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Abstract

The problem of relating inter-agent and intra-agent behavioral specifications is
investigated. These two views are complimentary, in that the former is closer to
scenario-based user requirements whereas the latter is design-oriented. We use
a graphical, user-friendly and very simple language as inter-agent specification
language: Live Sequence Charts (LSC). LSC is presented and its properties
are investigated: it is highly succinct, but inexpressive. There are essentially
two ways to relate inter-agent and intra-agent specifications: (i) by checking
that an intra-agent specification is correct with respect to some LSC specifi-
cation and (ii) by automatically constructing an intra-agent specification from
an LSC specification. Several variants of these problems exist: closed/open
systems and centralized/distributed systems. We give inefficient but optimal
algorithms solving all problems, besides synthesis of open distributed systems,
which we show is undecidable. All the problems considered are difficult, even for
a very restricted subset of LSCs, without alternatives, interleaving, conditions
nor loops. We investigate the cost of extending the language with control flow
constructs, conditions, real-time and symbolic instances. An implementation of
the algorithms is proposed. The applicability of the language is illustrated on
a real-world case study.

Keywords: Live Sequence Charts, Scenarios, Reactive Systems, Synthesis,
Realizability, Game Theory, Automata Theory.
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Context

This thesis investigates a novel way to engineer distributed reactive systems. A
distributed computer system is made of several components, executing concur-
rently and interacting each other to deal with the computerized task at hand
[107]. A reactive system, as opposed to a transformational system, is a computer
system that “keeps an ongoing relationship with its environment” [76]. While
the purpose of a transformational system is essentially to transform some input
data to output data, reactive systems interact continuously with their environ-
ment. In response to stimuli, occurring in the environment, reactive systems
adapt their state, output some action and get ready to react to the next oc-
currence of stimuli. Since their state changes as a result of this continuous
interaction, reactions are history-dependent: the system system may respond
differently to the first or the second occurrence of the same stimulus. Typically,
transformational systems are stateless: they always output the same data when
fed in with the same inputs.

We chose to focus on reactive distributed systems because they are pervasive
in our society. They are also getting more and more complex. For example,
phones contain a tremendous number of concurrent processes. The automotive
industry is embedding ever more software into modern cars. This automotive
software ranges from highly-critical, real-time systems to low-priority informa-
tion systems. In this sector, distribution is a matter of fact, conceptually and
physically: several processors execute code in parallel and components that are
conceptually seen as separate can end up being mapped onto the same proces-
sor, thus sharing a common resource. Even further, the same components could
be mapped to another physical architecture in another model of a car, thus ex-
ecuting in parallel. Undoubtfully, the reader is aware that correcting flaws in
reactive distributed systems is often very expensive, sometimes impossible, in
the case of hardware-implemented systems.

Nevertheless, the problem of engineering reactive distributed is essentially
a simple task. It amounts to “write some executable code fulfilling user re-
quirements” as shown in Fig. 1. Of course, this represents a huge amount of
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work and the engineer is likely to be left with the question: “does my code
behave as I intended it to?”. Actually, this question will arise as a consequence
of the technical nature of the system to be developed. Remember that sys-
tems are distributed and meant to be deployed on heterogeneous architectures.
Understanding the global emergent behaviour of all those concurrent pieces of
software and hardware is a tremendously difficult task.

Figure 1: One big leap

When trying to answer this question, one will be confronted with the fact
that the artifact to analyze is complex and hard to comprehend. Executable
code is, by definition, polluted by implementation details. Those details are not
necessary to understand the logics behind it. Furthermore, code is component-
centric, because components are distributed: every component needs to have
its own executable code which fully describes its behaviour. Different parts of
the system may also be written in different languages or even be implemented
as hardware. This is also an impediment to comprehension. Finally, the same
“logical” system can be mapped onto different physical architectures, as already
said above.

Figure 2: Introducing Design Models

In order to understand reactive distributed systems, instead of using exe-
cutable code, one can resort to an abstraction of it. This abstraction is a model,
tailored for human comprehension. This model of the actual system ignores
implementation details and only presents the control logic of every component,
preferrably in an architecture-independent way. Taking away all the details,
the system at hand boils down to a much simpler form that one can read and,
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hopefully better understand. Furthermore, tools exist to automatically trans-
late these high-level models to executable code. Model-code associations are
kept, to ensure that generated code can be traced back to its corresponding
design element.

Being an abstraction of the actual code, it is no wonder that a design model
inherits most of its properties. Of course, implementation details are ignored
and architecture-dependent parts have been erased but a design model is still
component-centric and complete. For every component of the system, it has
to describe its whole behaviour, how it should act in every possible situation.
We will thus say that this model is intra-agent, as it considers every component
separately. We use here the term agent under its Latin meaning, i.e. “an acting
entity”. It is thus interchangeable with “component”, “sub-system”, “process” or
“object”, in this thesis.

Now, relying on this intra-agent abstract model, can we be sure that the
actual system fulfills user requirements? Not really. There is still a huge gap
between user requirements and design models. Actually, users do not sponta-
neously think in terms of intra-agent specifications. They cannot state, even in
natural language, what the complete behaviour of the future system should be.
Studies have shown that users feel more comfortable with using scenarios, i.e.
partial concrete stories of the future system [174]. Naturally, users express their
requirements first as examples. They give a few samples of execution that they
consider are representative. Those executions are not focused on a single agent.
When dealing with distributed systems, a story will involve several agents and
cross their borders. They are thus said to be inter-agent representations. For
instance, the following user statement is a scenario: “I engage cruise control
by pressing the SET button. A green light flashes on the dashboard for five
seconds and remains lit. Then, when I push on the brake pedal, cruise control is
disengaged, the car brakes and the green light turns off.” This scenario involves
several agents (SET button, cruise control, green light, brake pedal, . . . ) and is
partial, as it does not tell about all the other situations that may happen when
cruise control is engaged. It also overlaps with other scenarios, eg scenarios
talking about ABS or automatic door-locking sytem, although those scenarios
also share brake pedal interactions.

Hence, the gap to bridge between requirements and design models is caused
by two paradigm shifts. First, engineers have to move from a partial and over-
lapping description of the system to a complete behavioural specification. Sec-
ond, a transition from inter-agent to intra-agent representations is performed.
When these two changes are performed together, mistakes are likely to be intro-
duced: some examples will be wrongly generalized or not correctly distributed
among agents.

In order to narrow this gap, we propose to divide this paradigm shift in
two parts, see Fig. 3. First, a complete behavioural specification is built, using
an inter-agent specification language. Second, this inter-agent specification is
transformed to an intra-agent design model. Of course, this does not remove
all risks of building the wrong system, for no technique could ever fully remove
this risk, but it makes the development more reliable.
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Figure 3: Inter-Agent Specification narrows the gap

This inter-agent specification language is aimed at expressing precisely user’s
requirements. Hence, it shall be based on good principles of Requirements
Engineering, as advocated, for instance, by Jackson [66, 187, 91]. Jackson insists
on the fact that, when dealing with reactive systems, openness is an essential
issue. The system (called “machine” in Jackson) to be built will be interacting
with a certain environment (called “world”) and that this environment is given.
It is thus not up to the engineer to modify or control this environment in
order for it to behave nicely. However, the environment will not behave in
a completely inconsistent way. There are many facts known about it, from
common knowledge or additional hypotheses. What is actually required from
engineers is to design a machine that will ensure that all user requirements are
met, whenever the environment respects all assumptions about its behaviour.
Whether those hypothesis make sense or should be ensured by setting up some
new technical artifact. In this thesis, we will pay special attention to following
this approach, in a transparent way. From the level of scenarios, assumptions
on the behaviour of the environment will be made explicit.

If one provides an automated translation from inter-agent specifications to
intra-agent specifications, risk will be even more decreased. No mistake can be
introduced by the transition from specification to design model, provided the
translater has been proven correct. This proof can be done once and for all, by
experts, and remove the burden of verification from engineers.

There are several links that need to be automated. First, the inter-agent
specification should be tested, in order to check that if fulfills user’s intent. Sec-
ond, intra-agent design models should be derived from inter-agent specifications.
This implies that inter-agent specifications should be tested for implementabil-
ity. If the specification is inconsistent, i.e. imposes conflicting requirements on
the system, those should be detected and no implementation must be synthe-
sized. Third, both models are likely to evolve on their own. New requirements
will be added to the specification and the design model will become more de-
tailed. After some time, it is interesting to check whether the design model still
complies with the specification, i.e. that the requirements are still met. This
approach has been suggested by Harel [71] and is illustrated by Fig. 4.

The following issues need to be addressed, in order to support this approach:
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Figure 4: Full development

• A scenario-based inter-agent formal specification language needs to be de-
fined. We propose to use Live Sequence Charts (LSC) [42]. This language
has been later substantially extended [75] but we focus on a simple part
of the original version, named Constant LSC in [75].

• The various links between models (specification and design) need to be
formally defined. In particular, the definition of what it means for an
intra-agent to “correctly implement” an inter-agent specification needs to
be given.

• The feasibility of these links must be assessed. When feasible, algorithms
supporting the links must be developed and implemented.

Contributions

This thesis brings the following contributions:

• The language of LSC is formally defined (sec. 3.2), its expressiveness
(sec. 3.3) and its succintness (sec. 3.3.3) are studied. We show that the
variant of the language we use is inexpressive, succinct, yet usable for
modeling real-world systems. The last part is demonstrated thanks to a
case-study.

• Formal models for inter-agent and intra-agent specification are introduced.
This model is suited to reactive systems, separating clearly the environ-
ment and the system (sec. 4.2). We determine precisely what it means for
an intra-agent specification to be a correct implementation of an inter-
agent specification, in the spirit of Jackson (def. 4.8).

• All problems pertaining to the development approach of Fig. 4 are for-
mally defined. Their computational complexity is studied (sec. 4.3, 4.4
and 4.5). The main conclusions are:

– Verification is PSPACE-complete (Th. 4.21),
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– Checking that a specification allows some execution is PSPACE-complete
(Th. 4.10),

– Synthesis is undecidable (Th. 4.36).

We study variants of these problems, namely verification of closed systems
and centralized realizability which are, respectively, coNP-complete and
EXPTIME-complete. These two problems are thus simpler to solve on
LSC than on LTL, which justifies the claim that the loss in expressiveness
pays off. For every problem, we give an optimal algorithm implementing
it. Since LSC is less expressive than LTL, but verification is as hard in
both languages, the thesis also provides us with sharper complexity results
than [149].

• We introduce the notion of mercifulness (sec. 4.5.3). An implementation
is merciful if, in addition to being correct, it always allows its environment
to fulfill liveness hypotheses. We show that, under the perfect information
hypothesis, synthesizing merciful strategies is not essentially harder than
synthesizing strategies.

• The subset of LSC is extended to conditions (sec. 5.2), real-time (sec. 5.3)
and symbolic instances (sec. 5.4). Our previous definitions extend smoothly
to this setting which provides us with a very clean formalization of con-
ditions. We believe that this formalization is easier to understand than
the one presented in the original LSC paper. The cost of each addition
is investigated. Conditions do not increase the complexity of any prob-
lems. Real-time makes verification of closed systems PSPACE-complete
and does not change the complexity of all other problems. Satisfiability
becomes undecidable when symbolic instances enter the stage.

• In order to work around the undecidability of synthesis, an incomplete
approach is presented (sec. 4.6.1). It may fail to synthesize a design model
for some agent, even though a correct implementation exists.

• An implementation, named REMoRDS, is presented in Chapter 6. It sup-
ports centralized synthesis, verification and incomplete distributed syn-
thesis. The two latter problems rely on an additional tool, namely LTSA
[113].

Structure

Chapter 1 presents and defines the notations used throughout the rest of the
thesis.

Chapter 2 surveys several languages for describing scenarios. Among these
languages, we argue that LSC has many interesting properties making it suitable
as a formal scenario-based specification language.

Chapter 3 presents formally the language of LSC that we use in the rest
of the thesis. This language is made of constant LSCs, i.e. without symbolic
variables or symbolic messages, withou loops, conditions and temperature on
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locations. It contains operators for expressing choice and parallel composition.
Its usefulness is illustrated on NASA’s CTAS case-study. The abstract syntax
and semantics of the language is formally defined and its expressiveness and
succinctness are studied. In particular, translations to automata are provided,
which will be used in algorithms later on.

Chapter 4 defines formally what an inter-agent specification and an intra-
agent design model are. It defines what it means for a design model to be
a correct implementation of an intra-agent model. Then, the links of Fig. 4
are formally defined as decision problems, their computational complexity is
analyzed and optimal algorithms are given. This is contrasted with related
work on verification and synthesis of reactive systems, with a focus on scenario-
based approaches. The notion of mercifulness is introduced and an incomplete
approach to distributed synthesis is given.

Chapter 5 introduces three extensions to our subset of LSC: conditions, time
and symbolic instances. These extensions are formally defined, the definition of
decision problems is adapted and their computational complexity is analyzed.
As said above, we get three types of changes: conditions do not change any-
thing, time makes verification of closed system harder but leaves the complexity
all other problems unchanged. Symbolic instances make the simplest decision
problem, viz. satisfiability, undecidable.

Chapter 6 describes REMoRDS, a program supporting the approach of
Fig. 4 through the implementation of several algorithms described in this thesis.
These algorithms are

• Synthesis, under the perfect information hypothesis;

• Verification, through the generation of temporal logic formulae;

• Incomplete distributed synthesis.

Relevant implementation details and choices are discussed in this chapter.
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Chapter 1

Preliminaries

Contents

1.1 Languages and automata . . . . . . . . . . . . . . . . 12

1.2 Temporal Logic . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Infinite games . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Computational Complexity . . . . . . . . . . . . . . 20

1.5 Alternation . . . . . . . . . . . . . . . . . . . . . . . . 26

Regular pleasures,
That won’t disturb the routine

Patricia Barber, “Verse”

This chapter provides a rapid introduction to the field of languages and
automata (Sec. 1.1), temporal logics (Sec. 1.2), infinite games (Sec. 1.3) and the
theory of computational complexity (Sec. 1.4), including alternation (Sec. 1.5).
Well-known results are recalled. The notation and terminology used throughout
the thesis are also introduced here. This aims at making this thesis as self-
contained as possible. Yet, we will be obliged to make some forward references.
Readers not familiar with these topics should consult tutorial introductions and
standard textbooks, of which we cite a few: [86, 133, 159, 156, 142] for automata,
[51, 133, 117, 38] for temporal logics and model checking, [63, 156, 159, 158]
for infinite games, [132, 34] for computational complexity, including alternation.
The relation between automata and logics is surveyed in [157]. Chandra, Kozen
and Stockmeyer’s seminal paper on alternation provides a good introduction to
this extension of Turing Machines [36].

1.1 Languages and automata

1.1.1 Regular Languages and Finite Automata

Take some arbitrary set A. Then, for any i ∈ N, Ai denotes the set

{a1 . . . ai|∀j : 1 ≤ j ≤ i : aj ∈ A}

of all sequences of length i of elements from A. The special symbol ε represents
the empty sequence, which is the only element contained in A0. The Kleene’s
star operation is defined as

A∗ =
⋃

i∈N

Ai.

The set A+ is A∗ \ {ε}.
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Assume that we are given a finite set, called an alphabet , Σ. Any subset L
of Σ∗ is a language over Σ. If L is finite, we will say that it is a finite language.

As a convention, elements from Σ, letters for short, are represented as small
latin letters from the beginning of the alphabet (a, b, . . .) whereas elements
from Σ∗, called words, are represented by small latin letters from the end of the
alphabet, such as u, v, w, . . .. Languages are denoted by capital latin letters.

In addition to finite repetition (Kleene’s star), concatenation, represented
by “·” is an operator to build languages. It is simply defined as the appending
of a sequence to another

(a1 . . . an) · (b1 . . . bm) = a1 . . . anb1 . . . bm.

