42 research outputs found

    On the Hybrid Extension of CTL and CTL+

    Full text link
    The paper studies the expressivity, relative succinctness and complexity of satisfiability for hybrid extensions of the branching-time logics CTL and CTL+ by variables. Previous complexity results show that only fragments with one variable do have elementary complexity. It is shown that H1CTL+ and H1CTL, the hybrid extensions with one variable of CTL+ and CTL, respectively, are expressively equivalent but H1CTL+ is exponentially more succinct than H1CTL. On the other hand, HCTL+, the hybrid extension of CTL with arbitrarily many variables does not capture CTL*, as it even cannot express the simple CTL* property EGFp. The satisfiability problem for H1CTL+ is complete for triply exponential time, this remains true for quite weak fragments and quite strong extensions of the logic

    Satisfiability Games for Branching-Time Logics

    Full text link
    The satisfiability problem for branching-time temporal logics like CTL*, CTL and CTL+ has important applications in program specification and verification. Their computational complexities are known: CTL* and CTL+ are complete for doubly exponential time, CTL is complete for single exponential time. Some decision procedures for these logics are known; they use tree automata, tableaux or axiom systems. In this paper we present a uniform game-theoretic framework for the satisfiability problem of these branching-time temporal logics. We define satisfiability games for the full branching-time temporal logic CTL* using a high-level definition of winning condition that captures the essence of well-foundedness of least fixpoint unfoldings. These winning conditions form formal languages of \omega-words. We analyse which kinds of deterministic {\omega}-automata are needed in which case in order to recognise these languages. We then obtain a reduction to the problem of solving parity or B\"uchi games. The worst-case complexity of the obtained algorithms matches the known lower bounds for these logics. This approach provides a uniform, yet complexity-theoretically optimal treatment of satisfiability for branching-time temporal logics. It separates the use of temporal logic machinery from the use of automata thus preserving a syntactical relationship between the input formula and the object that represents satisfiability, i.e. a winning strategy in a parity or B\"uchi game. The games presented here work on a Fischer-Ladner closure of the input formula only. Last but not least, the games presented here come with an attempt at providing tool support for the satisfiability problem of complex branching-time logics like CTL* and CTL+

    Satisfiability Games for Branching-Time Logics

    Full text link

    Complexity and Expressivity of Branching- and Alternating-Time Temporal Logics with Finitely Many Variables

    Full text link
    We show that Branching-time temporal logics CTL and CTL*, as well as Alternating-time temporal logics ATL and ATL*, are as semantically expressive in the language with a single propositional variable as they are in the full language, i.e., with an unlimited supply of propositional variables. It follows that satisfiability for CTL, as well as for ATL, with a single variable is EXPTIME-complete, while satisfiability for CTL*, as well as for ATL*, with a single variable is 2EXPTIME-complete,--i.e., for these logics, the satisfiability for formulas with only one variable is as hard as satisfiability for arbitrary formulas.Comment: Prefinal version of the published pape

    Logics for Unranked Trees: An Overview

    Get PDF
    Labeled unranked trees are used as a model of XML documents, and logical languages for them have been studied actively over the past several years. Such logics have different purposes: some are better suited for extracting data, some for expressing navigational properties, and some make it easy to relate complex properties of trees to the existence of tree automata for those properties. Furthermore, logics differ significantly in their model-checking properties, their automata models, and their behavior on ordered and unordered trees. In this paper we present a survey of logics for unranked trees

