·filte~cd spee<;h 
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Figure 3.2-17 [211 Time: depc:ndcnde( (If (a) input ~pee~h Icvcland of preliiction gain Cl,. in (b) nonadaptive 

prediction and (c) adaptive prediction. All three waveforms 3re 1440 ms long and arc 'amplcd on~c 
every 16 ms. The points ~1. Nand N refer tu nasal sounds (in the word 'Miin~hcn'), which are 
characterized by very high values orG,.. in the order of 20 dB (Null. 197)). 
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Table 3.2-TS [26] Comparison of Objective and Subjective Performance of ADPCM and Log-PC~f. 

6-bil 
4-bit ADPCM 
S·bit peM 
J.bit ADPCM 

4--bit 
6-bit PCM 
J-bil ADPCM 
S·b;1 peM 
.·bit peM 

.. ~ 

PCM PCM_ DPCM1_ AOPCM1_ AOPCM4- AOPCMI2_ 

""'ICY.,IIO ""'~mTHE~04 

" " 
Sum of t~ ~\la{es of \lIe pi-.:d\e\OI coefficients (power galn) 

for consecutive rime framc$ in ./I speech utterance before hl.gh
frequenc.y correction (broken line) and alter high-frequency contc
tion (solid hnc). Tile £peech utterance, "An icy wind raked the l:Icach," 
was spoken by a male speaker. 

Figure 3.2-20 [J6] 

AQER">G 
r~fl)l'Eo,cy 

COOl~Hr""" 

\ 
HHORf ....---'" .. ,c..-·""OU(fOCY \ 

AOF ADa AOF AOF AOF 

Figure 3.2-18 PO] Signal-to-noise ralio values for quantilalion with tWO bll~ rer 
sample (16 kb/s) up to five bits per sample (40 kb/sL Code: AOF. 
Adapllvc Quanwcr • feed forward: ,\Q8 - Adaptive qU3111ilcr • reed 
bJckward; ADPCM, - ADPCM S)'Slem Vlllh r'h order predictor. 

COQ""'CT,,,,,, \'. 

, 
fll't:OU(tfCy ('>ill 

'. 

Sp~cl,"1 cnveJ"res of SI"'Cdl ha..:d 0" lrr JnJI),SII ~~I<lI. 
h~h'fl~q\l~"~y c"rr~':I"'n (~"IIJ ,or,'c) JnJ JII~I hl~h'lreQu~ncy 
(OnCellOn (dOlled ~un'c). 

Figure 3.2- t 9 (361 
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CCU'FICltNT _!I£1t 

Pred!o;;lor coelficienls from LPC 31\;1!ysis of Jpeech ber,re nigh. 
frequency correction (broken line~) and after higli-li"equency corrcl:' 
lion (solid lines). 

Figure 3.2-21 [36J 
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methOd. 
Block diagram of a reali~able implementation of the lallicc 

Figure 3.2-22 [2J 

Computational Considerations in the lPC Solutions 

COI'Q"Ollce Alllororrelal,Q!I LOIII<.'e 
Method Me/hod Me/hod 

(Cholesky Decomposition) (Durbin Melhod) (BUTg MClhou) 
Sloraw 

IN, Data N, N, 
Matrht proponional to pl{2 proportional 10 p --Window 0 N, --COmpl/laM" 

(Mull'f,IIeD/lons) 
Windowing 0 N, --Correlation proportional 10 NIP proporllonal 10 N1P 

SNJII Matrix Solution proportional 10 pJ prOportional to pl 

Tablc3.2-T6 [2J 

A short seg~en~ of a v::liced SP'?!!ch signal 
(upper ri9~t Hlset) IS FOI;r1,"r Udns(o,,~ed to yit'ld 
thIS loqJrlthr.ll: (JOWl!" Sfe.:t"!Jm. :~c.te the re~\)\af 
harmonic strtJct~rC! of t~e ,;pectrli~ at multiples of 
thd funCJ,l~ent.!1 freQuency :C3. 120 Hz). The dotted 
line is tne sDectral enve~o~1e c~":luted from tl".e fre
qu(!ncy r(!srJO<l$e. of tI:e predlcticn filter. _ Short
time spC!ctra, s:.tch as tnose Sho,yn in Figures 2 a~d 
J, lIa~e a hi9~ fre<:l'J<!ncy r(;.olutlcn in Hllte of U:e 
shortn~ss (Jf the ti.~ wln';r.,·. rvl1(;;,'lng ~ SU<1qt's~lon 
by !l.S. Atal, this feat is a'cc::-'~J!isn~rl Dy p"rfom
ing t'Jc rtHlrlCr trallsforu cn t··e . ':/",.;' ;',. ,:_ 
~.:': •. ~ We<:.<.I; <,i1"al, '.'1':ret'y 7.ll(\1:-.1211H) tne f ... ~_ 
quellC; UfH.r.-rtalnt.les ("spl.l:ter·') re~ultlnQ frQl"l 
shtwt tlln~ 11In1'l~,' .. 

Figure 3.2-23 [49J 

FA(OUEH~r (1.Ill] 

;. short se:.:~~nt of an ur~V"lc~d sceeCil 5i9-
r.al (u;;f1er r"i<1llt insp.t) dnc its Fourier tr~nsfor"1. 
c:'ta\~,"oj tlV ~~e method d~scri~ec In the CJ~tlcn fer 
rigu,"e 2. :,~~e .~"e a:>S0nce of nJI"mGnic fre~~enCles 
dn::! ~~e ~rG~d scectral re~~, characteristlC of un. 
v:·jcc:: S(h .. r.<:;. :'oise-Ire€' CC'JiNl 01 5:Jen nls$-11le 
SG~r'.:::; is f1C! Crl~lCJ1, becd')se"'n"1Sf:' plus nCHe 
e~\;als noise" M,'; tnc ear is sc~ew'dt ".Qre tJl~r~~t 
to S~~ctrdl r::lstortlor.$ 01' frlCat1~e '>pe-H.t'> SO'..;~.r!S. 

Figure 3.2-2~ H9J 

~ 



:J 
,I 

'j 
~1 

;,J 

H • 

., 
-.' _.2 .0 ,~ .' 
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Typical spectral sensitivity curves for the rcnec:lion co
efficients oC a 12·pole analysis oC a 20 ms spl:'e1::h Ctame. 

Figure 3.2-25 [SO) 

" 

COOl VlCfORI ~, 

Uniform Irel! for a binary-search vector qU.lnlltcr. 
The vectors V. are intermediate code \f'ctOIS that arE' com
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Figure 3.2-48 Filter delay in a three stage tree structured QMF filterbank. The 
input sample spacing is taken to be 1/8 msec and the sampling frequency is 

halved at each stage. The number of taps is assumed to be 32 for each filter stage. 
The delay introduced by each filter is equal to (32-1)/2 samples at the input 
(to each stage) sampling rate. For example, 10 calculate the delay between 
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CHAPTER 4 

DISTORTION, DISTORTION MEASURE}IENTS 

4.1 Rate Distortjon Theory 

The mean square error (mse) is a widely used 

distortion criterion. Its analytical tractability has 

undoubtedly contributed to its widespread acceptance. 

However, its ability to provide a meaningful measure of 

speech quality should not be underestimated. In many 

situations of waveform coding the mse reflects the true 

perceptual impact of rate compression and in others it 

provides a building block -from which more appropriate 

measures can be constructed. 

Rate distortion theory has generally built upon the 

mse [1] , although other distortion measures can be used 

to derive rate distortion functions [2]. 

The following discussion 

and therefore any results 

assumes stationary 

must be applied 

sources 

in a 

"piecewize" manner in the case of speech coding and for 

time durations for which the speech signal can be 

considered as stationary. 

A rate distortion function D (R) 

attainable -distortion D (which 

relates the minimum 

we assume to be 

represented by the reconstruction error variance) to the 

bit rate R, for a particular source. 

A closely related function R(D) relates the minimum 

bit rate required to encode the source with a distortion 

D. 

For a memoryless (i.e. flat spectrum, white) zero

mean Gaussian source of variance O'x:;~: the above two 

functions are given by: 

---- -------
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2 
1 0' 

2 
10g2 

x O@ ~O' --; 
2 D w x 

2 w 
{O 1 

0' 

R<D )=max 10g2 
x 

) = w ,-
2 D w 

0; D ~O' 
2 

w x 

4.1a 

D (R) = 2-2RO' 2 
w x 4.1b 

In the case of Dw ~ O'x~' no information needs to be 

transmitted since by using zero samples 

reconstruction a distortion equal to O"x;;;:! will 

for 

be 

obtained. For a coder operating at the rate distortion 

bound, the output Y to a zero mean gaussian input x is 

given by [1,3] 

Dw 
Y = (1 - >.x + n 

2 
O'x 

4.2a 

wi th n being a zero mean gaussian x-independent addi ti ve 

noise of variance 

2 
0' =D<1 

n w 

D 
w ) 4.2b 

which ensurQS that the varianCfl of the reconstruction 

error r = y - x is Qqual to Dw. Note that equations 

4. 2a, b are essential for 0'.,,2 = Dw to be truQ, where Dw is 

the mi nimum attainabl Q distortion at the gi VQn bi t rate. 

Instantaneous quantizers cannot provide the conditions 

descri bed by ~. 2 and ar0. therefore suboptimal. Delayod 

decision coders on the othQr hand strIve to achiQvfl 

relations 4.2a,b and thus provide a performance closer to 

the rate distortion bound. 
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Sources with memory (i.e. a non-flat spectrum) permit 

greater data compression than memoryless sources for a 

given D. In fact the D(R) function reflects this higher 

data compression through expressions that measure the 

non-flatness of the source's power spectral density 

(psd) . 

The relationship between higher compression and non

flatness can be easily visualized in the case of a single 

peak in the psd: The spectral peak implies a higher 

presence of those frequency components in the signal 

which constitute the peak. This in turn implies a certain 

degree of predictabil i ty about the signal. It is this 

predictability which reduces the amount of information 

needed for signal reconstruction. We have seen that 

predictive, transform and subband coders exploit this 

predictability to approach the rate distortion bound for 

sources with memory such as speech. The nonstatioriari ty 

of the speech signal is the factor that necessitates the 

transmission of side information in the above coders. 

Let the psd of the input be given by Sx(f). The D(R) 

function for a general (non flat, coloured) zero-mean 

Gaussian source is given parametrically in the form 

[1,3,4,5] 

D(A) = 1 
F 

R (A) = 1 
F 

F 

! mi n [A, S x (f ) ] df 

o 

F 

! 

o 

1 Sx(f) 
max [0, _ 10g2 ] df 

2 A 

4.3a 

4.3b 

For a minimum reconstruction error psd N(f), the area 

E shown in fIgure 4.1. is equal to D(A). The frequency 

axis is divIded into a number of passbands (tEa) and 

stopbands (fE)3). The total "rea E of the noise spectrum 
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"fills up" part of the area under the signal 

much as a liquid fills an irregular container 

the so-called "water-filling" procedure). 

spectrum 

(this is 

Frequency ranges which are completely "filled up" 

make no contribution to the information rate. Therefore 

rate distortion theory dictates some form of noise 

shaping, although the level in the passbands is flat. 

Equations 4. 3a, b can only be satisfied through delayed 

decision coding procedures. One such procedure is 

depicted in figure 4.2. A(Z) is the optimum linear 

predictor for 
~ 

y, .. , , 0"'" the mean squared prediction error. 

is restricted to be a zero-mean The sequence V, .. , uni t 

the variance whi te noise process. This necessitates 

introduction of filter C(Z) defined by 

IC(z)1 2 : max [0,1- A 11-A(Z)1 2 ] 
2 

0' 

(A is the parameter in 4.3) 

4.4 

so that equations 4.3a,b are satisfied. [5] Note that in 

coding algorithms such as multipulse LPC where the mse is 

minimized explicitly, C(Z) can perhaps be omitted. In 
~ 

effect, the generated sequence Vn is already 

(approximately) shaped by an "internal" filter C(Z). The 

shaping results from explicitly minimizing the mse. The 

above can be easily modified to derive rate distortion 

functions where the criterion is a weighted mse [3,4,5l. 

In particular the problem of encodi ng a source with 

spectrum Sx(f) and an error spectrum AR(f) is eqUivalent 

to the problem of coding a source with spectrum S(f)/E(f) 

and a flat error spectrum A. Going back to equation 4.3, 

for sufficiently low distortion (L e. a high enough bit 

rate) such that A'min{Sx(f)}, then D(A) - A and 

R(A) = ReD) = 1 
F 

F 

! 

o 

1 

2 
log.., 

'" 

S (f) 

[ -~--] 
D 

df 4.5 
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By equating R<D) from above to R(Dw) of 4.1, it is 

straightforward to show that (appendix E): 

1 

F 
o 

F 

f 101og10Sx(f)df 

F 

f S (f)dfJ x 
o 

F 

(subject to the condition that f S, .. ,(f)df is the 

o 

same in both cases) which, is exactly the limiting 

4.6 

prediction gain for a nonuniform spectrum (e.g. equations 

3.2-43 and 3.2-44). 

It is important to realize that the value given by 

equation 4.6 for the prediction gain can only be attained 

under the assumptions of equation 4.5 i.e. A~min{Sx(f». 

For higher distortions (1. e. lower bit rates) the 

prediction gain is reduced accordingly. 

4.2 OBJECTIVE DISTORTION MEASTJRES 

It is often necessary to be able to compare the 

performance 

attained. 

of speech coders in terms 

Ideally the comparison 

af speech qual i ty 

must be made 

subjectively and under the same conditions far the coders 

invol ved. Furthermore the tests should ensure that the 

ensemble of speech material used in the tests, and the 

observers judging the coders are representative. Such 

subjective tests are time-consuming and expensive to 

implement. Therefore, various objective measureS have 

been devised whose results are correlated with subjective 

I 

I 

I 

_J 
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resul ts. The simplest measure that has been used is the 

mean square error (mse). For the coder shown in figure 

4.3 this measure is given by: 

4.7 
n n 

The summation is carried out over the whole of the speech 

segment. Since 

attenuated by a 

speech qual i ty 

is given by 

the input X(n) can be amplified or 

1: 

SNR = n 

1: 
n 

large factor without any effect on output 

for most coders, a more sensible measure 

X2 (n) 

4.7a 
2 r (n) 

or in logarithmic form 

SNR(dB) = 1010g10 4.7b 
2 1: r (n) 

n 

The su:rnmations are again carried out over the whole 

speech segment. 

Since speech Is a nonstationary process. coder 

quality is affected by the distribution of quantization 

distortions in time. Better indications of perceptual 

quality can be obtained by using short-time (- 20 msec) 

objective measures, "averaged" OVGr a speech utterance, 

than from conventional long-time SNR .. One assum,=s that 

the measure given in 4.7, is a valid one for a short 

speech segment where the summation over n is carried out 

over about 20 mseC were the speech signal is assumed to 

be stationary. One then obtains a distortion (or 
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equivalently a quality) measure which is a function of 

time. This is not very useful in itself since what is 

usually required is a single number representative of the 

whole speech segment. Therefore it is necessary to know 

how to "average" the numbers obtained from 4.7 to obtain 

a single number measure. 

This is not a trivial problem since the measure in 

4.7 may have a 

different short 

different perceptual equivalent for 

speech segments. This problem of 

averaging has yet to receive anywhere near the attention 

it merits and further research is required into this 

problem. A simple solution is to use the arithmetic mean 

of 4.7b (or, equivalently, the geometric mean of 4.7a) to 

obtain the segmental SNR measure: 

SNRSEG (dB) = 1 l: 

L L 

L X2
(n) 

n 
1010g10 ---

l:r2 (n) 
n 

4.8 

where the summation in n is carried out over short 

segments of duration around 16-20 msec. L is the total 

number of these segments. The segmental SNR has been 

shown to be a better measure of ~ coder qual i ty than the 

SNR as given by 4.7, especially for coders using time

domain or frequency' domain prediction. (6,7,8,9). One 

problem which can occur with SNRSEG is that in regions of 

silence the input signal to the coder is essentially zero 

and any slight noise at the output will gi ve rise to 

large negative SNRSEG values. These values when 

averaged together with the segmental values during actual 

.speech, can have a significant effect on the final 

result. A simple procedure to avoid this problem is to 

incorporate a threshold test in order to exclude silent 

segments from the computati.on (6). If silent segments are 

important for the performance of the coder (i.e. in order 
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to assess idle channel coding noise) other modifications 

can be made [91. 

The averaging procedure over time implied by 4.8 will 

be valid provided the variation of individual 

measurements around the average is small. For large 

variations the application of 4.8 is dubious. One 

generalization of the measure could be the Lp norm 

defined by 

11 P 

~ [",og" 
p 

Lp 
1 ~ ~'n'j 4.9 = 
L Er (n) 

11 

As P is varied from 1 to 00, the contributions to the sum 

from the larger segmental distances increase. At p=l 

these are 

magnitude. 

weighting 

given uniform weighting irrespective of 

At p=oo the largest 

of one and all others 

distance is given a 

a zero weighting. The 

value of p best matching subjective measurements can be 

chosen. Although the Lp norm provides more flexibility, 

it does not take into account that the same value of 

segmental distance between coded and uncoded speech may 

have a different meaning according to the segment being 

coded. 

We have seen prevlously that the distortion present 

at the output of a coder can be modelled by an 

attenuation term and an uncorrelated component. This 

relationship l.s described 

the coder described by 

by equation 4.2. 

equation 4.2 

The input for 

is whi te. For 

nonwhi te i nput:3 the attenuat i on component is frequcmcy 

dependent. The uncorrelated noise component produces 

distortion which ls perceptual 1 y more significant than 

the attentuatlon term. A better distortion measure could 

therefore alm to Isolate this type of distortion. It is 
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shown (6) that the SNRSEG given by 4.8 produces results 

that are close to an SNRSEG measure which uses the 

attenuated signal to uncorrelated noise ratio as its 

segmental distance. This Is one of the reasons why the 

SNRSEG measure of 4.8 correlates better wi th subj ecti ve 

performance than the SNR measure given by equation 4.7. 

Further refinements to a distortion measure can be 

conceived if the frequency selectivity of the ear is 

taken into account. We have seen that the auditory 

mechanism performs a short-time spectral analysis of the 

signal at the input to the ear. The nonlinear warping of 

the frequency scale to the critical band scale can be 

taken into account to produce a frequency weighted 

measure. This is also closely related to the classical 

articulation studies of French and Steinberg (10) and 

Kryter [11, 12]. The SNRSEG measure noW becomes segmented 

in the frequency domain as well, but the frequency bins 

increase in size with frequency according to the critical 

band scale or the Articulation Index (A. 1.) scale. One 

such division is shown in table 4. Tl. The segmental (in 

both frequency and time) SNR can then be given by 

20 
AI = 1: Ai= 0.05(SNRSEG

i
/30) 

i=l 
4.10 

where SNRSEG, is the segmental SNR in band i. The 

constants in 4.10 relate to the facts that the SNRSEG, is 

restricted to a maxImum of 30 dB (signifying that a 

higher value is perceptually unnoticeable) and that a 

perfect signal is normal ized to have an AI of one. The 

nonl inear division of the frequency bands accordi ng to 

the AI is eqUivalent to weighting the conventional SNRSEG 

of equation 4.8 by a frequency dependent factor F(f), 

shown in figure 4.4 by the solid line. The weighting 

resulting from a critical band warping is also shown by 

the dashed line. 
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Further knowledge about the perception of sounds by 

the ear can be built in the model by taking into 

account masking effects and the transformation of 

intensi ty into loudness. One such model due to Schroeder 

et al (13) was presented in the section on psychophysical 

modelling in the chapter on Hearing. 

4.2.1 Spectral Distance Measures 

Spectral distance measures are based upon 

transformations which retain only the smooth spectral 

behaviour of the speech signal. Al though such measures 

may have limited applicabli ty for waveform coded speech 

on their own, they can be used in combination with the 

waveform orientated measures presented above, to provide 

a composite measure of quality. In addition their 

importance has grown in recent years since they provide a 

basis for vector quantization of the filter parameters in 

predictive coders. Traditionally such measures have been 

used in vocoder design, recogni tion [ 14) and 

identification and verification ta,sks. 

We will present spectral distance measures under the 

assumption that the comparison is made between two all 

pole spectral models ",/A(Z) and ",'lA' (Z). The first can 

be the all pole spectral model of the uncoded speech 

whereas ",'/A'(Z) can be the all pole spectral model of 

the coded speech. Central to these spectral measures is 

the log ma.gnitude difference given by [15, 16). 

4.11 

Most measures can he related to the likelihood ratios 

which have already been mentioned in the section on 

vector QuantizatJon of chapter 3. These are defined in 

terms of 0, a, 0' and a' which are in turn defined by 
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p 
oX = E r (n) r (n) 4.12 a x 

n=-p 

p 
0 = E r' (n) r (n) 4.13 

a x n=-p 

p 
oX' = E r , (n) r' (n) 

a x 4.14 
n=-p 

p 
0' = E r a 

(n) r' x 
(n) 4.15 

n=-p 

P is the order of the all-pole filters, {r., (n) } and 

{r',,(n)} are the autocorrelation sequences of the filter 

coefficients 

respectively, 

for the 

{rx(n)} 

uncoded 

and 

and 

{r'x(n)} 

coded 

are 

speech 

the 

autocorrelation coefficients of the data {X(n)} and 

{X' (n)} respectively, for which O'/A(Z) and 0"1 (A' (Z) 

represent the optimum models. The terms defined by 4.12-

4.15 will only appear in two ratio forms, the likelihood 

ratios o/a and o'/a'. These can be shown to be equal to 

[ 15) : 

+TI 
'A' (e j8 )-A(e j8 ) ,2 0 

1 + 
d8 

= ! ----------------- 4.16 
oX -TI I A(ej8 ) I 2 2TI 

and 

+TI 
I A' (e j8 )_A(e j8 ) I 2 o' 1 + 

de 
= ! ----------------- 4.17 

oX' -TI IA'(e j8
)1

2 2TI 

It can be seen that the differences between the all pole 

spectra are most heavi ly weighed when 1/1 A (eel "') I (or 

1/IA'(e''''')I) are large i.e. at the formant peaks. 
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Most spectral measures are variants of or 

approximations to the Itakura-Saito measure defined by 

TT 
IS = J[e V(e)_ V(e) -1) de 4.18a 

-TT 2TT 

or equivalently [15] 

4.18b 

For small V (e) the term in the brackets in 4. 18a can be 

approximated by V"'(e)/2 (by expanding e V «':' in power 

series form). The measure of 4.18 then becomes equivalent 

to the L.;: norm. where 

L 2 = 
2 

+TT 

J 

-TT 

for small V (S) • 

1 V(S) 12 dS 
2TT 

4.19 

This in turn can be approximated by a truncated 

cepstral distance measure 

p 
U = E (C -

k=-p k 
4.20 

where {Ck} are the cepstral coefficients of ~/A(Z) 

defined by 

00 

In[~2/IA(cj8)12] = E cke- jkS 

with 

C 
o 

2 
= Inr~ ] 

-OJ 

4.21a 

4.21b 
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and 

C = C
k -k 4.21c 

and {C'k} are likewise defined for O"/'A' (Z), 

Variants of 4, 18b can be obtai ned by constrai ni ng 0' and 

0' I : 

For 0' = 0" we obtain the likelihood ratio measure 

4.22 

If we set 3·,'°'/3 (0'/0") = 0 we obtain the gain optimized. 

Itakura, or log likelihood ratio 

LLR = In (~) 4.23 
a 

Changing the roles of the coded model with the uncoded 

model one obtains 

TT 
IS' = ! (e-V (8) + v(e)-ll de 4.24 

-TT 2TT 

And the average of IS and IS' is related to the cosh 

measure 

with 

C = In [1 + B + JB(2+BiJ 

B = 1 (IS + IS' J 
2 

4.25a 

4.25b 

which l.s symmetrical to V (8) as opposed to either IS or 

IS'. Gain normalised and gain optimized versions of the 

cosh measure can also be derived. In a comparison study 
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( 171 between subjective quali ty measurements and a 

selection of the above measures, the cepstral distance 

measure was found to correlate best with subjective 

results for PCM:, ADM: (adaptive delta modulation) and 

ADPCM: coders although the correlation was not 

particularly good for ATC, APC, bit error and overload 

conditions. 

4.2.2 Perceptual] y Motiyated Measures 

From the above discussion it should become clear that 

a vast range of 

the literature. 

distortion models has been proposed in 

The number of different models is a 

reflection upon their lack of robustness to different 

coding conditions. Some models are useful (in that they 

correlate well with subjective measurements) in one 

coding situation but fail to predict results when the 

coders involved or the speech material used is changed. 

For these new conditions a new appropriate measure can be 

found, but again, there is no guarantee that this measure 

will be robust to other coding conditions. One way to 

overcome this problem is to include in the test as many 

and diverse degredations in the speech 

then be used 

signal 

to find 

as 

possi bIe. Several measures can the 

best one that mostly predicts - subj ecti ve resul ts on the 

totality of conditions. In addition,· a composite of 

various obj ecti ve -ineasures (e. g. through regression 

analysiS) can be found which accounts for the subjective 

results better than any of the individual measureS (6, 

7, 81. Clearly, by using a model with a large enough 

number of 

simulated. 

parameters, 

There is 

any 

stIll 

subjective result can be 

no guarantee though that 

the model will perform well under conditions outside the 

"training data" 1. e. the subjective resul ts used for its 

derivation. Moreover, the number of free parameters 

required may be quite large for a wj.de range of coding 

conditions. 
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For all the above reasons it is beneficial to base a 

distortion model on knowledge about the auditory 

mechanism. In a sense, we are trying to model not the 

human response to a particular condition, but the actual 

mechanism that results in the aUditory response given a 

particular stimulus. If this can be done successfully, 

t"hen a distortion measure based on such a model will be 

able to predict and postdict any set of subjective 

results, since by design, the response of the model will 

be the same as that of the average human subject or 

observer. This is because what is modelled is the 

mechanism, not the response. 

4.2.3 Modelling the Auditory Mechanism 

The first step to model the auditory mechanism is to 

obtain ·the "Auditory Spectrum" or Excitation Pattern of a 

particular sound. As was shown before this involves a 

transformation of the frequency axis and a certain 

envelope smoothing with equal width frequency windows in 

the critical band domain. Two general approaches have 

been used to obtain an equivalent auditory spectrum from 

a signal. One is through the use of a discrete fourier 

transform (DFT) and the other through a filterbank. A DFT 

that 1s evaluated through short---time windows, and the 

output of a filterbank can give identical results if the 

impulse response of the filters corresponds to the window 

used in the DFT. 

For the following discussion, for the DFT method, a 

fairly large time window will be assumed (20 msec) in 

order to obtain a fine frequency resolution power density 

spectrum on a critical band scale. The excitation pattern 

is then obtained by convolutj_on of the power spectrum 

with a "spreading" function as in [131. Because the 

convolution is performed on the power density and not on 

the COlnplex spectrum, the result is that phase is only 

taken into account within the interval of the equivalent 
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frequency window of the initial DFT (i.e. - 50 Hz at all 

frequencies). This results in a spectrum which is very 

smooth and free from pitch structured peaks and valleys. 

The alternative is to use a filterbank. One or two 

fi 1 ters per bark are adequate to descri be the critical 

band spectrum. Since no analytical approach is available 

in the literature, a critical band filterbank was 

designed. As a first approximation to the critical band 

windows the following expression for the time window was 

used: 

(2TIbt)n+l h(t) = ______ _ 
tn! 

-2lTbt 
e 

its frequency response is given by 

and 

H(f) = 
--- --

1 

n+1 
(1+j !) 

b 

2 f 2 
101og101 H(f) I = -10(n+l)log10[ C) + 1] 

b 

4.26 

4.27 

4.28 

Note that this time window or filter is symmetric on a 

linear frequency scale. 

The filters have two free parameters. By requiring 

that the three dB bandwidth is equal to the critical 

bandwidth D corresponding to its centre frequency we set 

n+l./2 -1) 4.29 

and therefore reduce the number of free parameters to 

onc, the value for n. This value is related to the slopes 
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of the filters. To chose n, a visual fit was made to 

Zwicker's excitation pattern corresponding to 40 dB SPL 

(filter a) as shown in figure 2.4-2 i.n chapter 2. This 

value was chosen so that it would provide a reasonable 

fit to our moderately asymmetric (in the critical band -

CB domain) amplitude response. The amplitude response is 

shown in figure 4.5 in dashed lines. Crosses indicate the 

40 dB SPL excitation pattern from Zwicker whereas, in 

solid lines the spreading function as defined by 

Schroeder et al [13J is shown. A suitable value for n was 

found to be 5. The plot in figure 4.5 corresponds to this 

value. The excitation pattern corresponding to 80 dB SPL 

is shown in figure 4.6 (crosses). Schroeder's spreading 

function is again shown in solid. The dashed curve is our 

filter's amplitude response "peak detected" using the 

formula 

B(k+l) ~ B(k) when B(k+l) ~ B(k) 4.30a 

and 

B(k+l) ~ B(k) * EXP (-dx/C) when B(k+l)<B(k) 4.30b 

B is the amplitude spectrum coefficient at critical band 

rate k, dx the constant distance in critical bands 

between k and k+l and C a constant determining the 

shallow slopes of the. spectrum. The rather narrow filters 

resulting from our time windowing collect the sound 

pressure per critical band. Amplitude dependent slopes 

can then be fitted by changing C as a function of B(k), 

at the transition point, when B(k) = B(k+l> (as for 

filter b). The well known amplitude nonlinearities of the 

upper slope (accessory excitation) could then be modelled 

in this way. 

The filters obtained from 4.26-4.29 (using n = 5) are 

relatively invariant in the critical band domain wIth 

respect to the centre frequency due to the normalization 

in 4.29. The resulting time windows though are very 
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different for different centre frequencies since their 

width is inversely related to their frequency width, 

which in turn, is proportional to the critical bandwidth. 