When it is clear from the context that we are applying concatenation, we will
omit the · operator. Concatenating languages results in the language containing
the pairwise concatenation of every word from original languages:

L1 · L2 = {u1 · u2|ui ∈ Li, i = 1, 2}

It is also possible to apply ∗ to languages, still yielding languages, i.e. subsets
of Σ∗:

L∗ =
⋃

i∈N

{u1 . . . ui|∀j : 1 ≤ j ≤ i : uj ∈ L}.

Words from Σ∗ can be ordered using the prefix relation. We say that a
word u is a prefix of a word v, and write it u v v if there is a word w such that
appending w to u yields v

∃w ∈ Σ∗ : uw = v.

We say that u is a strict prefix of v if there is a w such that uw = v and w 6= ε.
We denote this u @ w. Clearly, v and @ are respectively partial orders and
strict partial orders on Σ∗.

A word u is suffix of a word v if there is some w such that v = wu. This is
denoted u w v. It is a strict suffix if w is not the empty word (u A v).

The class of regular languages over some finite alphabet Σ is the least fix
point satisfying the following constraints:

1. {a} is a regular language, with a ∈ Σ,

2. if L1 and L2 are regular languages, L1 ∪ L2 is a regular language.

3. if L1 and L2 are regular languages, L1 · L2 is a regular language.

4. if L1 and L2 are regular languages, L1 ∩ L2 is a regular language.

5. if L1 is a regular language, L∗1 is a regular language.

Definition 1.1 (Finite Automaton) A finite automaton is a tuple

〈Σ, Q,Q0,∆, F 〉,
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where

Σ is the set of symbols read by the automaton;

Q is a finite set of states;

Q0 ⊆ Q is a set of initial states;

∆ ⊆ Q× Σ×Q is a transition relation;

F ⊆ Q is a set of final states.

¥

Automata will be denoted by capital rounded letters, such as A,B, . . .. They
can be graphically displayed as in fig 1.1. States are circles and arrows represent
transitions between nodes. Final states are denoted by a double line while
initial states have a dangling incoming arrow. The graph of fig 1.1 represents
the automaton

〈

{a, b}, {q1, q2}, {q1},

{
(q1, a, q1), (q1, b, q1),
(q1, a, q2), (q2, b, q2)

}

, {q2}

〉

q1 q2
a

a, b a

Figure 1.1: Nondeterministic finite automaton

For such an automaton, a sequence of states q0q2 . . . qn ∈ Q+ is called a
run on a word a1a2 . . . an ∈ Σ∗ iff for every 0 < i ≤ n, there is a transition
(qi−1, ai, qi) ∈ ∆. It is an initial run if q0 ∈ Q0 and it is final if qn ∈ F . We say
that an automaton accepts a word u if there is some run r ∈ Q+ on u such that

1. r is initial;

2. r is final.

The language of a finite automaton is the set of all words accepted by this
automaton:

L (A) = {w ∈ Σ∗|A accepts w}.

We alternatively say that A recognizes L (A).

A language is regular iff there is some finite automaton recognizing it. Thus,
languages recognized by finite automata are closed under boolean operations
(union, intersection, complementation), difference, concatenation and Kleene’s
star. As a convention, we will denote by W the complement of W , i.e. Σ∗ \W .
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A finite automaton is deterministic (DFA) if there is at most one outgoing
transition labeled by every letter, from every state:

∀q ∈ Q : ∀a ∈ Σ : |{q′|∆(q, a, q′)}| ≤ 1.

It is complete if there is at least one outgoing transition labeled by each letter
from every state:

∀q ∈ Q : ∀a ∈ Σ : |{q′|∆(q, a, q′)}| ≥ 1.

An automaton which is not deterministic is dubbed non-deterministic (NFA).

Every automaton can be made complete without altering its language. Ev-
ery NFA can be determinized i.e. transformed into a DFA that accepts the same
language. This operation can cause an exponential blow-up in the number of
states. Thus, every language W ⊆ Σ∗ is regular iff it is accepted by some NFA
iff it is accepted by some DFA. All these equivalences are effective, i.e. there
are algorithms implementing them, which is true of boolean operations, too.

Any DFA can also be minimized. This operation results in a smaller au-
tomaton, recognizing the same language and unique, up to isomorphism.

1.1.2 ω-languages and automata

In the previous section, we looked at finite words. In this section, we will look
at infinite sequences of letters. We let Σω be the set of all infinite sequences,
built from letters in A.

As previously, it is possible to append an ω-word γ ∈ Σω to some finite word
w ∈ Σ∗, yielding a word in Σω. The strict prefix relation can thus be defined
on ω-words, too:

∀γ ∈ Σω, ∀w ∈ Σ∗ : w @ γ ⇐⇒ ∃γ′ ∈ Σω : wγ′ = γ

The prefix relation is not defined between infinite words.

q1 q2
a

a, b a

Figure 1.2: Nondeterministic Büchi automaton

Finite automata can be modified to recognize ω-languages. The most basic
type of automata recognizing ω-languages are Büchi automata. They have the
same structure as NFA, i.e. 〈Σ, Q,Q0, δ, F 〉, except that they run on infinite
words γ ∈ Aω. Since an automaton has only a finite number of states, when it
runs over an infinite word γ, the resulting run must contain some states that
are repeated infinitely often.
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We say that A accepts γ if A has an initial run on γ in which an accepting
state occurs infinitely often. The language recognized by A is the set of words
it accepts:

L (A) = {γ ∈ Σω|A has an initial run ρ on γ s.t. inf(ρ) ∩ F 6= ∅}

We denote by inf(ρ) the set of states that occur infinitely often in ρ. We say
that A universally accepts γ if, on every initial run ρ of A on γ, inf(ρ)∩F 6= ∅.
Languages recognized by non-deterministic Büchi automata (NBA) are called
ω-regular languages. They are closed under all boolean operations.

However Deterministic Büchi Automata (DBA) are strictly less expressive
than NBA. For instance, there is no DBA recognizing the ω-language of the
NBA in fig. 1.2. This language is the set of words containing only a finite
number of b:

({a} ∪ {b})∗{a}ω.

Nevertheless, the complement of this language (an infinite number of b) is rec-
ognized by the DBA of fig. 1.3. The set DBA of all languages recognized by
deterministic Büchi automata is consequently not closed under complementa-
tion.

q1 q2

b

a b

a

Figure 1.3: Deterministic Büchi automaton

However, there are other acceptance conditions for which deterministic and
non-deterministic versions of automata are equivalent.

Muller: the set of accepting states F is replaced by a set F of sets of states.
A run ρ is then accepted if

inf(ρ) ∈ F .

Rabin: the set of accepting states F is replaced by a set

F = {(E1, F1), (E2, F2), . . . , (En, Fn)}

of pairs of sets of states. A run ρ is then accepted if there is a pair (Ei, Fi)
in F such that

inf(ρ) ∩ Ei = ∅ and inf(ρ) ∩ Fi 6= ∅.

Streett: this is the dual of the Rabin condition. A run ρ is accepted if, for
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every pair (Ei, Fi) ∈ F

inf(ρ) ∩ Ei 6= ∅ =⇒ inf(ρ) ∩ Fi 6= ∅

Parity: the acceptance set F is replaced by a colouring function, which assigns
to every state some natural number F : Q× N. Then, ρ is accepted iff

max{F (q)|q ∈ inf(ρ)} is even

All these acceptance condition are equivalent: any (Muller,Rabin,Streett,Parity)-
automaton can be turned into a (Muller,Rabin,Streett,Parity)-automaton ac-
cepting the same language. Furthermore, they can be determinized and they
are all equivalent to NBA. When we want to refer to some ω-automaton with
a generic acceptance condition, we will write 〈Σ, Q,Q0, δ,Ω〉 and detail what Ω
is.

Finally, we introduce the notion of a weak automaton. A NBA is weak if its
states can be partitioned into Q1, . . . , Qn such that,

1. every partition contains either only accepting states or only non-accepting
states:

∀i : 1 ≤ i ≤ n : Qi ⊆ F or Qi ∩ F=∅,

2. whenever a transition is followed in partition Qi, it can only lead to par-
titions with higher indices:

∀i, j : 1 ≤ i, j ≤ n : ∀a ∈ Σ : ∀q ∈ Qi : ∀q
′ ∈ Qj : δ(q, a, q

′) =⇒ i ≤ j.

A weak automaton is linear if state classes are singleton. In a linear automaton,
the transition relation induces a partial ordering on states.

1.2 Temporal Logic

Linear time temporal logic (LTL) can be used to describe infinite words [51].

Definition 1.2 (Linear Temporal Logic (LTL)) Given an alphabet Σ, the
set of LTL formulae is the smallest fixed point satisfying the following con-
straints

• a is an LTL formula, with a ∈ Σ,

• if φ1 and φ2 are LTL formulae, φ1 ∨ φ2 is an LTL formula,

• if φ is an LTL formula, ¬φ is an LTL formula,

• if φ1 and φ2 are LTL formulae, φ1 U φ2 is an LTL formula,

• if φ1 is an LTL formula, ©φ1 is an LTL formula.
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Infinite words (γ ∈ Σω) are interpretations of LTL formulae. An infinite
word γ = e0e1 . . . ∈ Σω is a model of an LTL formula ϕ, written γ |= ϕ iff

• if ϕ = a then e0 = a;

• if ϕ = ϕ1 ∨ ϕ2 then γ |= ϕ1 or γ |= ϕ2;

• if ϕ = ¬ϕ1 then γ 2 ϕ1;

• if ϕ =©ϕ1 then e1e2 . . . |= ϕ1;

• if ϕ = ϕ1 U ϕ2 then

∃j ≥ 0 : (∀i ∈ {0, . . . , j − 1} : eiei+1 . . . |= ϕ1) and ejej=1 . . . |= ϕ2

¥

As usual, we define the following abbreviations:

• ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2);

• ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2;

• > ≡ a→ a, for some a ∈ P;

• ⊥ ≡ ¬>;

• ♦ϕ1 ≡ >U ϕ1;

• ¤ϕ1 ≡ ¬♦¬ϕ1.

An LTL formula ϕ defines the following ω-language

L (ϕ) = {γ ∈ Σω|γ |= ϕ}.

The class LTL contains all languages that are definable by LTL formulae. ω-
automata provide us with a means to check the satisfiability of LTL formulae.
Indeed, from every LTL formula ϕ, it is possible to build an NBA Aϕ such that
[171]

L (Aϕ) = L (ϕ).

This approach, called the tableau method, is at the heart of model checking
techniques, see [51, 133, 38]. However, the converse is not true: not every NBA
can be turned into an LTL formula. Indeed, LTL is equivalent to counter-free
automata [125, 93]. Thus, LTL is not as expressive as NBA but can be extended
to enjoy this property [181].

A counter-free automaton is an automaton which cannot count modulo k,
for any k ≥ 1. Formally, an automaton has a counter if

1. it has only reachable and non-dead states;
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2. we can find some word u and some sequence of states q0 . . . qk such that,
from two different states in it, different ω-words can be accepted and
reading u from qi leads to qi+1 mod k.

This definition means that, from qk, we can read an odd number of u and reach
q0. From q0, some word w can be recognized that cannot be recognized from
qk. Thus, this automaton can count modulo. An automaton is counter-free if
it has no counter.

1.3 Infinite games

In this thesis, we will make use of the theory of infinite games [63]. Suppose that
there are two players: player 0 and player 1. These two players are playing over
deterministic automata. Player 0 tries to find accepting runs of the automaton,
whereas player 1 has the opposite objective. States are partitioned and shared
out among players. Players move a pebble from state to state, according to the
transition relation. Of course, player 0 may only move the pebble when it lies
in one of his states. The game goes on forever, i.e. generates an infinite run of
the automaton. Player 0 wins if it is accepted by the automaton, depending on
the precise acceptance condition considered.

Formally, a game graph is a deterministic automaton

G = 〈Σ, V, V0, q0,∆,Ω〉,

where V0 ⊆ V are flagged as player 0’s states. When discussing games, we will
often refer to states as vertices. We denote V1 = V \ V0. We will assume that
every state in G has a successor.

A play is an infinite run in G. A play is winning in G if it is accepted, wrt
Ω.

A strategy is a function, assigning to a finite play, a successor: f : V + → V
such that

∀w ∈ V ∗ : ∀q ∈ V0 : ∃a ∈ Σ : (q, a, f(wq)) ∈ ∆.

A positional strategy only uses the last state to make its decision: f is positional
iff ∀w ∈ V ∗ : ∀q ∈ V : f(wq) = f(q). If we fix a strategy for both players f0,
f1, their joint play from state q yields a run f0 ◦q f1 = q0q1 . . . such that every
event is decided according to the strategy of the player which is up to play at
position i:

q0 = q ∧ ∀i > 0 : qi−1 ∈ Vj =⇒ qi = fj(q0 . . . qi−1)

The outcome of a strategy fj for player j from state q is the set of runs

Out(fj , q) = {fJ ◦q g|g is a strategy for player 1− j}.

Remember that a play is winning if it is an accepting run in G, wrt Ω.
Following this, a strategy is winning in state q if all its outcomes from state q
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are winning. The winning region of player j is

Wj = {q|Player j has a winning strategy from q}.

The acceptance condition Ω determines whether a play is winning or losing.
Therefore, we call it winning condition. If Ω is a Streett condition, the game is
said to be a Streett game, etc.

Clearly, W0 and W1 are disjoint, as both players may not have a winning
strategy from the same state. It is not obvious that winning regions partition
the set of vertices W0 ∪ W1 = V . This property is called determinacy . It
asserts that, from every state, there is always a winning strategy, for one of
the two players. In our case, determinacy is guaranteed by Martin’s theorem,
which states that games whose acceptance conditions correspond to Borel sets
are determined [120]. Roughly speaking, Borel sets are the sets that can be
constructed from open or closed sets by repeatedly taking countable unions
and intersections [175]. Since ω-regular sets are clearly Borel sets, every game
that we will consider in this thesis will be determined.

Although they are determined, our games still look very difficult. Indeed,
deciding membership of states in winning regions amounts to deciding nontrivial
properties about functions. Knowing that there exists a winning strategy for one
player from every state q does not tell anything about our ability to construct it.
In particular, this strategy might even be uncomputable. However, for parity
games, positional strategies are sufficient.

Theorem 1.3 (Parity games) IfG is a parity game, then if there is a winning
strategy for player 0 from q, there is also a winning positional strategy. [63] ¥

Winning regions become computable, because there is only a finite number
of positional strategies! One can decide membership toW0 (andW1, obviously)
in parity games. By the equivalence of the various winning conditions, this is
also true of other acceptance conditions; still, there might be some blow-up
involved in the reduction from an acceptance condition to another.

Theorem 1.4 (Parity games (complexity)) It is possible to solve parity

games in time O

(

|∆| ·

(
|V |

d

)d
)

, where d is the number of colours in the

game graph. [92, 189]. ¥

1.4 Computational Complexity

1.4.1 Problems and Algorithms

This thesis is about modeling languages and their automated analysis. We will
encounter several questions of the type“does a model enjoy a certain property?”.
We will provide algorithms solving these questions. Nevertheless, most of these
algorithms are inefficient. Naturally, one then wonders whether this inefficiency
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comes from badly designed solutions, or from the very nature of the problem
at hand. We will spend quite some time demonstrating that we are struggling
with difficult problems and thus, we will need a framework for assessing problem
hardness.

The theory of computational complexity provides us with such a framework
[132]. It defines precisely the concepts of “problem”, “algorithmic solution”, “ef-
ficiency”, and “hardness”. This theory has proven very valuable to effectively
separate easy problems from difficult problems. Here, we will follow the presen-
tation given in [34]. It focuses on the intersection between formal languages, as
presented in Section 1.1, and complexity theory.