    Succinctness and Formula Size Games

    Get PDF
    Tämä väitöskirja tutkii erilaisten logiikoiden tiiviyttä kaavan pituuspelien avulla. Logiikan tiiviys viittaa ominaisuuksien ilmaisemiseen tarvittavien kaavojen kokoon. Kaavan pituuspelit ovat hyväksi todettu menetelmä tiiviystulosten todistamiseen. Väitöskirjan kontribuutio on kaksiosainen. Ensinnäkin väitöskirjassa määritellään kaavan pituuspeli useille logiikoille ja tarjotaan näin uusia menetelmiä tulevaan tutkimukseen. Toiseksi näitä pelejä ja muita menetelmiä käytetään tiiviystulosten todistamiseen tutkituille logiikoille. Tarkemmin sanottuna väitöskirjassa määritellään uudet parametrisoidut kaavan pituuspelit perusmodaalilogiikalle, modaaliselle μ-kalkyylille, tiimilauselogiikalle ja yleistetyille säännöllisille lausekkeille. Yleistettyjen säännöllisten lausekkeiden pelistä esitellään myös variantit, jotka vastaavat säännöllisiä lausekkeita ja uusia “RE over star-free” -lausekkeita, joissa tähtiä ei esiinny komplementtien sisällä. Pelejä käytetään useiden tiiviystulosten todistamiseen. Predikaattilogiikan näytetään olevan epäelementaarisesti tiiviimpi kuin perusmodaalilogiikka ja modaalinen μ-kalkyyli. Tiimilauselogiikassa tutkitaan systemaattisesti yleisten riippuvuuksia ilmaisevien atomien määrittelemisen tiiviyttä. Klassinen epäelementaarinen tiiviysero predikaattilogiikan ja säännöllisten lausekkeiden välillä osoitetaan uudelleen yksinkertaisemmalla tavalla ja saadaan tähtien lukumäärälle “RE over star-free” -lausekkeissa hierarkia ilmaisuvoiman suhteen. Monissa yllämainituista tuloksista hyödynnetään eksplisiittisiä kaavoja peliargumenttien lisäksi. Tällaisia kaavoja ja tyyppien laskemista hyödyntäen saadaan epäelementaarisia ala- ja ylärajoja yksittäisten sanojen määrittelemisen tiiviydelle predikaattilogiikassa ja monadisessa toisen kertaluvun logiikassa.This thesis studies the succinctness of various logics using formula size games. The succinctness of a logic refers to the size of formulas required to express properties. Formula size games are some of the most successful methods of proof for results on succinctness. The contribution of the thesis is twofold. Firstly, we define formula size games for several logics, providing methods for future research. Secondly, we use these games and other methods to prove results on the succinctness of the studied logics. More precisely, we develop new parameterized formula size games for basic modal logic, modal μ-calculus, propositional team logic and generalized regular expressions. For the generalized regular expression game we introduce variants that correspond to regular expressions and the newly defined RE over star-free expressions, where stars do not occur inside complements. We use the games to prove a number of succinctness results. We show that first-order logic is non-elementarily more succinct than both basic modal logic and modal μ-calculus. We conduct a systematic study of the succinctness of defining common atoms of dependency in propositional team logic. We reprove a classic non-elementary succinctness gap between first-order logic and regular expressions in a much simpler way and establish a hierarchy of expressive power for the number of stars in RE over star-free expressions. Many of the above results utilize explicit formulas in addition to game arguments. We use such formulas and a type counting argument to obtain non-elementary lower and upper bounds for the succinctness of defining single words in first-order logic and monadic second-order logic

    On regular temporal logics with past

    Get PDF
    The IEEE standardized Property Specification Language, PSL for short, extends the well-known linear-time temporal logic LTL with so-called semi-extended regular expressions. PSL and the closely related SystemVerilog Assertions, SVA for short, are increasingly used in many phases of the hardware design cycle, from specification to verification. In this article, we extend the common core of these specification languages with past operators. We name this extension PPSL. Although all ω-regular properties are expressible in PSL, SVA, and PPSL, past operators often allow one to specify properties more naturally and concisely. In fact, we show that PPSL is exponentially more succinct than the cores of PSL and SVA. On the star-free properties, PPSL is double exponentially more succinct than LTL. Furthermore, we present a translation of PPSL into language-equivalent nondeterministic Büchi automata, which is based on novel constructions for 2-way alternating automata. The upper bound on the size of the resulting nondeterministic Büchi automata obtained by our translation is almost the same as the upper bound for the nondeterministic Büchi automata obtained from existing translations for PSL and SVA. Consequently, the satisfiability problem and the model-checking problem for PPSL fall into the same complexity classes as the corresponding problems for PSL and SV

    Alternative Automata-based Approaches to Probabilistic Model Checking

    Get PDF
    In this thesis we focus on new methods for probabilistic model checking (PMC) with linear temporal logic (LTL). The standard approach translates an LTL formula into a deterministic ω-automaton with a double-exponential blow up. There are approaches for Markov chain analysis against LTL with exponential runtime, which motivates the search for non-deterministic automata with restricted forms of non-determinism that make them suitable for PMC. For MDPs, the approach via deterministic automata matches the double-exponential lower bound, but a practical application might benefit from approaches via non-deterministic automata. We first investigate good-for-games (GFG) automata. In GFG automata one can resolve the non-determinism for a finite prefix without knowing the infinite suffix and still obtain an accepting run for an accepted word. We explain that GFG automata are well-suited for MDP analysis on a theoretic level, but our experiments show that GFG automata cannot compete with deterministic automata. We have also researched another form of pseudo-determinism, namely unambiguity, where for every accepted word there is exactly one accepting run. We present a polynomial-time approach for PMC of Markov chains against specifications given by an unambiguous Büchi automaton (UBA). Its two key elements are the identification whether the induced probability is positive, and if so, the identification of a state set inducing probability 1. Additionally, we examine the new symbolic Muller acceptance described in the Hanoi Omega Automata Format, which we call Emerson-Lei acceptance. It is a positive Boolean formula over unconditional fairness constraints. We present a construction of small deterministic automata using Emerson-Lei acceptance. Deciding, whether an MDP has a positive maximal probability to satisfy an Emerson-Lei acceptance, is NP-complete. This fact has triggered a DPLL-based algorithm for deciding positiveness
    corecore