The impulse responses of the filters (1. e. equation 4.26) 

for the windows corresponding to ·successive critical 

bands 1 to 17 are shown in figure 4.7. Having designed 

appropriate windows corresponding to critical bands, 

these can be used to obtain a critical band spectrum. 

The spectrum is obtained by transforming the 

via a "Critical Band Transform" (CBT) matrix 

signal 

which 

operates on the time domain samples and produces the 

Excitation Spectrum without the need for a convolution in 

the CB domain. Convolutl.on in the CB domain is wasteful 

since the short-time power spectrum of the speech signal 

has to be sampled to an unnecessarily high rate to 

produce an accurate convolution result which itself need 

only be represented by a smaller number of samples. 

For a signal sampled in the time domain at a sampling 

period T the (conti nuous) power densi ty spectrum can be 

represented by 

valid 

n-1 ? 
S(f) = I L R(i)*EXP(-j2ITfiT)I~ 

i=O 

between f=O and f=1/2T. 

4.31 

{R (i) ) represent n 

successive sample values of the input signal and f is the 

frequency. Convol.ution in the CB (or frequency) domain 

can be substituted by multiplication by a SUitable time 

window in the time domain. Because the width of the 

cri tical bands varies continuously with centre frequency, 

the time window is a function of the frequency at which 

the convolution result is calculated. The complex 

spectrum is then given by: 

n-1 
A(f) = L R(i)*W(i,f)*EXP(-j2ITfiT) 

i=O 
4.32 
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A discrete spectrum can be obtained by sampling the above 

continuous spectrum at any specified intervals. The 

frequency variable U fU can be expressed as a function of 

the corresponding critical band number X: 

f = 650 * sinh (X/7) 

and sampled at equal intervals of X i.e. 

f = 650 * sinh (kX/7) 

where X is a fixed constant. 

The discrete spectrum is then given by 

where 

n-l 
A(k) = E R(i)*W(i,k)*EXP(-j2ITf(kX)iT) 

1=0 

f(kX) means Uf a function of kXu 

4.33a 

4.33b 

4.34a 

and not 

mul tiplication. In theory, the speech samples are time 

windowed prior to the transformation. In this case the 

time window coefficients can be incorporated into the 

transform, forming the new transform coefficients 

W(i,k)*EXP(-j2ITf(kX)iT). 4.34b 

The whole operation can then be presented in matrix form 

4.35 

where WE is the transform matrix, R the input samples 

vector and A the critical band spectrum vector. The power 

spectrum coefficients are simply given by S(K) = I A(k) I '"'. 

The whole operati.on is an exact equivalent to filtering 

by phase complementary band-pass filters centered at 

f (kX) (Flanagan pp145 (is]), and the form of 4.35 is 

similar to a DFT. The window W(i,k) is given by a sampled 
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version of 4.26 such that 4.29 is satisfied at each 

frequency index k. The window appears in the matrix time 

reversed due to the convolution operation as shown in 

figure 4.7. 

A fast implementation of 4.35 can be obtained by 

noting that the relevant windows W(i, k) decay to quite 

small values after a certain number of samples, 

especially for windows corresponding to high centre 

frequencies. The impulse response of 4.26 can therefore 

be truncated to an appropriate number of trems. A 

reasonable criterion is to truncate the series when the 

window value h(t-r) is a small fraction of its maximum 

value max{h(tw)}. For a ratio of h(t)/max{h(t)} of around 

300 the following number of samples need be retained: 

Critical band 1 2 3 4 5 6 7 8 9 10 11 

Samples 169 169 147 137 126 115 104 93 82 72 64 

Cri tical band 12 13 14 16 16 17 

Samples 66 48 42 37 32 28 

Table 4.T2 

for speech sampl.ed at 8KHz. The maximum value nearly 

corresponds to 20 msec whereas for higher centre 

frequencies the time window is much shorter. 

The resulting auditory spectrum is very different 

from the one obtained using the DFT approach. Recall that 

in the DFT approach [131, the power spectrum is convolved 

with the "spreading function". The filterbank spectrum 

gives an increased time resolution as a result of using 

impulse responses which are shorter than the time window 

in the DFT. It also gives an increased frequency 

resolution slnC8 the resulting spectrum is the 

convol uti.on of the f1 I ters' s response wj. th the complex 

spectrum of the signal.. Thj s can clearly be seen by 

comparing figures 4.8 and 4.9. 
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In figure 4.8, column one shows the time waveform 

(20msec in each plot), the second column the power 

spectrum obtained via a 20 msec (warped) DFT, the third 

column, the convolved power spectrum (excitation) and the 

fourth the corresponding specific loudness pattern, 

obtained from the excitation through a corresponding 

power function with exponent 0.25. All the spectra extend 

from 0 to 17 bark, are linear on the bark scale and have 

a resolution of about 10 samples/bark. Each successive 

row is produced by sliding the time windows by 2 msec. It 

can be seen that via the DFT approach a smooth spectrum 

is obtained which changes little in the course of 8 msec. 

In figure 4.9 the four patterns shown represent the 

specific loudness patterns obtained from the filterbank 

and correspond to the same block of speech as the ones in 

the previous figure. It is clear that more information is 

preserved in the spectrum. In addition there is a lot of 

change in the spectra in the course of the 8 msec as the 

pitch harmonics, summed into the corresponding filters, 

fall in and out of phase. Here the thin curve corresponds 

to the filters with a slope as shown in figure 4.5 whilst 

the thick curve corresponds to the fi I ters wi th added 

slopes as in figure 4.6. The spectrum obtained from the 

filterbank is not a true envelope of the fine spectrum 

but also reveals the fine structure at low frequencies. 

In addition, it can be seen that the whole spectrum is 

periodic, i.e. the '$pectra obtained from time windows 

separated by one period are similar. This is a new 

result, and to the knowledge of the author not mentioned 

anywhere in the literature. It could provide a clue as to 

how pitch information is coded by the auditory mechanism 

i.e. through a periodic pattern matching procedure of the 

whole spectrum. This is a viable alternative to either 

place or volley theories and, in fact, is a composite of 

both. 

These patterns do not take into account any effects 

of temporal masking, other than those dictated by the 
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width of the corresponding time windows. Such masking is 

expected to fill at least partially any valleys due to 

the preceding peaks at the same frequency location. 

Zwicker [19, 20] gives an analog circuit which he uses to 

simulate temporal masking. We implemented this nonlinear

low-pass device (NLD) through difference equations. The 

effect of i ncl udi ng nonsimul taneous maski ng can be seen 

by comparing figures 4.10 with 4.11 and 4.12. Figure 4.10 

shows a series of loudness patterns taken at 0.5 msec 

intervals without the NLD, using filter a (matched to 40 

dB SPL) in figure 4.11 and filter b in figure 4.12 

(matched to 80 dB SPL). It can be seen that some of the 

resolution is lost by using the NLD (nonsimultaneous 

masking) and filter b (equivalent to an increase in the 

upper accessory excitation) but the spectra are still 

different from the ones obtained via the DFT approach. 

The effect of the upper accessory excitation is 

relati vely small. This is because the effect occurs at 

the skirts of the filters where the contribution to the 

spectrum is small. The periodic repetition of the 

spectra in time is also evident in figures 4.10-4.12 

4.2.4 Separating the distortion from the 'Signal 

Having obtained equivalent aUditory spectra it is 

necessary to investigate how to measure distortion from 

these audi tory repr·esentations. A subj ecti ve listener 

does not use the origi nal signal and the coded signal 

simul taneously. He 1 istens to the coded signal and only 

infers from the original from his past experience (either 

immediate or long-term). 

In a modol of 

extracted from the 

Signal. Thi '3 cCln be 

spectra arc obtained 

distortion, the nojse has to be 

coded signal using tbe original 

done either atter the auditory 

or before (1.. e. from the time 

waveform. Schroeder et aJ (13) extract the noise from the 

time waveform. Tbe eqUivalent of this operation in the 
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frequency domain is to extract the noise spectrum from 

the encoded speech spectrum 

both amplitude and phase. 

with "infinite" resolution in 

This does not reflect 

properties of the Peripheral Auditory System (PAS). 

the 

It is 

not known how the brain compares the coded speech with 

the original but it can only draw a comparison on the 

(reduced) information passed by the (PAS). It would 

therefore be more reasonable to compare the specific 

loudness spectrum of the coded speech with the specific 

loudness spectrum of the original speech rather than 

extracting the noise prior to the processing. Therefore, 

in the model developed here, the distortion is extracted 

from the equivalent spectra of the coded and original 

signal. 

4.2.5 Measuring the Distortion 

Finally, after obtaining the two spectra, one 

corresponding to the original and the other to the coded 

signal, the amount of distortion has to be evaluated, 

taking into account the effects of masking. We will now 

go over some of the model elements that have already been 

presented in section 2.4 of chapter 2. 

From Steven's law: 

dN _ k dI 4.36 
N I 

where N is the loudness and I the intensity. 

In the case of a wldeband r.ignal ZWicker proposed: 

dN' __ k dE 4.37 
N' E 
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where E is the excitation and N' the specific loudness 

(the value of loudness from a single critical band). 

From the above differential equation we derive: 

4.38 

in arbitrary units. 

In the case of two different sounds being present 

4.39 

where n denotes the nOise. 0 the original and c the coded 

signal. This can be written as: 

N 
, = (E )k - N • 

n c 0 
4.40a 

or 

N 
, = N , 

N 
, 

n c 0 
4.40b 

It is known that for N.··.' to be zero it is not necessary 

that Nc ' = No' but only that 

4.41 

where N't.I. is the val ue of N' from 4.38 for which the 

excitation E produces an inaudible effect. 

Therefore: 

N I ~ N '-N '-N I 

n c 0 th N '-N ~N • 
C 0 th 

N ' = 0 
n 

N '-N '<N ' 
C 0 th 

4.42a 

4.42b 
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N' <"., is a function of the excitation Ec> (or the specific 

loudness Nt:>' ). 

In the case of noise masking a 'tone, the threshold 

Nt,,-,' is about 3 dB lower than N' (J <loudness in dB is 

given by 40log',oN, by analogy, from 4.38 with k = 0.25) 

but in the opposite situation a tone has to be some 25 dB 

higher than the noise to make the noise inaudible. 

Using the very simple formula of 4.42 the effects of 

masking can be explained. First assume that Nu .. ' can be 

taken to be zero for simplicity. With reference to figure 

4.13, consider that dE, = dE:" and that these represent 

the additional excitation due to noise which is added to 

E, and E,,,. Note that E, and E:. depend on the power of the 

signal that falls into the particular critical band (CB) 

in question, and therefore, the wider the filter, the 

higher E" and E". The effects of the amplitude 

nonlinearity (i.e. the exponent KN 0.25) is to make 

dN' ::;,<dN' 1 when E", > E, even though dE, = dE:. If dE is a 

noise band in the centre of the CB and E comes from the 

speech harmonics that fall into the same CB, then E will 

mask dE even if the harmonics and the noise do not occupy 

exactly the same frequency location. The masking will be 

more effective the larger E is (provided 'dE'" the maskee, 

is constant) either due to a wider critical bandwidth or 

larger power in the masker. The effect of N' < .. '''' is to 

reduce the loudness of the maskee even further or make it 

inaudible. 

The problem of extracting the distortion from the 

auditory spectrum is a separate and to the author's view 

a more difficult problem than obtaining the equivalent 

audi tory spoctrum. This is mai nly because there is no 

counterpart in the real system we try to simulate. The 

way different workers have chosen to model the process 

reflects the way each worker views the problem. Schroeder 

---,,--~--------------------------------------------------
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et al (13) for example tried to tie the problem to the 

traditional experiments on masking (using tones and noise 

bands) and view the problom as the masking of noise by 

the speech signal. In diriving their formulas, data from 

classical masking experiments were used, where there was 

a distinct masker (pUlsed tone) and a distinct maskee (a 

noise band). The problem with this approach i.s that 

in most cases in speech compression, there is a high 

degree of correlation between the resulting noise and the 

signal and, quite often, a separate noise cannot be heard 

as the noise fuses with the signal to produce the 

distorted speech. 

We prefer to view the problem as a pattern 

recognition exercise: when two coded speech signals are 

compared for distortion, a comparison would be made 

between each one and the original and the one which is 

the most dissimilar to the original is judged to be more 

distorted. Even when the origi nal is not used for the 

comparison, human listeners are so overtrained in uncoded 

speech that such a comparison can somehow be made. 

The stages beyond the peripheral auditory system are 

presented with a surface in a three dimensional space. 

The first dimension specifies the place on the Basilar 

Membrane (BM) at which a sound is mapped, the second is 

the neural "magnitude" that represents the disturbance 

and the third is the time course of the neural ampl i tude 

at the specified place on the BM. 

Our basic assumption is that speech distortion is 

monotonically related to the dissimilari ty between the 

two three-dimenoi onal surfaces descri bed by the above 

dimens1.ons, one surface corresponding to the uncoded, 

original speech signal, the other to the coded signa). At 

this stage it J.s assumed that these di fferenccs carry 

equal weight irrespective of their position along the 

first dimension. 
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4.2.6 The complete models 

After comparing the realizati on of different stages· 

of the model using different signal processing techniques 

we now describe two algorithms, by Schroeder et al [131 

and the one developed by the author, with the aid of two 

block diagrams. 

The model by Schroeder et al is shown in figure 4.14. 

The various operations are as follows: 

1. The noise is extracted from the coded signal 

2. The speech signal Set) is transformed into a warped 

power spectrum S (X) by means of a DFT and a power 

density correction factor df/dX. 

3. SeX) is then convolved with B(X) to produce E(X), the 

excitation spectrum. 

4. The excitation spectrum is then amplitude compressed 

to give the specifIc loudness 

integrated over the bark scale 

loudness of the signal. 

NI ~". 
""'t 

will 

which, when 

gi ve L"" the 

5. The above steps are followed for the noise signal 

. N(t) with the difference that the excitation of the 

noise is reduced by the excitation of the signal. 

6. Finally, the ratio of the two loudnesses gives a 

measure of the distortion in the signal. 

The distortion measure designed by the author is 

given in figure 4.15. The original and coded signals are 

processed in parallel, over identical paths, up until the 

point where the equi valent aUditory spectra are compared 

The operations are as follows (signal refers to both 

coded and original): 

1. The signals are passed through a critical band 

filterbank employing 

filtering (PCBPF) to 

phase complimentary bandpass 

obtain the relatively smooth 

spectra IF(Z») per critical band. 
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2. The slopes are adj usted on the high frequency side if 

necessary to produce the excitation patterns E(Z). 

3. The excitatIon patterns are amplitude compressed to 

give N(Z). 

4. The effects of "nonsimultaneous masking" can be 

included in this stage (i.e. the spilling over of the 

excitation into time regions where the signal is not 

actually present). 

5. The two Auditory Spectra are compared. 

4.2.7 Objective and SlIbjectiye Tests 

4.2.7.1 Test material 

In order to asseSs the performance of the two models, 

appropriately coded speech segments (files) were 

selected. For some of the speech fi les, the effects of 

audi tory masking were exploited during the coding 

procedure. For these files the perceptual distortion was 

much smaller than conventional obj ecti ve measures would 

indicate. Specifically, we compare two different ADPCM 

noise shaping schemes as a function of the noise factor, 

(equation 3.2-148). When the noise factor is equal to 

zero complete noise shaping is effected. When the noise 

factor is equal to one no noise shaping talres place and 

in this case the two schemes converge· into one coding 

algorithm. This is' an ADPCM backward block adaptive 

algori thm implemented at 16 kbi ts/sec. [21] Coded speech 

files under the first coding algorithm will be referenced 

as bmlpO, bmOp8, bmOp6 etc. the fraction denoting the 

noise factor (p represents the decimal pOint). The second 

algori thm will be referenced as ImlpO, lmOp7 etc. As 

mentioned before bmlpO and J mlpO represent the same coded 

speech file and will both be referenced as bbalpO. Also 6 

and 7 bits )l-law pem coded speech "as used in the 

compari son, denoted by PCM6 and peN7 respecti vc,} y. Two 

sentences were used in the comparison spoken by the same 

male person. These were treated as one continuous speech 
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segment after silence deletion. The two sentences were 

"There was an old man called Nichael Finnegan. He grew 

whiskers on his chinnagen". 

4.2.7.2 Subjective Tests 

In informal subj ecti ve tests that were carried out 

[211 the bm coding scheme was judged to be superior to 

the lm coding scheme at the same noise factor. Further 

the lm noise scheme gave the best performance at a noise 

factor around 0.6 whilst for the bm scheme improvement 

continues for smaller noise factors giving the best 

result at a noise factor of around 0.4 to 0.2. It should 

be noted that as the noise factor for the best result is 

approached the rate of improvement diminishes. The 

perceptual minimum distortion seems to represent a smooth 

minimum in the distortion versus noise factor curve. 

Comparisons with the PCM schemes revealed that lmOp7 is 

judged to be eqUivalent to PCN? whilst bmOp2 is judged to 

be superior to peN7. The scheme that employs no noise 

shaping, bbalpO, is judged to be slightly worse than 

PCM6. 

4.2.7.3 ObJectjvp, Tests 

Various algorithms were used to obtain objective 

results on the previdus coded files. These are shown in 

figures 4.16 to 4.30. Since only the relative magnitudes 

of the distortions are of interest all distortion values 

are shown normal ised by the distortion obtai ned for the 

bbalpO scheme for each algorithm. 

The SNRSEG performance is shown in figure 4.16. It 

shows that the bm scheme performs better than the lm 

scheme which agrees with the subjective results. It also 

shows that there is a monotonic decrease in quality as 

the noise factor is reduced which is in disagreement with 

the subjective result,;. It also shows that even PCM6 is 
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better than any of the ADPCM files which is in gross 

disagreement with the subjective results. 

The performance of Schroecter's model is shown in 

figure 4.17. It correctly shows that there is no 

monotonic relationship between the distortion and the 

noise factor but that there is a minimum distortion 

between the extreme values of the noise factor. Note 

though that the relationship between the ADPCM schemes 

and the PCM schemes is shown to be essentially the same 

as that from the SNRSEG. 

In our distortion measure the distortion for each 

time slice is given by: 

n 
d(t) = E F(SL (z,t), 

z=1 0 
SL (z,t») 

c 

and the accumulated distance by: 

T 
D = E d (t) 

t=1 

4.43 

4.44 

Here F is a function of the specific lOUdness of the 

original (SL,,) and the coded (SLc) at time t and critical 

band position z. No _sliding was used in the time windows 

1. e. the time interval between successive time franK's is 

20 msec. The filter used was filter b (matched to 80 db 

SPL). We drop the index t (for time) although the 

function F is still defined for a specific time instant. 

The function used to obtain figur" 4.18 wns a 

straight difference function: 

F=(SL(z) 
c 

SL (z») 
o 4.45 
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It can be seen that some improvement in agreement has 

been achieved. The files (speech segments) with middle 

values of distortion are shown to have less distortion 

than peM6. 

The resul ts shown in figure 4. 19 are similar 'to the 

ones in 4.18 apart form that the files with smaller noise 

factors show a slightly increased distortion. The formula 

used here was: 

F = [ 
SL (z) 

c 4.46 

where Le and L," represent the loudnesses of the coded and 

original respectively. 

An even better agreement with subjective results is 

given in figure 4.20. For these, the function used was 

4.47 

were SLu,(z) represents the threshold value as a function 

of the critical band index z. F is replaced by zero in 

the case where [SLc(z) - SL",(z») <SL..,.,(z). We evaluate 

SLto", (z)as: 

4.48 

where 

TH = 10<-32.0+0.75z)/40.0 4.49 

This value for the threshold was found to give results 

which wore close to the subjective ones. 

The same function F was used to obtain figure 4.21 

but now the specifJc loudnesses are normalised by the 
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corresponding loudness values as in 4.46. Again, the 

normalisation shows increased distortion in the files 

with low noise shaping factor (increased noise shaping). 

The threshold can be considered as a sensitivity 

function: The higher the threshold, the less noise passes 

through at that particular frequency. 

When the loudness of a sound is to be calculated the 

last stage of the calculation is a 'leaky' integration 

with a time constant of around 160 msec. The next three 

cases introduce such a low pass operation on the specific 

loudness before forming the function F. In figure 4.22 F 

was evaluated with no threshold and no normalisation. It 

can be seen that the results are similar to those in 

figure 4.20. With the normalisation 

results are shown in figure 4.23. Now, 

introduced the 

the normalisation 

reduces the distortion in the files with increased noise 

shaping. 

of the 

Finally, figure 4.24 shows the combined effects 

normalisation and threshold with the same 

threshold value as before. The distortion in the files 

with low noise factor is shown to be much lower than the 

one obtained from subjective results. 

All the above measures used a function of F which was 

based on the difference of the specific loudnesses. We 

next consider three 'di fferent forms for F. These can be 

considered as self normal ising (i. e. a division by the 

instantaneous Loudnesses would not alter the result). 

In the first one, F is a ratio measure: 

F = 
SL (z) - SI, (z) 
__ : ________ ~__ J 4.50 

SLo(z) 

This algorithm, shown in fIgure 4.25 underestimates the 

distortion introduced due to the increased noise shaping. 
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It over-emphasises the effects of masking and in this 

sense is the opposite of the SNRSEG measure. 

Next, in figure 4.26 the results shown were obtained 

using a log ratio measure 

F = 1 log( SL (z) I SL (z) ) I 
c 0 

4.51a 

or 

F = 1 log( SL (z) ) - log( SL (z) )1 4.51b 
c 0 

note that this form is exponent invariant i. e. it would 

give the same results whether specific loudnesses were 

used, power densities or spectral amplitudes. 

The results are very similar to the ratio measure. 

This should be expected when SLc - SLo: Let A=log(SLC) 

then, 

dA = 
dSL 

0 

now if dA = 

F = 

1 dSL 
and dA 

0 = 
SL SL 

0 0 

Ilog(SL) - log(SL-) I 
c 0 

SL (z) - SL (z) 
cOl 

SI, (z) 
o 

4.52 

1. e. dA = F then 

4.53 

1. e. the same expression as the ratio measure, provided 

SLc-SL", < <SL",. 

Another possible form for F could be a variance 

measure: 

F = 
SI. (z) 

c 

SI, (z) 
o 

- A I 4.54 



where 

1 A ~ 
n 
l: 

SI, (z) 
c 

n z~l SI, (z) 
o 

350 

4.55 

Therefore if the spectra are multiples of each other the 

distortion is zero and the measure gives the variance of 

the ratio over the spectrum. The results are similar to 

the two previous ones considered above, figure 4.27. 

(Note that for A 1 then again F ~ ISLe (z) SLc:> (z) 

I/SL.,(z). 

The variance measure now explains why the above three 

algorithms underestimate the distortion in the files with 

the highly shaped noise: rn this case the envelope of the 

coded signal will have been raised uniformly by the 

noise, making the envelope of the coded signal, on 

average, a multiple of the envelope of the original 

signal. 

Next we investigated the effect of the amplitude 

compression in obtaining the specific loudness from the 

excitation spectrum. The function F is now: 

F ~ 

sr (z) 
c 

sr (z) 
o 4.56 

Therefore we replace each value of Specific Loudness by 

the corresponding value of Specific IntenSity. Our 

measure now gives the power spectrum difference. The 

resul ts of this algorithm are shown in figure 4.28. Note 

the simi lari ty between this and the SNRSEG measure 

(taking into account the fact that the SNRSEG is 

shown onto logarithmic scales). This is of COtlrSe a 

reminder of Parceval' s Theor"m al though the equi val ent 

time windows in the two measures are different. 
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Finally, to conclude this section we investigate the 

effect of using equal bandwidth filters instead of CB 

fil ters. As our bandwidth, we used the average value of 

all the CB's over the range of 0-3.4 KHz. This is about 

200 Hz. The expression for F used was· 

F = ISL (z) SL (z) in figure 4.29 c 0 
4.57 

SL (z) SL (z) 
F =1 

c 0 
in figure 4.30 ---- 4.58 

L L c 0 

The results are not markedly different form the ones 

obtained from the warped frequency cycle. Over some of 

the files, there is an improved performance compared to 

the warped case. The equal bandwidth case deserves 

special attention since the operation can be implemented 

using FFT's of a small analysis window (5- 10 msec or 40 

- 80 point) which would increase the execution speed of 

the algorithm. The discrepancies between the results 

obtained from this method and the ones from the warped 

scale could be corrected by using a modified threshold 

curve. 

Concluding, we see that the most important operation 

in the algorithm is the amplitude compression. The use of 

a special filterbank" seems of 

a suitable bandwidth is 

less importance as long as 

used for the analysis. 

(representing some kind of average of the values for the 

cri tical bandwidth over the frequency range concerned). 

Difference algorithms seem to perform better than ratio 

algori thms. These results should be considered as 

indicative rather than conclusive due to the small 

sample size (although it was carefu11y chosen). A much 

wider selection of distortions would have been rGquired 

to express a defini tG proferGncG of one algori thm over 

another or optimize any of the algorithm parameters such 

as time constants and thresholds. It would then be 
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possi ble to compare the results to the outcome of formal 

subjective tests and then select that algorithm (or 

combination of) with the best correlation with the 

subjective tests. This would require the results of the 

subjective tests to be expressed on a number scale. This 

does not normally pose any problems with formal tests. 

Due to the unavailability of such subjective results we 

direct our attention into other aspects of our model. 

4.2.8 Multidimensional representation 

Due to the small number of files available it is 

difficult to derive any general results about our 

different algorithms. In order to try to get as much 

information out as possible we propose a multidimensional 

representation of the speech distortions. We not only 

form a distance measure between each of the distorted 

files and the original but we also form a distance 

measure between every possible pair of distorted fi les. 

Note that this is a direct follow up of our decision to 

view the process as a pattern recognition exercise which 

enables us to compare two distorted files together. The 

alternative approach which extracts the noise from the 

signal prior to the processing is no longer applicable 

since no basis is provided to compare two coded files 

together. 

Any of the various distance algorithms which have 

been presented before can be used to provide the 

accumulated distances which represent the distortion 

measure: e.g. if SL(z,t,i) represents the z coefficient 

of the spectrum at time t of file i then a suitable 

distance between the same time-slice for different files 

is given by: 

n 
d(t,i, j )=sqrt<E 

1. 

2 [SL(z,t, j)-SL(z, t,j)l } z:::l, . ... n 

4-.59 
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and the accumulated distance by: 

m 
D(i,j) ~ E d(t,i,j) 

1 
t=l, .... m 4.60 

Although this may be an appropriate measure for the 

'audible' nOise, perhaps a more suitable measure for 

distortion would be: 

n 
nd(t,i,j)=sqrt{E 

1 

where 

n 

[ SL (z :...2!:.) 
L(t,i) 

L(t,i) ~ E SL(z,t,i) 
1 

and 

n 
ND(i,j) = L nd(t,i,j) 

1 

2 
~~":::':~)J } 

L (t, j ) 

z=1, .... n 

t=1, ..... m 

z=l, .... n 

4.61 

4.62 

4.63 

Before, one of the files above would have been the 

original, but any two files can be compared and therefore 

the dissimilarity between different coded files can now 

be assessed. 

The results from applying any of the above distortion 

measures to every possible pair of ftlcs is n 

dissimilarity (distance) indices for m files where 

n=m(m-1)/2. For the files we consider above this gives 91 

indices for 14 files. Treating each file as a point in a 

multidimensional Eucledian space and ·each index as the 

corresponding EucledIan distance between them, we can 

represent those paints in an (m-I)-dimensional space. 

This would reproduce> the orIginal distances exactly and, 

in our case, In a 13-di.mensi.onaJ space. Such a 
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representation is not possible to be visualised and 

therefore we try to map this space into one of a reduced 

dimensionality whilst trying to alter the original 

Eucledian distances as little 

statistical technique, namely 

Analysis (22.23. 24J operates as 

as possible. One 

Principal Components 

follows in order to 

achieve the above result: 

First from the matrix of the interpoint distances it 

derives a matrix of coordinates which will exactly 

reproduce the original distances. Then from these, 

principal components are derived. The first Principal 

Component is that weighted combination of the original 

variables which maximizes the variance amongst the 

different files subject to the constraint that the sum of 

the squares of the weights are equal to uni ty. The nth 

Principal component is that combination of the original 

variables which maximizes the remaining variance subject 

to the same constraint as the first and in addition its 

scores on (the coordinates of) the speech files are 

uncorrelated with the previous n-l components. These 

constraints make the transformation an orthogonal one 

which preserves Eucledian lengths. The resultant 

components account for progressively less in the variance 

of the data and therefore a---large number of the 

components can be dIscarded with little loss of accuracy. 

We formed three dimehsional spaces for the above files. 

Next we will present some results obtained using the 

above technique. A selection of algorithms from the ones 

presented in the previous section were used on the same 

original and coded files. An example is shown in figures 

4.31a and 4.31b. These represent the dissimilarities 

between the 14 files already mentioned in section 

4.2.7.1. Figure 4.31a shows the projections of the file}'3 

onto the x-y plane whJlst figure 4.31b shows the 

projections of the files onto the y-z plane. A 

translation of the origin can be performed without any 
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effect on the Eucledian Distances. An obvious choice for 

the origin is the original signal. We treat the PCN files 

as a 'reference' distortion. As can be seen form the 

figures both the PCN files lie on a line originating from 

the origin. This signifies that they both have a similar 

type of distortion of different magnitude. Call this line 

the PCN axis. The similarity of the distortions 

between any of the files and the PCM type distortion is 

given by the angle its radious vector (with the origin at 

the original) makes with the PCN axis, whilst the overall 

distortion is given by the length of this radious vector. 