The first concept we will need to define is a problem. In order to have a
unifying framework, we will restrict ourselves to language decision problems.
Formally, a decision problem in our setting will be of the form P (x) ≡ x ∈ L,
for some language L ⊆ Σ∗. Here, Σ is a predefined alphabet, which we assume
fixed for the rest of this section. In summary, we are only interested in queries
of the form “does some word u belong to L?”. Of course, we are only interested
in computer-based problem solving. Thus, we want our notion of solution to
a problem to be algorithmic, that is to provide “a systematic method enabling
a computer to solve a problem”. There are many ways to describe algorithms
and, again, we need some unifying framework.

In line with literature, we define an algorithm as a Turing Machine. We thus
adopt Church’s thesis, that all computing devices are equivalent in power with
Turing Machines. Such a machine is an extremely operational device, having
a finite set of states. It uses as a memory a long thin tape, divided into small
cells, each of them containing exactly one symbol. The machine has a tape
head, which stays on one cell at a time. The machine starts its execution with
the tape head on the leftmost cell. At every step, it scans the symbol under
the tape head and, depending on the value read and its current control state,
performs one of three operations:

1. it replaces the symbol under the tape head by a new symbol of its choice;

2. it moves the tape head to the next cell, either to the left or to the right;

3. it changes the control state to a new state.

Then, it proceeds to a new step. Some control states are special; they are
marked as halting states. Reaching one of them results in stopping the machine.
Those halting states are partitioned into“yes”and“no”states. The former mean
that the machine halts successfully (it accepts its input) while the latter mean
that the machine halts in error (it rejects its input).

Definition 1.5 (Turing Machine) A (nondeterministic)Turing Machine (TM)
is a tuple

M = 〈Q, q0,Σ,∆, Y,N〉,

with
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Q is a finite set of control states ;

q0 ∈ Q is an initial control state;

Σ is a finite alphabet;

∆ ⊆ Q× Σ ∪ {t} × {l, r} × Σ ∪ {t} ×Q is a transition relation;

Y ⊆ Q is a set of accepting states.

N ⊆ Q is a set of rejecting states. Accepting and rejecting states must be
disjoint: Y ∩N = ∅.

¥

A TM configuration is a triple (q, T, i) made of a control state q ∈ Q,
some tape content T ∈ (Σ ∪ {t})∗ and a tape head cursor i ∈ [|T |]. We
say that a TM M makes a step from (q, T, i) to (q′, T ′, i′), and denote it with
(q, T, i)→M (q′, T ′, i′) iff there is a transition (q, a,m, b, q′) ∈ ∆ such that

1. q /∈ Y ∪N , the current control state is not a halting state,

2. if m = l, then i > 0.

3. if m = l, then i′ = i− 1, otherwise, m = r and i′ = i+ 1.

4. T = uav, with |u| = i.

5. If v = ε and m = r, then T ′ = t. Otherwise, T ′ = ubv.

Definition 1.6 (Deterministic Turing Machine) A deterministic TM (DTM)
is a TM, with the additional constraint that ∆ must be functional on Q × Σ
(its first two arguments). In words, the move of a DTM is entirely determined
by the current control state and the symbol scanned. ¥

The initial configuration of M on input x ∈ Σ∗ is (q0, x, 0), i.e. the control
state is the distinguished initial state (q0), the tape contains only the input (x)
and the tape head is at the leftmost position (0). A computation of M on x
is a finite or infinite sequence of configurations C = Γ0Γ1 . . ., starting with the
initial configuration on input x and following the step relation: Γi →M Γi+1,
for every 0 ≤ i ≤ |C|. We let |C| = ω if C is infinite. A halting computation
is a finite computation ending in a configuration with a halting control state.
Formally, the last configuration Γ|C|+1 = (qH , T, i), with qH ∈ Y ∪N . Among
halting computations, we will distinguish accepting computations, ending with
a control state in Y and rejecting computations, ending in N . A TM accepts
some word u iff it has some accepting computation on u. It rejects u iff all its
computations on u are rejecting. Remark that some computations are neither
accepting nor rejecting, they are simply diverging.
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1.4.2 Efficiency: time, space and complexity classes

The time of a computation C is the number of steps involved in C: TM (C) =
|C| − 1, if C is finite, and TM (C) = ∞, otherwise. The working space of a
computation C, SM (C), is the difference between the longest tape’s length in
all configurations of the computation and in the initial configuration, if C is
finite. We let SM (C) =∞, otherwise.

As in Section 1.1, we can define the language accepted by a Turing Machine,
as

L (M) = {u ∈ Σ∗|M has an accepting computation on u}.

The class of all languages accepted by a Turing Machine is the class of recursively
enumerable (r.e.) languages.

r.e. = {L (M)|M ∈ TM}

This class is not closed under complement. For instance, the language of all
TM which do not halt on some input is not in this class, whereas the set of
halting TM is in r.e..

There is a subset of this class, in which diverging machines are ruled out,
namely the class of recursive languages. A Turing Machine decides a language
L iff, for every u ∈ Σ∗,

• if u ∈ L, then M accepts u;

• if u /∈ L, then M rejects u.

A language L is recursive if it is decided by some Turing Machine. The decision
problem associated with some language L (P (x) ≡ x ∈ L?) will be called
decidable if L is recursive. A function on strings f : Σ∗ → Σ∗ is computable if
its table, seen as a language, is decidable. That is, {u$f(u)|u ∈ Σ∗} is recursive.
We extend the alphabet with a separator, i.e. some fresh simple symbol $, the
role of which is separating u from its image in the TM input.

When assessing the efficiency of a TM, we will accept some rough estimates.
Basically, we are only interested in asymptotical behaviour of their resource
consumption. Actually, our goal is to compare problems, and see if a problem
is much more difficult than another. For this purpose, we introduce the “big-
oh” notation. Let f and g be functions from N to N. Then, f(n) = O(g(n)), if
there are positive integers c and n0 such that, for all n ≥ n0, f(n) ≤ c · g(n).
Remark that saying that f(n) = O(g(n)) means that f(n) and g(n) have the
same rate of growth asymptotically, or that they only differ by some linear
factor. We write f(n) = Ω(g(n)) if the opposite happens, i.e. g(n) = O(f(n)).
If f(n) = O(g(n)) and f(n) = Ω(g(n)), we write f(n) = Θ(g(n)).

A function f : N → N is time-constructible if there is a DTM M deciding
the following language: {0n · 0f(n)|n ∈ N} and TM (n) = O(f(n)). It is space-
constructible if there is a DTM M deciding the same language, and SM (n) ≤
s(n). Following usual conventions [132], we will only consider time-constructible
and space-constructible functions when defining complexity classes.
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A TM M decides a language L in time f(n), where f is a function from
nonnegative integers to nonnegative integers if M decides L and furthermore,
for every u ∈ Σ∗ and every computation C of M on u, TM (C) ≤ f(|u|). The
class of languages decided by TM within time f is a complexity class, denoted

NTIME(f(n)) = {L | ∃M ∈ TM :M decides L within time f(n)}

TIME(f(n)) = {L | ∃M ∈ DTM :M decides L within time f(n)}

The same definitions can be applied to space complexity, yielding the fol-
lowing sets of languages:

NSPACE(s(n)) = {L | ∃M ∈ TM :M decides L within space s(n)}

SPACE(s(n)) = {L | ∃M ∈ DTM :M decides L within space s(n)}

It is quite important to note that time and space complexities differing
only by some linear constant do not really matter, once we consider complexity
classes. This justifies our choice of discarding such differences in analysis and
rather resort to the “big-oh” notation described above.

Theorem 1.7 (Linear Speed-Up) Let c be a positive real number.

1. Let s : N → N be a function. Then

SPACE(s(n)) = SPACE(c · s(n)).

2. Let t : N → N be a function such that limn→∞
t(n)
n = 0. Then,

TIME(t(n)) = TIME(c · t(n)).

¥

We now define several standard complexity classes and the straightforward
inclusions, coming from the fact that deterministic machines are also nondeter-
ministic ones (DTM ⊂ TM).

P =
⋃

k>0 TIME
(
nk
)

⊆ NP =
⋃

k>0 NTIME
(
nk
)

EXPTIME =
⋃

k>0 TIME
(

2n
k
)

⊆ NEXPTIME =
⋃

k>0 NTIME
(

2n
k
)

PSPACE =
⋃

k>0 SPACE
(
nk
)
⊆ NPSPACE =

⋃

k>0 NSPACE
(
nk
)

Only decision problems in P are considered tractable. Furthermore, it is proven
that P ⊂ EXPTIME. Therefore, EXPTIME problems are viewed as really in-
tractable.

We will make use of the “co” version of these classes. A language is in the
“co” version of some complexity class C, i.e. coC, if its complement is in C.
Thus,

coNP = {L|Σ∗ \ L ∈ NP}
coPSPACE = {L|Σ∗ \ L ∈ PSPACE}
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Deterministic classes are closed under complement: coPSPACE = PSPACE,
coEXPTIME = EXPTIME and coP = P.

Savitch’s theorem states that for all space complexity classes above loga-
rithmic space, non-deterministic machines can be simulated by deterministic
machines, with only a quadratic increase in space.

Theorem 1.8 Let f(n) ≥ log2 n be a space-constructible function, then

NSPACE(s(n)) ⊆ SPACE(s(n)2).

Therefore, from SPACE(s(n)c) = SPACE(s(n)), it follows that

SPACE(s(n)) = NSPACE(s(n))

¥

We end up this short walkthrough of complexity classes by relating non-
deterministic time classes and space classes:

NP ⊆ PSPACE = NPSPACE = coPSPACE ⊆ EXPTIME

So far, we have defined the concept of problem, as a question of the form
“does a word belong to some language?”, the concept of algorithmic solution,
as a Turing Machine deciding this problem, and techniques for measuring the
efficiency of this TM, with respect to two resources, namely time and space. We
have also introduced complexity classes, as a means for classifying problems.
We still need a technique for comparing problems and assessing their hardness.
In fact, we do not have any mathematical method for proving higher than
quadratic lower bounds on the time of restricted computing models, as we are
using here. Thus, we cannot really classify problems because we are unable
to obtain tight lower bounds on their complexity [34]. Cook has introduced a
method enabling one to prove relative lower bounds [41]. The idea is to show
that a problem P1 is at least as hard as another problem P2. If P1 turns out to
be tractable, P2 will also be.

Definition 1.9 (Polynomial-time reduction) Let L1 ⊆ Σ∗ and L2 ⊆ Σ∗

be two languages. We say that L1 is polynomial-time reducible to L2, denoted
L1 ≤p L2, if there exists some function f : Σ∗ → Σ∗ such that

1. f is computable in polynomial-time (f ∈ P) and logarithmic space (f ∈
LOGSPACE);

2. u ∈ L1 ⇐⇒ f(u) ∈ L2.

¥

Using this notion, we can find problems which are as difficult as all problems
of some complexity class. A language L is hard for some class C if, for every
L′ ∈ C, L′ ≤p L. A language L is complete for C if L ∈ C, in addition to being
hard for C.
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1.5 Alternation

Obviously, the reader will have noticed that Turing Machines are a flavour
of automata, with an unbounded memory (finite automata have no memory,
only control locations) and a tape head reading the input in a versatile way
(finite automata must read the input left-to-right and accept/reject as soon as
they reach the input end). Thus, we can say that a finite automaton has a
computation on some word w ∈ Σ∗.

The concept of non-determinism has already been presented, several times
in this section, in the framework of automata and of Turing Machines. We have
also introduced two types of acceptance, depending on two different interpreta-
tions of non-determinism. The first is called “existential acceptance” and is the
usual acceptation of non-determinism: “w is accepted iff there is some run on w
that leads to an accepting configuration”. The second is named “universal ac-
ceptance”: “w is accepted iff all executions on a word w leads to some accepting
configuration”.

These two views (universal/existential) can be generalized, in order to nest
quantifiers along a computation. This leads to alternating machines. An alter-
nating TM is a TM, except that its set of control locations are partitioned into
universal and existential locations. A computation starting from a configura-
tion with an existential location is accepting if there is an accepting computation
starting from one of its successor configurations. A computation starting from a
universal location accepts if all computations starting from successor locations
accept, too. Thus, a computation of an alternating TM can be seen as a tree.
Nodes are TM configurations and a node n′ is a child of some node n iff n′ is a
successor of n. Existential nodes have exactly one child, whereas universal nodes
have as many children as they have successor configurations. Such a computa-
tion tree is accepted if all branches end with an accepting configuration. This
concept was introduced in [36]. The intuitive formulation above is not adequate
and harder to formalize, because one has to take diverging computations into
account. In the initial paper, this is done by using a three-valued logics for la-
beling configurations, as well as labeling functions. The correct labeling is then
defined as the least fix-point of a transformation, which propagates acceptance
and rejection “backwards”.

Of course, it is possible to lift the concept of time and space resources con-
sumed by a computation (TM ) to computation trees: “a computation tree C
takes time n iff the longest branch in C has length n.” Similarly, for space
resources, a computation tree C takes space n if no node in C uses more than
n tape cells, ignoring input cells. Then, all other concepts presented in sec-
tion 1.4.2 can be reused. Complexity classes are of course adapted to the al-
ternating case. For instance, APSPACE represents the class of all languages
recognized by alternating Turing Machine using polynomial space.

Chandra, Kozen and Stockmeyer have proven that the deterministic hierar-
chy shifts by exactly one level when alternation is introduced [36].



1.5 Alternation 27

Theorem 1.10
EXPSPACE = AEXPTIME

EXPTIME = APSPACE

PSPACE = APTIME

P = ALOGSPACE

¥

Alternation can be applied to finite automata over finite and infinite words
as well. In this thesis, we will use a simpler kind of alternating finite automata,
over infinite words, called Alternating Linear Automata (ALA). As their names
hints to, they are linear automata (see Sec. 1.1.2), extended with alternation.
Every LTL formula ϕ can be translated to some ALA Büchi Aϕ recognizing all
models of ϕ and having as many states as ϕ has syntactic operators.
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Un bon dessin vaut surtout mieux qu’un mauvais dessin.

Le Chat, P. Geluck

2.1 Introduction

The topic of this thesis is the formal specification of reactive distributed systems
using scenarios. In this chapter, we present several scenario-based languages.
It is clearly out of the scope of the thesis to survey all of them. A survey of
scenario-based languages for telecommunication usage is available in [14].

The purpose of this chapter is to introduce scenario languages and illustrate
that Live Sequence Charts, the language on which we will focus in the rest of
the thesis, is a state-of-the-art scenario-based specification language. It features
most interesting elements that can be found in mainstream languages and is
completely formal. At the end of this chapter, the reader should be familiar
with the general idea of scenario-based specification and have a good intuition
of Live Sequence Charts.

We start with Message Sequence Charts. It is widespread in industry, es-
pecially in Telecommunication and has found its way into Object Management
Group’s Unified Modeling Language (OMG’s UML), where it is known as In-
teraction Diagrams. In previous UML versions, they were called Sequence Dia-
grams. We discuss some shortcomings of MSCs, namely their weak semantics,
the ambiguity of scenario composition, their lack of message abstraction and of
scenario modality. We then present an older language, namely Zave’s Sequence
Diagrams, which is not a Sequence Chart language but features message ab-
straction and a well-defined scenario composition operator. We also present Use
Case Maps and Requirement/Design Behaviour Trees, which form the core of
the “genetic design” approach [47]. We conclude with the presentation of Live
Sequence Charts.
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2.2 Message Sequence Charts

2.2.1 Context

The language of Message Sequence Charts (MSC) stems from industrial practice
in Telecommunication. Engineers have used variants of it for years to commu-
nicate protocols, as a “back-of-the-envelope” notation [150]. The International
Telecommunication Union started working on its standardization in 1992 and
issued recommendation Z.120 that defined officially MSCs in 1996 [90], includ-
ing all syntactical elements that were needed by engineers. A revised version
of the standard is published every four years [169]. In 1998, a subset of the
language, namely bMSC (basic Message Sequence Charts) without data, was
given a formal semantics by Cobben, Engels, Mauw and Reniers [40, 122, 121].
This semantics was given thanks to a mapping to a process algebra, designed
especially to take the special features of MSCs into account. It has been later
extended to deal with data and conditions [131, 53, 121, 58]. These seman-
tics all consider interleaving as a model of concurrency. Other approaches are
based on Petri nets [64, 85], considering directly partial order families [84, 94]
or event structures [81]. The reader is referred to several surveys on MSCs to
obtain more information and pointers on this language [123, 80, 128].