The x-y plane 

ADPCM files: 

largely discriminates between the different 

When the noise factor is close to 1.0 (i.e. 

no noise shaping) the distortion has a large component on 

the PCN: axis which diminishes as the noise factor is 

reduced. As the noise factor diminishes another type of 

distortion becomes larger. This is related to roughness 

which appears in the noise shaped speech. Note that the 

ADPCN: files are ordered automatically according to the 

noise shaping factor. This is much more pronounced for 

the lm scheme which agrees. with the subjective results. 

The z axis discriminates between the ADPCN and the PCN: 

files as a whole. For the two figures just mentioned the 

algorithm used was 

wi th no threshold 

equation 4.45). 

a straight difference between the SLs 

included and no normalisation. (1. e. 

The distances from any of the algorithms used are 

only significant to within a multiplicative constant. In 

order to compare the results from the different 

algori thms these constants (as well as the orientation 

of the axes) have to be matched together. This can be 

done by a method call ed Procrustes Rota t i on (PR) [ 23] . 

Assume that the rows of a matrix X give the coordinates 

of points Pi (i=l,2 .... n) produced by one algorithm and 

the rows of a matrix Y give the coordinates of the points 

Q,. (i=1.2, .... n) produced by another algorithm, in such a 

way that corresponding rows refer to the same speech 
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files. In this method the configuration Y is translated, 

orthogonally rotated and isotropically stretched until 

sum 4.64 

is minimised. (Note that the above operations preserve 

the ratios of the original distances i. e. the distances 

to an arbitrary multiplicative constant). The centroid of 

both X and Y now coincides. The sum of squares amongst 

the X coordinates equals the sum of squares amongst the Y 

coordinates plus the residual sum of squares or, 

algebraically: 

2 Trace (XX') ~ Trace (YY') + M 
pq 4.65 

We normalize the Trace(XX') to have a value of 1.0. Then, 

the magnitude of the residual gives an indication of the 

similarity of the two configurations. We have compared 

the configurations of the ratio algorithm with the log 

ratio algorithm (see the previous section). Treating the 

ratio algorithm as the fixed configuration, then, after 

PR on the log ratio logarithm results, the trace is 

0.9986 and the residual 0.0014, which indicates that the 

two algorithms produce very similar configurations. 

Further, we compared the results with and without 

normalisation for the difference algorithms. The residual 

was now 0.0491 which is over an order of magnitude larger 

than the previous one, but still small. To conclude, we 

compared several algori thms to the same fi xed al gori thm. 

The fixed algorithm was the difference one, with a 

threshold value of -32.0+0.75z (no normalisation). The 

residual values for the different configurations are 

shown in Table 4. T3. Some of the configurations can be 

seen in figures (4. ~12 to 4.35). The above configuration 

waS chosen as the fixed one since it performed closely to 

the subjective results. These and the previous 
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mul tidimensional results were produced using the Genstat 

high level language [23J. 

It can be seen that the configuration with the 

specific intensities gives the largest residual, followed 

by the log-ratio and the smoothing in the time domain. 

The equal bandwidth algorithm performs relatively closely 

to the fixed configuration showing that the effects of 

the warped frequency scale are not of paramount 

importance. 

4.2.9 Awl1 cations to codj ng - sel ection of threshold 

parameters 

Using the Im scheme we placed our distortion measure 

in a feedback loop to automatically select a noise factor 

for each speech block. The algorithm had to select the 

one value from the four (0.2, 0.4, 0.6, 0.8) which would 

give the smallest distortion. Then, using the 'best' 

blOcks obtained for the various filter memories the 

algorithm proceeds to the next block and again evaluates 

the distortion for the new set of choices. In the case of 

a tie, the program makes a random choice amongst the 

files with the same distortion value. Using a threshold 

value of -32.0+0.75z and a sliding interval of 5 msec, we 

obtained a speeCh quality which was slightly better than 

with any of the '~ixed noise shaping factors. The 

distribution of the chosen values versus the block number 

(each block is equivalent to 20 msec) is shown in figure 

4.36. It can be seen that the algorithm favours the low 

noise shaping factors. 

The same codi ng structure can be used to assess the 

success of any of the distortion measures mentioned 

above. In particular we used the Im scheme wi.th the 

distortion measure of equations 4.47-4.49 in the feedback 

loop in order to determine the best values for parameters 

a and b in the threshold function in 4.49 given by 
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TH = 10(-a+bz)/40.0 4.66 

The best values were determined by exploring the 

whole range of values for a and b, and using successively 

narrower ranges around the most promising values. The 

best values were those that produced a speech quality 

that was judged to be better than the other combinations 

of values. A coded file was produced for each set of 

{a, b} and the best was determined through the iterative 

procedure above, from informal subjective tests (by the 

author). Some of the functions (-a+bz) are shown in 

figures 4.37 a-d. In all, over 50 different combinations 

were assessed. The value of -32.0+0.75z was found to give 

a performance close to optimum, in line with previous 

resul ts. 

4.3 Subjective measurements of coder Qual ay 

Subjective quality measures have to meet a multitude 

of often conflicting criteria. An appropriate measure has 

to be val id, representati ve, and reI iable in order to 

provide a useful index of suitability for a particular 

coder: The result should contain as much information as 

possible about the coder and as little as possible about 

the speech materials used, the subjects or the particular 

experimental technique that was employed. The above 

criteria are usually conflicting with the need to provide 

a convenient, easy and inexpensive to use measure. 

A compromise can be found in the mean opinion score 

measure (NOS). In this procedure subj ects eval uate the 

quality of short sentences on. a five point category 

scale: bad, poor fair, good, excellent [25, 26, 27). 

To minimize variability and to aid comparison with 

similar tests, reference distortions are included such as 

log-peN distortions or modulated noise reference unit 

(MNRU) distortions. These latter distortions are produced 
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by generating additive noise that is proportional to the 

instantaneous signal amplitude and then adding it to the 

speech signal. By varying the constant of 

proportionality, different amounts of distortion can be 

produced. 

A more thorough and informati ve test is the 

Diagnostic Acceptability measure <DAM) [28]. In this test 

subjects are asked to rate a particular coding condition 

not only in terms of its overall quality or acceptability 

but also along scales of specific degredations. Examples 

of such degredations in terms of resulting speech 

impairment are: fluttering, (interrupted or amplitude 

modulated speech), thin (high pass speech), rasping (peak 

clipped speech), muffled (low pass speech), hissing, 

buzzing, babbling, rumbling. The scores of the subjects 

along such scales can be transformed to an overall 

acceptabil i ty measure, or into an acceptabi 1 i ty measure 

of any of the particular degredations through appropriate 

transformations. The form of the transformations needed 

have been determined through a training phase. For the 

training phase, over 20 different coding conditions were 

used, over several sentences, resulting in about 18 hours 

(!) or distorted speech. Appropriate objective measures 

suited to measure each particular degredation can then be 

devised and a composite created which would agree with 

the overall acceptabfity ratings [29, 30, 31]. 

Another method to obtain ratings on different types 

of quality degredation is through Multidimensional 

Scaling (MDS) Procedures [8, 32-36]. These procedures are 

not unlike 

encountered 

the Principal 

earlier in that 

Components Analysis (PCA) 

they accept as input some 

form of "distances" between stimuli. (here, distorted 

speech files) and, at the output they place the stimuli 

into a multidimensional space such that the orIginal 

(input) I'distances" are "preserved" ar reproduced. As a 

byproduct, the psychophysical scales or dimensions used 
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by the subj ect are obtai ned. The output therefore 

contains similar information to the DAM measure although 

the various degredation scales are themselves part of the 

algorithm's output and are not predetermined for the 

experiment as in the DAM. As opposed to PCA, the input to 

(Nonmetric) Multidimensional Scaling is not (Eucledian) 

distances but similarities. or dissimilarities between the 

distorted files. Therefore the subjects can be asked to 

rate directly how similar (or dissimilar) two distortions 

are perceived on some scale or, alternatively, they 

can be presented with triads of distortions, say A, Band 

C. The subject is then asked to quote the two most 

similar distortions and the two most dissimilar 

distortions from each triad. 

The solution is usually obtained by minimizing a 

predetermined criterion such as 

stress = 4.67 

j and k refer to two different coding situations, d, k are 

the distances in the (metric) space (the "solutions") and 

are related the input similarities by a 

nonincreasing monotonic function. 

Stress is then minimized over all m-dimensional 

spaces (m is determined by choice) and over all 

nonincreasing monotonic functions. 

In order to investigate the subjective 

multidimensionality of distortion, already established 

for the objective results through PCA, the following test 

was constructed from a selection of files used before (lm 

OpO. ImOp2, ImOp4. ImOp6. ImOp8. bbalpO. PCM6, PCM7. 

Original>. All possible trials were formed. The order of 
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the presentation of the files was randomized within each 

triad and the order of presentation of the triads 

themselves was also randomized. This resulted in 84 

triads. Next, three subjects (MA, NG, SS) were asked to 

record the most similar pair and the most dissimilar pair 

wi thin each triad. The results were analysed using two 

different algor! thms, MINISSA and TRISOSCAL (37). Minissa 

is a general MDS program as described above. Trisoscal is 

similar to Minissa but additionally attempts to remove 

any anomalies introduced by the method used in collecting 

the results and is specific to triadic comparisons. The 

two solutions are shown in fig. 4.38 and 4.39. The two 

solutions are fairly similar. 

Several similarities can also be noted between these 

results and the objective configurations obtained in a 

previous section (section 4.2.8), 

First the ADPCM files are ordered according to the 

noise shaping factor. Note that the subjects had no prior 

knowledge of the coded schemes used. 

Second, the PCM files and the original lie on the 

same line. 

Third, the files with little noise shaping lie near 

the PCN axis. 

The main difference between these and the obj ecti ve 

resul ts is that as the noi se factor tal<es its extreme 

values the two ends of the plot curve towards each other 

to form a "bowl" shape instead of the ri ght angle shape 

obtained in the objective results. Also note the distance 

of the original from the rest of the tiles. Although the 

differences could arise in the method used to collect and 

process the results, it seems 

the subjective results is 

that the first dimension in 

related to the overall 
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distortion whereas the second dimension discriminates 

amongst the types of distortion. 
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Table 4.T3 

Trace and residuals of the different configurations 

Algorithm Trace, Residual Figure 

difference algorithm 
Thresh = -32+0.75z 1. 0000, 0.0000 figures 4.32a and 
no normalization 4.32b 

difference algorithm 
no threshold 0.9208, 0.0792 
nO normalization 

specif. Power Densit. 
no threshold 0.4436, 0.5564 
normalized 

Equal Bandwidths 
no threshold 0.9228, 0.0772 figures 4.33a and 
no normalization 4.33b 

Difference algorithm 
Thresh = 32+0.75z 0.9300,-0.0700 figures 4.34a and 
normalized 4.34b 

160 msec on Spec. L. 
no threshold 0.8793, 0.1207 
no normalization 

Log ratio 
no threshold 0.8220, 0.1780 figures 4.35a and 

4.35b 
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Loudness 

Excitation 

Figure 4.13 

The amplitude 
compressing 

nonlinearity. 

Figure 4.12 Specific 
Loudness patterns at 
O.S msec intervals 
obtained using the 
NLD (nonJinear 
device-see text). Filter 
(b) (matched to 80 dB 
SPL) was used. 
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measure proposed by the author. 
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Figure 4.37 a-d Candidate threshold functions. Successively narrower ranges 
were explored around the most promising values. The performance of each function 
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shaping factor. An example of the perceptual attributes upon which the 
subjective assesment was based is shown in (b), For more details see text. 
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Figure 4.38 Final configuration obtained with the MINISSA algorithm. The 

subjective test results presented here refer to the same speech segment encoded 
with the ADPCM noise shaping algorithm. Different noise shaping factors are 
used to encode each segment. The noise shaping factors are shown as labels for 
each speech segment (point). The type and amount of distortion in each segment 
can be evaluated with reference to the original (uncoded) segment and the PCM 
axis defined by the two PCM coded segments, encoded with 6 and 7 bits per sample 
( PCM6 and PCM7 r~spectivety). 
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CHAPTER 5 

VARIABI E RATE COpING 
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5.1 INTRODUCTION 

Variable rate coding provides an attractive 

alternative to fixed rate coding for multi-user systems 

such as the telephone network. The output rate at the 

encoder can be made adaptive to both the single-user 

speech activity and the channel loading, as shown in 

figure 5.1. Speech activity can be defined in various 

ways. The simplest one is that of a non-silent situation: 

In normal conversation, the channel is occupied by a 

single user in only about 40% of the time, the other 60% 

of the time being silence. Speech activity for the 

pu!poses of silent-non silent classification can be 

measured over blocks of around 16ms for which the speech 

signal can be considered as stationary. For a single 

user, delays in the order of hundreds of milliseconds are 

necessary in order to utilize silence statistics (2,3J 

whilst in a multi-user situation, similar gains can be 

achieved over constant rate coding, even for delays of 

. the order of the basic block of 16 ms [2,3J. Such gains 

<the so-called TASI advantage) are already utilized in 

systems such as TASI (Time assignment Speech 

Interpolation) and its digital counterpart DSI <Digital 

Speech Interpolation). More sophisticated approaches 

divide speech activity into more classes such as narrow

band voiced, wide-band voided, unvoiced and silence 

[4,5). These' systems --are based on fairly sophisticated 

speech detectors which discriminate between the speech 

activity classes. Often, these detectors are also 

required to discriminate between speech and voiceband 

data [61, since data will normally 

transmitted at the highest bit rate 

require to be 

allowed by the 

network. A more formal approach to the problem is to 

employ rate distortion theory. The situation is virtually 

identical to that of subband coding where subband 

channels compete for bits, the total number of which is 

constrai ned by the overall bi t rate. Here the "channels" 

can either be dJ fferent users, or al ternati vely they can 
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represent time blocks from the same user. In general a 

combination of both will probably be applicable. The 

resul ting equations for optimum bit rates per "channel" 

are also similar to the subband coding situation and, 

likewise, the optimum solution strives to make the 

distortions 

magnitude. 

(mse) from different channels equal in 

Rate distortion theory and its results should be 

applied with caution in variable rate coding. Although 

the advantage of variable rate is clear in the case of a 

silent-non silent situation, the same cannot be said for 

the within nonsilent segments situation. Firstly, there 

is a variation in level within speech from the same 

speaker and between 

variable rate and 

speakers, which has no bearing 

different 

upon 

bit does not warrant 

allocation for different levels: Clearly, the distortion 

itself should fallow the variation in speaker level 

instead of being constant, as would be the case for 

"optimllm" bit allocation dictated by rate distortion 

theory. Variations in average speaker level are measured 

over time intervals of the order of seconds. A second 

type of variation is syllabic variation: Different types 

of sounds are spoken with different intensities, with the 

vowels being at one end of" the scale and the unvoiced 

fricatives at the other end of the scale. Individual 

variations "also ex1:st amongst different vowel sounds. 

Here again, perceptual studies indicate that the 

distortion should be proportional to the signal itself 

and not constant, as mse rate distortion theory (RDT) 

would have it. The principle of noise shaping is 

applicable here. One study [ 7] has shown that for the 

case of fairly high quality 16 kbs/sec coded speech, a 

bit allocation which is closer to constant bit alocation 

rather than a bit alocation given by 

subjectively. Stationary blocks for 

such as the above can be of the 

RDT is preferred 

syllabic variations 

order of tens of 

milliseconds up to about a quarter of a second. Within 
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the above interval further variations exist, mainly due 

to the pitch structure of the speech signal. Such 

variations can be exploited quite successfully, [8,9] 

through RDT, to provide pitch related gains. Delayed 

decision coding algorithms especially pitch predictive 

algori thms inherently take advantage of this variation 

and no further gain can be expected from variable rate 

coding, within the above interval of 16-200 msec 

(depending on phoneme duration). This can be easily 

deduced by looking at the second residual which is nearly 

Gaussian in nature. (Delayed Decision Coding can in fact 

be considered as a variable coding scheme since, 

essentially block allocation of bits is effected, with 

implicit variable bit allocation within the block). 

A source that 

presents a problem 

data. In the case 

outputs a. variable rate 

to channels that expect 

of multiplexing several 

bit stream 

fixed rate 

users, all 

entering the network at the same node, there is no 

problem, since, the sum of the individual rates will be 

constant. In the case where the total source input to the 

channel is not constant, appropriate buffers and buffer 

control must be used to interface the variable source to 

the fixed rate channel. Several problems such as 

overflowing of the buffers emerge and various studies 

have been undertaken to produce useful systems for the 

network [3, 10, 11, 12, 13]. 

In the above situations variable rate coding (VRC) 

was used as a means of improving on speech quality by 

taking advantage of the nonstationarity of the source(s). 

VRC can also be dictated by the network itself depending 

on channel loading: During intervals where the load is 

low, a high rate can be afforded by individual users 

whereas under conditions of heavy load more severe bit 

rate constraints can be imposed upon users of the 

network. Two situations can be distinguished, one where 

the congested network node signals back to the individual 
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encoders to reduce their output bit rates and the other 

where the note itself is able to "strip" bits off the 

transmitted code words and reduce the bit rate for the 

subsequent paths in the network, without the need of 

signaling back to the encoder. 'The latter method 

necessitates coding structures <embedded coding) in which 

the bit rate reduction can be made possible after the 

encoding. This is usually achieved by providing one basic 

representation of the signal plus additional bits for 

refinements of the basic representation which can ei ther 

be kept or stripped off according to available channel 

capaci ty [14, 15J. PCM systems inherenty possess this 

structure whereas embedded ADPCM structures have been 

deviced [14J. The available range of bit rates can extend 

from the vocoder range right up to the high qual i ty 

waveform coder range, through the use of hybrid coders 

such as RELP [15J and subband coder/channel vocoder 

combinations [1J. A coder structure presented in chapter 

6 seems particularly suitable for the above task. 

5.2 VARIABLE 

CRITERION 

RATE CODING SUBJECT TO A PERCEPTUAL 

5.2.1 "Real T1 roe" Algorlthms (sllitable for speech 

transmlssion) 

In order to assess further the capabilities of the 

distortion model developed in chapter 4 and to exploit 

the possibility of variable rate coding (VRC) subject to 

a perceptual criterion, a variable rate versIon of the 

multipulse coder ([16J appendix 

mentioned briefly in chapter 3 

represents a speech segment by an 

F) was developed. As 

the multipulse coder 

all-pole filter and a 

number of pulses. The bit rate required to repre:3ent a 

gi ven segment is therefere spl i t into two parts: (a) The 

bits required for the quantization of the LPC 

coefficients and the pulse amplitudes, which can be done 

in a variety of ways as described l.n chapter 3. (b) The 
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bi ts requIred to encode the locations of the pulses. For 

k pulses in a frame of L samples there are 

C = 
L! 

5.1 
(L-k) ! k! 

possible sets (combinations). The minimum number of bits 

required to code the above positions 1$ given by 

bits 5.2 

One way to achieve the theoretical minimum given by 5.2 

is enumerative coding [17). 

For reasonable bit rates (around 9.6 kbs/sec) and 

full-band 

locations 

is about 

speech coding, 

is occupied by 

10% of L. 

only a small proportion of the L 

k«L). Typically k pulses <1.e. 

Around this percentage, the 

relationship between the number of pulses and the bit 

rate required for the coding of positions is very nearly 

linear. Further, for small variations of k, the bits 

required for the LPC coefficients and the amplitudes can 

remain constant and the bit rate can be varied by varying 

the number of pulses alone, through 5.2 and 5.1. For a 

bit rate around 9.6 kbs/sec, most of the mse distortion 

in the signal is introduced by the small k/L ratio. Only 

a small part of the m.s.e. distortion is introduced 

through the quantization of the LPC coefficients and 

amplitudes. The difference in SNRSEG between files with 

quantized and files with unquantized parameters (LPC 

coefficients and amplitudes) is often a fraction of 1 dB. 

Therefore, to remove any small effects of parameter 

quantization from this study, unquantized parameters were 

used in the simulations. For each time slice (frame) 

equation 4.43 can be modified into 

n 
d(t, k) = E [F(SL (z,t).SL (z,t,k») 

z=1 0 c 
5.3 
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For each separate frame t, the distortion d can be 

represented as a function of the number of pulses k. The 

total distortion over a particular speech segment is then 

given by (as in 4.44) 

T 
D = 1: d(t,k) 

t=l 
5.4 

in the case of a fixed rate coder, where the fixed rate 

is determined by k, the number of pulses. 

For a variable rate coder equation 5.4 is simply 

replaced by 

T 
D = 1: d(t, k

t
) 

t=l 
5.5 

where, now, 

minimize D 

k" is a function of the frame t. 

in 5.5 it is necessary to 

In order to 

know the 

relationship 

k=l, 2 •.•. k max 

for each frame t. Unless otherwise specified, the 

function F in 5.3 'is as given by equations 4.46-4.49. 

Even if the functions given by 5.6 are 

it is still difficult to minimize 

known for every t 

D in 5.5. An 

al ternati ve approach, and the one adopted here, is to 

attempt to make d the same for each block, for a given 

average bit rate. The rationale behind this argument is 

that if d is a true perceptual measure of quality, then a 

constant perceptual distortion over time will be 

achieved, a desirable condition. 

The criterion therefore is to minimize the deviation 

from a constant value of the distortion, d.=n, 1.e. 

minimize 
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5.7 

for all t, subject to the constraint of a constant 

average bit rate. Since a near linear relationship exists 

between bit rate and pulse rate, 5.7 is minimized subject 

to the constraint of a constant average pulse rate. The 

TASr advantage is of no interest here. Therefore, silent 

segments are coded at the average bit rate (fixed value> 

and do not compete for pulses with non-si lent segments. 

Two sentences from a male speaker were used for the 

simulations, the same ones as the ones used in chapter 4: 

"There was an old man called Michael Finnegan, he grew 

whiskers on his chinnagen". The frame size L waS fixed at 

120 samples and two different target average bit rates 

were used, one at k = 12 pulses/frame and the other at 

k = 7 pulses/frame. The minimum number of pulses in a 

frame was set to one, although a frame with zero pulse 

allocation can also be conceived, in the situation where 

the ringing (filter memory> from the previous frame is 

sufficient for the reproduction of the current frame. The 

maximum number of pulses was set to 24. Although no upper 

limit is necessary, the above value sets the higher 

target value for the average bit rate in the middle of 

the range. An unlimited range of pulses is unpractical 

since, for each value of K,'fhe value for d(k> from 5.6 

need be calculated. Note that the iterative nature of the 

multipulse solution provides all the synthesized frames 

for k=1,2 .... k m ,"x-1, for a final value of k=km ."" without 

any additional computation. 

As a first approximation, the assumption was made 

that equation 5.6 was of the form 

d(k> = a/kr 

or 

k=l,2, ..... k maX 5.8a 
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k=1.2 .... k max 5.8b 

therefore, in logarithmic terms a linear relationship 

obtains: 

k=l,2, .... k max 5.8c 

between the logarithm of distortion and the logarithm of 

the pulse rate, for a particular frame, t. 

The validity of the assumption can be tested by 

plotting d(k) for each pulse rate k for different frames. 

Several such plots for successive frames are shown in 

figure 5.2. It can be seen that to a first approximation, 

the function is indeed a straight line as given by 5.8c. 

The superimposed straight lines in figure 5.2. are 

obtained by evaluating logat. and rt. through a least 

squares procedure for straight line fitting. Although the 

general trend is a ptraight line, deviations can be seen 

for various frames. In particular the function d(k) is 

nonmonotonic at times. This may seem peculiar at first 

since it implies that the distortion actually increases 

wi th the addition of more pulses. The paradox is 

explained by the fact that the criterion optimized by the 

selection of pulses in the multipulse LPC is the weighted 

SNR, whereas the criterion actually measured is the one 

given by 4.46-4.49. Thus, although the distortion in 

terms of weighted SNR decreases with the addition of more 

pulses, d(k) can actually increase in certain situations. 

This generates complications manifesting themselves as 

local maxima and minima on the plots of figure 5.2. 

Effective ways to deal with these irregularities of d(k) 

will be described later. For the time being the 

relationship of d upon k is assumed to be given by 5.8c, 

where the constants loga·t.. and rt. are evaluated for each 

frame from data such as the ones shown in figure 5.2, 

through least squares procedures. This considerably 
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simpliIies the analysis since a monotonic relationship 

between d and k is known for each frame t. Furthermore, a 

straight line can be defined by only two points. 

Therefore, the possibility exists, that d(k) need only be 

evaluated at two paints k·, and k~" ·to yield d(k·,) and 

d(k",), instead of evaluating d at each k=1,2, .... k"'Q"" to 

obtain the function d(k). This would significantly reduce 

complexity. To summarize, for each block t, a 

relationship OI the form given by 5.8 is assumed, where 

the constants are evaluated once for each frame as 

descri bed above. Now assume that the reverse problem is 

addressed: Given a constant distortion dco.··., find the 

required pulse rate kt. such that the following equation 

is satisfied: 

the solution is of course given by 

k t = (at/d ) con 

5.9a 

5.9b 

To derive equation 5.9b, the relationship in 5.8a is 

assumed to be continuous, i. e. kt. is assumed to take 

noninteger values as· well. Since the constants in 5.9b 

are known for each frame, the appropriate pulse rate can 

be derived. The average pulse rate k"v is given by 

k = av 

T 
E 

t=l 
k = t 

) 
con 

5.10 

Note that kt:. as given by 5.9b can be outside the set 

limits of 1 and 24. In this situation, kt .. is set to the 

value at the limit, 1.e. 
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a 
(_t __ ) 

d con 

5.11a 

5.l1b 

5.11c 

With the redefined values for k t . given by 5.11 a plot of 

k"w versus d,,<,..., can be plotted from the values of a.o. and 

r •.. alone. This plot is shown in figure 5.3. 

Having obtained the relationship shown in figure 5.3 

one can now reverse the step, to evaluate the required 

de",,,, for a preselected average pulse rate. For example, 

if an average pulse rate of 12 pulses/frame is required, 

this can be achieved by setting d.",,,,., to about 17. With 

the value of de",.., known, the necessary pulse rate for 

each frame can be fC;lUnd from equations 5.11, the value 

rounded to the nearest integer. The average bit rate 

would then be close to the chosen value, in this case, 12 

pulses/frame. 

The graph of figure 5.3 is not expected to vary 

considerably amongst speakers. Therefore an eqUivalent 

graph can be derived for a large set of training data for 

di fferent speakers. Subj eet to the assumption of a 

straight line relationship between the logarithms of 

distortion and pulse rate as given by equation 5.8c and 

to a certaJ.n degree verIfied in figure 5.2, a variable 

rate coding algorithm has been designed which offers the 
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choice of a wide range of preselected average bit rates 

and strives to produce a perceptual distortion which is 

constant throughout the utterance, or even throughout the 

utterances of several speakers. 

A schematic of the. algorithm is shown in figure 5.4. 

Assume that the appropriate pulse rate has been selected 

for block t-l. The filter memory from block t-1 is then 

used in the calculations for block t. As explained above, 

for a maximum possi ble number of pulses equal to k,,,,,,,.,, a 

number of km'~x different mul tipulse frames are 

synthesized, giving a one pulse representation of the 

frame, a two pulse representation and so on, until a 

km"'" pulse representation is obtained. The distortion 

d(t,k) for the current frame is calculated from equations 

5.3 and 4.47-4.49 for each value of k = 1,2, .... kn""'. 

From these values, the constants logat.. and r... are 

evaluated as described above. 

appropriate straight line 

These two values define the 

for block t. For a 

preselected average pulse rate k~v a corresponding 

constant distortion value is defined from equation 5.11. 

The intersection of the line d (t, k) = d"."., (horizontal) 

with the line given by 5.8c gives the point whose 

abscissa is the selected value k t .• (After appropriate 

logari thmic transformations as- dictated by the formulas). 

The selected value is then rounded to the nearest 

integer. The mul ti!>ulse frame synthesized with the 

selected number of pulses ktc forms the current block and 

the algorithm proceeds to calculate the pulse rate and 

the multipulse frame for the next block of speech. 

The algori thm was used to obtai n a coded fUe with an 

average bit rate of 12 pulses/frame. The pdf of the 

distortion obtained is given in figure 5.5a. It can be 

seen that the algorithm has been successful in producing 

a near constant distortion, of value around 17.5. The 

average bit rate was indeed very close to 12 

pulses/frame. The speech quality obtained though was 
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considerably worse than the quality from a fixed rate 

coder operating at 12 pulses/frame. The pdf plot of the 

pulse rate shown in figure 5.5b gives a clue as to why 

this is so: The algorithm has assigned 24 pulses to a 

great number of frames which necessari-ly forces the pulse 

rate for the rest of the frames to quite low values which 

result in poor quality speech. This behaviour of the 

algorithm is not due to an inappropriate distortion 

measure but due to the straight line approximation 

adopted. This can be seen from figures 5.6-5.8 which show 

three representative plots of distortion versus pulse 

rate (both on logarithmic scales) for three different 

frames. The horizontal line gives the value of constant 

distortion at 10g1od"on = 10g10 17.5 '" 1.24. It is clear 

from figures 5.6-5.8 that straight line 

= 17.5 does not intersect 

the 

the distortion line 

of 

of 

equation 5.8c and therefore the condition of equation 

5.11b is reached. The selected pulse rate is therefore 24 

which is shown by the rhombus markers in figures 5.6-5.8. 

It 1s also clear from figures 5.6-5.8 that a great 

reduction in 

increase in 

pulse rate 

distortion 

can be achieved with a very small 

(or none at all> if the pulse 

rates shown by the octahedron-in-square (OIS) markers are 

chosen instead. This is because the rate of decrease of 

distortion in going from the OISmarker to the rhombus is 

very small. This is not typical of all the frames though 

and therefore some·-- automatic procedure needs to 

be devised so that a more appropriate pulse rate can be 

chosen for each frame. For this purpose, the algorithm 

shown schematically in figure 5.9 was designed. Central 

to this algorithm is a threshold value, d"", which is 

small by defini tion and its exact val ue is determi ned 

from subjective tests. The algorithm starts from an 

i ni tial pulse rate which, 1. n th1.'3 case, is the val ue 

chosen from the straight line approximation. Let this 

pulse rate be given by k. The distortion d(k) is known. 