MSC is the most widespread scenario language. It forms the root of a whole
family tree of languages, which we shall simply refer to as sequence charts
languages. For instance, they have found their way into OMG’s UML, where
they mutated into Interaction Diagrams [130]. They can also be found in FIPA’s
Agent Modeling Language [89].

MSCs have also been extended by researchers to provide new features.
Among these extensions, let us cite Triggered Message Sequence Charts [148],
Compositional Message Sequence Charts [67], Message Sequence Charts with
variation points, which are used in Software Product-Line Engineering [188],
Concurrent Transaction Processes [141], Shared Variable Interaction Diagrams
[8], Hybrid Sequence Charts [65], Template Message Sequence Charts [59] and
Live Sequence Charts [42], which are presented in Section 2.6.

2.2.2 Basic Message Sequence Charts (bMSC)

Message Sequence Charts are aimed at describing process interactions. Since
they stemmed from the telecommunication world, processes are assumed to
communicate asynchronously, through message passing. This corresponds to
the actual communication situation in which physically distant devices send
messages to each other via buffered order-preserving channels, namely FIFO
queues. MSC provides a means to represent such processes, as instance axes.
There are three instance axes in the bMSC of Fig. 2.1 corresponding to three
processes (or instances) named P1, P2 and P3. Messages are represented as
downward-sloping or horizontal arrows. They are made of two events: a sending
and a receiving event. Communication is asynchronous: sending and receiving
events do not take place at the same moment. In Fig. 2.1, P1 sends message a
to P2, for instance. Messages can be sent to or received from“the environment”.



30 Scenario-based Languages: a Walkthrough

These are shown as arrows going to or coming from the border of the chart,
see c in Fig. 2.1. Lost, i.e. sent but never received, and found, i.e. appearing
out of nowhere, messages can also be represented. For example, in Fig. 2.1, d
and e are lost and found messages, respectively. Internal atomic actions can be
represented as boxes containing an action name, see ’act’ in Fig. 2.1. Action
labels can be arbitrary natural language sentences or valid expressions in a
chosen formal “data language”.

The semantics of bMSCs, as formally specified in [40] and informally de-
scribed in [169, 166, 90], imposes only two constraints on the ordering of events
(i.e. sending and receiving messages):

1. events from the same instance axis are ordered from top to bottom,

2. a message must be sent before it is received.

Hence, the event “receive c” must occur before “send b”. “Send a” shall happen
before “receive a”, but “send a” and “send b” are not ordered with the rules
above and can thus occur in any order.

P1 P2 P3

ca
b

’act’

d e

msc Messages and actions

Figure 2.1: Basic Message Sequence Chart (bMSC)

One can use guarding and setting conditions, see Fig. 2.2. The former is
used to restrict the possible behaviours: the guard must be true in order to
proceed to the considered section. The latter is used to illustrate in which
state the system is, when it reaches that point. They can be used to state how
scenarios are glued together; a scenario starting with a guarding condition X
can be appended to a scenario ending with a setting condition X [58]. Guarding
conditions start with the keyword when.

MSC-2000 introduced the ability to model method calls, as presented in
Fig. 2.3 [166]. The essential difference between message passing and method
calls is that the latter conveys the intent that the message’s receiver has to
perform some computation, on behalf of the sender. The sender is also assumed
to be suspended until the method returns, unless it is re-activated by another
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Lift Engine

when at 0

call(1)

go up

at 1

msc Conditions

Figure 2.2: bMSC with conditions

Class ATM

a

Class Bank

Gringott’s

checkBalance(b)

checkBalance(OK)

msc Methods

Figure 2.3: bMSC with methods
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ATM Crypto Bank

Card(X)

Pass?

Pass(Y)

Verif(X,Y) g

OK(X) g′
Card verification

msc User login

Figure 2.4: bMSC with references and gates

re-entering method call, or the method call is asynchronous. In this case, no
suspension region is indicated along the sender’s instance axis. MSC-2000 adds
a syntactical rule stating that no event can be drawn within a suspension region,
therefore ensuring that the process remains idle until its method call returns.

In MSC-2000, MSCs can be refined, by referring to other MSCs. Interfaces
to these referred MSCs are defined through named gates, see Fig. 2.4, in which
there are two gates: g and g′. The corresponding gates in the detailed sub-
scenario will hold the same names and be depicted as messages sent by/to the
environment. The scenario named “Card verification” is detailed in Fig. 2.5.

When describing complex behaviour, it is interesting to decompose the prob-
lem at hand, in order to structure reasoning and better cope with its complexity.
Structuring constructs allow one to do so. Basic control flow constructs, such
as alternative, optional parts, parallelism (as interleaving) and loops, are thus
available in MSCs, either as “inline expressions”, i.e. boxes put in the MSC
itself like in Fig. 2.5, or as hierarchical graphs (i.e. nodes can contain graphs
or be labeled with simple bMSCs), called High-Level MSCs (hMSC). They will
be studied in the next section.

2.2.3 High-Level Message Sequence Charts (hMSC)

High-Level Message Sequence Charts (hMSCs) form an alternative to inline
expressions for building structured specifications from bMSCs. A hMSC is
a graph as illustrated by Fig. 2.6. It contains a “start symbol”, a reversed
triangle, and an“end symbol”, which is a triangle standing on its base. Its basic
elements are conditions and nodes, that can refer to bMSCs or other hMSCs.
Nevertheless, one can consider only two-level hMSCs: hMSCs at the top and
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Crypto Bank

g Verif(X,Y)

log request(X)

Check(X,enc(Y))

OK

OK(X)

KO

KO(X)g′

Alt

Par

msc Card verification

Figure 2.5: bMSC with structuring constructs



34 Scenario-based Languages: a Walkthrough

nodes containing bMSCs only, without loss of generality. An “execution” of a
hMSC is a path from its start symbol to one of its end symbols. Such a finite
path sequentially traverses nodes, defining a sequence, say N1 . . . Nm. This
execution defines the concatenation of all these bMSCs. The semantics of a
hMSC is the set of all concatenations of bMSCs that are defined by some path
in the hMSC.

Login

Menu

Log out

$¬ $

Give $

hmsc ATM protocol

Figure 2.6: High-Level Message Sequence Chart

The question arises as to how bMSCs should be sequentially composed.
There are basically two ways to proceed:

strong sequence: the first scenario must complete before the second one starts.
Note that in general an instance has not enough knowledge to decide
whether the scenario has completed. Synchronization messages are thus
needed to implement (in a distributed fashion) this synchronization;

weak sequence: instances can proceed to the second scenario whenever they
have locally completed the first one. This is illustrated in Fig. 2.8. It
corresponds to the local concatenation of partial orders defined by Pratt
[136].

The MSC standard prescribes the latter interpretation [40, 90]. To illustrate
the difference between the two interpretations, remark that weakly sequencing
seq1 and seq2 from Fig. 2.7 yields the bMSC of Fig. 2.8. In this bMSC, P1 may
proceed to seq2 and send c to P2 before P2 has received b.
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P1 P2 P3

a

b

msc seq1

P1 P2 P3

c

d

msc seq2

Figure 2.7: Sequence of bMSCs

There are two motivations for choosing weak sequence. The first is that
the concatenation of two bMSCs under weak interpretation still forms a bMSC;
bMSCs are thus closed under concatenation. On the contrary, the strong con-
catenation of two bMSCs might yield an object which is not a bMSC. Second,
it seems to make the derivation of a distributed program easier, as instances
do not need to synchronize on the end of bMSCs. At first sight, it seems that
projecting the (h)MSC onto its components and extracting a program following
the resulting sequence of events is sufficient [185]. It is not the case because
processes might locally lack some globally-available information. Actually, this
discrepancy between the bird’s eye view provided by sequence charts notations
and the local specification of processes leads to a whole range of problems.

The first problem is called non-local choice. It was identified by Ben-
Abdallah and Leue who provided syntactic criteria to detect it [18]. A choice
between two scenarios is non-local if there is more than one instance that can
choose which branch of the choice will be taken. A choice is thus local if only
one instance is responsible for making it. The criterion for detecting non-local
choice is essentially to ensure that all minimal events following a branch in an
MSC belong to the same instance.

Even with this condition, strange behaviours can occur because although one
instance chooses the branch to be taken, other instances have not enough infor-
mation to know that this branch was picked. This problem gives rise to implied
scenarios. Actually, the problem of implied scenarios encompasses the problem
of non-local choice. An implied scenario is simply an execution that takes place
when all processes act according to their local knowledge but this execution is
not a legal execution of the hMSC. Implied scenarios were first discovered by
Alur, Etessami and Yannakakis [6], who found syntactic rules to detect implied
scenarios in a collection of MSCs. Uchitel investigated the problem of detect-
ing implied scenarios and using them for behavioural requirements elaboration
and synthesis, in the framework of hMSCs, with instantaneous communication
[161, 164, 162, 163, 165]. Muccini provided an algorithm for detecting implied
scenarios in hMSCs as well, based on the idea that implied scenarios were a
generalization of non-local choice [126].

The problem of determining whether an MSC could be distributely imple-
mented without generating new scenarios motivated researchers to find syn-
tactic rules determining a subset of hMSCs for which this property would
hold. Finkbeiner and Krüger came up with a sub-class named causal MSCs[55].
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Hélouët identified conditions for which the synthesis of state machines is also
feasible [79].

hMSCs describe languages that are not regular and their regularity is not
decidable, either [82]. Hence, it is impossible to determine whether a set of
finite-state automata can implement a given hMSC.

Finally, we mention another problem that may arise, as a result of the
discrepancy between local and global information. In MSCs, it is assumed that
processes use a single FIFO buffer to communicate with other processes. In this
configuration, the order in which processes write in this queue is very important.
For instance, the MSC of Fig. 2.1 is not distributable on this architecture. This
is due to the fact that P3 may only append b to P2’s buffer if P1 has already
posted a. However, P3 cannot know this. Alur, Holzmann and Peled have
defined another order, named visual order which is weaker than the causal
order specified in ITU’s recommendation [10]. The visual order states that an
event e is smaller than an event e′ if

1. e is a receiving event and e′ is a sending event, with e′ following directly,
i.e. is drawn immediately beneath, e on the same instance axis,

2. e is a sending event and e′ is a receiving event of the same message (arrow).

3. e and e′ are sending events and e′ follows directly e on the same instance
axis.

The visual order is the smallest partial order containing these three rules. Alur,
Holzmann and Peled exhibited a quadratic-time algorithm for verifying that
the visual order is compliant with the causal order [10], thus, that an MSC is
free of race conditions.

P1 P2 P3

a

b

c

d

msc seq1 ; seq2

Figure 2.8: Weak sequence

2.2.4 Discussion

In this section, we discuss some shortcomings of MSCs. We insist on four
particular shortcomings.

• The semantics of MSC is weak and aims at describing execution samples
only. This is very different from specifying the expected behaviour of the
future system.
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• Composition of MSCs requires some very hard work, as the semantics is
silent about the meaning of a set of scenarios, i.e. how the requirements
they impose on the future system shall be composed.

• MSC lacks syntactic construct for expressing the scope of a scenario, i.e.
whether events not appearing in this scenario can occur at will or are
forbidden by their mere absence.

• MSC does not distinguish between events that trigger the scenario and
events that occur in response to this activation, even though this is a
usual informal distinction in scenarios.

• MSC has no syntactic means to distinguish between universal rules and
examples.

Let us go through these points and detail them. A first precision we would
like to make is that, by itself, the language is not bad. No language is. But, for
our particular usage, namely specifying the behaviour of distributed reactive
systems, they would not be the best choice. ITU’s recommendation states
explicitly that MSC describes “partial behaviour”. MSC can therefore specify
sets of examples only.

At least, specifying the behaviour of a reactive system does not amount to
listing a set of examples. A specification should draw the border-line between
admissible and inadmissible behaviour. Legal and illegal behaviour. Reasonable
systems embed an infinity of virtual executions. How can one reasonably expect
to describe this infinite set of executions as a finite set of examples?

Of course, one could resort to hMSCs or inline loops. Thus, analysts would
have to build a single integrated behavioural model. Note that it is merely im-
possible to use several hMSCs to model this behaviour, because the language
definition is completely silent about the meaning of a set of hMSCs. Nothing
is said about how several scenarios shall be composed. A likely attempt is
through union (of execution sets), but this is not different from a single hMSC
with a top-most choice node. Building an integrated model requires finding out
all relationships between individual scenarios, factoring and merging them. In
this case, how could hMSCs support fully scenario-based approaches to spec-
ification? The essential appeal of the scenario-based paradigm is to proceed
from unrelated, small and concrete requirements chunks, i.e. scenarios, and
get the most out of them through composition. This allows one to deal with
requirements creep; when customers come up with a fresh requirement, this
new scenario is simply thrown in the “big bag of requirements”, extending the
specification to cope with these new wishes. It is of course possible to refine by
hand the big hMSC model but it requires considering the whole “specification”
again.

Therefore, one is left with two alternatives: either use sets of hMSCs or
bMSCs to describe behaviour samples, benefit from a true scenario-based ap-
proach but losing the ability to specify the future system behaviour, or use a
global integrated behavioural model, in the form of a hMSC, and lose (nearly)
all benefits of scenarios.
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Actually, the problem is even worse if one refers to the intent of analysts.
Sometimes, they want to write down a possible behaviour of the future system,
for the sake of explanation. Sometimes, they are more assertive and want to
describe a reaction of the system to a certain stimulus. For example, the sce-
nario of Fig. 2.4 was drawn with the intent of capturing a “sunny day” scenario:
the customer inserts his card X, types in his code Y and the code is correct. Of
course, everyone knows that there is also a “rainy day” scenario, in which the
customer types a wrong code. In fig. 2.5, the intent was rather to state that
whenever a customer card number X and a code Y were sent to the crypto
module, the module had to write the request to some log, encode the password,
ask the remote bank for verification and propagate the result backwards. There
are no syntactical constructs in MSCs to make the distinction between these
two different intents: examples and universal rules. In the latter case, there are
no syntactic constructs to single out the activation part, neither.

We close this discussion section by highlighting that MSCs are not syntac-
tically equipped to express their scope. The scope of a scenario is the set of
events or phenomena that are concerned with this scenario. For instance, con-
sider the ATM situation. Assume that we want to add a scenario taking into
account the fact that the machine can send an alarm to the bank employee
in charge when the level of bank notes is going below some threshold. This
scenario shares absolutely no phenomenon with the scenario for withdrawing
money from the machine. Now, consider the scenario in which the employee
reloads the ATM with bank notes. Then, we do not want customers to take
money at this moment. Thus, the event “withdraw money” is shared between
these two scenarios, even if it does not appear explicitly in the second. It is
impossible to state this with MSCs. Thus, one is unable to state if events not
appearing explicitly in a scenario may occur while the scenario is executing or
if they are forbidden by their mere absence.