The algorithm compares d(k) with dO). If d(l) - d(k) < 
d,,, then the chosen pulse rate is 1, otherwise d (k) is 
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compared with d (2). If the difference is smaller than d", 

then the chosen pulse rate is 2 and so on until an 

appropriate rate is found, or the possible values of k 

are exhausted. Note that the algorithm avoids 

local maxima because d(k) is compared with distortions of 

an ascending sequence of pulse rates. This is the single 

update largest jump (SULJ) algori thm. Its purpose is to 

reduce the cost (the pulse rate) with a minimal increase 

in distortion. The positions of the OIS markers in 

figures 5.6-5.8 have actually been determined through the 

above algorithm. It can be seen that the algorithm makes 

reasonable choices for the new pulse rates. For a value 

of d" equal to 2.5, the pdf of the distortion of the 

speech file coded with the combination of the straight 

line algorithm followed by the SULJ algorithm is shown in 

figure 5. lOa. By comparison to figure 5.5a, there is 

little change in the two pdf as would be expected since 

the maximum (single frame) change is constrained to be 

less than d,,: 2.5. The resulting speech quality is 

almost indistinguishable form the one obtained from the 

straight-line (SL) algorithm (in fact this was the 

criterion for choosing d s : 2.5) but the resulting 

average pulse rate is about 7.5 pulses/frame! The pulse 

pdf for this configuration is shown in figure 5. lOb. A 

reduction in pulse rate of almost a half is obtained with 

very little increase in distortion. 

average pulse rate 'back to its 

pulses/ frame a new algori thm was 

In order to bring the 

desired value of 12 

designed. Intuitively 

such an algorithm must reduce the distortion as much as 

possible with the smallest increase in pulse rate. This 

can be done by taking advantage of the individual shapes 

of each distortion versus pulse rate function for each 

block: Figures 5.11-5.14 show the choice of pulse rate 

made by the SL logarithm with a rhombus-in-square <RIS) 

marker. As before, this pOint is the intersection of the 

straight- line distortion curve approximation of equation 

5.8c with the horizontal 

is in accordance with 

lIne d : d"",,,·,. The chosen value 

equatIon 5.11a. The extreme 
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situation of 

The 

equation 5.11c is shown in figures 

5 .. 11-5.18 5.15-5.18. octahedron markers in figures 

show alternative pulse rates which are not very different 

from the (RIS) rates (remember that the logarithms of the 

pulse rates are shown on the abscissa) but for which the 

distortion is significantly reduced. These new locations 

were obtained through a new algorithm shown schematically 

in figure 5.19. This is the multiple update smallest jump 

(NUSJ) algorithm. It operates as follows: The distortion 

of the current pulse rate d (k) is compared with the 

distortion of the next pulse rate d(k+l). If the 

difference d(k) - d(k+l) is larger than a threshold value 

dL then the new pulse rate k+1 is retained and the test 

repeated by comparing d (k+1) - d (k+2) with dl... If the 

test is negative the old pulse rate is retained but the 

test now involves a comparison of d(k+l) - d(k+3) with dL 

and so . on until the maximum value k",~" is reached. The 

. formulation of the algorithm is designed to deal with 

local distortion maxima and aims to find a global 

distortion minimum subject to a small increase in pulse 

rate. The value for the threshold dl .. can be determined 

from the final (required) bit rate. For the present 

example, in order to bring the bit rate from a value of 

7.5 to the reqUired average value of 12 pulses/frame a 

value for dL. :::: 2.3 was used. --The resulting pdf of 

distortion is shown in figure 5.20a. It can be seen that 

the distortion for ··the coded file is less than the 

distortion shown in figure 5.5a for the same average 

pulse rate <12 pulses/frame). Also, the distortion 

variance in figure 5.20a is larger than the distortion 

variance in figure 5.5a. This was to be 

the SL algorithm whose results are shown 

aims to minimize this variance. 

expected since 

in figure 5.5a 

Therefore the 

minimization of distortion and a flat distortion over 

time are not equivalent criteria. This is a direct 

consequence of the irregular shape of the distortion 

versus pulse rate functions. In turn, this is due to the 

fact that the mul tipulse algorithm reduces the weighted 
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m. s. e. by each additional pulse and not the perceptual 

distortion measure of equation 5.3. 

The resulting pdf of the pulse rate obtained by 

successive application of the SL, 

algori thms is shown in figure 5.20b. 

SULJ and NUSJ 

Note that this pdf 

is free from the accumulation of pulse rates at the ends 

of the pulse rate range. The successive operations of the 

three combined algorithms are also shown in four typical 

plots of distortion versus pulse rate for four different 

frames, in figures 5.21-5.24. The rhombus is the pulse 

rate chosen by the SL algorithm, the square the 

subsequent correction from the SULJ algorithm and, 

finally, the octahedron the last adjustment of the HUSJ 

algorithm. The final, combined, algorithm gave a quality 

which was indistinguishable from the file coded at the 

fixed rate of 12 pulses/frame. Note that since the 

combined algorithm has three "free" parameters and only 

one constraint (the average pulse rate), various 

combinations of dc.~." d", and d,_ can produce an average 

pulse rate of 12 pulses/frame. Several combinations were 

attempted but the subj ecti ve qual i ty could not be 

improved over the quality of the fixed rate file. It is 

quite remarkable that a pulse distribution such as in 

figure 5. 20b yields a file which· sounds exactly the same 

in quality as the one with a fixed rate. A similar 

situation was encoontered for a target rate of 7 

pulse:5f frame. The results of using the SL algorithm with 

a target average bit rate of 7 pulses/frame are shown in 

figures 5.25 a, b with d c .",.., '" 30 as can be deduced from 

figure 5.3. With the subsequent use of the SULJ algorithm 

the figures 5.26a,b were obtained. The average pulse rate 

dropped to 5.2 pulses/frame with d" ,: 0.0. A reduction in 

pulse rate occurs even with a zero threshold because of 

the nonmonotonic nature of the individual distortion 

versus pulse rate functions. Finally, the composite SL, 

SULJ, HUSJ algorithm was applied to obtain an average 

pulse rate/frame of 7 pulses/frame. The resulting pdfs 
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are shown in figures 5. 27a, b. The chosen values for dc~"',, 

d", and dL were not very appropriate in this case as can 

be seen by comparing the pdf of distortion of figure 

5.27a with the pdf of distortion for the fixed rate coded 

speech (7 pulses/frame) of figure '5.28. Although the 

variable rate scheme reduces the large distortion values 

this is at the expense of a shift of the whole pdf 

towards higher values. A more successful selection was 

obtained by constraining kn'''b' to a value of 12 (so that 

the average of 7 is in the middle of the allowable 

range), fixing dco,~ at a very high value (i. e. dco .... = 00) 

so that the SL algorithm, sets the pulse rates for all 

the frames to k = 1, a value for d$ = 0 and, finally, 

dL = 4. The resulting average rate is again 7 

pulses/frame. The corresponding pdfs are shown in figures 

5.29 a, b. The pdf of the distortion is very similar to 

the pdf for the fixed rate coder although for the 

variable rate scheme the pdf is shifted slightly towards 

lower values and the bulge around d" 36 in the fixed 

rate case is not present in the variable case. The 

combination of thresholds given above gave the best 

subjective performance, but again, this was very similar 

to the fixed rate performance. 

The variable rate algorithms described above provide 

a suitable framework for determining appropriate values 

for parameters use'd in the distortion measures. In 

particular, the algorithm was used to determine 

appropriate values for the threshold parameters a, b in 

4.48 and 4.66. Several combinations were used, shown in 

figure 5.30. Variable rate coded files were then produced 

wi th the values shown In fig. 5.30 applied into the 

distortion measure of 5.3. Through informal listening 

tests the best values, leading to a, minimal distortion 

coded file were again as given by equation 4.49. 
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"Non-real time" algorithm (sui table for speech 

storage 

In all of the above algorithms a decision for an 

appropriate pulse rate for a specific block depended on 

the distortion curve, dt (k), of that block alone. The 

information about the rest of the speech utterance, 

necessary to determine appropriate thresholds for the 

operation of the algorithms was provided in an initial 

training phase. Therefore the schemes presented above 

could be used in a real-time application. 

In situations where the real-time restriction can be 

avoided, as in voice storage applications, more efficient 

algori thms can be employed. In these schemes the speech 

segment of interest is first stored in memory at a high 

bit rate, high quality mode which can then be reduced to 

a low bit rate mode, as a background task. The multipulse 

algorithm is particulary suited to such applications 

since a high pulse rate version of speech can be stored 

ini tially and then pulses "removed" on a frame to frame 

basis subject to a meaningful criterion, in order to 

obtain a lower bit rate, high qual i ty speech signal. In 

this case the whole speech utterance and thus the curves 

d(t,k t ) t = 1,2 .... T are alL~ known a priori. Several 

algori thms can be developed to produce a minimum 

distortion variable~' rate file using this a priori 

information. The two algorithms developed here represent 

some form of "steepest descent (or ascent)" algori thms. 

They differ mainly in the inItial conditions assumed. 

The first algorithm sets the pulse rate for each 

frame to the target average pulse rate. This is step 1. 

In step 2 the difference d(t,k'o~-l) -d(t,k •.. ) is formed 

for each frame and the frame t"" n for which 

5.12 
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is the smallest is found. 

In step 3 the difference d(t.k~) - d(t.k~+l) is 

formed for each frame and the frame ton",,, for which 

5.13 

is the largest and. in addition. t"· ... "., l' t.·.·,." is found. 

Step 4 compares the two differences: If d"".~, is greater 

than d",,,, then the pulse rate for t", ••..• is reduced by one 

and the pulse rate for tm~x is increased by one i.e. 

k tmin 
iff d >d i then { 

max m n k 
tmax 

-> k
tmin

-1 
5.14 

-> k
t 

+1 max 

The above is an "exchange" algorithm in that the average 

pulse rate is held constant at any stage in the 

algorithm: Any increase in the pulse number in one frame 

is immediately compensated by a decrease in the pulse 

number in another frame. The algorithm. after step 4. 

returns to step 2 for a prespecified number of iterations 

or until the condition in 5.14 can no longer be fulfilled 

for any pair of frames. This algorithm is susceptible to 

local maxima and minima. One way to overcome this problem 

is to produce an alternative algorithm. such that 5.12 is 

replaced by 

equation 5.13 is replaced by 

and finally. test 5.14 replaced by 

iff d >d i then 
roax m n 

k ->k -a 
tmin tmin 

k -lk +a tmax tmax 

5.15 

5.16 

5.17 
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and the algorithm run as above. The original algorithm is 

first applied until equation 5.14 cannot be fulfilled and 

then the modified algorithm is initiated (from step 2) 

for various values of a. When 5.17· can no longer be 

fulfilled. the first algorithm is then reapplied and so 

on. It was found that with a = 2. around five exchanges 

between the original and modified algorithms were enough 

to reach the situation where 5.14 or 5.17 were not 

satisfied. even from the first iteration. The number of 

iterations reduces very quickly as the number of 

exchanges between the original and modi fied algorithms 

is incresed. 

It was found that this scheme produced results very 

similar in subjective quality to the other ("real-time") 

schemes· and to the fixed rate algorithms. However. the 

pulse pdf had a much smaller spread than the other 

variable rate schemes described above and a triangular of 

gaussian shape as opposed to the more uniform shape of 

the "real-time" schemes (as in fig. 5.29b and 5.10b). The 

resul ts were halfway between the fixed rate pdf and the 

pdf distributions of figures 5.29b and 5.20b. It seems 

that the exchange nature of the algorithm did not allow 

sufficient variation in the ··-··i ndi vidual 

resulting in a narrow pdf. 

pulse rates. 

Another algori thm. 

information as above. 

restrictions that force 

which still uses a priori 

but avoids the exchange mode 

the bit rate to be fixed to the 

average (target) value at each iteration. was developed. 

This algorithm starts with the assumption that any frames 

coded with the maximum value of pulses. k.·.·",;.",. have 

"negligible" (or acceptable) distortion .. This is verified 

from subjective results where. if all the frames are 

assigned a pulse number k = k"""". very little distortion 

is perceived. which can be neglected when compared with 

the distortion produced at the target pulse rate. 
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each frame to 
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the algorithm sets the 

the maximum value kmlll\)-,:. 

pulse 

At 

number 

step 2 

for 

the 

difference d(t,kt.-l)-d(t,k t .) is formed and the frame t"".,·, 

for which 

5.18 

is the smallest is found. For this frame, the pulse 

number is reduced by one and the algorithm returns to 

step 2 until the target rate is reached. Modified 

algorithms can also be used where the decrease in pulse 

rate is done at larger steps, to avoid local 

maxima/minima. This algorithm also gave subj ecti ve 

results similar to the fixed rate but, in addition the 

pulse (and distortion) pdf were very similar to the pdf 

of figures 5.20 and 5.29. The results for a target rate 

OI 12 pulses/frame are shown in figure 5.31a,b. 

5.3 Variable rate coding with a w.m.s,e. criterion 

The mul tipulse algorithm (16) (appendix F) minimizes 

the weighted mean square error (wmse) ewTe w where 

e w = Y - X w w 5.19 

with Y.., being the l)'eighted input speech signal vector 

. (mi nus the memory from the previ ous frame) and X.., the 

weighted, synthesized signal due to the pulses in the 

current frame alone. The weighting is effected through 

linear filtering with a transfer function 

W = [l-P(Z)]/[l-P(Z/a») 5.20 

where P (Z) is the all pole predictor matched to the 

signal segment Y. This form of weighting is similar to 

the noise shaping operation 

(chapter 3). The wmse can be 

in noise 

considered 

the number of pul'5es in the fra.me 1. e. 

feedback coding 

a function of 
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k=l, 2 .... k max 5.21 

Although the minimization of E, (k) in the multipulse 

algorithm produces good quality speech, this is not 

necessarily an appropriate measure (as will be shown) for 

variable rate coding since, in this case, the mse from 

different segments of speech has to be taken into 

account. Alternative measures can be devised by 

introducing a form of 

the quantity 

normalization through division by 

S = Y Ty 
w w 5.22 

which represents the weighted "energy" of the current 

speech frame. The SL-SULJ-MUSJ algorithm was used by 

setting dc,,,,, = "', d~, = 0.0 and the value of dL- chosen so 

that the resulting average bit rate/frame was near 7 

pulses/frame (i.e. a similar criterion to those of figure 

5.29). The pulse pdf using the distortion measure E·, (k) 

of 5.21 is shown in figure 5.32. Alternative measures 

used were: 

(figure 5.33) for which d L = 0.17, 

(figure 5.34) 

E
4

(k) 
E

1
(k) 

= 1010g10 ---
S 

5.23 

5.24 

5.25a 
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5.25b 

(figure 5.35) 

1/ 
= (El (k» 4 

5.26 

(figure 5.36) 

and finally, 

5.27 

(figure 5.37) 

Note that, since the criterion optimized through the 

multipulse algorithm (or a monotone function of it) is 

the same one used in the variable rate algorithm, no 

local maxima/minima exist for the distortion functions 

5.21 and 5.23-5.27. Equation 5.21 represents a weighted 

m.s.e. criterion and minimization of 5.4· subject to a 

distortion function d(t, k) given by 5.21, is equivalent 

to a wmse rate distortion theory minimization result. 

This scheme also gave the worst subjective performance 

(this can also be deduced from the corresponding pulse 

pdf in figure 5.32). The measure of 5.23 assumes that the 

relative noise power is relevant in pulse allocation. 

This criterion gave the best subjective performance 

between these schemes, which was similar to the fixed 

rate performance. The measure of 5.25 is similar to an 

SNRSEG measure. Note that under the variable rate 

algori thm used equations 5.25a and 5.25b are eqUivalent. 

The distortion measure of equation 5.27 bears some 

resemblance to Schroeder's distortion measure (chapters 2 
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and 4). All measures given by equation 5.24-5.27 produced 

coded :files with subjective quality worse than that o:f 

the measure o:f equation 5.23, wi th qual i ty deteriorating 

as the corresponding <pulse) pd:f becomes less similar to 

that o:f :figure 5.33. 
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TRANSMITTER CHANNEL 

INPUT I 
SP EECH I ENCODER :' ------

MEASUREMENT ALGOR ITHM MEASUREMENT 
"- OF :-< FOR :.-- OF 

SHORT - TERM SELECTION OF CHAN NEL 
ACTIVITY BIT RATE LOADING 

General block diagram or a variable·ratc encoder. 

Figure 5.1 [1] 

Figure 5.2 Logarithm of distortion (ordinate) as a function of the- logarithm of 

the number of pulses (abscissa) for successive speech frames. Slraighl lincs fitted 

10 the data ( via least squaru procedures) aTC also shown. It can be seen that 

the data, in general, follow a straight line. ahhough local maxim. and minima 
can also be- seen. 

-
,I 
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13 17 21 2S 29 33 37 41 4S 49 

Constant distortion dcon 

Figure S.3 Average pulse rate as 

a function of constant distortion, 

obtained from training data. This 

curve is used by the SL algorithm 
(see text). 

I 
\nax pulse solution 1· ............................ -- .... -- ..... -.......... -.. ~ ...... 1 

-.......... -.... -- .. ~.-- .. -........ , : L-_--.--__ -l.. . .: 

. 
• filter. : 
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synthesis : 

: 

. . 
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of k pulse 
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distortion 

calculation 

for each 

I.: synthesis 

· : 
• : 
t · : · · · : 
• : 

L..jL. __ I)._\_,_> _...J 

Selected block 

, 
Figure 5.4 The selection of an appropriate pulse number 1.:, for block ~(t) 
subject to a predetermined criterion. The k max pulse solution provides solutions 
for all k less than k

max
' 



PDF 
220 

198 

176 

154 

132 

110 

88 

66 

44 

22 

o 

PDF 
100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

o 

o 

o 

1\ 

24 

/\ 

3 6 

\ h.. 

48 72 

9 12 IS 18 

409 

96 

Distortion 

!-
21 24 

Pulscs 

120 

Figure S. Sa PM of distortion 

obtained with the straight line 

( SL ) approximation algorithm. 

A near constant distortion is 
obtained. 

Figure S.Sb Pdf of the pulse 

rate obtained with the straight 

line ( SL ) algorithm. Note the 

high value at the end of the 

interval ( 24 pulses ). 
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Figures 5.6-5.8 Three sample plots of 
distortion as a function of the bit rate 
(both on logarithmic scales) for 
successive speech frames. The constant 
distortion value, central to the SL 
a1gorithm. is shown by the horizontal 
lines. It can be seen that the constant 
distortion line intersects the SL line 
outside the permissible pulse range. The 
upper pulse constraint is therefore 
selected ( 24 pulses, rhombus markers) . 

A maximal decrease in bit rate can be 
achieved with a minimal increase in 
distortion if the pulse rates shown by the 
the octahedron-in-square markers are 
chosen instead. These new pulse rates 
were the choises made by the SULJ 
algorithm. 
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Figure 5.10a Pdf of distortion 
as a result of applying the SL 
algorithm followed by the SULJ 

algorithm. Note the similarity of 

this distribution with the one in 

figure 5. Sa, employing only the 

SL algorithm. The threshold 

parameter ( maximum increase in 

distortion in anyone frame. ~ 
was set to 2.5. 

Figure 5. J Ob Pulse par obtained 

with the SL and SULJ algoritms. 

The average pulse rate is 7.5 pulses 

pcr frame. Note that the high 

pdf value at 24 pulses is no longer 
obtained. 
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Figure 5.11 
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Figure 5.12 
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Figures 5.11-5.14 Rates selected by 
the SL algorithm ( rhombus-in-square 
markers) and subsequent corrections 
made by the MUS] algorithm 

(octahedron markers). A mid-range 
value has been selected by the SL 
algorithm. A minimal increase in the 
pulse rate is achieved with a maximal 
decrease in distortion by employing the 
MUS1 algorithm. 
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For legend see 
figure 5.12. 

Figures 5.15-S.18 As in figures 5.11 
-5.14. The selection made by the SL 
algorithm lies at the lower pulse numbe 
constraint ( 1 pulse allocated ). The 
SL algorithm fails because for a high 

enough value of prcselected distortion. 
the constant distortion (horizontal) line 
intersects the SL distortion line outside 
the permissible pulse range. The MUSJ 

algorithm corrects for the above effect 
(octahedron markers). 
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Figure S.20a Distortion pdf obtained 
using the SL algorithm, followed 
by the SUU and MUSJ algorithms. 
The distortion is shown to be less 
than that of figure S.Sa, although 
a broader range of values is obtained. 
The SL algorithm was run for a 

value of dean of 17,5 ( as in figures 
S,S and 5.10). a value for dS of 

2.5 and a value for dL of 2.3. For 
more details see text. 

Figure S.20b Pulse pdf for an 

average pulse rate near 12 pulses 

per frame. The combined SL. SULl 
and MUSJ algorithms were used. 
Note the near uniform distribution 

and the absence of high density 
values at the ends of the range. 
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Figures 5.21-5.24 The effects of the 
combined SL-SULJ-MUSJ algorithms 
are shown, applied in succession. 
Rhombus: pulse rate selected by the 
SL algorithm. 
Square: pulse rate selected by the 
SUU algorithm. 
Octahedron: pulse rate selected by 
the MUSJ algorithm. 
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Figure 5.25a As fjgure S.Sa but 
with a target distortion of 30.0 
instead of 17.5. The resulting 
average pulse rate is 6.9 pulses per 
frame as predicted from the plot 
in figure 5.3. 

Figure S.25b Resulting pulse pdf 
from using the SL algorithm with 
a target average pulse rate of 7 

pulses pcr frame and an average 

"constant" distortion of 30.0. Note 
the large density value at the lower 
end of the pdr. 
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Figure 5.268 Distortion pdf obtained 
using both the SL algorithm and the 

SULJ algorithm. A threshold value 
of 0.0 was used in the SULJ 
algorithm. 

Figure S.26b Pulse pdf. The avrage 

pulse rate was reduced to 5.2 pulses 
per frame as opposed to 6.9 pulses 
per frame of figure 5.25, with zero 
increase in distortion. This is due to 
the nonmonotonicity of the individual 
distortion versus pulse rate curves. 
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Figure 5.27a The full SL, SUU, 
MUSJ algorithm was applied in 

this case. The various a1gorithm 

parameters were: deen =30.0, 

d S 1:0.0 and d L =23.0. Note that 

the overall distortion is higher than 

the equivalent one from the fixed 
rate algorithm ( figure S.28). 

Figure S.27b. The pulse pdf for 
the combined algorithm. Parameters 
as in figure 5.27a. Note the high 
density values at the lower cnd of 
the pdf. 
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Figure 5.28 Distortion pdf for 
the fixed rate configuration. ( 7 
pulses per frame ). 
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Figure 5.298 Reduced distortion 
obtained by constraining the 
maximum number of pulses to 12 
( so that the target value, 7, is at 
the middle of the range). Algorithm 
parameters can be found in the text. 
Compare with figures S.273 and 
5.28. 

Figure S.29b Pulse pM fOT an 
average pulse rate of 1 pulses per 
frame. The maximum allowable rate 
is 12 pulses. 
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Figure S.30 Threshold functions employed 
in the distortion measure to select an appropriate 
pulse distribution in lime. The best function 

was detennined through subjective tests. The 
best perfonnance was obtained with the 
thrreshold set at (-32+0. 7Sx) although some 
of the other functions shown such as (-28+x), 
(-30), (-35+0.25) gave a similar performance. 
The worst perfonnance was obtained with the 
threshold at (-16-xl. 
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Figure S.3la Distortion pdf 

obtained using a "non-real time" 

algorithm. 

Figure S.31h Pulse pdf obtained 
using a "non-real time" algorithm. 

Note the similarity with figure 

S.20b. 
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Figure S.32 A variable rate 
algorithm employing a wmse 
criterion. For algorithm parameters 

see text. Note the concentration 
of high density values at the end 
of the range, signifying a high 
overall distortion and a bad rate 
selection model. 

Figure S.33 The pulse distribution 

with the best subj~ctive performance 

among the algorithms based on a 
wmse criterion. 
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Figure 5.34 Pulse pdf obtained with 

a variable Tale a1gorithm based upon 
a wmse and logarithmic compression. 

Figure 5.35 Pdf of pulse rate 
obtained with a variable tate coder 
employing a ( weighted) SNRSEG 
measure. 
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Figure 5.36 Pdf of pulse rate 
obtained with a wmse criterion 
and "neural" compression. 

Figure 5.37 Pulse Pdf with a 
distortion criterion employing 
a normalized loudness measure 
(see text). 
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6.1 INTRODUCTION 

In recent years a variety 

mul tipulse LPC have been designed 

of communicati ons qual i ty speech 

of coders such as 

to bring the bit rate 

below the 9.6 kb/sec 

barrier of conventional waveform coders. These coders 

combine some vocoder features into the design thus 

allowing a hybrid combination of waveform coding and 

vocoding. These particular voice coding techniques take 

advantage of the spectral envelope and pitch related 

redundancies in the signal. The waveform coding and 

vocoding· techniques are integrated together through an 

analysis by synthesis process whereby, a speech model is 

chosen, whose parameters are tuned through the 

by synthesis error minimization, to yield a 

"close" to the input signal. Thus, although a 

analysis 

waveform 

vocoder 

model is used, a close approximation to the waveform is 

recovered at the output of the decoder. All such coders 

are designed around predictive coding and, as a 

consequence, suffer from the effects of quantization 

noise feedback and poor noise-shape control over the 

spectrum, at these low bit rates. 

For the higher bit rates that produce toll quality 

speech, subband coding has 

the effect 

signal, by 

of· the above 

spli tting the 

frequency and time domai n. 

proved benefiCial in reducing 

degradations in the speech 

prediction burden between 

A major advantage of coding 

the subbands is the versat!l i ty and choi ce provided, for 

coding the subband signalS: Diffenmt bit rates can be 

used for each band and also different coding techniques 

1. e. different coders can be employed for each hand in 

order to minimise and mask the distortion which is now 

confi ned to each subband. 

The introduction 

disadvantages though: 

of Sll bband codi ng is 

By splitting the 

not without 

sIgnal into 

subbands some problems particular to this form of coding 
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arize. Amongst others these are: An increase in the side 

information, increased 

speech information in 

redundancy by specifying the 

each band separately (e.g. 

same 

the 

pi tch structure), "empty bands" i. e. bands for which very 

li ttle information can be transmi tted for reconstruction 

(e. g. only the power level) etc. These problems do not 

necessarily make subband coding a poor choice as, in most 

cases, they can be alleviated with careful design and a 

little increase in complexity. For example, the increase 

in side information can be absorbed into the bits used 

for time domain prediction since prediction gain and 

subband gain exploit the same characteristics of the 

speech signal, namely the nonflatness of the speech 

spectrum: Lower bit rates need be used for the side 

information of the time domain prediction when frequency 

domain prediction is also used. 

In the work to be presented, the subband approach was 

used to split the speech signal into eight contiguous 

bands using a tree-structured QMF bank, although the 

eighth band of 3500-4000 Hz was always discarded. These 

signals were then coded independently or in combination 

wi th each other, so that the maximum perceptual 

improvement could be obtained. The coding techniques used 

were analysis by synthesis techniques centered around the 

mul tipulse algorithm. (Appendix F). For these algorithms 

a set of LPC coefficients needs to be calculated for each 

band. The LPC coefficients form one part of the side 

information. The other part of the side information, 

which is Ilecessary for the operation of the algori thms, 

is related to the short term variance of the subband 

signals: considering the low bit rates for which the 

coder is intended (4.8-9.6 kbit/sec) it is necessary to 

apply an adaptive bit allocation strategy. The set of 

parameters to be used must be able to predict the noise 

level (m. s. e.) in each band. It is also customary to 

quantize the pulse ampl i tudes in mul tipulse algorithms 

using an AQF quantJ.zer. It j s desirable that the side 
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information necessary to predict the m.s.e. in each band 

can also be used for normalization purposes in the AQF 

algori thm. 

6.2 SIDE INFORMATION: LPC FILTERS 

Wi th the intention of usi ng Vector Quantization for 

the encoding of the LPC parameters, 4th order fi 1 ters 

derived using the Burg method were employed in each band. 

This could be considered excessive in view of the fact 

that it leads to a total of 28 LPG coefficients to encode 

the spectrum. It is normally considered that a 12th order 

filter (12 coefficients) is adequate to remove the short 

term (spectral envelope) redundancy from the full-band 

speech signal. In addition, the time domain prediction is 

supplemented by the frequency domain redundancy removal 

inherent in the subband structure. It was observed though 

that the use of smaller order filters in the higher bands 

resulted in rather short impulse responses of the 

filters, which combined with a small number of pulses, 

gave rise to gaps in the recovered waveforms in those 

bands and a reverberant quality in the decoded speech 

signal. What is important from a transmissi on poi nt of 

view is the total number of bits allocated for the 

envelope information in the speech Signal, and not the 

total number of parameters. Vector quantization (VQ) was 

therefore applied to encode a large number of parameters 

with a rather small number of bits. Note that due to the 

averaging nature of VQ during the training phase, and for 

a small size codebook, the corresponding subband spectrum 

will not be as finely reproduced as a 4th order analysis 

implies but would perhaps be equivalent to a smaller 

order filter, arisIng from a "smoother" envelope. 

There are several ways to encode the speech envelope 

information in the subbands. Three different methods are 

described below. 



436 

The first method, which although not implemented is 

worth mentioning here, combines together all the side 

information necessary, namely the short term variances 

per band as well as the short term envelopes per band. 

This is as follows: 

First, a 12th order LPC analysis is performed over 

the fullband signal, taking into account the appropriate 

overall delay introduced by the QMF structure so that the 

block of speech represented by this full-band envelope 

coincides with the blocks of subband signals to be 

encoded. The 12th order filter can be used to derive the 

envelope of the speech signal in the frequency domain: 

The LPC model assumes that 

8(Z) = GU(Z) 

A(Z) 
6.1 

where 8(Z) is the speech signal, U(Z) the excitation 

signal <either a unit impulse or white noise of unit 

variance) and GI A (Z) is the speech model. From the above 

equation: 

2 
G 

I A(f).1 2 

G2 can be given by: 

p 
r. 

k=l 

6.2 

6.3 

were the {R (k)} are the autocorrelation coefficients of 

the speech signal or, alternatively, those of the impulse 

response of 1/A(Z). The autocorrelation coefficients can 

be derived directly from the speech signal or, to avoid 

windowi ng the speech "'"'quence, they can be deri ved form 

eq. 3.2-60 given again below: 



P 
R(i) = E akR(li-kl) 

k=l 
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lO(P 6.4 

to within a constant factor. The factor can be estimated 

by forcing R(O) to obey 

R(O) = E2 6.5 

where E'" is the speech power in the block. This is not 

necessary though, since, in this case, only the relative 

powers in the subbands are required. To extract the 

relative power in a particular subband and also the short 

term envelope in that band, the fourier transform 

representation can be mul tipl1ed by the 

response of the appropriate band pass operation 

structure in that frequency region. (For 

amplitude 

of the QMF 

simplicity, 

rectangular passband filters can be assumed if desired). 

Let B(f) be the equivalent QMF response, such that: 

SB{f) = S(f)B(f) 6.6 

where SB(f) is the subband signal in question and S(f) 

the fourier representation of the fullband signal. From 

6.2, the (relative) power per subband is given by: 

relative power/band = r 
F 

6.7 

where F is the region over which I B(f) I ", is large enough 

to give a non-negligible contribution to the summation. 

Due to the fact that the LPC envelope is a better fit 

on the formants than on the valleys, the estimate in the 

valleys will probably be a bit higher than the true value 

but this could be taken care of in the bit allocation 

procedure. 
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To obtain the appropriate filter for the subband, the 

bandpass envelope itself can be shifted to the base band , 

taking into account of any frequency inversion effects 

that would have been introduced by the QMF structure. The 

envelope is then uniformly expanded to cover the entire 

O-f,,/2 range where f,; is the cutoff frequency (figure 

6.1) and then appropriate autocorrelation coefficients 

can be calculated by inverse fourier transform of the 

speech bandpass envelope. From these, using the 

autocorrelation method of LPC analysis, appropriate LPC 

coefficients of. any desired order can be calculated for 

that band. The Burg or (stabilized) covariance method can 

be used to obtain the initial full band signal envelope, 

so that the final estimate will not suffer from the 

inaccuracies of the autocorrelation method, arising from 

block end effects in the time domain. 

In order to quantize the subband signals (or obtain a 

regenerated version at the receiver) the true power level 

rather than a scaled version of it is needed, and 

therefore the total power in the full-band block under 

consideration has to be derived, quantized and 

transmitted. From this estimate and the relative 

powers/band, the true power per subband (here the r. m. s. 

value) can be derived. 

From the above discussion-it follows that In all, the 

side information reqUired is identical to the one used to 

encode the full-band signal in conventional multipulse 

COding. 

The second method is similar to the above in the 

sense that the subband fil ters are dert ved form a wi der 

band representation of the Signal. In thJ s method though 

the subband filters are calculated directly from the 

subbands: Appropriately shifted blocks of fullband speech 

are used to derive a 12th order filter as in conventional 

LPC coding. In additIon, assocJated with this full band 
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f11 ter seven (note that the 8th band of 3500-4000 Hz is 

always discarded) 4th order filters are derived, one from 

each of the corresponding blocks of subband signals. The 

12th order filter and the subband filters are time 

aligned to describe the same blocks of speech. 

The full-band filter is then vector encoded using the 

LEG algorithm, with one modification: as well as the 

final centroids, the indices of the members of each cell 

are also stored, i. e. each codeword is associated with 

those members of the training set for which that codeword 

represents the 

member of the 

optimal coded value. From before, for each 

full band filter set, 7 subband filters 

have been associated. Therefore, the above subdivision of 

the full-band filter set into dirichlet regions also 

partitions each set of bandpass filters into an equal 

number of "optimal" regions. For each of the sets of 

subband filters the centroid of each region is calculated 

and this represents the subband codeword associated with 

the --members of the partition. Note that this algorithm 

produces 7 subband cod.ewords for each full band codeword. 

When a particular full-band codeword is selected, the 7 

associated subband code words are automatically selected. 

This completes the training session. To encode the 

filters, first, the corresponding full-band filter is 

derived and the optimal code word for it is found which 

produces the minimuIii distortion for the fullband case. 

This codeword completely specifies the appropriate 

codewords for the corresponding subband filters. 

Instead of using the full-band filter in the above 

algori thm, as a poi nter to the subband codewords, lower 

order filters can be used, derived from the subband 

signals along the QMF tree. More than one filters would 

then serve as poi nters and each one 

codewords for a (different) subset 

would define the 

of the subband 

filters. These subband filters would, together, describe 

the speech envelope j n the same frequency region as the 
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corresponding pointer filter. For the purposes of 

simulation and in order to compare the results of this 

method to those of the third method, two half-band 

filters were used as pointers at each time, derived from 

the signals in the bands 0-2000 Hz and 2000-4000 Hz 

respectively. The first filter, describing the speech 

envelope between 0-2 kHz, was used as a pointer for the 4 

subband filters corresponding to the frequency regions 0-

500 Hz, 500 Hz-I000 Hz, 1000 Hz-1500 Hz and 1500-2000 Hz. 

(bands 1 to 4). The second filter, describing the speech 

envelope between 2-4 kHz, was used as a pointer for the 3 

subband filters corresponding to the frequency regions 2-

2. 5 KHz. 2. 5-3KHz and 3-3. 5KHz (bands 5 to 7). A 7th 
-
order filter was used for the lower half-band (i.e. bands 

1-4) and 5th order filter was used for the upper half

band (i.e. bands 5-7). The log area ratios (LAR) were 

used to vector quantize the half band filters. 9 bit 

codebooks were used for each filter giving a total of 18 

bits for the side information. Both transmitter and 

receiver hold the halfband and subband code books as well 

as the table of associated pairs between each halfband 

fi 1 ter codeword and set of corresponding subband fi 1 ter 

code words. 

therefore 

The index 

sufficient to 

codewords in each case. 

of the halfband codeword is 

identify the "optimal" subband 

The full search -method was used for the m.s.e. vector 

encoding of the LAR. The use of two half-band filters 

instead of the full-band filter was dictated from 

computational considerations. The complexity of an 18 bit 

codebook is much larger than the complexity of two 9 bit 

codebooks. The LAR were used instead of any of the 

Itakura-Sa1to variants (see chapter 4) in order to 

provide direct comparison \·11 th the scalar codi ng method 

of [11. In [2] a comparison of coding fullband filters 

using first an LAR measure and. then, the Itakura-Sai to 

measure showed no clear subj ect! ve preference for any of 

the two algorithms. 
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The above structure provides a 9-bi t codebook for 

each of the 74th order fi 1 ters but the total bi t rate 

required for their transmission is only 18 bits per 

analysis frame instead of 9 x 7 = 63 bits which would 

have been necessary if conventional 9-bit VQ was used for 

each subband filter. The penalty paid for the bit 

reduction is a suboptimal choice of code words due to the 

constraints imposed by the selection algorithm. A 

comparison of the above method of quantization with the 

third method, in terms of coding efficiency, will be 

presented later on. 

In the third (and last) method to be presented here, 

the 7 subband filters were encoded independenty from each 

other. Separate training sets for each subband filter 

were generated by splitting a large segment of speech 

into subbands and analysing blocks of speech to obtain 

4th order filters for each band. The training set 

consisted of 111 sec of speech segments (sampled at 8 

kHz) from 16 different male and female speakers. No 

silence blocks were present in the training set of speech 

segments. This training set wa.s used for all of our 

code book training procedures. The frame size for the LPC 

analysis was 192 samples or 24 msec long. The filter 

coefficients were transformed to LAR and vector quantized 

using the full search LBG algorithm with a mean square 

error criterion. Codebooks of 1-9 bits were generated for 

the first band (0-500 Hz) and 1-8 bits for all sUbsequent 

bands. For the purposes of comparison the LARs Were also 

scalar quanti zed using the method proposed by Viswanathan 

and Makhoul [ 11 . The logarithm of the mean square 

distortion, over the whole training set, is plotted 

against the number of bits in figures 6.2-6.8, for both 

the scalar and vector quant1zation cases. It can be seen 

that vector quantization has a constant 5-6 bit advantage 

over scalar quantization for the bit range from 1 to 15 

bits/filter. This js equivalent to an overall bit 

advantage of 35-42 bits for the filter side information 
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for the VQ method over the scalar quantization method. * 
The distortion values above were obtained using the same 

segments of speech that were used in the training phase. 

The bit advantage indicated above must therefore be 

considered as an upper I imi t to t·he efficiency of VQ 

coding, although the large amount of training data makes 

this a fairly. representative value. The straight lines 

in figures 6.2-6.8 show the performance of the second 

method of coding described above. Since 9 bits were used 

for 4 bands for the first half of the spectrum, the 

average number of bits/band is 9/4 '" 2 bits/band. From 

the figures it appears that the resulting distortion from 

this method of coding is sI ightly higher in a bits/band 

basis than conventional VQ of the subbands. Thus it seems 

that, although for the second method all 4 subbands are 

encoded together as. a vector, which should be able to 

take advantage of correlations amongst the different 

filters from each subband, the ensuing operations 

introduce enough inaccuracies to overcome this advantage. 

The third method, of directly encoding the subband 

filters independently was therefore used in all further 

simulations. This method of encoding the short term 

envelope of the speech signal offers clear advantages 

over scalar encoding. In addition, since the allocated 

bits are split amongst 7 codebooks of small dimenSions, 

the complexity is very low compared to the equivalent VQ 

encodi ng of the fu ll·band signal. 

Since the subband filters are encoded 

some criterion has to be applied 

determine the bit allocation amongst 

subband filters. The criterion chosen 

in 

the 

was 

separately, 

order to 

different 

that the 

spectral distortion should be approximately constant over 

the whole frequency region. This criterion is usually 

*The a hove advantage is consistent with the assumption 

that significant (linear and non-linear) correlations 

exist among the subband filter parameters. 
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observed when full band LPC analysis and coding are 

performed. This is known to 

subjective criteria for the 

aim was, therefore, to find 

perform well and conform to 

telephone band speech. The 

that bit distribution which 

minimized the sum of the mean square'LAR distortion from 

each band, uniformly 

total number of bits. 

on a linear scale 

weighted, subject to a particular 

The distortions/band are replotted 

in figures 6.9-6.15. (crosses). A 

comparison of the 7 curves reveals that the distortions 

in each band for any fixed number of bits are unequal and 

that they decrease as the center frequency of the bands 

increases. This can be attributed to the fact that as the 

frequency increases the spectral activity (i.e. the 

number of different possible shapes) decreases. Sixth 

order polynomials were fitted to these points as shown by 

the continuous lines in figures 6.9-6.15 using a least 

squares routine (E02ACF) from the NAG library [3J. These 

polynomials define functions of distortion versus bit 

rate for each band, of the form: 

6.8 

where d is the distortion, k the band index (1-7), b", the 

number of bi ts allocated for band k and fe, (be,) a sixth 

order polynomial in b,.;. 

The aim is to minimize 

7 
D = ~ d(k,b

k
) 

k=1 

subject to 

and 

7 
B = L b

k 
= constant 

k=1 

6.9 

6.10 
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1 ~ b k ~ 9 for band 1 6.11a 

1 ~ b k ~ 8 for bands 2-7 6.llb 

The upper limits for the codebook sizes were chosen on 

the basis of complexity considerations. To find the 

minimum solution {b,.:) another minimization routine from 

the NAG li brary was used [ 3) [E04UAF) . Since the 

functions f •. ,(bt<) were given as continuous and the routine 

was geared for non-integer programming 

bi ts/band b •. : were real numbers. These were 

up or down to the nearest integer value. 

bit rate constraint of 6.10 was violated, 

the resulting 

simply rounded 

If the average 

bits were added 

or subtracted from the band allocations such that this 

resul ted in the minimum deviation from the optimum real 

number allocation. The bit distributions for 18, 30 and 

40 total number of bits is given in table 6.Tl. 

bits/band 1 2 

18 5 4 

30 6 6 

40 7 7 

Table 6.Tl Optimal bit 
. subband 

Note that for a total number 

3 4 

3 3 

5 4 

6 6 

distributions 
filters 

of bits equal 

5 6 

1 1 

3 3 

5 5 

for the 

to 18, 

7 

1 

3 

4 

the bit 

rate for the fil ters was the same as for the second 

coding method. These values were used to encode the 

filters using methods two and three. With all other 

parameters the same there was about 1 dB advantage in 

SNRSEG when method three was used, over method two. 

The bit rates/band given in table T6.1 provide an 

optimum fixed bit allocation. Variable bit allocation 

could possibly lead to improved results. To the knowledge 

of the author no formula has been proposed to relate the 
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speech power/band to the m.s.e. resulting from the coding 

of the LPC parameters. Variable bit allocation based upon 

the individual spectral distortions (LAR) in the same way 

that was used to obtain the fixed bit allocation would 

result in increased complexity and require additional 

side information. 

In a series of experiments that were carried out, the 

assumption was made that the noise power due to LPC 

spectral errors was related to the speech power through a 

relationship of the form 

2 
O'qk 

n -2R 
= A (0' 2) 2 k 

xk 6.12 

A reasonable range of values for n was investigated but 

no value was found to produce a quality better than the 

fixed allocation of 6.T1. The coded speech was, in 

general, more burbly. 

An improvement over the fixed bit allocation of 6.T1 

could be achieved as follows: Various patterns of fixed 

bit allocations could be used and the coded speech 

obtained could be compared subjectively to determine the 

optimum coefficients. With the assumption of the bit 

allocation of 6.T1 used as a starting point and that each 

band allocation is allowed to deviate from the starting 

point by ± 1 bit, the number of possible combinations can 

be calculated as follows: Assume that one of the bands is 

given an extra bit. To maintain the same total number of 

bits, the number of bits in one of the remaining six 

bands must be reduced by one. There are therefore six 

possibilities. Since the first band chosen can be anyone 

out of the 7, the total number of combinations is 

7 x 6 = 42! for a one bit deviation 'from the starting 

configuration. Clearly, optimizing the bit allocation in 

this fashion is quite unpractical. Therefore, the fixed 

bit allocation dictated by the average distortion per 

band curves and the optimization routine with an overall 
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minimum distortion over the spectrum, was used for all 

further simulations. 

6.3 SIDE INFORMATION: GAINS 

Three more parameters are additionally needed to 

complete the set required as side information for this 

coder structure: First, since the pulses in a multipulse 

algorithm are encoded using block companded quantization 

(PCM-AQF), the variances of the pulses need to be 

transmitted. The pulse amplitudes are normalized by this 

estimate and subsequently coded by a unit variance 

memoryless quantizer matched to the pdf of the pulses in 

each band. Second, the use of variable bit allocation 

requires some prior knowledge about the noise variance in 

each band. In a predictive structure this is usually 

assumed to be proportional to the LPC residual variance, 

power of the residual needs also to be hence the 

transmitted. Finally, 

low bit rates would 

since variable bit allocation at 

lead to zero bit quantization in 

order to preserve the short signal spectrum, noise of the 

right variance needs to be injected into the empty bands. 

Therefore the variance of the LPC residual is also needed 

for reproducing the short term spectrum of the signal. 

This follows from the decision to transmit the LPC 

envelope even for the .. empty" bands in order to preserve 

the signals envelope 'with as much fidelity as possible. 

Therefore the three parameters can be narrowed down 

to two, the variance of the excitation pulses and the LPC 

residual of the subband signals. 

The variance of the nOise power injected into the 

empty bands is usually a fraction of the LPC residual 

power. This is because the empty bands represent the 

valleys of the signal in the frequency dontai n, where 

amplitude discrimination by the auditory system is poor. 

By reducing the injected noise power, inaudible 
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distortion is introduced in the speech signal whilst the 

"noisiness" perceived due to the aperiodicity of the 

signal injected is reduced. This can be considered 

equivalent to postfiltering operations for noise 

reduction in full band coding of speech [4,5). 

The variance of the subband signals for the 

requirements of the bit allocation algorithm can also be 

substituted by some other parameter which is itself 

correlated to the variance of the subband signals. Then 

the generalized form of the bit allocation formula 

derived in appendix D, can be used, once the relationship 

between the error power per band and 

be determined experimentally. This 

these parameters can 

can be achieved by 

measuring the parameter's variance to noise ratio in each 

band indi vidually (assuming parameters with zero means). 

Such measurements were made and applied qUite 

successfully and are presented in a following section. 

The common use bit allocation formula of 3.2-162 is 

based on the assumption that the quantizer performance is 

described by a formula of the form 

0-
X 

2 6.13 

where O'q'" is the subband noise variance and o-x'" is the 

LPC residual, when predictive coding is used. Since this 

is not necessari.ly so for the analysis by synthesis 

coding used here, the choice of parameters {o-x~} need not 

be the variances of the residual/band. It was therefore 

decided to use the variances of the pulses as the set of 

parameters for the side information. This provides a good 

AQF quantizer for the pulse ampl i tudes, mi ni mizl ng any 

variance mismatch for the block adaptive (unit variance) 

quantizer. The problem that immodiately arizes from such 

a choice is that the variances of the pulses cannot be 

known before the pu] ses are found. Since the number of 

pul.ses to be used in each band will depend on the results 
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of the bit allocation formula and the bit allocation 

formula requires these variances in order to determine 

how many bits, hence how many pulses to be allocated, a 

boot-strap situation arizes. 

The way this problem was overcome was to use some 

other parameter in the bit allocation formula, in this 

case the LPC residual powers, and then use these 

parameters, in a training phase, to find·how many pulses, 

on the average, are allocated in each band for a large 

amount of 

bi t rate. 

training speech data, and a 

Following this technique, 

particular 

after the 

overall 

average 

number of pulses/band were found, the coder was run using 

the variances of the average number of pulses as its side 

information. 

The actual number of pulses finally used for the 

excitation in each band will not, in general, be the same 

as the average number of pulses obtained as above. 

Therefore a variance mismatch will arize. To assess the 

extent of this variance mismatch the following procedure 

was used: 

Assume that for a particular band the average 

number of pulses {Pm <i» was found to be L where L ~ M, 

the multipulse frame. L is a function of the subband 

index, different for different bands. The rms of the 

number of pulses <model r.m.s.) is given by 

=) 1 
L 

:2 (1) RMS
m1 

l: P 
L i=1 m 

6.14a 

or 

=J 1 
M 

2 
RMS l: P (1) 

m1 
L j=1 m 

6.14 b 
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where, in the second form (6.14b), zero amplitude pulses 

are assumed to occupy locations in the frame for which no 

pulses are allocated. 

Another useful parameter closely related to the above 

is given by 

RMS
m2 

= / 1 
M 

M 
l: P 2 (1) 

i=1 m 
6.15 

RMS,·,,", can be. thought 

the LPC residual in 

of as an approximation to the rms of 

as 

approximation to the 

much as the pulses {P (1)} 

LPC residual itself, 

are an 

for the 

purpose of synthesising 

signal. Note that, both 

zero amplitude pulses 

the encoded speech (subband) 

the zero ampl i tude and the non

together, model the excitation 

subband signal. 

In a coding situation, one such value of RMS", , or 

RMS",", is obtained for each band, at the encoder. The 

7-dimensional vector comprized of these values is coded 

(the codi ng of the vector is descri bed in a later 

section) and used at both the encoder and decoder to 

derive an " optimum" pulse allocation. The pulse 

allocation algori thm assigns a di fferent number T of non 

zero pulses for each band. 

The rms of the allocated pulses {P .. (i)} is given by 

=/ 

T I 

RMS 
1 

l: P 2 (1) l,~ M 
a 

T i=1 a 
6.16a 

or 

=/ ~ M 
P 2 (1) RMS E a 1=1 

a 6.16b 
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where T is a function of the subband index (i.e. it is 

different for different bands). 

The relation between Land T is that the expected 

value of T,E(T), is (approximately) equal to L: 

1 
E(T) = 

N 

N 
1: 

n=l 
T = L 

n 

where N is the number of frames in the training data. 

6.17 

To assess the degree of variance mismatch an estimate 

of the average difference between RMS •. ,., and RMSm", (the 

model rms) , and RMS". (the rms of the pulses from the 

final pulse allocation) is needed. Since these values are 

expected to have a large variance themselves, a relati ve 

error measure is more appropriate. The measure used was: 

ERROR = ) .: 
N 

N 
1: 

n=l 

(RMS
a 

- RMSm)2 

(RMS )2 
a 

6.18 

where RMS", is either RMS., .. , or RMSm''''' N is agai n the total 

number of frames in the training data. Both RMS" and RMS", 

are functions of the time frame and the subband index. 

,Typical values for one speech file obtained for a model 

pulse distribution appropriate for a bit rate around 4.8 

kb/s are given in tabJe 6. T2. Note that subband. frames 

for which T in 6.16 was zero were not taken into 

consideration for the calculation of L or ERROR and the 

value of N was modified accordingly for these bands. 

BAND 1 2 3 4 5 6 7 

L 10 3 2 2 2 2 2 

0.28 0.21 0.16 0.15 0.15 0.15 0.21 

RMS
m2 

0.38 0.58 0.65 0.65 0.65 0.65 0.64 

6. T2 Relatj ve error bettween two model rms val ues and the rue rms vaJ.ue 



-------------------

451 

Al though the resulting errors are relatively small in 

both cases, HMS,,·. 1 is clearly preferable to HMS""" as 

RMS.", is a better approximation to HMS... In practice 

though the SNRSEG performance from using the two 

parameters was the same within a few tenths of a dB and, 

perceptually no clear preference existed between the two, 

when used in the AQF quantizer. 

6.4 BIT ALLOCATION 

The bit (or pulse) allocation formula involves a 

relationship between the resultant noise power per band 

K, 0' qk:;;:: t which is not known a priori and a side 

information parameter for each band k termed 0',,",'''. The 

general assumption made here is that a linear 

relationship exists between the logarithm of the ratio 

O'.~k'''/O'".,::Z and the number of bits allocated in that band, 

Re, i.e. 

log 

2 
0' qk 

2 
O'xk 

or by redefining the .constants: 

10log10 

2 
O'xk 

which can be written in a more familiar form 

2 
O'qk 

2 
= E*k 

6.19 

6.20 

6.21 

How the actual number of bits is translated into a number 

of pulses will be described shortly. In order to as:sess 
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the applicabii ty of 6.21 for the mul tipulse algorithm, 

the parameters RMS,·,·,·I and RMS",2 were used for O'n"~ and the 

left-hand-side of 6.20 was plotted against the number of 

bi ts R"" for different bands for one speech file (male). 

The results for RNS"" are shown in figure 6.16 and those 

using RNS"·,,,, are shown in figure 6.17. Figure 6.18 shows 

the results obtained when O'x •. ," in 6,20 represents the 

speech power/band. The left-hand-side of 6.20 in each 

case represents a time average as in SNRSEG. The straight 

line corresponding to a slope of 6 dB/bit is also shown 

for comparison. Each band was coded independently using 

the multipulse algorithm of [6l. This algorithm was used 

since it possesses low complexity. It is known that 

higher complexity algorithms fail to show any significant 

perceptual improvements at low bit rates. 

Formula 6.21 contains two band-specific constants, 

o£ *1< '" and ate.. The common use bit allocation formula of 

3.2-162 is derived 

o£*'" = constant 

under 

and that 

the assumption that 

at., = 1. The condi t 1 on 

a •. , = 1 is translated into the 6 dB per bit rule. It can 

be seen from figure 6.16 that in using RMS"" for O'x",,'" in 

6.20 (or 6.21) this situation is approximately true. This 

is not so for figure 6.17 where the curve for the first 

band is very different from the curves for the rest of 

the bands and therefore o£*t<.'" = constant cannot be 

assumed. 

The more general solution to the bit allocation 

problem based on 6.21 under arbitrary and unequal o£*I"'" 

and at., was derived and is presented in appendix D. The 

appropriate constants o£~: •. ,'" and a,., for each band were 

calculated from the data of figures 6.16 and 6.17 using 

straight line fitting routines. Although the new bit 

allocation formula provided a marked improvement in the 

performance of the coder usIng RNS,,,,o,, no perceptual 

advantage was obtained for RNS,·.·,·I confirming the results 

of figure 6.16. 
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In 6.21 R,< is the equivalent bit rate/sample. In 

mul tipulse coding 

each sample is not 

are allocated on 

(a delayed decision 

coded individually 

a block (frame) 

algori thm) though 

but, rather, bits 

basis. Assuming M 

samples/block, R,., can be replaced by p" = MR,., , the number 

of bits/block. Formula 6.21 can now be modified to 

2 
O'xk 6.22 

For simplicity E"'k'" = constant and aK = I, although the 

basic assumptions also hold for the general case as shown 

in appendix D. 

Ramstad's algorithm (see Appendix C) can be modified 

to operate on a block basis as follows: 

In the conventional formula, the assumption that the 

difference in bits allocated to two bands a and b is 1 

<see equation C4, appendix C). i.e. 

R - R = 1 a b 6.23 

leads to the result 

2 
1 

0' 

log2 
xa 

= 1 ---
2 2 

0' xb 

6.24a 

or 

0' /0' = 2 
xa xb 6.24b 

which implies that halving O'XK is equivalent to adding 

one bit to band k. The algorithm was designed to deal 

with the constraint of integer bit allocation i.e. 
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min [R - R J = 1 
a b 
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6.25a 

6.25b 

Since the bits in the present scheme are allocated on a 

per block basis, only the total number of bits/block need 

be an integer, hence one can afford to use: 

1 

}! 

where M is the multipulse frame size in samples and 

1 

M 

where m is an integer. 

this leads to 

and 

p -p = m 
a b 

i.e. an integer bit allocation/block. Since 

for 

R -R = 
a b 

1 1 og2 
2 

0- xa 
2 

2 
o-xb 

6.26a 

6.26b 

6.27a 

6.27b 

6.28 



then 

and 

R -R = a b 
1 

M 

1 1 
log2 = 

M 2 

0' xa 

0' xb 

1 

0' /0' = 2 M 
xa xb 
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6.29 

2 

6.30a 
2 

6.30b 

Therefore a reduction in the bit rate per sample R", by 

l/M bi·ts (or, equivalently, a reduction of the bit 

rate/block P« by 1 bit) is equivalent to reducing O'x,< by 

a factor 2'/M. 

The modified Ramstad algorithm can therefore be 

described in terms of the following steps: 

1. Start from the maximum O'x><. Allocate 1 bit/block to 

this band and divide O'x," by 2'/~I. 

2. Subtract l/K bits from the total bi t rate calculated 

on a per sample basis 1. e. from R = 1: R,,, or, 

equivalently, subtract 1 bit from the total bit rate 

calculated on a per bloclr basis 1. e. from P = l: P,,,,. 

3. If R (and P) now equal zero exit else goto 1. 

Noise weighting can be applied as in appendix C by 

replacing each 0' x",,,·" by (O'x,,,"')"'. It was found that the 

best resul ts, perceptually, 

weighting was used. 

were obtained when no 
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6.5 PULSE ALLOCATION 

Once the bits have been allocated they have to be 

translated into a number of pulses. For the coding of the 

pulse amplitudes 3 or 4 bits can be used according to the 

overall bit rate. For operation around 9.6 kbs/sec 4 bits 

per pulse are appropriate whereas for 4.8 kbs/sec 3 

bi ts/pulse are used. In addition, for each block, the 

pulse positions have to be transmitted. The required 

number of bits needed is given by the following equation 

n! 6.31 
e! (n-e)! 

where n is the (multipulse) frame size and e is the 

number of allocated pulses. B is rounded up to the 

nearest integer. In effect, the relationship between bits 

allocated and number of pulses is given by: 

n! B = 3*e + log2 [ ________ J 
e! (n-e)! 

6.32 

for 3 bit coding, and 

n! B = 4*e + log? [ ____ __ 
- e! (n-e)! 

6.33 

for 4 bit codi ng, where ( J denotes roundi ng up to the 

nearest integer. 

Setting the framesize to 16 msec, results in 16 

samples/frame for each subband, whereas for the fullband 

case this results in 128 samples/frame. A plot of B 

versus e in equations 6.32 and 6.33 1s shown in figures 

6.19 and 6.20 for n = 16 samples and n = 128 samples 

respectively. These relationships are also given in 

tables 6. T3-6. T6 where the bit rate in bits/sec and also 

the number of bits per pulse is given. Various 
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conclusions can be deduced from the graphs: The fullband 

graph of figure 6.20 shows an almost linear relationship 

between the number of bits and the number of pulses, 

which in turn implies an almost constant ratio of 

bits/pulse as can be seen from tables 6.T5 and 6.T6. (for 

1 up to 16 pulses). Also, the difference between 3 

bits/pulse and 4 bits/pulse is small for moderate bit 

rates (- 50 bits). By contrast, in the subband case, 

figure 6.19 shows a highly nonlinear relationship, where 

the number of bits/pulse decreases significantly with the 

number of pulses (see tables 6. T3 and 6. T4). Also the 

difference between 3 pulse and 4 pulse quantization for 

the ampl i tudes is significant compared to the full band 

case and for the same number of bits. 