In summary, MSC is nowadays the main language used for representing
scenarios and has proven to be very intuitive. It is at the root of a whole family
tree of languages: sequence chart languages. However, we argued that MSC is
not suitable for the specification of reactive distributed systems, because of the
following reasons:

• Its semantics is weak;

• Composition of scenarios is defective;

• It misses syntactic constructs to express the difference between examples
and universal rules. It is impossible to distinguish events activating the
scenario from events occurring in response to this activation;

• It is impossible to specify the scope of a scenario.

In an attempt to tackle these problems, the OMG has substantially extended
the language of MSC in the UML 2.0 [130], where they are called Interaction
Diagrams. The semantic domain of Interaction Diagram is a couple of sets of
executions. When considering one of these couples, eg (G,B), G is the set of
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“good executions”, i.e. positive examples, and B is the set of “bad executions”,
i.e. counter-examples. G and B must be disjoint but not necessarily cover the
universe of executions. Therefore, there are some executions about which it is
not known if there are good or bad. They are called inconclusive. Interaction
Diagrams introduce new operators: restrict, ignore, assert and negation. The
first two operators specify the scope of a scenario, by adding/removing events
from its scope. The “assert” operator means that only the traces described
in the diagram are good; all other traces are bad. The “neg” operator means
that the traces described are counter-examples. However, the UML standard
is ambiguous about the meaning of these operators. The semantics of these
operators is only defined with respect to good scenarios. The interpretation of
negation is ambiguous as demonstrated in [35]. Furthermore, we showed that,
under some reasonable assumptions, it is undecidable whether an Interaction
Diagram is consistent, i.e. good and bad executions do not overlap [25].

2.3 Zave’s Sequence Diagrams

2.3.1 Presentation

In 1985, Zave introduced a language for modeling the behaviour of reactive
systems, called Sequence Diagrams (SD) [186]. This language is different from
UML 1.4’s sequence diagram language [129], although both languages belong
to the scenario languages family.

Zave’s SD provides several features that help analysts specify the behaviour
of reactive systems. First, it is based on the idea of decomposition: the global
behaviour is decomposed into sub-behaviours. These sub-behaviours can be
sequentially composed, iterated or composed by choice. They can also be reused
at other places in the specification, thus enabling analysts to factor out common
sequences. Second, the distinction between input and output actions is made.
The language specifies valid sequences of input events as well as appropriate
system responses. Third, every scenario is given a scope: input events outside
its scope are simply discarded. Fourth, the language is partly graphical. Fifth,
different aspects of the system can be described. The language then provides
a built-in meaning of composition. Zave advocates that, whith these features,
the specification of distributed reactive systems is greatly simplified.

Figure 2.9: X is X1 followed by X2 . . . followed by Xn

A Sequence Diagram is a tree. Leaves are labeled by boxes, with two zones:
the upper zone contains an alias name and the lower zone an input events. The
use of aliases is explained on an example below. Intermediate nodes represent
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Figure 2.10: Y is exactly one of Y1 or Y2 . . . or Yn

Figure 2.11: Z is zero or more repetitions of Z1

sub-behaviours that are refined in their children nodes. There are three types
of intermediate nodes, as illustrated by Fig. 2.9, 2.10 and 2.11.

Figure 2.12: Sequence Diagram: “Session” view

For example, the various Sequence Diagrams of this session present the
behaviour of a very basic compact Disc player. The player has five buttons:
stop, play, forward, reverse, eject and a slot in which CDs can be inserted.
Fig. 2.12 shows the high level usage of this player: a playing session starts with
turning the player on. This is achieved by pressing the “stop”button. However,
for the sake of readability, this Sequence Diagram does not directly consider
the event but rather an alias of it. This alias improves the readability of the
diagram, because it makes it possible for analysts to assign different context-
dependent meaning to a single event. For instance, “stop” can be used to turn
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the player off, as well. The diagram of Fig. 2.12 imposes that a session is divided
into three phases. First, the system is turned on. Then, any number of CD’s
can be inserted, however, a CD must always be ejected before another CD is
inserted. Third and finally, the player is turned off, by pressing “stop” again.

Figure 2.13: Sequence Diagram: “Reading CD” view

Another view on the behaviour of the CD player is given in“reading session”
(Fig. 2.13). During the player’s lifetime, many reading sessions occur. A reading
session starts by inserting a CD and playing it. The session can be paused
several times and is eventually terminated. This termination is either abrupt,
i.e. the CD is simply ejected, or elegant, i.e. the CD is stopped before being
ejected.

Figure 2.14: Sequence Diagram: “Play/Pause” view

Yet another view is provided by Fig. 2.16. A CD can be read but it can also
be browsed while playing it.

Sequence Diagrams show valid input sequences only. In order to determine
how the system reacts to these inputs, output actions are associated to aliases.
Hence, output actions are context-dependent as well. For instance, the reaction
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Figure 2.15: Sequence Diagram: “Pauses” view

Figure 2.16: Sequence Diagram: “Browse CD’s” view

to “stop” is not the same in all sequence diagrams. It can turn the player off,
turn it on or stop CD playing.

Figure 2.17: Filter mechanism

Views declare which aliases are relevant to them. For instance, “read CD’s”
does not consider the “Power On” and “Power Off” aliases. However, “read
CD’s” and “Session” share “stop playing” as a common alias.

This specification language was designed for being executable. It uses a
“filter” mechanism to do so. When an input event comes in the system, the
filter tries to find some alias for this input event that is allowed to happen in
the current state, in all views for which it is relevant. If the event is relevant
to no view, it is simply discarded. If there is some mismatch between rules, i.e.
no alias can be found, some error action should be taken. Those can be user-
defined, in order to tune system behaviour. When a matching alias is found,
its associated set of output actions is performed, thus producing outputs and
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modifying the value of local variables.

This execution scheme defines a meaning of composition of overlapping
views. Therefore, requirements can be specified through small overlapping bits
and automatically composed to form the future system complete behaviour.

2.3.2 Discussion

Sequence Diagrams are most appropriate to the specification of centralized re-
active systems. They are not part of the “sequence charts” family, which can
frighten some practitioners. We find some very good ideas in this language:
views are given a scope, here called “relevance”, and composition has a built-in
meaning. Thus, the global behaviour can be constructed from the automated
integration of small overlapping scenarios.

They are not completely graphical and not completely formal, either. In
particular, the meaning of actions is informal in the language, while output
actions are not graphically displayed. The scope (relevance) of a scenario can
also be restricted or widened, but only using the textual syntax.

Finally, this language is not really inter-agent. If one wants to specify the
behaviour of a distributed system, multiple views must be used. A view is
associated to every agent, presenting the local view that this agent has of the
whole system, as presented in [186].

2.4 Use Case Maps

2.4.1 Presentation

Use Case Maps (UCM) have been introduced by Buhr as a means to visualize
scenarios on architecture [30, 31]. The essential idea behind use case maps is
that they form a high-level, user-oriented notation. They are being introduced
in ITU’s set of notations, together with GRL (Goal Requirement Language) ,
where they are called the User Requirements Notation (URN) [168, 167].

The purpose of UCM is to describe how the organizational structure of a
complex system and the emergent behaviour are intertwined. Buhr’s paper
says explicitly that UCM is not a behaviour specification language [30]. It is a
notation for helping people visualize, think about and explain the “big picture”
of a system behaviour.

A UCM is made of two elements: a map displaying the various components
as boxes and scenario paths crossing among these components, see Fig. 2.18.
The purpose of a scenario path is to illustrate a sequence of “actions” made
by components. A scenario path is a wiggly line. It starts at its dot-end and
finishes at its line-end. Scenario paths cross components at positions known as
responsibilities. Paths illustrate causal chains of responsibilities. Components
cooperate along a path to achieve some desired result, or make some behaviour
emerge. When two components “perform” actions in a row, they implicitly
communicate.

Use Case Maps provide constructs to visualize scenarios relationships. For
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Figure 2.18: Use Case Map

instance, one can use OR-fork and OR-joins, to express that a path splits
into two possible continuations or that two paths share a common ending. In
Fig. 2.19, the black path and the grey path share a common prefix, intuitively
password verification. They split at a OR-fork place. AND-forks and AND-joins
are also available to express the fact that two scenarios execute concurrently.
Of course, a path can be iterated.

About everything else in UCMs is left implicit: whether several executions
of a scenario can occur simultaneously, how communication takes place, what
model of concurrency is used, etc. This information is not defined in the lan-
guage, because it is thought that analysts will grasp these details from the
context and their knowledge of the system being visualized.

Figure 2.19: Use Case Map with forks and joins

Additional syntactical constructs are available. We cite a few of them but
we do not detail them. Timers, with associated timeout paths. Stubs, that
are placeholders for paths that can be dynamically branched. Slots, that are
placeholders for dynamic components, that are plugged in the system at run-
time. Failure points, that indicate where a path can be abruptly terminated,
eg because of network communication problems. Dynamic components pools,
with operations to create, delete, add and remove components from pools.
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2.4.2 Discussion

UCM is not a good candidate for the scenario-based specification of distributed
reactive systems. Its stated purpose is not being a specification language but
rather a language for sketching system behaviour. Therefore, like MSCs, UCM
provides only examples of behaviour of the system. The language has no well-
defined semantics, but this is presented as a design choice. The authors of UCM
argue that this looseness is a strength of their language rather than a weakness,
for leaving many elements implicit allows one to avoid considering architectural
details and discuss the big picture of system behaviour.

There are however some points that are found in UCM and are very com-
mon to other state-of-the-art scenario-based languages. First, the notation
shows clearly the various components. This was not present in Zave’s Sequence
Diagrams but could be found in MSCs. This seems to be an important element
of a notation aimed at describing distributed systems; showing explicitly the
agents involved in the scenario seems to be intuitive. Second, UCM insists on
causality and responsibility. Agents perform actions because of stimuli, coming
from their environment, be it the system’s environment or other system’s agent.
Every agent is then responsible to perform some action and cooperatively with
other agents, achieve a certain global behaviour. This idea was also present
in MSCs. In Zave’s SDs, the distinction was made between input events and
output events: the environment was responsible for ensuring that input events
came as specified whereas the system was responsible for responding appropri-
ately.

2.5 Genetic Design

2.5.1 Presentation

Genetic Design considers software construction as the process of building soft-
ware systems out of their requirements, instead of building systems fulfilling
their requirements [48, 46, 47]. The essential problem that Genetic Design tries
to address is the inability of human beings to cope with large and complex
systems, because of the deficiencies of their short-term memory.

Genetic Design is decomposed into four phases:

1. Translate a functional requirements document, written in natural lan-
guage, in a formal language, called Requirements Behaviour Tree (RBT)
on a sentence-per-sentence basis.

2. Integrate RBT one-at-a-time into an integrated Design Behaviour Tree
(DBT). Detect defects disabling integration.

3. Extract and transform an architecture model.

4. Project the DBT on components to obtain components blueprints.

A RBT is a tree whose nodes show components. These components can
realize states (written [STATE]), check conditions (?Condition?), receive events
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(??Event??), sending data (<DataOut>), receive data (>DataIn<), assign values
to their attributes (att := value) and revert to an equivalent component-state
higher up in the tree (^).

Figure 2.20: Component Interaction

Behaviour is a sequence of component states. For instance, in Fig. 2.20, it
is shown that when the BUTTON is pressed, the BELL sounds. When the BELL

is sounding, it will get silent. Every sentence is translated in an RBT. The
translation process should preserve the intent. Therefore, it should add nor
remove information from the initial requirements. This translation is recorded
in a Translation Traceability Table (TTT).

Figure 2.21: “Insert CD” RBT

Figure 2.22: “Eject playing CD” RBT

As a translation example, consider the following requirements about a CD
player. They are translated as RBT.

• When the CD slot is empty, the user can insert a CD in the slot (Fig. 2.21).

• When the CD slot is full and the play button is pressed, if the CD is a
valid audio CD it starts playing, otherwise nothing changes (Fig. 2.26).

• When the CD is playing, pressing play pauses the CD (Fig. 2.24).

• When the CD is paused, pressing play resumes CD playing (Fig. 2.25).
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Figure 2.23: “Eject paused CD” RBT

• If the CD is playing or paused, pressing “eject” ejects the CD from the
slot (Fig. 2.22 and 2.23).

Figure 2.24: “Pause CD” RBT

Figure 2.25: “Resume CD” RBT

RBTs need to be integrated afterwards. What makes integration feasible?
Genetic Design postulates two axioms:

Precondition Axiom. Every constructive, implementable individual functional
requirement of a system, expressed as a behaviour tree, has associated
with it a precondition that needs to be satisfied in order for the behaviour
encapsulated in the functional requirement to be exhibited.

Interaction Axiom. For each individual functional requirement of a system,
expressed as a behaviour tree, the precondition it needs to have satisfied
in order to exhibit its encapsulated behaviour, must be established by the
behaviour tree of at least one other functional requirement that belongs to
the set of functional requirements of the system. The behaviour tree that
forms the root of the integrated tree is excused from this requirement.
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Figure 2.26: “Play CD” RBT

The first axiom states that “behaviour does not just happen”. There is
always a precondition that must be satisfied in order for the behaviour encap-
sulated in a functional requirement to be accessible or applicable or executable.
The second axiom states that, when a precondition is not met, it will not be-
come true magically; it must be set by another functional requirement.

When these two conditions are met, it is possible to integrate all require-
ments. This integration is performed RBT by RBT, one-at-a-time. When an
RBT cannot be integrated, because a precondition is missing, for instance, it
shows a requirement defect. This defect can be corrected, by adding a precon-
dition. When an RBT cannot be integrated, because its precondition is never
true, the situation should be investigated to determine whether the functional
requirement is useless, i.e. there is noise in the specification, or a piece of
specification is missing, i.e. functional requirements are incomplete.

In the CD player example, some RBTs do not end in component state nodes,
namely those of Fig. 2.21, 2.22 and 2.23. Thus, it is impossible to attach the
RBT of Fig. 2.26 to the DBT, because its precondition CD SLOT[full] is never
established by any other RBT. To cope with this, we add two node states stating
that, when the CD is ejected, the slot is empty and, when the CD has been
inserted, the CD slot is full. They are displayed in red in Fig. 2.27 to illustrate
that they correspond to requirements defect.

When all RBTs have been integrated into a DBT, one can turn to the
solution domain and consider architectural problem. First, from the DBT,
it is possible to derive a Component Interaction Network (CIN). A CIN is a
graph in which nodes represent components. Every component appears thus
only once in a CIN. There is an edge between two nodes N1 and N2 if there is
a communication between the component represented N1 and the component
represented by N2. Arrow heads carry more information than this: there is a
double arrow head on an edge (N1, N2) if N1 always initiates the communication
with N2. The CIN automatically obtained can be transformed, i.e. events and
states can be renamed or removed. Since traceability links are kept by the
automated process deriving the CIN, the analyst knows where the DBT has to
be modified.
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Figure 2.27: DBT for the CD player
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At this stage, the DBT describes the integrated overall behaviour of the
future system, built out of the functional requirements. Since the translation
process preserved the intent, defects have been found and corrected early on,
and requirements integration led to a system that is correct by design. Now, in
order to implement it, we need a specification of the behaviour of every compo-
nent. This is achieved by projecting the DBT on every component, removing
information that is not local to the component being synthesized. The result-
ing DBTs can be analyzed to ensure that they are actually implementable. In
particular, when a choice occurs in such a DBT or an action is to be carried
out by a component, enough information should be locally available to ensure
that this action/choice is carried out appropriately.

2.5.2 Discussion

The languages found in the Genetic Design approach feature many elements
that are central to scenario-based approach.

First and foremost, translating functional requirements sentences to RBTs
is presented as a rather straightforward activity. In [46], Dromey gives some
methodological insight to preserve repeatability : requirements shall be trans-
lated by two independent analysts and the results matched. Analysts should
be properly trained to the use of the language. Hence, the language of RBT
should match perfectly the user intent, as declared in the functional require-
ments document. We are pretty certain to have a formal representation of the
requirements, that correspond to initial requirements.

Second, individual requirements are integrated, in a very systematic way, to
form the system’s global behaviour. Genetic Design gives condition to ensure
this integration and, as such, allows one to deal with small requirements chunks
that will be later aggregated. This is pretty much what we found in Zave’s SD
as well.

Third, the tree presents information about what components do. In partic-
ular, causality and responsibility are two aspects that are clearly visible in the
diagram. To be convinced of this, remark the Genetic Design makes it possible
to automatically derive a CIN, showing causality relations and communications
between components. This is akin to instance axes in MSC or components in
UCM.

Fourth, the projection of a global DBT onto components leads to a loss of
information. Some components might therefore lack information that is essen-
tial to guarantee that the emerging global behaviour matches the one specified
by the DBT.

However, some aspects are rather awkward with RBT. In particular, or-
thogonal or partly overlapping aspects of reactive systems are very difficult to
specify. This is possible but is likely to lead to combinatorial explosion. For
instance, saying that a CD can be ejected after having been inserted, no matter
if it is playing, paused, stopped or skipping tracks, is very difficult. This is
exactly the same good old problem that led Harel to introduce orthogonality in
Statecharts [70].
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2.6 Live Sequence Charts

2.6.1 Presentation

Live Sequence Charts (LSC) have been developed by Damm and Harel [42] to
cope with the problems of MSC presented in Section 2.2.4. LSC incorporate new
syntactic constructs and elaborate on the semantics of MSC to enable analysts
to distinguish between things that may happen and things that must happen.
The syntactic extension is a binary modality, named temperature, which can be
applied to almost all objects appearing in a chart. Thus, objects can be cold
or hot. A hot object means “mandatory”while cold objects mean “provisional”.
Graphically, cold elements are dashed while hot elements are drawn with solid
lines.

Charts themselves can be hot or cold. A cold chart is a chart that happens
at some point, in some system execution. It is thus a mere example, just like a
bMSC. A cold chart is also named existential. A hot chart is called universal,
because it imposes a universal rule, that applies to every system execution. As
highlighted in Sec. 2.2.4, messages appearing in a chart have different intuitive
statuses: some are activation messages while other are answers. LSC makes
this distinction in universal charts: one can single out an activation part, and
surround it in a dashed-line hexagon. This part of the chart is named prechart ;
the lower part is named main chart . Existential charts are surrounded with a
dashed line rectangular box.

Temperature applies to almost all objects: messages, conditions and loca-
tions, that are points along instance axes at which messages are sent or received.
When an instance reaches a hot location, it must reach the next location. This
expresses liveness, i.e. the obligation of something “good” to eventually occur.
Cold messages need not be received; hot messages must. Remark that not all
combinations of location and message temperature make sense. The interplay
between message temperature and location temperature is presented in [75].
Hot conditions must be evaluated to true; cold conditions can be false, in which
case the chart execution is prematurely but successfully aborted.

Charts can be structured thanks to sub-charts. A sub-chart is a distin-
guished zone of a chart, akin to MSC inline expressions. The beginning and
end of a sub-chart act like synchronization points for participating instances.
A sub-chart is therefore only entered after all participating instances have ar-
rived at the location associated with the sub-chart. It can only be left once
all instances have finished executing it. The definition of a cold condition is
generalized to take sub-charts into account: when a cold condition is violated,
the closest surrounding sub-chart is exited. If-then-else statements can be used.
They are subcharts with two operands, guarded by a cold condition. Loops are
also available: they make it possible to iterate a subchart, either a certain num-
ber of times or an unbounded number of times. Loops can be guarded by cold
conditions, providing a halting condition.

LSC supports very well the multi-view aspect of scenario-based approaches:
an LSC represents a certain requirements, expressed in a scenario-based fashion,
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and has a specified scope. Composing two LSCs boils down to conjuncting the
constraints they impose on the future system’s behaviour. This corresponds
nicely to the idea of “throwing new requirements chunks into the big bag of
requirements”. Adding a new requirement on the system does not ask any
integration effort from the analyst. However, extracting a complete intra-object
specification requires substantial effort, because all these requirements must be
taken into account. Yet, our dream is to automate this step, hence taking this
burden away from engineers.

The main appeal of LSC is the play-in/play-out engine that has been devel-
oped by Marelly and Harel [75, 73]. This tool allows end users to capture LSC
by playing with a mock-up of the final system user interface. The user clicks on
the button, fills in text fields and simulates the system reaction. The user is said
to play-in the scenarios. Afterwards, scenarios that have been played-in can be
played-out, i.e. interpreted by the play-out engine. In order to do so, the en-
gine monitors input events, such as buttons being clicked, text fields being filled
in, and so on, and tracks these events in all LSCs of the specification. When a
prechart of some universal LSC is matched, the play-out engine starts executing
the main chart. This approach actually simulates a minimal implementation of
the future system; the system performs events as they become required by the
various scenarios. It is actually the simplest way of satisfying the LSC specifi-
cation: whenever the prechart is matched, perform main chart events until the
main chart is fulfilled as well. This simple observation is central to play-out but
is also at the heart of our work, as demonstrated by Theorem 3.22.

Figure 2.28: Universal LSC with subcharts, conditions, if-then-else and sym-
bolic messages

However, the form of LSC presented so far in this section is rather restrictive
and does not allow analysts to capture and play-out very interesting reactive
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behaviour. This form of LSC is called constant in [75], because only constants
are used in scenarios: instances, atomic propositions, constant messages (with
fixed parameters), . . . A first extension is to allow users to write messages with
symbolic parameters. Instead of having to create one scenario per possible pa-
rameter value, say msg(1),. . . ,msg(10), one can simply write msg(X) and reuse
the value of X afterwards. Variables can even be assigned new values or be mod-
ified using built-in/user provided functions. This extension can lead to some
problems because, in two occurrences of the same messsage, say setName(X)

and hello(X), that are not ordered, the former represents the initialization
of X, while the latter is intended to be its use. It has been decided that the
relative vertical position of messages was meaningful: between two messages
sharing a symbolic parameter, if they are unordered, the message drawn higher
up precedes the other. Fig. 2.28 shows an example of a universal LSC. This
LSC uses symbolic messages in the prechart: the user inserts a card with some
identifier X and types in a code Y. The code must be checked; if it is false, the
ATM displays an error message, otherwise the user can ask to receive a certain
amount of money.

Figure 2.29: LSC with symbolic instances

One can also use symbolic instances. Instead of describing scenarios for con-
stant instances, variables can be used instead, making the behaviour applicable
to all object instances of a class. These variables are bound when the scenario
is being monitored. However, this raises a problem: what should the system do
when a symbolic instance has not been bound but a message must be sent to
it? There are two solutions here: either arbitrarily take some instance and bind
it, or bind every possible instance. In the latter case, a new copy of the chart
being monitored is created for every bindable instance. Constraints can be put
on symbolic instances, for restricting the set of possible bindings, for instance.
Usual constraints refer to links1 between objects, as shown in Fig. 2.29.

1A link between two objects is an instance of an association between the classes of these
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An example of LSC with symbolic instances is given in Fig. 2.29. It ex-
presses the following requirement: “When an administrator logs onto one of its
administered server and asks the system to restart, the server sends a warning to
all connected clients, that display some user warning on all open terminals and,
thirty seconds after the restart order has been received, the system reboots.”

This example illustrates another extension of LSCs, namely time. A global
clock is assumed. Its value can be assigned to chart variables and conditions
can test the value of the global clock.

2.6.2 Discussion

LSC has been designed to extend MSC in order to address the problems pre-
sented in Sec. 2.2.4, namely

• MSC only express examples;

• Composition is defective;

• The scope of a scenario cannot be expressed;

• It is syntactically impossible to distinguish triggering events from response
events;

• There is no distinction between universal rules and examples.

LSC is a simple syntactic extension of MSC dealing with all these deficien-
cies. LSC has a richer meaning, being able to distinguish between examples
of behaviour and universal rules. The definition of LSC includes a definition
of composition of scenarios; an LSC specification is a set of LSCs and their
composition is given through conjunction. Adding a (universal) LSC to a spec-
ification makes the specification more precise, i.e. constrains more the future
system behaviour. Every LSC is given a default scope that contains all events
appearing in it. This scope can be modified by including more events. In [75],
a finer technique for altering the scope of an LSC through “forbidden events” is
presented. Finally, LSC is formally defined.

Therefore, LSC is a true scenario-based language. It supports a scenario-
based approach to specification. It belongs to the Sequence Chart family, mak-
ing it easy to learn for practitioners used to MSC or UML Interaction Diagram.
LSC is a true inter-agent language: an LSC clearly displays the various agents
involved in the scenario that it describes and shows clearly their interactions.

2.7 Conclusion

We have presented several popular scenario-based languages: Message Sequence
Charts (Sec. 2.2), Zave’s Sequence Diagrams (Sec. 2.3), Use Case Maps (Sec. 2.4),
Genetic Design Requirements/Design Behaviour Trees (Sec. 2.5) and Live Se-
quence Charts (Sec. 2.6). We will focus on Live Sequence Charts in the re-
mainder of this thesis. This chapter justifies the choice of this language as

objects, as in UML.
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a scenario-based specification language. We emphasized that Live Sequence
Charts feature many elements that are found in other popular languages and
overcome weaknesses of some of them.

We have skipped some scenario-based languages. Most notably, we did not
present scenario notations based on automata, because they make the idenfi-
cation of agent interactions difficult. Glinz uses Statecharts for representing
scenarios. He advocates that inter-relationships between scenarios can easily
be modeled using Statecharts [61]. Ryser and Glinz have also developed a no-
tation, named Dependency Charts, for representing inter-relationships between
scenarios and derive test-cases from them [144, 143]. Zündorf uses a kind of ac-
tivity diagrams, with nodes containing object diagrams, to represent scenarios.
This notation is called StoryChart [45] and is supported by the FUJABA tool
[56]. Hsia and colleagues use grammars to represent scenarios and derive finite
state automata from them [87].

In the next chapter, we will formally define a subset of LSC and illustrate
it on a case-study. Language-theoretic properties of this language will be stud-
ied, viz. expressiveness and succinctness. The reader uninterested in technical
developments is invited to read the first sections (Sec. 3.1, 3.2.1 and 3.2.2) of
the next chapter and proceed directly to Chapter 4.
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It is a curious feature of our existence that we come from a planet that is very
good at promoting life but even better at extinguishing it.

Bill Bryson, “A Short History of Nearly Everything”

3.1 Introduction

In this chapter, we define the formalism of “Universal Live Sequence Charts”.
We present its abstract syntax and its semantics. We formalize a subset of the
full language of LSCs. Our subset does not include all control-flow constructs,
nor conditions, nor message and location temperature. The differences between
our subset of LSC and the full-fledged LSC presented in [75] are described by
Tab. 3.1. It focuses on two important aspects of LSCs: message abstraction and
scenario modality. Although we are only dealing with a subset of the language,
it is already sufficiently large to model some real-world systems, such as the
interactions in the Center TRACON Automation System (CTAS), from NASA
[178, 26]. We will study our subset of LSC, in terms of expressiveness and
succinctness. These two measures are good indicators of the naturalness of the
language: we will show that LSCs have a relatively low expressiveness but are
highly succinct.

There are two reasons for limiting ourselves to a (very) restricted subset
of LSC. The main reason is that we want to bring automated tool support to
engineers, which quickly turns out to be impossible if we consider a too complex
language. The second reason is that we will then analyze the properties of this
language and the complexity of some analysis problems related to it. Since
our results will mostly be negative, we are interested in their sharpness, by
identifying a small subset of the language which is practically usable but the
analysis of which is already intractable.

3.2 Language Definition

We first introduce an air traffic control system, named CTAS, which supports
the presentation of LSC. We do not model the whole system. Some details are



3.2 Language Definition 57

Construct [75] Our version

LSC status Universal/Existential Universal

Prechart Yes Yes

Conditions Hot/Cold No

Messages Asynchronous/Synchronous Instantaneous

Message Temperature Hot/Cold Hot

Location Temperature Hot/Cold Hot

Sub-charts Hot/Cold No

Loops Bounded/Unbounded no

Choice Yes Yes

Symbolic Messages Yes No

Variables Yes No

Symbolic Instances Hot/Cold No

Table 3.1: Comparison of our subset of LSC and LSC from [75]

abstracted and we present this abstraction. Then, we show how the real software
requirements document for CTAS can be translated to an LSC specification.
This translation serves as a tutorial for LSC concrete syntax. Therefore, we do
not give a full and formal definition of the concrete syntax of the language but
simply present it by means of an example.

3.2.1 Case Study: an Air Traffic Control System

NASA’s Center TRACON Automation System (CTAS) is a set of tools designed
to help air traffic controllers manage the increasingly complex air traffic flows at
large airports. The project began in 1991 and prototypes are now deployed at
Denver and Dallas/Fort Worth airports. Extensions to the core CTAS system
are constantly being integrated and incorporate the latest developments from
research into air traffic control systems. More information is available on CTAS
official web site [12].

CTAS is made of several cooperating processes, as sketched by Fig. 3.1.
These processes cooperate via TCP/IP and are combined to provide certain
facilities. A coherent set of such facilities is a tool. There are several tools in
the CTAS. Hence, the same process can be used in different tools, with differ-
ent run-time options and in combinations with different processes. Tools have
been built to be used altogether in order to assist air traffic controllers. We cite
three of these tools: TMA (Traffic Management Advisor), FAST (Final Ap-
proach Spacing Tool), EDA (En-Route Descent Advisor). The central process
of the software system is CM (Communication Manager). Every inter-process
communication goes through CM that records this information in its aircraft
information database and dispatches the relevant parts to interested processes.

There are three kinds of processes

Communication processes manage the data into and out of CTAS and route
messages among processes. For instance, CM is a communication process,
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Figure 3.1: CTAS processes (reproduced from [12])

as well as WDAD (Weather Data Acquisition Daemon).

Algorithmic Processes perform the prediction and automation functions.
RA (Route Analysis), TS (Trajectory Synthesizer) or WDPD (Weather-
Data Processing Daemon) are algorithmic processes.

User Interfaces provide the interface for users and developers of the CTAS
tools. PGUI (Planview Graphical User Interface) and TGUI (Timeline
Graphical User Interface) are user interfaces.

These processes need accurate geographic, weather and air traffic data. Ge-
ographic data are relative to runways, aircraft routes, etc. Weather data include
wind components speeds, temperature and pressure as a function of latitude-
longitude. Air traffic data include aircraft positions and routes. Regarding
weather data, WDPD checks whether some newer report is available by polling
periodically a rendez-vous file written by WDAD. WDPD converts the forecast
file to a binary file usable by CTAS. In particular, coordinates are translated
into the native x-y coordinate system used by CTAS. Then, WDPD writes to
CM that a new forecast is available. CM sends the name of this new file to all
clients, managing the weather update.

We focus on clients coordination for weather update. The underlying prob-
lem is to ensure that all processes use the same data at all time. Algorithmic
processes depend crucially on accurate weather information. This is especially
true if we recall that CTAS tools are combined CTAS processes, running in a
certain mode; all computations performed by these processes shall obviously be
based on consistent data. In order to ensure synchronization of “weather-aware”
clients on weather data, a three-phase protocol is followed. First, clients are
prepared for update. Second, all clients are asked to get the new data. Third,
they install this new data and use it in future computations. If any phase fails,
the system tries to revert to the previous state. In the very unlikely case that
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this roll-back fails as well, all clients are disconnected. They are expected to
reconnect and reinitialize later on.

From the requirements document, it also appears that there are several
possible forecast sources. An update can sometimes be caused by the manual
intervention of a human operator. This operator interacts with CM through a
special user interface, called “Weather Control Panel” (WCP).