A comparison between the two graphs reveals that for 

the same number of bits overall, more bits are allocated 

for 

the 

position 

fullband 

codi ng rather than the ampl it ude codi ng in 

case as opposed to the subband case. It 

follows that quantization of the amplitudes will be more 

cri tical in the subband case and a larger drop in SNR 

would result when the amplitudes are coded in the subband 

scheme as compared with the fullband scheme. This was 

found to be true in practice. 

For the purposes of bit allocation the graph in 

figure 6.19 is miSleading since it shows a smooth 

relationship between number of pulses and number of bits, 

as opposed to the true, staircase relationship shown in 

figure 6.21. It can be seen that the transition levels 

are quite widely spaced, especially at low bit rates. 

This is translated into an unavoidable inaccuracy in the 

pulse allocation algorithm. The situation that arises is 

that not all the bits allocated to a particular band can 

be translated into pulses, especially at low pulse (bit) 

rates. Therefore the problem of allocating an integer 

number of pulses arises, very analogous to the integer 
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bit number constraint of conventional bit allocation 

algori thms. 

The overall pulse allocation algorithm that was 

employed is shown in figure 6.22 in a· flowchart form. \ The 

gains vector (which can be modified for the purposes of 

noise shaping) is used to determine the bit vector (whose 

elements are the bit allocations per band), through a 

modified Ramstad algorithm as was described earlier. 

Next, the number of bits for each band is translated into 

a provisional number of pulses according to the inverse 

of equation 6.32 or figure 6.19. In addition, the number 

of bits left over from each band, due to the integer 

pulse allocation constraint, is stored in another vector 

(called the "excess" vector in the flow chart) whereas 

the additional number of bits required to increase the 

provisional number of pulses by one in each band is 

stored into the "required" vector. These are fed into a 

reallocation routine which allocates the extra bits 

in the "excess" vector to readj ust the number of 

pulses/band and allocate as many of the available bits as 

possible. A summary of the reallocation routine is as 

follows: Let the total number of bands with less than 16 

provisional pulses (=multipulse frame) allocated be equal 

to M. Let the component i of the "excess" vector be ",E. 

and the corresponding component i of the "required" 

vector be ",Ri.. The algorithm minimizes the sum 

SUM = b ('",Ei ' + ''''Ri') 
M 

through an iterative procedure. 

algorithm can be found in appendix G. 

6.6 GAINS CODING 

6.34 

The details of the 

The side information parameters (gains) presented by 

6.14 or 6.15 have to be coded (quantized) prior to 

transmission. There is one such parameter per band k 



459 

denoted here by G",:. For each time block of data therefore 

a vector parameter {G .. , k~l, 2 ... ,7} exists which to a 

certai n extent, is an est imate (biased or unbiased) to 

the vector formed by the standard deviation of the LPC 

residual per band. (The term "gains" is borrowed from LPC 

vocoder literature). 

An efficient way to code the vector G •. , is through 

vector APCM or block vector encoding in an AQF mode: The 

vector components are normalized by the value given by: 

6.35 

to obtain a new vector given by {G'K,k~l, .... ,7} or 

{Gk/P,k=l, .. .. ,7}. The length of the new vector is always 

equal to 1 since 

Length' =/ 7 
1: 

k=l 
G' 2 

k 
G 2 = 1 

k 
6.36 

Therefore if the vector can be considered to 

represent a point in a k-dimensional space, the 

normalization by P confines each new point represented by 

{G' ",} to the surface of the unit hypershere in the k

dimensional space. SJnce the possible locations of the 

vector to be encoded have been drastically reduced from 

the whole of the k-dimensional space to the surface of 

the unit hypershere, much fewer bits are required to 

encode the vector {G' .<} than to encode the original 

vector {G",}. The normalIzation can also be considered as 

splitting the vector {GKJ Into a parameter P representing 

its length and {G' .,,} representing its orientation in the 

k-dimensional space. 

Parameters P and {G' ,.,:} are expected to have 1 i near 

and non-linear dependencies between them and the most 

economIcal way, in terms of bits, to encode them would 
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perhaps be by encodi ng the augmented vector {G' I .. " P} The 

problem that arises is that of a choice of an appropriate 

distortion measure: The value of P would generally demand 

the i ndi vidual more encoding accuracy 

components of {G ' ,,,} which 

distortion measure. A 

structure could also be 

than any of 

implies some form of weighted 

product 

used. 

(gain-shape) 

For simplicity 

code book 

it was 

decided to encode P and {G',.,,} separately, using a scalar 

codebook for P and a vector quantizer for {G' ",}. 

Parameter P can be coded in a variety of ways. It was 

decided to use a logarithmic compression and uniform 

quantization of the logarithmically compressed value. The 

base of the logarithm used is of course unimportant. 

Logarithmic quantization of the parameter P (the overall 

gain) which is an estimate of the fullband signal's 

standard deviation is a reasonable choice since the 

intensity jnd is proportional to the intensity, as was 

mentioned 

used in 

in chapter 2. The log-linear type 

log-PCM was avoided because 

compressor 

16 bit 

representations of the original speech were available, of 

which, the 4 least significant did not contain much 

(audible) information about the signal. A log-linear type 

compressor would have placed an inappropriate degree of 

accuracy on low signal values· of· a range around the 4 

least significant bit representations. 

Five bits were used for uniform encoding of the 

logarithmically compressed P. This value could be lowered 

to 4 bits if the range of the input signal was confined 

to 12 bits (which is considered as adequate for most 

applications). The value of 5 bits leads to an almost 

imperceptible degradation of the signal compared to the 

uncoded case. The update of P (and {G ' ",}} was done every 

16 msec. Further bit savings can be made by 

di fferentially encod! ng P: Successi ve values are highly 

correlated as would be expected. A first order long term 
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autocorrelation coefficient of about 0.99 was obtained 

for the logarithmically compressed value of P. 

The vector {G' ,.,) was encoded using the full search 

LBG algorithm. In a first attempt, an m.s.e. criterion 

was used directly on the components for {G' K}. This was 

found unacceptable since it distributes the distortion 

equally amongst the vector components. This implies that 

when one or two components 

that their values are much 

are dominant in 

higher than the 

the sense 

rest, the 

distortion in the smaller components can actually exceed 

by many· times the component values themselves. Consider 

figure 6. 23a, b, c, d. The thick line represents 4 spectral 

envelopes from successive speech blocks of the uncoded 

Signal. The envelope was obtained through a 12th order 

autocorrelation analysis. The thin line represents 4 

envelopes from the coding noise obtained by subtracting 

from the 4 time domain blocks of uncoded speech signal 

the corresponding time-domain blocks of coded signal. 

Again a 12th order autocorrelation analysis was 

performed on the noise Signal. Although the noise signal 

cannot be considered as an all-pole signal the envelopes 

obtained in this way were accurate enough for our 

purposes. The coded signal used to obtain figure 6.23 was 

processed through the algorithm described in this 

chapter, but with the gains side information left 

uncoded. It can be 'Seen that the envelope of the noise 

remains under the speech envelope throughout. Figure 

6.24(a,b,c,d) 

gains encoded 

It is clear 

was obtai ned as above but wi th the 

usi ng a m. s. e. on the components of {G,,,). 

that the level of noise in the higher 

frequency range is unacceptable. Ni ne bits were used for 

the codebook. 

Figure 6.25a,b,c,d represents the same blocks with 

each component of the gains vector logarithmically 

compressed prior to vector encoding with a m.s.e. 

cri teri on. It can be seen that the resulting envelope 
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distortion is much smaller than before. Nine bits were 

used for constructing the now code book. A comparison 

between a file with coded and uncoded vectors revealed a 

small but perceptible degradation. Vector prediction is 

expected to be beneficial in encoding {G' ,d as well. The 

correlation (in the spectral envelopes) of successive 

speech frames is clearly demonstrated in the above 

,figures. 

6.7 PULSE AMPLITUDE CODING 

The pulse amplitudes were coded in an AQF mode: The 

amplitudes in each band were normalized by RMS", 1 or RMS",", 

and then encoded using either a unity variance Gaussian 

quantizer or an optimum quantizer. At the decoder, the 

quantized values were scaled back using the inverse of 

the normalization factor that was used at the transmitter 

side. 

The optimum quantizer was obtained through the Max

Lloyd procedure implemented using the LBG algorithm to 

create one dimensional vector code books. A different 

codebook was trained for each band. The training data 

used were the unquantized <normalized by 

amplitudes, obtained during the-analysis 

algorithm. The pdfs of the pulse amplitudes 

RMSm1 pulse 

phase of the 

for each band 

are shown in figures '6. 26a-g. Less data was available for 

the training phase for the hIgher bands as opposed to the 

lower bands because the pulse allocation algorithm 

allocates more pulses to the lower than to the higher 

bands. Blocks with zero pulse allocation were of course 

excluded from the calculation of the pdfs. The total 

number of training data used for each band is given below 

BAND 1 2 3 4 5 6 7 

----------------------------------------------------------
Number 44315 10954 3684 2188 1558 943 772 
of pulses 
---------------------------------------------------------

Table 6.T3: Total number of training data per band 
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The number of bins was obtained by dividing the total 

range of pulse amplitude values by the square root of the 

corresponding number in table 6.T3. The superimposed 

curves describe the Gaussian distribution given by 

_(x-x)2 
exp [ ____ J 6.37 

20' 2 
x 

The solid curve describes the distribution N (0,1) 

whereas, for the dashed curve the distribution is 

N (x, O'x"') where x and O'x'" represent the mean and variance 

of the actual training data. A comparison between the 

solid and dashed curves shows the degree of variance 

mismatch when a unit variance gaussian quantizer is used 

for coding. It can be seen that the mismatch is fairly 

small. 

The distributions can be seen to diverge from a 

Gaussian towards a bimodal distribution as the subband 

index is increased. This is also reflected in the 

quantizers designed with the training data of fig. 6.26a

g using the LBG algorithm. Fig. 6.27b-h shows the optimum 

quantizers for bands 1-7. Fig. - 6. 27a shows a gaussian 

quantizer for comparison. From figure 6.27 it can be seen 

that the mid-range step sizes grow smaller as the subband 

index is increased at the expense of the low range step 

sizes. The SNRSEG results from using the two types of 

quantizer (Gaussian and optJmum) were the same usually to 

wi thin a tenth of a dB. This was perhaps to be expected, 

since the optimum quantizer departs from a Gaussian type 

when the allocated number of pulses is small, which in 

turn implies a low signal power in the relevant band. It 

follows that the resulting quantization noise variance 

from this band will also be small since it is somewhat 

proportional to the speech power in that band. Also, 

informal listening tests revealed no preference to coding 
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wi th a Gaussian or an optimum quantizer. This perhaps 

reflects the fact that the locations of the pulses are 

more crucial than their actual amplitudes for low pulse 

densities. 

The mul tipulse algorithm used to encode each band 

separately, (once the allocated number of pulses were 

known), was that of reference [61, employing a sequential 

(iterative) search with no intermediate, overall 

amplitude optimization. The autocorrelation approximation 

was used to substitute for all autocovariance estimates. 

Full details of the algorithm are described in 

appendix F. 

6.8 PREFERRED SIMULATION PARAMETERS FOR A 4, 8KBITS/SEC 

CODER 

A three stage QMF tree was used for the subband 

splitting. The same 32-tap filters were used at each 

stage. The filter coefficients were obtained from table 

3.2-T7 (chapter 3). The eighth band was not encoded at 

all, and zeros were used in the synthesis QMF in place of 

the eighth band. The resulting sampling frequency 

for each subband signal was 1KHz. The LPC frame size used 

was 32 samples (32msec). The --LPG coeffiCients were 

obtained using the Burg method. This analysis technique 

is particularly attractive here, considering the small 

number of samples used in the derivation of the 

coefficients. Fourth order fil ters were used in each 

band, vector quanti zed, with the number of bits given by 

table 6.Tl for a total number of bits equal to 30. 

{RMS..,'} of 6.14 was 

every 16 samples 

coincide with the 

16 msec duration), 

used to represent the gains obtained 

(16 msec). Two such frames (which 

multipulse analysis frame, again of 

comprised an LPC frame. The update 

rate for both the LPG frame and the multipulse (gain) 

frame was the same as the corresponding frame duration. 

No block overlapping was used. To obtain {RMS" .• ) the 
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average number of pulses allocated per band were 

estimated in a training phase. These values are shown in 

table 6.T2 (L). To obtain L the LPC residual was used as 

the side information to the bit allocation algorithm. 

Having estimated L for each band, RMS"" for each band was 

obtained using equation 6.14, after the L pulses were 

found by running the multipulse algorithm through a dummy 

run for each block. 

The mul tipulse algorithm, 

to determine the gains and in 

described in the previous 

used both in the dummy run 

the actual coding was that 

section. The gains were 

normalized by the overall rms value which was coded using 

5' bi ts whereas the normal i zed gai ns vector was coded wi th 

9 bits. (With log compression in both cases). 

Three bit Gaussian quantizers were used for coding 

the normalized by RMS ... " pulse amplitudes. For the "empty" 

bands, where no pulses have been allocated, white noise 

was - used at the receiver side of the algorithm to drive 

the LPC filters. The rms of the noise was the same as the 

value of RMS,·,,, for the corresponding band, mul tipl ied by 

a "post-filtering" factor of around (0.5-0.7). Forty 

seven bits were used for coding the pulse amplitudes and 

positions, bringing the total bit rate to 4.8 kb/s. These 

were distributed amongst the bands according to the pulse 

allocation algorithm,--for which the front end section was 

the modified Ramstad method mentioned above. A Ramstad 

ratio of 2 was found to give the best performance 

perceptually (i.e. equivalent to no noise shaping). 

Increasing values gave 

coded speech whereas 

a more "burbl y" qual i ty to the 

for smaller values than 2 a 

"whispering" 

background. 

image effect could be heard in the 

Traini ng data for the code books were derived usi ng 

speech segments from 16 dj,fferent speakers. The number of 

trai ni ng vectors used for the LPC code books was 3487, 
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giving a minimum training vector number versus codebook 

level ratio of 3487/64<><55 which must be considered as 

adequate. The number of training vectors for the gains 

codebook was 6975 giving a training vector number versus 

code book level ratio of 6975/512"'14. This number is 

considered to be rather low and better code books can be 

expected for a larger number of training data. 

The noise shaping factor g (equation F1 of appendix 

F) was kept at 0.8 for all bands. No attempt was made to 

evaluate the effect of changing g. 

6.9 SPEECH QUALLIY 

To assess the rate compression effectiveness of the 

algorithm, encoded speech was compared with fu1lband 

encoded speech using the muI tipu1se algorithm of (6) at 

4.8 kbits/sec. The amount of roughness in the signal 

coded with the proposed algorithm was much less than the 

one coded with the fullband algorithm especially for 

female speech. This was also reflected in the SNRSEG 

resul ts which were, in general, 2-3 dB higher for the 

proposed algorithm. The overall speech quality in the 

subband a1gori thm was degraded-- though because of cl ick 

and "knocking" sounds which al though of a very low level 

were perceptually annoying. Slight burbling was also 

evident in certain sounds. These effects were thought to 

be generated from blocks of speech where an insufficient 

number of pulses were allocated, 

unquantized parameters most effects 

Blocks of speech in which only one 

s1nce t even with 

were still evident. 

or two pulses were 

allocated gave rise to gaps in the synthesised subband 

signals. To investigate the d.istort1on effects further, 

an adaptive algorithm was designed to locate and fill the 

gaps in the subband signals with appropriately scaled 

noise samples. A significant reduction in the burbling 

type of distortion was obtained but the other types of 
I 

I 

I 

I 
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distortion remained present. A similar result was 

obtained when the coded through the proposed algorithm 

speech signal was then further encoded through the full

band mul tipulse algorithm which automatically generates 

scaled noise in the higher frequency spectrum. 

Since the cl ick and "knocki ng" distortions persisted 

it was decided that these effects were due to the 

interruption of the periodicity of the speech signal in 

and not just due to gaps in the subband the subbands 

signal. This 

obtained over 

would explain 

certain types of 

why no improvement was 

distortion when the gaps 

were filled with white noise. 

In addition to the above effects the choice of a 

model pulse rms such as RMS"" or RMS,."", for the gains 

proved difficult to handle since, when any of the 

parameters were changed in value, there was a resulting 

change in the pulses used in 6.14 to obtain the model 

RMS. It was found necessary to obtain a new codebook each 

time any of the parameters were changed, since the old 

codebook was no longer representative of the new {RMS,n'} 

vectors. 

6.10 A NEW ALGOR ITHM 

An important drawback of subband algorithms in 

general is that the subband signals are encoded 

independently, although significant linear and nonlinear 

correlations exist between bands. These can be split into 

four categories related to the types of parameters used 

to model the signal in the above algorithm. The first 

correlation relates to overall short term 

variations. This is taken care 

gains vector by the overall 

normalized subband powers arc 

quantization of the gains 

of by normalizing the 

rms. In addition, the 

interdependent. Vector 

vector exploits these 
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redundancies with significant savings in terms of bit 

rate. 

Dependencies also exist amongst the LPC filters from 

different bands. A straightforward way to take advantage 

of these particular redundancies is to use fewer vectors 

of larger dimensions whose components derive from more 

than one LPC filter. Since the bit allocation for the LPC 

filters is based on the minimization of the same 

distortion criterion used in the VQ of the LAR, the same 

LPC bit allocation algorithm can be used on the combined 

vectors. The penalty from this approach is a significant 

increase in complexity. 

The last redundancy is related to the pitch structure 

within each subband: The multipulse algorithm itself does 

not involve any pitch prediction. This problem is 

accentuated by the fact that the same pitch information 

needs to be specified in all the subbands. Encoding all 

the subband signals individually wastes bits, in order to 

provide what is essentially the same pitch information, 

to each band individually. 

One way to conserve bits is to place constraints upon 

the possible locations for the_pulses in the subband 

exci tation signals. An analytically tractable way to do 

this is to constrain the pulses in all the bands for 

which an exc! tation signal is to be transmitted (the 

.. passbands" ), to occupy the same locations with respect 

to the start of the frame. Therefore, only one set of 

locations needs to be specified for all bands. In order 

to avoid the need for extra side information, the number 

of pulses per band must also remaj_n constant across the 

bands. Since bits for the pulse amplitudes are stIll 

needed for each band there is a limit to the maximum 

number of passbands, whi 1st the actual number per frame 

can be made adaptive. 
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Let the error power between the coded and original 

subband signal in band j and for I pulses be p., z. Instead 

of minimizing P" I separately for each band the overall 

error power is formed: 

P = 
I 

M 
1: 

j=l 
6.38 

where M is the total number of passbands for the current 

frame and {j = 1,2, .... M}, the passband indices. 

Instead of selecting each pulse location to minimize 

P", for band j, the pulse location m" can be chosen which 

minimizes P, in 6.38. The pulse amplitudes can be 

optirnized individually for each band, as will be seen in 

section 6.10.2. 

An iterative algorithm can be employed as before 

where each additional set of pulses (related to only one 

location rn, and several bands) can be chosen to 

sequentially minimize P,. 

At each stage of the minimization process there will 

be dominant bands j for which P j z will be large. These 

bands will mostly determine the -'chosen pulse location. As 

more pulses are introduced, the error p" I for the 

previously dominant bands will be reduced and other bands 

will now become dominant, therefore, pulse locations 

which are good choices for all the bands will eventually 

be found, given enough bits. Note that since the 

amplitudes are individually optimized for each subband a 

monotonic 

guaranteed. 

decrease in distortion in all bands is 

Assume that for the first few pulses one dominant 

band exists: A schematic graph of distortion versus pulse 

rate is shown in figure 6.28a for- this band. For those 

bands which have a high correlation with the first 
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dominant band, the first few pulse locations will also be 

good choices, although the distortion will be expected to 

reduce at a slower rate (figure 6. 28b). For those bands 

wi th low correlation with the dominant band, the first 

few pulses may reduce the distortion by very little (fig. 

6.28c) and only when the noise power in the previously 

dominant band is reduced sufficiently, the bands with low 

correlations with the first, previously dominant band, 

will receive pulses whose locations are good choices in 

terms of minimizing the error power in these bands. 

6.10.1 Choice of Passbands 

Due to the 1 imi ted number of avai lable bits not all 

bands can be included in the pulse allocation minimizing 

Pr in 6.38. The spectrum is therefore divided into a 

number of passbands and stopbands. A simple but effective 

way to implement a decision algorithm is to use the same 

bit allocation routine as in the previous coder structure 

(section 6.4). This algorithm (modified Ramstad) divides 

the available bits amongst the bands in order to minimize 

the total mean square error. It also divides the spectrum 

into passbands and stopbands via a threshold rule: bands 

that receive (a positive number of) bits are considered 

as passbands whereas the remaining bands are considered 

as stopbands. 

The same procedure can be followed here al though an 

important modification must be implemented: Since all the 

passbands are modelled with the same number of pulses 

there must be a minimum number of pulses that can be 

used, related to the minimum pitch period that can be 

encountered. A reasonable number is 3 pulses for a frame 

size of about 16 msec. For a particular band to be 

considered as a passband it must receive, in the bit 

allocati.on formula, at least (~1 pulses) x (3 bits each 

for the ampl i tudes) ~ 9 bi ts pI us a small number of bi ts 

for its contribution to the pulse position coding. 
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Therefore a threshold value for the allocated number 

of bits which is higher than zero must be used to divide 

the spectrum into stopbands and passbands. The 

appropriate value for the threshold can be determined 

from bit allocation considerations such as above, from 

SNRSEG measurements, or listening tests. It was found 

that for 4.8 kbit/sec coded speech a threshold value of 

around 11 bits was appropriate. 

Note that the bit allocation algorithm in this case 

is only used as a 

decision dividing 

preliminary stage to implement a 

the spectrum into stopbands 

soft 

and 

passbands. Once the division is decided, no further use 

is made of the number of allocated bits, since the 

minimization of P. in 6.38 takes into account the 

relative importance of each band in the total 

reconstruction error. The role of the bit allocation 

algorithm is not therefore as crucial as in the previous 

coder structure. 

Because of difficulties, already mentioned, in using 

the RMS"" and RMS",z parameters as side information, the 

side information parameter O'x~,"" in 6.22 was chosen to be 

represented by the variance of the LPC residual in each 

band. This simplifies the ~lgorithm. Furthermore the 

resul ting code book of gains does not depend on the bit 

allocation and puls~ allocation algorithm as in the 

previous coder which provides a more robust system: the 

gains codebook, once obtained, can be used for a range of 

overall bit rates which was not possible in the previous 

coder. 

Using the above threshold val ue of 11 b1 ts it was 

found that the maximum allowable number of passbands 1s 

four. The percentage number of time blocl,s allocated a 

particular number of passbands 1s given below in table 

6. T7. 
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number of passbands 1 2 3 4 

% of time blocks 27.1 51. 6 16.8 4.5 

Table 6.T7: Percentage number of time blocks allocated 
a particular number of pass bands 

The above represent average values over 5 speakers (2 

male and 3 female). Individual variations were found to 

be small. 

6.10.2 Pulse Allocation 

All passbands are allocated the same number of 

pulses. Furthermore these pulses are constrained to be at 

. the same location (with respect to the beginning of the 

frame) across the bands. Each pulse set location and 

amplitudes are found iteratively as follows: 

Assume that 1-1 pulse sets have already been 

allocated. To find the shared location mt and the optimum 

amplitudes gIj for each band j of the Ith pulse set 

proceed as follows: Let 

be 

N 
= l: 

n=l 

the 

{Xw., (n)} 

from the 

equation 

I 2 "N I 2 
[ewj (n) 1 = L [Xwj (n)- l: gijhwj (n-m

i
) 1 

n=l i=l 
6.39 

weighted error power for I pulses in band j 

are the input speech samples minus the memory 

previous frame and appropriately weighted, as In 

F5b of appendix F. {hw., (n)} are the i mpu lse 

response samples of the modified filter as in F4 of 

appendix f. Let 

11 
E 

j=l 
6.40 



473 

be the total weighted error power for I pulses. Here M is 

the total number of passbands. 

The aim is to minimize p" for each location m" with 

respect to all pulse amplitudes g.j. This is the solution 

to the equations: 

= 0 

from eq. 6.40 and 6.41 

M 
l: 

k=1 
= 0 

j=l,2""M: 6,41 

j=l,2, .... M 

6.42 

k=l,2, .... M 

equation 6.42 reduces to a set of M: independent equations 

aP
1j 

= 0 j=l,2, •.•• M 
ag

Ij 

since 

1}P lk 
0 = 

ag
Ij 

Equation 6.39 can be written as 

where 

. 1-1 
e

Wj 
(n) = X (n) wj -

1-1 
J. 

1 "'J 

6.43 

6.44 

6.46 

6.46 
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can be considered to be the error at the 1-1 stage. The 

solution of 6.43 using the expression in 6.45 for P jl can 

be shown to be (appendix F) 

= 

N 
1: 

n=l 

N 

e I-1(n)h (n-m
I

) 
w w 

2 1: [h
w 

(n-m
I

) J 
n=1 

or, through autocorrelation approximations 

1-1 
Rje h (m

I
) 

Rjhh(O) 

where the subscript w is implied. 

6.47 

6.48 

The minimum power for location m. can be shown to be 

(appendix F) 

P min 
jI 

also, using 6.40 

or 

P min 
I 

M: 
= 1: 

j=1 

P min = 
I 

P min __ 
I 

N ? 
1: g Ij

j =1 

M: 
l: 

j=l 

6.49 

6.50 

6.51a 

6.51b 

The location m, is chosen (through exhaustive search over 

all m.) which maximizes 



M 
E 

j=1 

? I-1 R
j 
-e h(m

I
) 

--------
Rjhh(O) 
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6.52 

The term R,e'h(mi), whose calculation is necessary in 

order to find the location and amplitude of the next 

pulse I+1 can be evaluated from the recursion: 

6.53 

with glj given by 6.48. 

6.10.3 Pulse locations and amplitudes 

Let the number of passbands be M and the number of 

pulse sets allocated be K. The frame size is N(='16). 

Assuming 3 

total number 

bit quantization for the amplitudes, the 

of bits required for the amplitudes is given 

by: 

MxKx3 bits 6.54 

Using enumerative coding, the number of bits required for 

the locations is given by: 

I N! bi"ts og2 ----
K! (N-K)! 

and numerically, rounded up to the nearest integer: 

no. of pulses/band(k) bits 

1,15 4 
2,14 7 
3,13 10 
4,12 11 
5,11 13 
6,10 13 
7,9 14 
8 14 

Table 6.T8: Number of bits required for the 
encoding of the pulse locations. 

6.55 
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The total bit requirement for K pulse sets can be found 

using (from 6.54 and 6.55) 

E = 3.M.K + log2 
N! 

bits 6.56 
K! (N-K! ) 

rounded up to the nearest integer. 

Alternatively, knowing M and E, K can be found from 

6.56. Some values are given in table 6.T9. 

number of Total bit rate (E) 

pulses (K) 1 2 3 4 number of passbands 
(M) 

1 7 10 13 16 

2 13 19 25 31 

3 19 28 37 ,@ 
4 23 35 @ 59 

5 28 '@. 58 

6 31 
, ...... 
:49l ,- .... 

7 35 56 

8 38 62 

9 41 

10 43 

11 46 

12 @ 
13 49 

14 49 

15 49 
r· .... 

16 '48; 
~- ... ' 

Table 6.T9: Number of bits required for the encoding of 
both the amplitudes and locations of the pulses 

To maintain a bit rate not exceeding 4.8 kb/s, with 

30 bi ts per 32 mscc = 937.5 bi ts/sec for the LPC fll ters 

and (5 + 9) 

giving a 

bl.ts 

total 

per 

of 

16 rnscc = 875 bits 

1812.5 bits/sec 

for the 

for the 

gains, 

side 
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information, the pulse locations and amplitudes must be 

coded with no more than (4.800-1812.5) = 2987.5 bits or 

47.8 bits/frame for a 16 msec frame. Therefore, the 

values in circles in table 6. T9 should be used. In the 

simulation, the values in squares were used for M = 1,2 

which increase the bit rate by 12.5 and 75 bits/sec 

respecively. Therefore the maximum bit rate for this 

coder is 4.875 kbits/sec. 

The coder was run in simulations using the above bit 

rates. The same code books were used for the LPC fi I ters 

as in the previous coder. 

replaced by the rms of 

The gains side information was 

the LPC residuals and a new 

codebook was trained for these data. Empty bands were 

injected with white noise as before. 

Al though there was a noticeable improvement over the 

previous coder structure, particularly in terms of 

"burbling" sounds which were now eliminated completely, 

some of the background clicks and "knocking" sound still 

persisted. To identify the source of these distortions 

two simulations were performed. In the first case, the 

passbands were left uncoded i.e. the subband signals for 

the passbands were passed through, from the QMF analysis 

directly to the QMF synthesis _without any processing, 

whilst the stopbands were injected with appropriately 

scaled noise as before (white noise was used to drive the 

corresponding LPC filters). In the second case the 

passbands were coded for 4.8 kbs/sec coding whereas the 

"stopbands" were passed through from the output of the 

QMF analysis into the QMF synthesis (i.e. the LPC 

residual signals ",ere nut. replaced by white noise) . 

Through these simulations it was found that the 

distortion ",as coming from the stopbands rather than the 

passbands. 
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6.10.4 Stopband regeneration 

To improve the stopband excitation used above, a 

regeneration approach was used similar to the one that is 

used in certain RELP coders [7J. To understand the 

regeneration procedure a brief review of the QMF 

analysis-synthesis operations is necessary: 

At the output of the QMF analysis filterbank 8 

different signals are obtained. Each one of these signals 

occupies a bandwidth that extends from zero to 500 Hz. In 

effect, all subbands are frequency shifted to the 

base band frequency range. In addi tion, the upper band 

generated at the output of each stage of the QMF-tree 

gets frequency inverted in the process. This has the 

effect that every other frequency band (starting with the 

second) not only gets translated to the baseband but it 

is also frequency inverted. 

-- "For the passbands, the pulses model the envelope 

flattened subband signals. Each of these excitation 

signals is passed through the corresponding LPC synthesis 

filter and fed through the QMF synthesis tree which, in 

effect, translates each subband signal to its appropriate 

frequency range, frequency inverting the bands to their 

original orientations at each stage and, finally sums the 

outputs to produce the full-band signal. 

The QMF synthesis tree accepts 8 lowpass inputs 

(0-500 Hz), which are frequency translated, through the 

tree, into 8 contiguous, 500 Hz Wide, bandpass slots to 

occupy the frequency range from 0-4000 Hz. 

Consider the situation where only one passband is 

allowed, the one that would occupy the bandpass slot 

0-500 Hz in the fullband signal at the output of the QMF 

tree. Further assume that the excitation signal (i.e. the 

pulses generated through the algorithm) from thIs band 1.s 
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dupl icated for the other 7 inputs of the QMF tree. In 

addition, these other excitation signals are amplitude 

scaled such that their variances match that of the LPC 

residual signal in the corresponding band and, finally, 

are passed through the corresponding LPC synthesis 

fil ters. 

The last two operations guarantee that the envelope 

of the synthesized fullband signal is a close match to 

the envelope of the uncoded fullband signal. As far as 

the envelope-flattened subband signals are concerned, the 

effect of duplicating the excitation signal for the other 

7 inputs to the tree would be identical to that of 

spectral folding in figure 3.2-59b (due to the frequency 

inversion in the QMF synthesis). If every other 

exci tation subband signal (starting with the second one) 

is in addition frequency inverted before scaling and 

passed through the LPC and QMF synthesis then the effect 

would be identical to spectral translation as in figure 

3.2;"59c. The full regeneration would then be equivalent 

to the RELP regeneration in figure 3.2-60 for spectral 

folding and figure 3.2-61 for spectral translation. 

In practice, more than one passband is selected. The 

total excitation which is the sum of the excitations from 

all the passbands can then be used to drive the filters, 

correspnding to the stopbands. The rest of the operations 

are identical to the above procedure. Care was taken 

before adding the excitations together to revert any 

frequency inverted signals back 

orientations. Spectral translation 

to 

was 

their original 

perceptuall y more accepta bl e than spectral 

found to be 

folding which 

resul ts in (barely) audj ble tones. The performance 

improves further by subtracting the s.hort term dc level 

from the composite excitatIon sIgnal prior to synthesis. 

The regeneration 

quality dramatically, 

technique 

considering 

improved the speech 

the fact that no extra 
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bits were required for the improvement. The "click" and 

"knocking" sounds had disappeared completely. 

parameters 

Al though the obtained speech quality was generally 

good, for certain (female) speakers certain speech sounds 

wee degraded by a "thumping" sound which although it 

occurred rarely it was perceptually annoying. The origin 

of this distortion was identified to lie within the 

quantized LPC fi 1 ters since the degradation was absent 

when the filters were used unquantized in the 

simulations. The filters' bit rate was raised accordingly 

by using a 9 bit code book for the first band and 8 bit 

codebooks for the rest of the bands. This increased the 

bit rate for the LPC filters by about 100%. Surprisingly, 

little improvement over the above distortion was 

observed. This was unexpected since with unquantized 

fil ters the distortion was completely absent. After 

careful consideration it was decided that the distortion 

cri terion used in vector encoding the LAR's must have 

been an inappropriate measure, at least for this case of 

subband fi 1 ters. This would introduce a random element in 

the selection of code words both in the training phase as 

well as in the actual quantization coding, which could 

explain why doubling the rate introduced a very small 

improvement. 

The function of the LPC filter is to reduce the 

variance of the signal to be encoded thus reducing the 

error variance. This suggests that, the signal to 

residual error variance ratio could serve as a useful 

distortion criterion. Alternat.ively, the ratio formed by 

di vidi ng the residual vari anco obtai ned with quanti zed 

filters by the residual variance obtained with 

unquantized filters could serve as an appropriate 

criterion. This is the same as the likelihood ratio cia 
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given by 3.2-125. In order to assess the applicability of 

o/a as a useful distortion criterion a threshold value TH 

was set up and compared, for each frame and for each band 

during coding, with the function 

o 
F = 1010g10 dB 6.57 

a 

If F was greater than TH then the unquantized fi 1 ters 

were used for coding whereas if F was less than TH the 

quantized filter (where quantization was performed with 

the m. s. e. criterion on the LAR as before) was used 

'instead. The number of unquantized filters used as a 

percentage of the total (note that percentages from 

different bands were pooled together) was measured for 

several values of TH. The SNRSEG measure between coded 

and original signals was also monitored. The results are 

shown in table 6.1'10 and in figure 6.29. 

Threshold value 00 

TH (dB) 

Unquantized filters 
as a percentage 
of total (%) 0.0% 

7 

2.81. 

SNRSEG (dB) 8.33 8.95 

5 3 2 -00 

5.99 13.52 24.20 100 

9.17 9.55 9.51 9.71 

Table 6.T10: Segmental SNR as a function of the 
percentage of the unquantized frames 

It can be seen from figure 6.29 that the SNRSEG 

improvement saturated with as little as 15% of the 

quanti zed fi 1 ters been replaced with unquantized ones. 

Perceptually, even with the threshold at 5 dB (6% 

unquantized fIl ters) the performance was nearl y as good 

as with the threshold at (-00) (100% unquantized filters) 

and with the threshold at 3 dB (13.5%) it was only 

through careful listenIng with headphones that any 

difference could be observed between this value and a 

threshold at -00. The good correlation of the threshold 
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val ue with obj ecti ve and subj ecti ve quality demonstrated 

that the residual error power was a good distortion 

criterion for encoding the LAR. 

In order to incorporate this knowledge into the 

algorithm. in the vector quantization procedure that 

vector was chosen for transmission which minimized the 

residual power in that band instead of the m.s.e. between 

the LAR. Note that the codebook used was the original one 

obtained using a m.s.e. criterion on the LAR. The 

resulting speech quality was nearly as good as with 

unquantized filters. No "thumping" distortion was 

evident. It is expected that even better quality could be 

obtained if the code books were trained using a distortion 

criterion related to the likelihood ratio as opposed to 

the m.s.e. on the LAR. 

6.10.6 Speech quality obtained from the final algorithm 

- -The resulting algorithm is shown in figures 6.30a 

(encoder) and 6.30b (decoder). 

SNRSEG values obtained with 4 typical sentences (2 

male and 2 female) are given in table 6.T11 in comparison 

wi th similar results from the full band mul tipulse 

algorithm [61. both coded at 4.8 kb/s 

DANCE (F) SPEECH (M) MICHAEL (M) STREAM (F) 

multipulse 7.05 

proposed 
algorithm 9.37 

6.09 

6.87 

7.77 7.27 

9.41 9.22 

DANCE: THEY DANCED IN EXCITEMENT AROUND THE FIRE 

SPEECH: INDUSTRIAL SHARES WERE MOSTLY A TRIFFLE HIGHER 

MICKEL: THERE WAS AN OLD MAN CALLED MICHAEL FINNEGAN 

STREAM: AT THE SIDE OF THE ROCK A SMALL STREAM 
FLOWED INTO THE RIVER. 

Table 6.Tll: Segmental SNR results obtained with 
4 different speakers 
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The perceptual quality of the proposed algorithm was far 

superior compared to that of the corresponding multipulse 

algorithm, especially for female voices. The coded speech 

had a smooth and "pleasant" quality. 

6-.10.7 Coder CQrrwlexity 

In its present form the proposed coder scheme 

requires about 160 multladd operations per full band 

sample (1/8 msec). This is mostly due to the QMF 

analysis-synthesis (96 mul tladd operations per sample). 

The large complexity of the QMF structure arises from the 

fact that 32 tap filters were used for each of the three 

stages of QMF analysis-synthesis. 

It - is well known that the same performance can be 

obtained using less complex QMF structures (e.g. Parallel 

QMF) and the complexity of the QMF can be reduced to less 

than half of its present vale. Therefore, the complexity 

of the proposed coder can be made comparable (if not 

less) to that of the simplified muJ.tipulse coder of (6J. 

The detailed calculation of the coder complexity as well 

as that of (6J is given in appendix H. 

6.10.8 Further work 

The bit rate of the algorithm can be reduced further 

if the remaining redundancies are exploited. The 

gains vector as well as the overall gain parameter can be 

differentially encoded to take advantage of frame to 

frame correlations. The same can be done for the LPC 

f11 ters. In addi tion, for the LPC filters, the 

correlation between the filters from different bands (for 

the same time frame) can be e:<pl oj ted. One way to do this 

is to apply a KL transform to the vector formed by 

concentrating all the filter vectors together, prior to 

quantizing each filter individually. 
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6.10.8.1 Vector Quantization pf the pulse amplitudes 

Equation 6.45 gives the m. s. e. for unquantized pulse 

amplitudes gu. Let the quantized pulse amplitudes be 
~ 

given by gIj. Equation 6.45 can be written as: 

6.58 

were the term eWj t -,,' (n) now i ncl udes the error due to the 

quantization of the 

i = 1,2, ... I-l}. Expanding 

Using 6.47: 

~ N 
-2g Ij ~ 

n=l 

pulse 

6.58 gives 

amplitudes 

where gIj is the optimum unquantized amplitude. 

Let 

where q,,;j is the quantization error in quantizing 

The term in brackets in 6.60 can then be expressed as 

Therefore 6.60 is given by 

6.59 

6.60 

6.61 

g";.J . 

6.62 
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2 2 N 
= PjI- 1-(gIj -qlj) l: 

n=1 
6.63 

and the overall (weighted) error power is minimized when 

the term 

M 
l: 

j=1 

is minimized. 

6.64 

Let Gj be the jth (quantized> component of the gains 

vector. Expanding 6.64 using 6.61: 

Q . = 
I 

M 
1: 

j=1 

The minimization of QI 

2 

J G 2 
j 

N 
l: h 2 (n-m

I
) 

n=1 wj 
6.65 

is equivalent to a nearest 

neighbour search between an input vector given by 

{gr..:rlGj. j=1.2 ..... M} a codeword {gIj/G.,. j=1.2 ..... M} 

and a weighted mean square error criterion with weights 

2 
l: h j (n-m

I
) 

N=1 w 

N 
6.66 

The factor G., is used so that the space in which the 

input vectors are situated is made as small as possible 

thus increasing the quantization efficiency. 

Note that the input vector dimension M can take 

several. values (M = 1.2,3 or 4 in the above algorithm). 

This will require the design of a separate codebook for 

different values of M (The number of levels in each 

code book will also be different). 
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Vector quantization of the pulse amplitudes should 

lead to a reduction of the pulse amplitudes bit rate 

which is a significant term in the overall bit rate. 

Equation 6.65 describes the required codebook design 

completely. 

6.10.9 Note on Publication 

A paper enti tIed "A new approach to low bit rate 

coding" has been presented at the Fifth International 

Conference on Digital Processing of Signals in 

Communications that was held in Loughborough Uni versi ty 

of Technology in September 1988. This paper was written 

in co-authorship with Professor C. S. Xydeas and covers 

the work presented in section 6.10 of this chapter. 
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) 

f,h 

fsh 
Figure 6.1 A schematic diagram of the frequency 

dom~in operations to derive a bandpass em'clope 
from the fullband envelope. (The effects of the 

QMF amplitude rcsponce are neglected.) 
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Table 6.T3 Bit requirements for a 16 msec frame. 
Humber of samples in the frame=16, number of bits 

.per pulse amp1itude=3 

Ho of pulses Bits/frame Bits/sec Bits/pulse 

1 7 437.5 7.0 
2 13 812.5 6.5 
3 19 1187.5 6.3 
4 23 1437.5 5.8 
5 28 1750.0 5.6 
6 31 1937.5 5.2 
7 35 2187.5 5.0 
8 38 2375.0 4.8 
9 41 2562.5 4.6 

10 43 2687.5 4.3 
11 46 2875.0 4.2 
12 47 2937.5 3.9 
13 49 3062.5 3.8 
14 49 3062.5 3.5 
15 49 3062.5 3.3 
16· 48 3000.0 3.0 

Table 6.T4 Bit requirements for a 16 msec frame. 
Humber of samples in the frame=16, number of bits 
per pulse amp1itude=4 

tlo of pulses Bits/frame Bits/sec Bits/pulse 

1 8 500.0 8.0 
2 15 937.5 7.5 
3 22 1375.0 7.3 
4 27 1687.5 6.8 
5 33 2062.5 6.6 
6 37 2312.5 6.2 
7 42 2625.0 6.0 
8 46 2875.0 5.8 
9 50 3125.0 5.6 

10 53 3312.5 5.3 
11 57 3562.5 5.2 
12 59 3687.5 4.9 
13 62 3875.0 4.8 
14 63 3937.5 4.5 
15 64 4000.0 4.3 
16 64 4000.0 4.0 
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Table 6.T5 Bit requirements for a 16 msec frame. Number of samples in the frame=128. number of bits per pulse ampli tude=3 

No of pulses Bits/frame Bits/sec Bits/pulse 

1 10 625.0 10.0 2 19 1187.5 9.5 3 28 1750.0 9.3 
.,) 4 36 2250.0 9.0 5 43 2687.5 8.6 6 51 3187.5 8.5 7 58 3625.0 8.3 8 65 4062.5 8.1 9 72 4500.0 8.0 10 78 4875.0 7.8 11 85 5312.5 7.7 12 91 5687.5 7.6 13 97 6062.5 7.5 14 103 6437.5 7.4 15 109 6812.5 7.3 16 115 7187.5 7.2 

Table 6.T6 Bit requirements for a 16 msec frame. Number of samples in the frame=128. number of bits per pulse amp1itude=4 --_._" 

No of pulses -Bits / tr.ame Bits/sec Bits/pulse 

1 11 687.5 11.0 2 21 1312.5 10.5 3 31 1937.5 10.3 4 40 2500.0 10.0 5 48 3000.0 9.6 6 57 3562.5 9.5 
7 65 4062.5 9.3 
8 73 4562.5 9.1 
9 81 5062.5 9.0 

10 88 5500.0 8.8 
11 96 6000.0 8.7 
12 103 6437.5 8.6 
13 110 6875.0 8.5 
14 117 7312.5 8.4 
15 124 7750.0 8.3 
16 131 8187.5 8.2 
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Figure 6.23 a-d LPC speech (thick 
line) and noise (thin line) spectra of 
successive speech frames. The Gains 

side information was left uncoded. 

Figure 6.24 a-d LPC speech (thick 
line) and noise (thin line) spectra of 
successive speech frames. The Gains 

side information was coded using a 
m,s.e. criterion on the components 
ofGk, 

Figure 6.25 a-d LPC speech (thick 

line) and noise (thin line) spectra of 

successive speech frames. The Gains 

side information was coded by 
logarithmically compressing the 

components of G
k 

prior to quantization. 
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pulses 

Figure 6.288 Dominant band 

1 

NEP 

pulses 

Figure 6.28c A band with low correlation with 
the dominant band. 
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Figure 6.28b"A band with high correlation with 
the dominant band. 

Figure 6.28 A schematic representation of 
error power versus pulse number, for three 
different bands. 
NEP : Normalized error power. The error 
power in each band is shown normalized 
by the highest value in the corresponding 

band. 

Figure 6.29 SNRSEG results as 
a function of the number of 
frames with unquantized LPC 
cocfficients(expres')cd as a 
percentage of total.) The 
dashed line shows the SNRSEG 
value with no LPC coefficient 
quantization( 100 %). 
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The emphasis in the present work is in the inegration 

of psychoacoustic knowledge and mathematically sound, 

analytically tractable algorithms, in the fields of 

speech quality assessment and coding. 

The first contribution that this thesis has to offer 

is the extensive review 

psychophysical 

research. 

phenomena, of 

of physiological and 

relevance to speech 

This comprehensive and functional description of 

relevant mechanisms as is provided by this multi-

disciplinary analysis will hopefully serve as a 

valuable reference source to enhance further 

understanding and application of auditory perceptual 

concepts in speech research. 

This review appears in chapter 2. However, 

applications of perceptual knowledge will be found 

throughout the thesis. This is also the case for chapter 

3: Although a literature review of various rate 

compreSSion algorithms, it frequently provides 

psychoacoustical reasoning for the resulting (perceptual) 

speech quality. 

The application of perceptual knowledge is perhaps 

most explicitly made in chapter 4, where a model is 

developed. This aims to' simulate the way human subjects 

evaluate speech degradation resulting form rate 

compression. The model is comprehensive in that it does 

not only simulate the functions of the peripheral 

aud1 tory system (PAS) but, in addition, the subsequent 

processing of auditory information by the condition 

centre in the brain. 

The simulation of the PAS is achieved by processing 

the signal via the same transformations that are known to 

operate within the outer, mid.dle and inner ear. The 
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resul tant representation of the auditory signals is not 

unlike that at the output of a running spectrum analyser. 

In the present case though, the notions of a frequency 

axis, the spectral resolution and spectral magni tudes are 

redefined to comply with their auditory equivalents. 

The few 

literature, 

traditionally 

attempts, that can 

in constructing 

concentrated in 

in 

be found 

such models 

obtaining 

line with 

in the 

have 

smooth, 

If place" "envelope" representations, more 

theories in hearing. The approach in the present work was 

to incorporate such elements in the model to make it 

applicable to the measurement of time varying events. 

Such events are typical of speech sounds. The resulting 

algori thms combine elements from both "place" and 

"volley" theories. This complies with recent 

physiological and psychophysical results obtained with 

temporary variable sounds. However, the idea of 

preferential weighti ng of different time segments merits 

further investigation. 

The mechanisms by which human observers classify and 

measure different types of distortion was also 

investigated. Multidimensional procedures were used to 

create a distortion space. The-·-origin of this space is 

occupied by the uncoded speech signal. Different 

directions in the space are related to different types of 

distortion. Distortion axes are identified, such as the 

"hissing (PCM-type)"-axis and the "Roughness" axis. Coded 

speech signals are represented as points within this 

space. The distance of each point from the origin 

(Original signal) is a measure of its overall distortion. 

The projections of this distance onto the distortion 

specific axes decomposes the distortion into its 

particular types. This indicates how much distortion of 

each type is present in the coded speech segment in 

question. The distance between different coded files is 

related to the dissimilarity of distortion present in 
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each one. The dimensionality of the space is a function 

of the number of distinct distortions that can be 

identified. 

Various 

space onto 

facilitate 

procedures are used 

spaces of lower 

visual assessment of 

to 'map the distortion 

dimensionality, which 

the distortions. These 

procedures ensure that the initial distances in the 

higher dimensionali ty space are closely approximated in 

the lower dimensionality space. 

Similar distortion spaces are 

objective tests described above 

appropriately conducted subjective 

validity of the adopted approach. 

obtained from 

as well as 

tests, proving 

the 

from 

the 

The' inputs to the above multidimensional procedures 

are the "distances" measured by comparing the 

representations of the different speech signals in the 

aUditory spectral domain. This Can be considered as a 

second generation distortion measure as opposed to the 

first generation approaches which consider the difference 

between the acoustic waveforms of the signals as the 

relevant variable (noise). 

The latter part of chapter 2 suggests the way far 

constructing the thir'd generation measures: The modelling 

of processes such as pitch and roughness perception 

indicate that one should be able to measure speech 

degradation without the need to explicitly use the 

original signal for the comparison. Instead, relevant 

parameters from the coded signals (such as roughness)can 

be monitored and then compared to "standard" values that 

correspond to an undistorted signal. These values 

could have been obtained in an initial training phase. 

The above procedure is much closer to modelling 

subjective tests than previous measures: During 
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subjective tests, the human observer can only listen to 

one coded signal at a time. Therefore one cannot form a 

difference between this signal and the original signal. 

One must necessarily follow a procedure similar to the 

one outlined above in order to assess the degradation. The 

"training phase" for human observers arises naturally in 

everyday conversation but can be intensified through the 

repeated exposure to subjective tests (which establishes 

the formation of a high dimensionality distortion space). 

The increased ability of trained subjects in subjective 

assessment tasks is clearly evident. It is 

author that progressive research in 

the view of the 

the objective 

assessment of distortion should follow the above line of 

thought. 

A novel application of this new way, to obtain a 

distortion evaluation,could be in the transmission of 

speech in a realistic channel environment: Present 

systems increase the overall bit rate by including bit 

error detection and correction information for all speech 

segments. Alternatively, only the corrupted segments that 

fail a fidelity criterion at the receiver would be 

retransmitted. A fidelity criterion of this nature could 

not have knowledge of the original signal and must 

therefore be of the third generation type as described 

above. The potential savings in terms of bit rate are 

obvious. 

The transmission scheme just mentioned is an example 

of variable rate coding. Variable rate coding is 

investigated in chapter 5. It is shown that significant 

gains can be easily achieved by exploiting the silent 

segments in speech. These Occur naturally during 

conversational speech. Additional gains can be 

achieved,although of a smaller magnitude, by realizing 

that certain speech sounds are of a noise nature 

themselves (e.g. frigatives). These types of sound are 

inherently more tolerant to quantization noise and can 
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therefore be transmitted at a reduced bit rate. Smaller 

gains still can be made by considering the different 

tolerance of periodic sounds to rate compression (e.g. in 

relation to their effective bandwidths). In chapter 5 the 

procedures to employ a perceptually 'motivated criterion 

for variable rate source compression are investigated. 

The effects of the distribution of distortion are 

examined, and algorithms for both real-time and voice 

storage 

through 

provides 

applications are developed. These are illustrated 

the use of the multipulse algorithm which 

the capability of varying the bit rate 

continuously over a wide range of values at medium and 

low bit rates. 

Finally, in chapter 

developed. The reasons 

6 a new coding algorithm is 

for the development of the 

algorithm are exemplified below: 

At low bit rates it becomes increasingly difficult to 

ensure an acceptable representation of the speech signal 

over the entire spectrum. The parts of the signal that 

suffer most are the interformant valleys and the higher 

frequency range of the spectrum. This is because speech 

coders aim to minimize, explicitly or implicitly, the 

mean square error (mse) ,_between 

original Signal. In the ideal case, 

the 

the 

coded and 

minimization 

procedure ensures that the power spectral density <psd) 

of the error signal is flat across the spectrum. 

(strictly speaking this is only true where the psd of the 

signal itself is higher than the psd of the noise). For 

those frequency regions where this is not true, the psd 

of the noise follows that of the Signal). 

From a perceptual viewpoint, the relative powers of 

signal and noise in each frequency region are also of 

importance. Therefore, the audJ. bi li ty of noise is hi gher 

in the low power regions of the speech Signal. (This is 
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related to the "masking" effect of the speech upon coding 

noise) . 

Apart from the presence of coding noise in the low 

power regions of the coded signal, a·" muffled" low-pass 

effect is also present at low bit rates. It is important 

to· realize that this is also the result of minimizing the 

mse between the coded and original signals: The mse 

minimization produces 

uncorrelated with the 

a quantization noise which is 

output of the coder. This means 

that the coded signal power is less than the original 

signal power, by an amount equal to the coding noise 

power. This, together with a flat error spectrum, implies 

that the power of the signal in the high frequency 

regions is reduced considerably compared to the original 

signal, which leads to a lowpass effect. 

A popular way to compensate for the above effects is 

to optimize speech coders subject to a weighted rose 

criterion. This approach produces a mse which is not flat 

but follows 

be chosen 

a predetermined 

at will to 

shape which, 

satisfy a 

in theory, can 

predetermined 

cri terion. The total amount of noise cannot of course be 

reduced. <In fact the overall noise increases). 

This method therefore removes noise from the low 

power frequency regions and places it in the higher power 

regions of the speech signal spectrum. 

Al though the above technique has been shown to be 

beneficial for certain combinations of coder structures 

and bit rates it has not proved very effective for the 

latest generation of delayed decision coders (multipulse, 

CELP etc.) which are designed to operate at very low bit 

rates. One reason for this is that the noise spectrum 

cannot be shaped at will, due to the suboptimality of the 

coders (the mse is only partially minimized, with respect 

to the model's parameters) and the fact that the speech 
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signal is below the noise level over a considerable part 

of the spectrum. Another reason is that the lower part of 

the spectrum is much less tolerant to distortions than 

the higher part of the spectrum. Thus, although the 

masking ability of the signal is higher in the lower 

frequency range, the sensitivity of the perceptual 

mechanism is also higher: The transfer of noise from the 

low power, high frequency regions of the spectrum to the 

high power, low frequency regions is beneficial only in 

the case of moderate noise levels as in the case of 

16 kbits/sec ADPCM. 

For low bit rats it is necessary to devise a new 

approach to speech coding. This approach must ensure a 

good representation of the perceptually important part of 

the signal.A good starting point is to follow rate 

distortion theory and divide the spectrum into a number 

of passband and stopband regions [3,21, 3-94). 

This approach recognizes the fact that for low bit 

rates it is wasteful to allocate bits to frequency 

regions that cannot be reproduced with sufficient 

accuracy. This is taken into account in frequency domain 

coders [3-21, 3-85) where certain frequency regi ons are 

excluded for transmission. In contrast, this fact has not 

been taken into account in the more recent delayed 

decision coders [3-70-to 3-74, 3-79,3-80). 

Rate distortion theory in [3-94) deals with 

stationary signals. The speech signal is a non-stationary 

source with a time varying frequency spectrum and 

this must be taken into account when applying a coding 

technique based on a stopband-passband di vi si on of the 

speech spectrum. In particulal- it is necessary to 

conserve: 

a) The short-term envelope of the speech signal. The 

short-term envelope is crucial for phoneme 
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recognition and its distortion leads to 

"burbl ing" sounds. 

The"continui ty" 

structure must 

in the pitch structure. The pitch 

somehow be retained even in those 

regions of the spectrum which are considered as 

stopbands. 

Of course, the passband region(s) must be encoded as 

efficiently as possible which calls for delayed decision 

coding to be applied in those regions. 

Perceptual distortion, particular to frequency domain 

coders,arises from their inability to conserve the above 

features in an efficient manner. 

The short-time spectrum can be conserved by 

transmitting the entire spectral information with the 

same accuracy irrespective of whether it describes a 

passband or a stopband region. Efficient coding of the 

spectral information can be achieved through vector 

quantization. 

With respect to preserving the pitch structure 

certain psychoacoustic experiments are relevant [2.3-58) 

a) When a harmonic signal is shifted up or down in 

frequency the signal (i) does not sound inharmonic, 

only a pitch ,shIft is perceived. (i1) The perceived 

pitch shift is much smaller than the corresponding 

frequency shift [2.3-60). 

b) When two sets of harmonic signals of different 

fundamentals, one lowpassed and the other high passed 

are sounded together the pi tch of the lowpa'3s signal 

dominates [2.3-61). 

The first steps tOl'mrds the new algorithm were made 

in the form of the RELP coder [3-1201. In this coder it 

is recognised that the long-term speech spectrum has a 

low pass character. Hence, in accordance with 
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the arguments presented above the speech spectrum is 

split into a low frequency passband, which is usually a 

small fraction of the overall spectrum, and a high 

frequency stopband. 

The short term envelope of the whole signal is 

transmi tted in the form of the LPC coefficients. All the 

remaining bits are allocated to the coding of the 

passband excitation signal. The pitch structure is 

preserved even in the upper frequency region at no extra 

cost in terms of bits. This is achieved by creating 

images of the baseband across the spectrum through either 

spectral folding or spectral translation [3-120J. 

Although this causes the speech 

frequency shifted in the spectrum, 

the baseband is not an integral 

harmonics to appear 

due to the fact that 

multiple of the pitch 

period,this does not lead to any unacceptable 

degradations as predicted from the above mentioned 

psychoacoustical experiments. 

It is well known that the short term spectrum does 

not possess the low pass nature of the long term spectrum 

and that high power formants can be found in the upper 

frequency region. It is perceptually important to 

encode the signals within the ---formant regions wi th more 

accuracy than the regeneration procedure allows. This was 

realized by Un and Lee [3-1211 who split the spectrum 

into several passbands and stopbands. (Two passband 

regions are used,one from 0 to 500 Hz and the other from 

1000-1500 Hz). Although 

improved performance, a 

can be designed. 

this algorithm provided an 

more signal specific algorithm 

The algorithm presented in chapter 6 can be seen as a 

logIcal development to the line of thought in (3-120J and 

[3-121). A QMF structure is used to split the 

input signal Into 8 contiguous bands. Out of these bands, 

passbands are selected, whose number and frequency 
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location are made to adapt to the short term speech 

spectrum of the speech signal. The stopbands are 

regenerated through a procedure which resembles that of 

[ 3-120J . Furthermore, to exploi t any remai ni ng 

correlations across the passbands, these are encoded 

jointly through a delayed decision analysis by synthesis 

procedure which is reminiscent of the multipulse 

algorithm. Thus, the algorithm structure can be 

considered as a general ized or adapti ve RELP. Al though 

the algorithm relies heavily upon rate-distortion theory, 

its bit compression capability is also based upon a 

speech compression and speech perception model. 

As with any newly-born algori thm, 

considerable scope for improvement in 

Further work can be done in several 

there is 

performance: 

parts of the 

algorithm. Perhaps the most general modification that can 

be effected is with the coding of the passbands. It is 

clear that these should be coded in such a way so that 

their crosscorrelation can be taken into account. Perhaps 

a stochastic approach can be developed through the VQ 

procedures outlined at the end of chapter 6. 

Optimum values can be found for the various algorithm 

parameters. These parameters that describe the algorithm 

include the number of filter taps per band for the LPC 

fi 1 ters, and the noise shapi ng factor related to those 

fil ters. 