We now present our abstraction of this system. Its structure is displayed
in Fig. 3.2. We hope that this diagram is self-explanatory; rectangles repre-
sent components1, an arrow from a component C1 to another one (C2) going
through an ellipse labeled with I means that C1 can communicate with C2 by
sending events in I. Interfaces are detailed in Tab. 3.2. We ignore many details
about the processes and actual means of communication (TCP connections,
rendez-vous files, polling, . . . ). Our abstract view of the system is presented in
Fig. 3.2. We also assume that there are only two client processes, which we call
client[0] and client[1]. Agents cm and wcp correspond to processes CM

and WCP in the real CTAS.

We added the following agents, that correspond to no actual process in the
real CTAS:

• database roughly corresponds to the file shared between WDPD and CM.
We assume here that there is a database containing weather reports. This
agent decides when new weather reports are available and notifies this by
a “new_weather”. Clients connect to it in order to download these fore-
casts. The database can decide whether this download fails or succeeds.
Thus, this agent hides and abstracts real-world details such as conditions
determinining when a new forecast is available, network connections un-
reliability, or file names.

• term[0] and term[1] are terminals, connected to clients. In the real-
world, after an update, algorithmic processes may perform complex op-
erations to make new forecast available to their computing component.
Here, we abstract this computation part by assuming that clients only
display forecasts on terminals. Every client has its own terminal.

• user is a human operator. She can manually trigger updates, through
the wcp, or query terminals about the current weather report in use.

Agents tagged with a small “monitor” icon belong to the system. We assume
that we are in charge of implementing them and that they will be deployed later
in an environment consisting of user, database, term[0] and term[1]. Agents
communicate via interfaces. An interface is a set of event names. For instance,
database can send any event in If_db2client to client[0] or client[1].

Table 3.2 defines the interfaces referred to in Fig. 3.2. Every interface name
corresponds to a set of events.

1Components, agents, objects, processes: elements of the system that conceptually are able
and responsible to perform actions and are thought of as atomic in the context of a model.
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Figure 3.2: Structure specification of CTAS
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Interface Name Events

If termquery ask_weather

If termansw weather_is[0..1]

If client2term use_weather[0..1]

If term2client yes,no

If wcpui click

If commands update

If uicontrol enable,disable

If cminternal set_status_done,
set_status_preupd,
set_status_upd,
set_status_postupd,
set_status_prerevert,
set_status_revert,
set_status_postrevert,
set_status_preinit,
set_status_init,
set_status_postinit

If client2cm yes,no,reinit,connect

If cm2client disconnect, ack,
nack, set_status_done,
set_status_preupd,
set_status_upd,
set_status_postupd,
set_status_prerevert,
set_status_revert,
set_status_postrevert,
get_new_weather,
get_old_weather, use_weather,
set_status_preinit,
set_status_init,
set_status_postinit

If client2db get_new_data, get_old_data

If dbupdate new_weather

If db2client data, fail

Table 3.2: CTAS Interfaces
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3.2.2 Concrete Syntax

The software requirements document for CTAS weather update has been made
publicly available in 2003, in order to serve as a common case study for the
participants to the SCESM (Scenarios and State Machines: Models, Algorithms
and Tools) workshop series. It served as a support for synthesis and modeling,
most notably by Whittle and Schumann who reported on the successful use of
their synthesis algorithm on scenarios extracted from this document [178].

The document is structured in paragraphs defining the reactions of the sys-
tem in the different phases of the protocol. These chunks are thus scenarios.
They are identified by numbers.

“ 2.8.10 The CM should perform the following actions when the
Weather Cycle status is ”pre updating” (i.e., Weather cycle.status
== WTHR STATUS PREUPDATING):

• a) it should set the Weather Cycle status to ”updating” (i.e.,
Weather cycle.status = WTHR STATUS UPDATING)

• b) it should set the weather status of all connected weather
aware clients to ”updating” (i.e.,
Socket.wthr status =WTHR CLIENT STATUS UPDATING)

• c) it should send CTAS GET NEW WTHR messages to all
connected weather aware clients.

These messages will contain the clients new weather state.”

This excerpt corresponds to the LSCs of Fig. 3.4 and 3.5.

Figure 3.3: Manually triggering a weather update

We provide another example, which has been translated to the LSC of
Fig. 3.7.

“ 2.8.12 The CM should perform the following actions when the
Weather Cycle status is ”updating” (i.e., Weather cycle.status ==
WTHR STATUS UPDATING) and all connected weather aware
clients have responded yes to the CTAS GET NEW WTHR mes-
sages (i.e., Socket.wthr status ==WTHR CLIENT STATUS SUCCEEDED GET):
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Figure 3.4: Preupdate scenario

Figure 3.5: Update scenario (1)

Figure 3.6: Update scenario (2)

Figure 3.7: Update success scenario
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Figure 3.8: Update failure scenario

• a) it should set the Weather Cycle status to ”post updating”
(i.e., Weather cycle.status =WTHR STATUS POSTUPDATING)

• b) it should set the weather status of all connected weather
aware clients to ”post updating” (i.e., Socket.wthr status =
WTHR CLIENT STATUS POSTUPDATING)

• c) it should send CTAS USE NEW WTHR messages to all
connected weather aware clients.

These messages will contain the clients next weather state. ”

In our subset of LSCs, we allow instances, which are represented as vertical
lines, on top of which a box is drawn, including the instance name. This is called
a lifeline. For instance, the LSC of Fig. 3.4 contains 3 instances: cm, client[0]
and client[1]. Second, instances perform events, which are displayed as ar-
rows, linking the “sender” and the “receiver”. The most salient feature of LSCs
is the decomposition of charts into two regions: an upper one, called prechart
and surrounded by a dashed-line hexagon, and a lower one, named main chart,
which is surrounded by a solid-line rectangle. The semantics of an LSC can be
informally described as “when the behaviour described by the prechart occurs,
the behaviour described by the main chart shall follow”.

Sub-charts can be used, to describe alternative behaviors or scenarios exe-
cuting in parallel. Sub-charts are surrounded by a box, tagged with their kind
(ALT for alternatives and PAR for parallelism), and containing two scenarios.
Fig. 3.4 makes use of a PAR sub-chart, stating that cm can send set_upd to
both clients in any order. Fig. 3.6 uses an alternative to state that client[1]
can answer positively or negatively to the order get_new_weather. It is also
possible to use co-regions to state that several consecutive events on the same
lifeline are not temporally ordered. A coregion is drawn as a small dashed line
running along the locations belonging to it. For instance, in Fig. 3.7, a core-
gion is used in the prechart, to state that the order in which client[0] and
client[1] answer positively does not matter.

Two LSCs have been added to deal with database and terminal access. Of
course, they do not correspond to any natural language requirements, since
these actors are not found in the real system. They are shown in Fig. 3.21
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Figure 3.9: Postupdate scenario (1)

Figure 3.10: Postupdate scenario (2)

Figure 3.11: Postupdate success scenario

Figure 3.12: Postupdate failure scenario
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Figure 3.13: Prerevert scenario

Figure 3.14: Revert scenario (1)

Figure 3.15: Revert scenario (2)

Figure 3.16: Revert success scenario
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Figure 3.17: Revert failure scenario

Figure 3.18: Postrevert scenario (1)

Figure 3.19: Postrevert success scenario

Figure 3.20: Postrevert failure scenario
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and 3.22. Another scenario (Fig. 3.23) has been added to state explicitly that,
once the user interface has been disabled, it will be eventually re-enabled but
meanwhile, the user cannot click on the control panel. This scenario uses a
“restricts” clause. This means that, although the event click, sent by user to
wcp does not appear in the prechart or the main chart, it belongs to the scope of
this LSC. This has the consequence that any occurrence of click after disable
will be considered a violation.

Figure 3.21: Database access

Figure 3.22: Term access

Figure 3.23: UI disabling
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3.2.3 Abstract Syntax and Semantics

We represent abstractly a scenario as a labeled partial order. This is in line
with the standard semantics of Message Sequence Charts [166, 40] or UML 2.0
Interaction Diagrams [130].

Definition 3.1 (Labeled Partial Order) A (finite) A-labeled partial order
(LPO) is a tuple 〈L,≤, λ, A〉, where

• L is a (finite) set of locations;

• ≤⊆ L × L is a partial order relation on L. It is thus a reflexive (l ≤ l),
anti-symmetric (l ≤ l′ and l′ ≤ l implies l = l′) and transitive (l ≤ l′ and
l′ ≤ l′′ implies l ≤ l′′) relation.

• λ : L→ A is a labeling function.

¥

A system’s behaviour is given as the set of all its executions, that are se-
quences of events. Since we use LSCs as a specification language, we must relate
partial orders with sequences of events. This is achieved through the concept
of linearization. Intuitively, two events are ordered in one of our LPOs if they
are temporally or causaly related. This temporal/causal relationship shall be
reflected in the executions of the LPO. In particular, if some LPO imposes that
l ≤ l′, then l shall always occur before l′ in every execution.

Definition 3.2 (Linearization) A linearization of a partial order L = 〈L,≤
, λ〉 is a word u = e0 . . . en such that the LPO 〈Lu,≤u, λu〉, is isomorphic to
〈L,≤′, λ〉 with ≤⊆≤′, where

• the locations are the indices in u, Lu = {0, . . . , n},

• the total ordering is the ordering of natural numbers: i ≤u j ⇐⇒ i ≤ j
for 0 ≤ i, j ≤ n.

• the labeling function maps each index to the symbol in u at that position,
λu(i) = ei.

¥

To say things differently, a word u is a linearization of L if there is a sequence
of locations l0 . . . ln such that (i) locations labelings match u (λ(l0) . . . λ(ln) = u)
and (ii) the partial order described by L is respected in the sequence; if the LPO
dictates that li is smaller than lj (li ≤ lj), then li actually occurs before lj in
the sequence (i ≤ j).
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Figure 3.24: An {a, b}-LPO named L1

Example 3.3 In fig. 3.24 and 3.25, two LPOs are displayed as variants of
Hasse Diagrams [176]: locations are named l, with subscripts. Their labels
follow, after a colon, eg. l : a, means that λ(l) = a. Two locations l1 and l2 are
respectively source and target of an edge if l1 < l2 and furthermore, there is no
other location l3 with l1 < l3 < l2. The linearizations of L1 are {bad, abd} and
the linearization of L2 is {be}. ¥

L2 =






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≤2
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l8 : e





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Figure 3.25: A {b, e}-LPO named L2

Definition 3.4 (|=⊂ Σ∞ × LPO) A finite or infinite word γ ∈ Σ∞ satisfies
an LPO L = 〈L,≤, λ, A〉, denote by γ |= L iff

• γ ∈ Σ∗ and γ|A linearizes L.

• γ ∈ Σω and ∃w ∈ Σ∗ : w @ γ and w |= L.

¥

As we already stated, the behaviour of an LPO, i.e. its language, is its set
of linearizations.

Definition 3.5 (L (L))

L (L) = {w ∈ Σ∞|w |= L}

¥

There is an operational machinery for recognizing the linearizations of an
LPO. We will make a heavy use of this “automaton”, in many different flavours,
in the rest of this thesis. It is called the cut transition system.

Definition 3.6 (Cut) A cut in an LPO L = 〈L,≤, λ〉 is a downward-closed
subset of L. Formally, c is a cut in (L) iff c ⊆ L and ∀l, l′ ∈ L : l ∈ c ∧ l′ ≤
l =⇒ l′ ∈ c. A cut c′ is an e-successor of a cut c if there is a location l such
that
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1. λ(l) = e,

2. l /∈ c,

3. c′ = c ∪ {l}.

We write c
e
−→ c′ if c′ is an e-successor of c. This relation is extended to words

in the obvious way: (i) c
ε
−→ c and (ii) if c

u
−→ c′ and c′

v
−→ c′′, then c

uv
−→ c′′.

A cut in L is full if it contains all locations in L, i.e. c = L. The operational
semantics of an LPO is the set of words labeling paths from the empty cut to
the full cut:

O(L) = {w|∅
w
−→ c with c full}.

¥

Example 3.7 The cuts of L1 (from Fig. 3.24) are

∅, {l5}, {l6}, {l5, l6}, {l5, l6, l7}.

The transition system is shown in Fig. 3.26. ¥

∅

bu} tttttttttt

tttttttttt

a
!)JJJJJJJJJJ
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{l5}

a

Ã(JJJJJJJJJ

JJJJJJJJJ
{l6}

b

v~ ttttttttt

ttttttttt

{l5, l6}

d
®¶

{l5, l6, l7}

Figure 3.26: Cut transition system of L1 from fig. 3.24

By abuse of language, we will talk about “the linearizations of a cut c”,
instead of “the linearizations of the LPO resulting from the projection of an
LPO L onto a cut c”.

Proposition 3.8 For every w ∈ Σ∗, w is a linearization of a cut c in L iff
∅

w
−→ c. ¥

Proof 3.8

First, remark that every linearization of a cut c is of length |c|, by defini-
tion 3.2.

By induction on the size of c. If c = ∅, its only linearization is ε, which is
indeed the only sequence of transitions leading from ∅ to ∅.

If |c| > 0, suppose that for every c′ such that |c′| < |c|, u is a linearization of
c′ iff ∅

u
−→ c′. Because |c| > 0, ∅

w
−→ c iff, for some c′, ∅

u
−→ c′

a
−→ c, letting w = ua.
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Otherwise, c would have to be empty. By induction hypothesis, u linearizes
c′ and it is easy to check that ua linearizes c, too. In the other direction, if
w linearizes c, then w = ua, with a labeling a maximal location, say l, in c.
Removing l from c, we obtain some location c′, with c′

a
−→ c. By construction

of c′, u linearizes c′, hence, applying our induction hypothesis, we have that
∅

u
−→ c′

a
−→ c. ¤

This proposition implies that the operational semantics of LPOs coincides
with its language-based semantics:

Theorem 3.9
O(L) = L (L).

¥

Proof 3.9

This is implied by Lemma. 3.8 ¤

We introduced LPOs to have simple objects describing the information con-
tained in an LSC. The semantics of LSCs can be given solely in terms of these
concepts. This is the abstract syntax. However, we have to explain how we turn
a concrete basic chart into an LPO. This is reminiscent of the approach taken
in MSCs, see [166, 40, 90]. We assume that communication is instantaneous
and we shall be careful about the implications of this decision.

First, a basic chart is made of vertical lines, called life lines. They represent
the actions that an agent performs during the scenario. Those actions may
be either events, which are denoted by an arrow, pointing to their receiver, or
local actions, which are assumed to change the agent’s state. The points on the
diagram at which actions occur will be simply called“points” in this section. An
LPO is obtained from a basic chart by following these rules. A location in this
LPO is a set of points of the form {p}, where a local action is performed at p or
{p1, p2}, if there is an arrow from p1 to p2. The labeling of a location is simply
the name of the action performed at the points of this location. By definition,
two points belonging to the same location agree on their label. It remains to
define how these locations shall be ordered. Two locations are directly ordered
(l1 <d l2) if, and only if, some point p1 ∈ l1 and some point p2 ∈ l2 belong to
the same instance line and

• p1 is drawn higher up than p2, and

• p1 and p2 do not belong to the same coregion.

The relation ≤ is simply the reflexive-transitive closure of <d.

Example 3.10 In fig. 3.27, a basic chart is presented, which specifies some
interaction between 4 agents, P1 to P4. There are 12 points in this diagrams,
as there are 6 arrows. Its corresponding LPO, displayed in Fig. 3.28, contains
thus 6 locations, l1 to l6, each of them being labeled with the name of the event.
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Remark how event names are extended with their sender and receiver. This will
make sure that two arrows with the same labeling, but different source and/or
target, denote distinct events.