Also, the cross correlation between filters from 

different bands can be exploited. Further improvements 

can perhaps be realized if the LPC filters are 

transformed i. nto long delay (" pi tch") fi I ters through the 

addition of an appropriate deJay for each filter. These 

delays are Gxpcctcd to be highly correlated across the 

bands and thereforG requi.re a small number of bits for 

transmission. 
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A shortcoming of the present algorithm is the extra 

delay introduced by the QMF structure. At the moment this 

delay is added on top of the delay due to the estimation 

of the filter parameters. One way to avoid the additional 

delay, introduced by the QMF structure, is to use a 

system of, one forward, large transform size, DFT 

followed by many smaller size inverse DFT's to split the 

signal into pseudo-subband signals as in [3-115J. In this 

way, the transform delay can be made to overlap 

completely with the LPC estimation delay. 

It is hoped that the work contained in this volume 

will contribute to further understanding and development 

in the field of speech quality assessment and coding. 
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APPENDIX A 

Sound Intensity Measurements: 

Sound intensity is defined as the power transmitted 

through a given area in a sound field. In air, for a 

plane sound wave in a free field, the acoustic intensity 

is proportional to the square of the amplitude of the 

pressure deviations caused by the sound wave. 

Sound intensity is measured in terms of sound 

pressure level (SPL) which is the intensity of the sound 

in dB above the 

<equi valent to a 

reference level was 

reference 

pressure 

chosen to 

level of 10·-·'·Watts/cro'" 

of 2 x 10···"" N/m"'). The 

be close to the human 

absolut~ threshold at 1000Hz. Its value is about 6.5 dB 

SPL. 

··The following table gives some examples of sound 

intensity related to speech: 

Shouting at close range 

Normal conversation 

Quiet conversation 

Soft whisper· 

100 dB 

70 dB 

50 dB 

30 dB 

SPL 

SPL 

SPL 

SPL 

Closely related to SPL is the spectrum level of a sound 

which is defined as the SPL per unit frequency measured 

in dBSPL/Hz For noise-like sounds, flat within a 

frequency range of 6f the two are related by: 

dB SPL = dB SPLlHz + 10. log bf 
10 
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Sometimes, the absolute threshold of a subject for 

the sound being used is used as a reference. The sound 

level specified in this way is referred to as sensation 

level (SL). 

The physical intensity corresponding to a given 

sensation level will differ from subject to subject and 

from sound to sound. 

More information can be found in the International 

Standards Organization publication ISO R131 
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APPENDIX B 

Octave Band Filters and Derlvatlves 

The spectral d.ensi ty of a sound. 

1 Bz band. Usually an octave filter, 

is the power in a 

one-third octave or 

occasionally a one-tenth octave filter is used for 

measurements. The center frequencies are conventionally 

set to certain values. These are shown in table Bl. 

There are three one-third octave bands within an 

octave band. Thc ccntre frequency f" is half way between 

the upper fu and lower f, cutoffs on a logarithmic 

frequency scale: 

or 

f2 = f f 
c u 1 

f c 
= f /£ 

u' 

for a 1/3 octave band: f = 
II 

and the ratio between successive centre frequencies of 

contiguous filters is given by 
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Table B-T1 [a] 
Preferred Center Frequencies of Octave and One-Third 

Octave Filter 

One-third octave Octave 

16 
20 
25 

31.5 
40 
50 

63 
80 

100 

125 
160 
200 

250 
315 
400 

500 
630 
800 

1,250 
1,000 

1,600 

2,500 
2,000 

3,150 

5,000-
4,000 

6,300 

10,000 
8,000 

12,500 

16,000 
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AITRNDIX C 

Cl Positive Integer Constraints 

The solution of 3.2-162 can result in negative values 

for R,,, when the overall bit rate R is sufficiently low. 

The bands wi th negative bi ts are not transmitted and are 

therefore given 0 bits. The bit rate of the remaini ng 

bands has to be readjusted so that the total equals NR 

(equation 3.2-158). Consider equation 3.2-162 again. Let 

a and b be two bands of sufficiently high O'x, .. ,'" to receive 

a positive number of bits, then 

2 
1 

0' 

R R + log2 
a 

= 
a 2 p 

C.1 

where 

N 
I/N 

2 
P = [ TT 0' 

1=1 
xl 

C.2 

and 

2 

Rb R + 1 
log2 

O'b 
= 

2 P 
C.3 

2 
1 

0' 

from C. 1 and C.3 R -R log2 
a 

= a b 2 2 
C.4 

O'b 

Assume now that a-priori information exists about which 

bands will receive a positive number of, bits. 

The aim is to distribute the available bits among 

these bands only. Let bands 1=1,2 .... M be those bands 

with sufficiently high O'XK'" to receive positive bits. The 
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optimum bit allocation formula is again that of C.1 and 

C.3, with C.2 replaced by 

M 
2 P' = ( n 0-

1=1 
xl 

C.5 

therefore 

2 
1 0-

R R + log 
a 

= a 2 
2 P' 

C.6 

2 

Rb = R + 1 
log2 

o-b 

2 P' 
C.? 

from which it follows that 

2 
1 

0-

R R = log2 
a -a b 

2 2 
C.B 

o-b 

It can be seen that equtions C.4 and C. B are identical, 

and desribe an optimum bit allocation for bands a and b. 

This leads to an i terati ve algorithm for the new bit 

alocation: 

1. Use equation 3.2-1.62 to find the R,<' s. This step 

establishes the relationship given by equations C.1 and 

C.3 

2. Sum the number of negative allocated bits. Set the 

rates R,.,,: of these bands with negative allocations to 

zero. Divide the number of negati ve bits equaly amongst 

the remaining bands. The equal division of bi ts 

guarantees that equations C.4 (or C. B) are not violated 

hence an optimum bit allocation is in effect. 
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3. If any of the remaining bands with non zero bit 

allocation have now a negat:l.ve bit allocation go to step 

2 else exit. 

Note that since the above allocation is stil optimum, the 

noise power wil be flat across those bands that do 

eventually receive a positive number of bits. 

Usually it is also necessary to restrict the R,,, to 

integer values. One procedure to obtain an integer 

allocation close to the optimum allocation is as follows: 

1. Find the R,,,, which is closest 

integer val ue. Round it up to 

divide the difference between 

(but not equal> to an 

that. integer value and 

the new and old rate 

equally amongst those bands which do not haVe an integer 

allocation. 

2. If all R,< are integers exit else go to 1. 

One simplified procedure due to Ramstad [reference 95 

of chapter 3] stems again from equation C.4: If one sets 

R - Rb = 1 a 
C.9 

then 

2 
1 

0' 

10g2 
a = 1 

2 2 
O'b 

C.10 

or 

C.11 

Therefore 1 bi t is worth a hal vi ng of the correspondi ng 

0'1< • 

Ramstad's method is as follows: 
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1. Start from the maximum 0',". Allocate 1 bit to this 

band and halve 0',.,. 
2. Subtract one bit from the total bi t rate. 

3. If all bits are exhausted exit, else go to 1 

The two different procedures mentioned above were run 

for a large number of blocks. Identical results were 

obtained. 

Noise welghtlng 

It was shown that the optimum bit allocation leads to 

a flat noise spectrum. An optimum bit allocation subject 

to a weighted m. s. e. criterion is obtained if the O'x,,,"' 

are replaced by W",O'x,,,"". The flat O'q,<~' rule is then 

replaced by a flat W",O'",",'" rule. A graphical comparison of 

weighted and unweighted noise is shown in figure C.1. 

A proposed class of weighting functions is [ref 21 of 

chapter 3) 

C.12 

A = 0 gives a white error spectrum, (O'qt<~' = 0'",,).'" any k,l) 

whereas A = -1 gi ves a constant bit aSSignment (R"" = R:L 

any k, l). In the latter case the error spectrum has the 

shape of the input signal. The noise spectrum for various 

values of A is shown schematica1ly in figure C.2. 

With the weighting function 

equation C.4 is modified to 

R - R = a b 

or 

W 0' 2 
a a 

of equation C.12, 

C.13 
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2 )..+1 1 
Q' 

R - R = log2 (~) a b 2 2 
Q'b 

and for 

R - Rb = 1 a 

Q' )..+1 
log2 (~) =1 

Q'b 

or 

1 

)..+1 
= r 

r is now Ramstad's ratio and equation 

or 

1 

2 A+l = r 

C.14 

C.15 

c.16 

C.17 

C.18a 

C.18b 

gives the equivalerrce formula for the two types of 

weighting. 
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Al'PElIDIX D 

Solution to the following (constrained) minimization 

problem: 

Minimize 

IY 
q 

2 = 

subject to 

1 R = 
N 

1 N-l 2 

N 
l: IYqk 

K=o 

N-l 
l: Rk = constant 

k=o 

Using lagrange multipliers the solution can be found 

by setting 

for k=O.l •..... N-l 

The conventional formula for IYqk2 is given by 

-2Rk 2 
IY xk 

which can be written as 

2 
2Rk IY xk 1 

= 2 
2 2 

()' 

qk E. 
or 

D.l 

D.2 

D.3 

D.4a 

D.4b 
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"'xk 

1010g10 

giving 

SNR(dB) = A + 6Rk 

523 

which is usually termed the 6dB/bit rule. 

D.4c 

D.4d 

Under more general assumptions the constants in 

equation D4d can be taken to be functions of the subband 

index: 

D.5 

·from which the simplified form D4d is obtained by setting 

Ak = A = constant 

and 

D5 can also be written as 

2 
"'xk 

1010310 

where 

or 

D6a 

D6b 

D.7 

D8a 
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From D7 

and 

2 
O'xk 

= 

2 
= €.k 

1 
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D8b 

D9a 

D9b 

The purpose of this appendix is to provide the solution 

to the minimization problem given by conditions Dl and D2 

provided that O'q.,'" is given by D9b. 

Substituting D9b into D3 gives 

(all summations are carried out between k=o and k=N-l) 

giving 

therefore 

let 

1 -A (R-_ 

N 
D10 

Dll 

D12 
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D13 

then from D12 

D14 

and 

D15 

taking an average over the subbands and using D2 

-2R D16 

which gives 

1 -2RJ D17 
1 1: 1 

N 

The left hand sides of D14 and D17are equal so the r.h.s. 

can be equated: 

log2Bk log?O' k 
2 

1 (~ 1 
------

E ______ + 1: - x -2RJ ------ D18 
1 

1: 
1 N a k N a k 

N a k 

and dividing by -2a
k

, 
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log2Bk 
2 

1 [: 1 log?", k 
1: + 1: ___ ~_ -2RJ D19 

-2a 
k l:~ 

N a
k 

N a
k 

N a
k 

therefore the optimum bit rate for band K, RkiS given by 

-1 
R= k-

2a
k 

1 
[---

1 1:_: 
N 

-2R+: 
N 

D20 

setting B,,;=B and a«=l for all k the conventional formula 

is derived from D20: 

1 
= R + log2 

2 

2 
"'xk 

D21 
11 . 

N 

In practice, additional constraints to the one given by 

D2 have to be imposed upon the solution in D20: first the 

sol ution R," must be posi ti ve since a negati ve bit 

allocation is meaningless. Second, R", is usually required 

to take ony integer values. 

Two algorithms have been deviced to deal wi th these 

two additional constraints. The procedure for dealing 

with negative bit (R",) allocatIon is as follows: 
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Step 1 has increased the average bit rate to a new value 

R' The increase in bits 6R is given by 6R = N(R'-R). Step 

2 brings the average bit rate back to the required value 

of R. 

2) Remove a certain amount of bits from each band for 

which R~,>o so that the new average bit rate is euqal to R 

3) If any of the Rf<' s are less than zero go to 1 else 

EXIT. 

Procedure for integer bit allocation: 

1) Round that RK nearest to an integer val ue to that 

integer value (but skip if zero) 

As in the previous procedure step one alters the average 

bit rate. Step 2 corrects for step 1. 

2) Distribute the excess bit rate 6R (which may be 

positive or negative) amongst the non-integer 

according to some optimum way. 

3) If all R •. ,'s are integers exit "otherwise go to 1 

It is clear that step 2 in both procedures requires a 

distribution of an excess bit rate 6R (which may be 

positive or negative) in an optimal way amongst a subset 

of the bands. To find the new optimum bit allocation 

subj ect to the additional constraints consider the 

following: 

The weighted (by 2a,.,:) difference in bi trates between 

any two bands 0,2) is given by (from D20) 

D22 

or 
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D23 

let the r. h. s. of D23 be denoted· by A"". A, "" the 

weighted difference, does not depend on any 

characteristics of any bands other than (1,2) or the 

average overall bit rate. This point is elaborated in 

more depth in appendix C. Assume that a new amount of 

bi ts 6R« has to be added to each band, bringing the 

individual bit rates to new values R',,,,. For an optimum 

distribution of bits 

D24 

or 

D25 

which implies (from D23) that 

D26a 

or 

D27a 

and for any band K 

C 
D27c 

let 6R be the total excess bit rate 

-- c r. 1 
D28 

L a
k 
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where the summation is over the subset L of those bands 

eligible for redistribution according to the two 

reallocation procedures set above. 

Hence 

c '" D29 

and, finally 

lI.R 
D30 

which Si ves the amount by which each bit rate R,,, has to 

be modified by in step 2 in the two reallocation 

pro,:,,:dures. 

The solution to equations D20 and D30 requires 

knowledge of the constants a,< and B", , or equivalently a"" 

and "~,,,,"', These can be obtained by fitting straight lines 

to the function 1010g', o[ O'x,<'''!O'q,<'''] by evaluating the 

1. h. s. of D7 per block and then" averaging these values 

over time 1. e. 

2 
20l08102Rk 1 0' xk ~ l: 

1 E 
1:1010810 = 1010g10--- + a k - -------

M M 2 11 11 2 M M 
~' 

qk "*k 

where M is the total number of time blocks D31 

An estImate for a,< was obtained from 

D32 
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and an estimate for €*k2 from 

101oglO 
1 1 

1: lOloglO 
2 = €.k. ---

~ 2 M M 
€.k 

D33a 

or 

1 
~ 2 2 M 
€.k = [TT €.k 1 

M 
D33b 

The experimental data corresponding to 
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APPENDIX E 

Proof to equation 4.6: 

From equation 4.1b 

2R 2 
0' 

2 = 
x 

D w 

F 
-2R 2 -?R 1 D = 2 0' = 2 - I S (f)df 

w x F x 
0 

F 
-2R 1 

I 1010g10Dw=1010g102 +1010g10(_ 
F 0 

from equation 4.5: 

F S (f) 
R = 1 

I 
1 10g2 

( -': __ J df 
F 2 D 

0 

F 
1 .. -2R = I -log?S (f)df + 10g2 D _ x 
F 

o 

and 

F 

S (f) dfJ x 

(: I -10g2Sx (f)df + 10g2DJ 
F 

-2R 
2 = 2 

1010g ?-2R = 
.. 10-

o 

F 

I -10g
2

S
x

(f)df+10g2 DJ .10g
10

2 

o 

E.l 

E.2 

E.3 

E.4 

E.5 

E.6 

E.7 
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and since 

E:7 can be written as: 

-2R 1 1010g102 =-
F 

F 

1 1010g10S(f)df+1010g10D 

o 

E.B 

E.9 

-2R substituting 1010g
10

2 from E.9 into E.3, equation 4.6 

is obtained. 
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APPENDIX F 

The Multiplllse algorithm 

In the multipulse algorithm the excitation is defined 

in terms of pulse amplitudes and locations. 

The excitation parameters are obtained through an 

explicit (weighted) 

in figure F1a. The 

from the original 

given by 

\I(Z) = 
A(Z) 

A (~) 
g 

error 

error, 

signal 

minimization procedure as shown 

formed by subtracting the coded 

is weighted by a filter \I(Z) 

F.1 

where A(Z) is the appropriate inverse filter derived from 

a block of speech which ideally contains the multipulse 

minimization frame. . The parameter g controls the degree 

of noise shaping. Appropriate values are around 0.8-0.9. 

Figure F1b is functionally equivalent to figure F1a since 

it is obtained from F1a through permissible linear 

operations. In figure F1 b the weighting fi Iter has been 

removed from the minimization loop which leads to faster 

implementation compared to the structure in figure F1a. 

The minimization is performed in a block mode: 

Without any error weighting (i.e. g = 1), the error 

signal e (n) in one block containing 

n=1,2, .... N is given by 

I 
e(n) = X' (n) - [ 1: gih(n-mi) + Mn1 

i=1 

the samples 

F.2 

X' (n) is the input signal whereas the terms in the 

brackets consti tute the synthesized signal, when a total 

of I pulses are used for modelling the excitation. The 

parameter gf. is the i th pulse amplitude at location m .. , 
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h(n> is the impulse response of l/A(Z> and M.-. the 

contribution of the excitation from the previous frame to 

the current synthesized speech block. 

Let 

X(n> = X' (n> - M(n> F.3 

Since both X' (n> and M(n> are independent of m" and g<, 

they can be lumped together into one term. M(n> is the 

output of the synthesis filter l/A(Z> with zero input, 

provided the last synthesized values from the previous 

block are used to form the filter's memory. 

The weighted noise signal ew (n> can be obtained by 

passing e(n> through the weighting filter W(Z> given in 

Fl. This is of course equivalent to passing every 

. component of the r.h.s. of equation F.2 through the 

weighting filter (distributive property of convolution>, 

which· is schematically shown in figure Flb. Therefore the 

weighted noise is given by 

I 
e <n> = X <n> - E g h (n-m > 

w w i=l i w i 
F.4 

n=1.2 .... N 

where hw is the impulse of l/A(Z/g>. 

The error minimization procedure attempts to minimize 

the short term noise power PI given by 

P = 
I 

N 
L 

n=l 

2 e (n> 
w F.5a 

where the subscript I indicates that P is the error 

energy resulting from a model employing I pulses. Hence 

N 
P = E 

I n=l 
[X (n> -

w 

I 
r. 

k=l 
F.5b 
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Assuming that the locations of the pulses are already 

known the error power can be minimized w. r. t. the pulse 

amplitudes: 

N 

= 

N 
=2 1: 

n=l 

N 
1: 

n=l 

[X (n) -
w 

[X (n) -
w 

I 
1: 

1=1 

N I 

I 
1: 

1=1 

" 1: X ~n) h (n-~) = 1: 1: h (n-m. ) gih (n-mi ) 
n=l w w n=l i=l K w 

k=1,2, ...... 1 F.7 

Expanding PI in F.5: 

p = 
I 

N 
1: X 2(n) 

n=l w 

+ 

N 
-2 1: X (n) 

n=l w 

I 
1: gih (n-m

1
) 

i=l w 

F.B 

From F.7, multiplying by gk and summing from k=l to k=I 

INN 
1: gk 1: X (n)h (n-~)= 1: 

i=l n=l w w n=l 

I 

k:lgkh(n-~)gihw(n-mi) 

or 

N I N 
1: X (n) 1: gkhw(n-~) = 1: 

n=l w k=l n=l 

I ? 
[ 1: gih (n-m

i
»)-

i=l w 

F.9 

F.l0 
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the term on the l.h.s. of equation F10 is half the middle 

term of F.? whilst the r. h. s. of equation F.10 is the 

last term of F.? Substituting F.10 into F.? obtains: 

N 
E X 2 (n) 

n=l w 
F.11 

Note that equation F.4 can be considered to describe the 

error between a modified speech signal Xw (n) and its 

synthesized counterpart. In this respect P, is equal to 

the power of the original modified signal minus the power 

of the synthesized (modified) signal. 

It follows from F.ll that the power of the 

synthesized (modified) signal is always less than the 

power of the original (modified) signal by an amount 

equal to the error power PI. 

A solution of the system of equations described by 

F.? gives the optimum pulse amplitudes once the positions 

are known. Alternatively p" in F.11 can be evaluated 

through F.? for every possible set of locations {m" 

i = 1,2 .... I}. The best set of locations that fully 

minimizes p" can then be chosen. This would result in an 

exhaustive search which is not practical in terms of 

computational cost. 

An iterative approach can be derived by writing 

equation F.4 as 

I 
e (n) = X (n) 

w w 

The superscript 

1-1 
E gihw(n-mi)-gIhw(n-mr) 

i=l 

denotes that ew" (n) is the 

F.12 

error 

resulting from modelling with I pulses. The first two 

terms of the r.h.s. of F.12 represent the error resulting 

from modelling with 1-1 pulses, hence 
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I e <n) = w 
1-1 e <n) - g h (n-m ) 

w I w I 

F.5 can now be written as 

n=l 

N 
1: [ e 1-1<n) 

w 
2 -g h (n-m ») 

I w I 

F.13 

F.14 

PI can now be minimized w.r.t. gI which is the solution to 

N 1-1 
1: [ew <n)-gIhw(n-mI»)hw(n-mI)=O F.15 

n=l 

hence 

N 1-1 
1: e (n)h <n-m

1
) 

w w n=l F.16 

Therefore for a given location m, the optimum amplitude, 

g, <assuming that all {g •. , i=l,2 .... I-i} have already 

been determined) is given by F.}6. 

Expanding F.14 g.ives 

N 
1: [e 

n=i w 

1-1 2 N 1-1 
(n») '-2g

1 
1: [e (n)h <n-m

1
)] 

n=i w w 

F.17 

usIng F.16 to substitute for the mu] tiplicr of -2g" in 

F.1.7 obtains: 

N 
1: [e 1-1 

w 
n=l 

F.18 . 
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or, following the subscript notation for power 

F.19 

In F.19 the value for P •.... , and, in the case of the 

autocorrelation approximations, (equation F26) the 

multiplier of 8"'''', are independent of the location m •. 

Therefore the minimum value for p" is obtained when gx'" 

(or I g" I) is a maximum. <In the case of the 

autocovariance solution, the multiplier of gx'" in F19 has 

to be included into the term that must be maximized). 

A way to determine the best ampl i tude and position 

for pulse I is therefore to calculate F16 for each and 

every location mx and chose that m" which maximizes I gI I • 

After this pulse is defined one can then proceed to pulse 

I+1 and so on. Of course 

o 
e (n) = X (n) 

w w 

P = o 

N 
1: 

n=l 
X 2(n) 

w 
F.20 

At every stage of the algorithm equations F.7 can be 

applied to jointly optimize the amplitudes for the 

already known positions, improving the quality at the 

expense of more complexity. 

or 

From F. 1.9 expanding every Pi 

P = 
I 

N 2 
1: X. (n) 

n=l w 

I 
- 1: 
i=l 

N 2 
1: X (n)

w 
n=l 

N 
1: 

n=l 

r 
1: 

i-1 

F.21a 

F.21b 
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which is in a similar form as F.11. Note that the {gd 

are different. 

To find the maximum gI the function 

F.22 

must be calculated for each m,=1, 2 .... N. Note that the 

denominator of F.16 need only be calculated once for each 

of {m."i=1,2 .. ooN}' (Note that this term is the same as 

the multiplier of gz2 in F19). 

Equation F.22 can be written as 

N 
= 1: e 

n=l w 

1 Wi th A (m
i

) = 
N 

N 
1: hw(n-mI_l)hw(n-mi) 

n=1 

1: X (n) h (n-m!) 
n=l w w 

F.23 

F.24 

I-I 1-2 ? Expanding A (m
i
), A (mi ),· .A-(m

i
) in a simIlar way in 

F.23 then obtains 

X (n) h (n-m
i

) w w 

1-1 
- 1: 

J.=l 

Therefore the numerator of 

iteratively 

explicitly. 

wJ. thout the 

F.25 

F.16 can be evaluated 

need to evaluate ew(n) 
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The algorithm can be simplified considerably if 

autocovariance estimates are replaced by autocorrelation 

estimates: 

1-1 
to replace the multiplier of ~ gk in F.25. Also 

k=l 

Rh X (m
i

) = 
w w 

or equivalently 

Rh X <m
i

) = 
w w 

~ --, .... 

N 
l: X (n) h (n-m

i
) 

w w 
n=mi 

N-m 
l: i 

j=o 

(by letting j = n - m,) to replace the first 

term of the r.h.s. of F.25 

F.26 

F.27a 

F.27b 

Autocorrelation estimates can also be used in F.7, F16 

and F19. 
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R is the total number of bits required to increase the 

number of pulses in each band by one. 

The aim is to minimize the sum of E and R i.e. 

minimize E + R = ~ (~Ei + ARi ) 
i 

This will ensure that the pulse allocation results in a 

bit allocation as near to the optimum as possible. 

A two stage i terati ve algori thm was used for the 

minimization. This is given below: 

START1: From those bands for which ~Ei~~Ri' 

(if none go to START2) find that band m 

with the minimum {ARi } = 

Now, 

~R 
m 

AE +~R = FSX -PX +X -FSX m m m re m m 

= X - PX m m 

This is the number of bits required to increase 

the pulse allocation from Pm to Pm + 1 

AE +AR = Bits (P +1) - Bits (P ) 
m m m ID 

IF (E~AE + AR ) THEN 
m m 

set the value of P to P +1 m m 

set the value of E to E-(AE +AR ) 
m m 

set the value of AE to -AR 
m ·m 

band m is now excluded 

GO TO START1 

END IF 



START2: Find the band K with the maximum {6E
i

}=6E
k 

IF (E>Bits(Pk+1)-Bits(Pk» THEN 

set the value of Pk to P
k

+l 

set the value of E to E-[Bits(P
k
+l) 

-Bits (Pk)l 

set the value of 6Ek to 6Ek-[Blts(P
k
+l) 

-Bits (Pk)l 

END IF 

GO TO START2: (Continue for a number of 

interations e.g. 20) 
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~NDIX U: A COMPARATIVE STUDY OF CCJ:QER COID'LEXITIES 

The following table provides a complexity comparison 

between the siropli fied mul tipulse algorithm based on the 

autocorrelation approximation (reference 80 of chapter 3) 

and the final algorithm of chapter 6. 

A predictor order P = 12 is assumed for the 

multipulse algorithm whereas P = 4 for the new algorithm. 

A mul tipulse frame of N = 128 samples is assumed. This 

corresponds to an equivalent frame of N/8 for the subband 

algorithm. The LPC analysis frame is taken to be twice a 

long as the multipulse frame in both cases, namely 2N and 

N/4. The values are given in terms of multiply/add 

operations per multipulse frame. These are expressed as a 

function of N and therefore the multipliers of N give the 

number ·of multiply/add operations per sample, where the 

sampling rate is 8KHz. 

The following abbreviations are related to specific 

subroutines common to both schemes: 

Burg: The homonymous lattice formulation procedure for 

calculating the predictor coefficients. 

IMRESP: The procedure for evaluating the fist N (N/8) 

impulse response terms of the LPC filter. 

AUTO: The procedur·e for evaluating the first N (N/B) 

autocorrelation terms of the impulse response of 

the LPC filter. 

SUBMEM: Subtration of the filter's memory from the 

current frame 

WEIGHT: ARMA ",eighting by the filter [1-P(Z»)/[ 1-P(Z/a») 

where P (Z) is the LPC predictor and a the noise 

",eighting factor. 

CROSS: To calculate the first N terms of a 

cro,3scorrelation function (between the impulse 

response of the LPC filter and the modified 

speech signal) 
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---------------------------------------------------------

Routine 

Burg 

calculated every 
two frames (cetf): 

IMRESP 

cetf: 

AUTO (cetf) 

SUBMEM 

WEIGHT 

CROSS 

General Multipulse New coder 
Formula 

5x2NxP 

5xNxP 

PxN 

5x2Nx12 
=120N 

60N 

Px(N/2) 12x(128/2) 
=6xN 

Px(NI2) 6xN 

PxN 12xN 

2xPxN 24xN 

PxN 12xN 

5x32x4 
=4480=35N 

17.5N 

4x(16/2)x7 
=1.75N 

1. 75N 

3.5N 

7xN 

3.5xN 



PROCEDURE 

During the pulse search, 
{or m pulses, times N 
multiply/add 
(assuming operation 
around 4.8kbits/sec) 

For synthesis (PxN) 

Inverse filtering 
for gains 

Full search codebooks: 
For M level code book of 
P dimensions the 
complexity is PxM 
For gains: 
(7 dimensional 
vector) 

For LPC filters: 
(4-dimensional 
vectors) 
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MULTI PULSE 

5xN 

12xN 

/ 

/ 

/ 

NEW CODER 

1 band: 16x16=2N or 
2 bands:6x2x16=1.5N or 
3 bands:4x3x16=1.5N or 
4 bands:3x4x16=1.5N 
Empty bands regen
eration ~ N i.e. 
maximum total 3N 

3.5xN 

7xPxN=3.5N 

9 bit codebook = 512 
levels 
512x7=3584=28N 

bit distribution for 7 
bands: 
665 433 3 
total number of 
levels: 64 + 64 + 32 + 
16 + 9 + 9 + 9 =203 
203x4=812 for every 
two frames=406/frame 
~ 3.2N 

The total number of multiply/add operations is 137N 

or 137 mul t/add operations pC'lr sample for the mul tipulse 
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whereas the equivalent total for the new algorithm is 

76.2N. 

In addition to the above the new algorithm possesses 

addi tional complexi ty due to the subband tree analysis

synthesis burden. For a 32-tap 3 stage QMF tree: 

At each stage of the tree and for each output sample 

we have 16+16=32 multiply/add operations, or 16 

multiply/add operations for every input sample. Therefore 

the complexity for the first stage is 16N. For the 

sUbsequent stages the input sampling rate is halved but 

the number of bands doubles. The complexity therefore 

remains constant at 16N. For a three stage analysis 

therefore the complexity is 3x16N=48N. The complexity for 

the synthesis is the same. Therefore the total complexity 

for the tree QMF analysis-synthesis is 96N. This brings 

the total complexity for the new algorithm to around 172N 

which is slightly higher than the simplified multipulse. 

If one uses a filter with a smaller number of taps 

at each successive stage as it is normally the practice, 

or al ternati vely, if a parallel QMF structure is used it 

is possible to bring the complexity of the new scheme 

below that of the simplified multipulse algorithm. 