PSfrag replacements

P1
P2 P3 P4

a

b

c

d

e

f

Figure 3.27: A Sample Basic Chart

l1 : P2!a?P1

²²
l2 : P2!b?P3

ÃÃA
AA

AA
AA

AA
AA

AA
AA

AA
AA

vvnnnnnnnnnnnn

l3 : P2!c?P1

²²
l4 : P1!d?P4

((PPPPPPPPPPPP
l5 : P3!e?P2

vvnnnnnnnnnnnn

l6 : P4!f?P3

Figure 3.28: LPO corresponding to the basic chart of Fig. 3.27

¥

Remember that, in basic charts, one can use “choice” constructs, to express
choice between two sub-charts. We still lack features to represent choice in
LPOs. We will now extend LPOs to do so, and show how these new LPOs,
which we call Choice LPO (CLPO), can be mapped back to LPOs. In these
extended objects, a choice operand, over some alphabet A, is an element of the
form L1 + L2, where L1 and L2 are A-LPOs.

Definition 3.11 (CLPO) A CLPO over some alphabet A is (recursively) de-
fined as an LPO over A and couples of A-CLPO. To put things more clearly: in
an A-CLPO, locations may be either labeled by simple symbols, taken from A,
or by elements of the form C1+C2, representing a choice between two A-CLPO.

¥
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Thus CLPO are recursively defined and A-CLPO is actually the smallest fix
point which satisfies this definition.

Example 3.12 (CLPO) A CLPO is shown in Fig. 3.29. Its location l4 is
labeled by a choice between two other CLPOs, namely L1 and L2, from Fig. 3.24
and 3.25, respectively. Its set of expansions, lpo expand(L) = {C1, C2}, where
C1 and C2 are displayed in Fig. 3.30 and 3.31. ¥

We will not directly deal with CLPOs. We rather consider them as a useful
intermediate formalism and expand them to a set of LPOs. The expansion func-
tion, lpo expand : A-CLPO → 2A-LPO, is also recursively defined2, as CLPO is
a recursive domain.

Definition 3.13 (lpo expand) For everyA-LPO L′, L′ ∈ lpo expand(L) if there
is a sequence of one-step substitutions, starting from L and leading to L′.

L′ is a one-step substitution of L = 〈L,≤, λ〉 if there is some l ∈ L, such that
λ(l) = C1 + C2 and, for some A-LPO C = 〈LC ,≤C , λC〉 ∈ (lpo expand(C1) ∪
lpo expand(C2)),

L′ =
〈
(L \ {l}) ∪ LC ,≤

′, λ \ ({(l, C1 + C2)}) ∪ λC
〉
,

and for every pair of locations l1, l2, l1 ≤
′ l2 if one of the following holds:

• l1, l2 ∈ L, l1 6= l 6= l2 and l1 ≤ l2,

• l1, l2 ∈ LC and l1 ≤C l2,

• l1 ∈ L, l2 ∈ LC and l1 < l,

• l1 ∈ LC , l2 ∈ L and l < l1.

¥

Informally, in a one step substitution, we simply select some location l to
be expanded, because it is labeled by a choice between two CLPOs (C1 + C2).
We take one of the branches of this choice and expand it in full. This gives a
set of LPOs, among which we choose one (C). We then replace l by C. This
requires to update the partial order and labeling function accordingly. For the
former, we keep all previous relations, in L and C, and we add new relations, to
ensure that all locations smaller than l are now smaller than all the locations
replacing l. The same is done for larger locations. For the latter, l is removed
and the labeling function of C is added.

The linearizations of a CLPO C are all the linearizations of its expanded
LPOs. The language of a CLPO is its set of linearizations.

2To be fully rigorous, lpo expand is the smallest fix point which is a solution of the equation
described. We should prove that this fix point exists and is unique, but we skip this tedious
and mildly interesting proof.
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Figure 3.29: An {a, b, c, d, e}-CLPO named L
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Figure 3.30: C1 ∈ lpo expand(L)
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Figure 3.31: C2 ∈ lpo expand(L)

Definition 3.14 (|=⊂ Σ∞ × CLPO) For every CLPO C and every finite or
infinite word γ ∈ Σ∞,

γ |= C iff ∃L ∈ lpo expand(C) : γ |= L

The language defined by C, denoted L (C), is its set of linearizations, i.e.

⋃

L∈lpo expand(C)

L (L)

¥

There is an extension of the operational semantics presented above to CLPO.

Definition 3.15 (CLPO - Transition System) The transition system as-
sociated with a CLPO C is (SC ,−→C), where SC = {c|L ∈ lpo expand(C) ∧ c ∈
cuts(L)} and c

a
−→C c

′ iff ∃L : c
a
−→L c

′.

The operational semantics of CLPOs is

O(C) = {w ∈ Σ∗|∃s : {∅}
w
−→ s∧s contains a cut c full for some L ∈ lpo expand(C)}

¥

Th. 3.9 can be lifted to CLPOs, to show that the “operational semantics”
coincides with the semantics, stated directly in terms of languages.

Theorem 3.16 L (C) = O(C) ¥

Proof 3.16
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Let w ∈ Σ. w ∈ O(C) iff there is a sequence of transitions from ∅ to c,
full for some L ∈ lpo expand, iff (by Theorem 3.9), w is a linearization in L iff
w ∈ L (C) (by definition of L (C)). ¤

Every basic chart (with choice) can be turned to a CLPO. This is done in the
obvious way, extending our previous technique to subcharts: a point in a basic
chart can correspond to a subchart. If a subchart ranges over several instances,
it may only be entered when all instances have reached this point. This forces
this location to be greater than all the previous locations of those instances.
Then, we recursively translate the subchart and obtain CLPOs to label the
point corresponding to the subchart. We have thus a convenient mathematical
object for describing basic scenarios, with choice.

So far, we did not introduce the two main features which motivated our
choice of LSCs as a specification language, namely behavioural modality and
message abstraction. We introduce this now; this completes the definition of
the LSC abstract syntax and their semantics, as well.

Definition 3.17 (LSC - abstract syntax) There are two forms of Live Se-
quence Charts: existential LSC and universal LSC.

• A Universal Live Sequence Chart (ULSC) is a couple

¤(P,M),

where P and M are ΣR-CLPOs. P is called prechart and M is called
main chart . Events in ΣR are called restricted.

• An Existential Live Sequence Chart (ELSC) is

♦(M),

where M is a ΣR-LPO.

¥

As said previously, in scenario-based software engineering, we are interested
in gathering scenarios from several stakeholders and put them together in a“big
bag of requirements”. This set is deemed a specification and the semantics of
the language will take care of how these bits of requirements shall be composed.

Definition 3.18 (ULSC-Spec) A ULSC specification (ULSC-Spec) is a finite
set of ULSCs. ¥

The semantics of LSC can be defined, on the basis of “linearizations”.

Definition 3.19 (LSC Semantics) LSCs are interpreted against infinite words
(γ ∈ Σω).
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• γ |= ¤(P,M) iff, whenever the prechart is matched in γ, the main chart
is matched afterwards:

∀u, v ∈ Σ∗ : ∀γ′ ∈ Σω : (uvγ′ = γ and v |= P ) =⇒ γ ′ |=M.

• γ |= ♦(M) iff it is eventually matched in γ:

∃u ∈ Σ∗ : ∃γ′ ∈ Σω : uγ′ = γ and γ′ |=M

The notion of LSC model is lifted to languages: a language L satisfies a ULSC
(L |= ¤(P,M)) if ∀γ ∈ L : γ |= ¤(P,M). A language L satisfies an ELSC
(L |= ♦(M)) if ∃γ ∈ L : γ |= ♦(M).

The language defined by a universal LSC is

L (S) = {γ ∈ Σω|γ |= S}.

The language defined by a ULSC-Spec is the conjunction of the semantics of
its components. Formally, for some ULSC-Spec S,

L (S) =
⋂

L∈S

L (L)

¥

Universal LSCs can be used to model the properties of agent systems in
an intuitive way. Every agent receives powers, in the sense that it can trigger
events. With these powers come responsibilities: it must ensure that its events
occur at the right time. More particularly, that they do not occur in situations
where they would cause a violation of the specification. But, that they do
occur whenever their absence would also cause a violation of the specification.
Actually, LSCs can be equivalently expressed as the conjunction of these two
conditions, called safety and liveness conditions. Safety asserts that at every
position in an execution, if some event e is not allowed by the ULSC at this
position,then e does not occur at the next position. Let us fix some ULSC
¤(P,M), with restricted events ΣR, for the rest of this section. Liveness says
that at every position in γ, if e is a possible continuation at this position, then
some restricted event must occur. We do not oblige e to occur, any restricted
event will do. This is because of choices: if there is a choice between two events,
e and e′, then both of them are required at the same time. Although, only one
of them must occur to resolve the choice and ensure progress in the chart.

Definition 3.20 (Forbids - Safe) Consider a word w ∈ Σ∗. We say that it
forbids some event e ∈ ΣR iff there is a decomposition upv of w such that

1. p |= P

2. ∀m v v : m 6|=M ,

3. @v′ : vev′ |=M .
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An infinite run γ is e-safe iff, for every uv @ γ, if v forbids e, then uve 6@ γ. ¥

Definition 3.21 (Requires - Live) A word w ∈ Σ∗ requires an event e ∈ ΣR
iff there is a decomposition upv of w such that

1. p |= P ,

2. ∀m v v : m 6|=M ,

3. ∃v′′ : vev′′ |=M .

An infinite run γ is e-live iff, for every uv @ γ, if v requires e, then there are
w ∈ Σ∗ and e′ ∈ ΣR such that uvwe′ @ γ. ¥

These constraints, which are given event-by-event, are equivalent to the
semantics of ULSCs.

Theorem 3.22 (ULSC = safe + live) For every γ ∈ Σω and every ULSC
S = ¤(P,M),

γ |= S ⇐⇒ ∀e ∈ ΣR : γ is e-safe and e-live

¥

Proof 3.22

(⇒)

Suppose that γ |= S but γ is not e-safe or not e-live.

not e-safe Since γ is not e-safe, by definition, we find a decomposition upveγ ′

of γ such that

1. p |= P ,

2. @v′ v v : v′ |=M ,

3. ∀w ∈ Σ∗ : vew 6|=M .

But, because γ |= S and p |= P , it must be the case that veγ ′ |= M .
Therefore, by definition, there is a prefix m of veγ ′ such that m |= M .
This contradicts one of items 2 or 3. Thus, we reach a contradiction.

not e-live Again, we find a decomposition of γ into upvγ ′ such that

1. p |= P ,

2. @v′ v v : v′ |=M ,

3. ∃w ∈ Σ∗ : vew |=M ,

4. ∀w : w @ γ′ : w does not contain any restricted event.

Item 4 implies that for all prefixes w of γ ′, vw|ΣR
= v|ΣR

. Hence, since
v 6|= M (by item 2, vw 6|= M , neither). Hence, vγ ′ 6|= M . We reach a
contradiction.
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(⇐)

Suppose that γ 6|= S. We show that γ is either not e-safe or not e-live, for
some e ∈ ΣR. First, γ 6|= S means that we can find a decomposition upγ ′ of γ
such that p |= P and γ ′ 6|= M . We perform the following case split, about γ ′.
Their disjunction is a tautology.

∀r @ γ : ∃w ∈ Σ∗ : rw |=M Then, γ is not e-live, for some e. Indeed, there
must be some r′ @ γ such that no restricted event occurs after r′. Other-
wise, there would be more restricted events than the number of locations
in M and M should be eventually matched, or could never be matched
afterwards.

∃r @ γ : ∀w ∈ Σ∗ : rw 6|=M Then, the run is not e-safe, if we take the smallest
r satisfying the condition above and let r = er′.

One of the two conditions must be true, which implies that the run is not live
or not safe. ¤

3.3 Expressiveness and Succinctness

In Section 3.2, we have introduced a scenario-based specification language,
named “Universal Live Sequence Charts”. This specification language has been
formally defined: it has a formal abstract syntax and a formal semantics, given
respectively in terms of CLPOs and in terms of languages of infinite words.
Having given such a formal semantics to the language, we are now in position
to study its properties. In this section, we will consider its expressiveness and
its succinctness.

These two properties are not absolute but relative. Hence, our study will be
based on the comparison of LSCs with other well-known modeling languages.
Of course, languages can only be compared if they have the same semantic
domain. In this thesis, we have tackled this problem by focusing on languages
of infinite words as a semantic domain. Therefore, we only consider linear-time
semantics.

The results of this section are summarized in the graph of Fig. 3.32. Nodes
represent classes of languages. There is a solid-line arrow between from a class
L1 to a class L2 if, and only if, L1 ⊂ L2. Bidirectional (two-head) arrows denote
the equality of the two classes. Let us first briefly recall the meaning of the
various acronyms.

NBA non-deterministic Büchi automata.

LTL linear temporal logic;

DBA deterministic Büchi automata;

ALA alternating linear automata;

ULA universal linear automata;
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Figure 3.32: Expressiveness and Succinctness

ACTLdet the common fragment of LTL and ACTL. Roughly, ACTL is CTL
with only A as path quantifier.

NOCEXFIN no finite-counter example. This is an awkward class of lan-
guages, with the sole interest of being exactly equivalent to universal
LSCs, with choice.

ULSC Universal LSC, see Sec.3.2.3.

ULSC-NC Universal LSC without choice.

ULSC-Spec Specification expressed as ULSCs, i.e. finite conjunctions of ULSC.

ULSC-NC-Spec Specification expressed as ULSC-NC, i.e. finite conjunctions
of ULSC-NC.

NBA denotes the class of all languages that can be recognized by nondeter-
ministic Büchi automata. It is very important here to understand that some
of these classes are syntactic while others are semantic. On the one hand,
syntactic classes are defined on the basis of a certain formalism, for instance
Büchi automata, and the addition of certain syntactic constraints. For instance,
deterministic Büchi automata (DBA) are Büchi automata with a functional
transition relation. The language class DBA contains all languages which are
recognizable by a DBA. Again, we recall that there is a difference between
formalisms, that are syntactic classes, and the class of languages that these
formalisms define. We use two different types of fonts to emphasize this dif-
ference: the set of all constructs belonging to a formalism is written in plain
Roman font (LTL, DBA, . . . ) while classes of languages are written in sans-serif
font (LTL,DBA,. . . ).

According to this convention, we can already talk about the expressiveness of
languages. This is, as announced, a relative property: one can wonder whether
a language is more expressive than another language.
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Definition 3.23 (Expressiveness) Consider two formalisms, L1 and L2, and
let their classes of languages be L1 and L2. If L1 ⊆ L2, L2 is as expressive as L1.
If the inclusion is strict, L1 is strictly less expressive than L2. ¥

On the other hand, the definition of semantic classes is based on the“seman-
tic” properties of the languages they contain. In our diagram of Fig. 3.32, there
are three semantic classes: NOCEXFIN, ∩NOCEXFIN, i.e. finite intersections
of languages from NOCEXFIN, and DBA ∩ LTL. In comparison, when proving
containment of syntactic classes, we often come up with a computable function,
translating every model of the former language to an equivalent model of the
latter. This is practically more interesting, as showing that models in a formal-
ism L1 can be translated to L2, all tools developed to deal with models of L2
can be reused to analyze models from L1. Of course, the cost of this translation
shall be investigated. The cost of such a translation is called “succinctness”.

Definition 3.24 (Succinctness) Consider two formalisms L1 and L2. Sup-
pose that their semantics is given in terms of languages, through semantic
functions Li(.) : Li → Σω (i = 1, 2). Let G be a set of functions N → N (called
“a bound”). L1 is G-as succinct as L2 iff there is some g ∈ G such that, there
exists a computable function f : L1 → L2 with,

1. f is correct: ∀t ∈ L1 : L (t) = L (f(t)).

2. the size of f outputs remains within the bound: ∀t ∈ L1 : |t| ≤ |f(t)|.

Typical bounds are “exactly”n, polynomially O(nk) and exponentially O(2n
k
).
¥

The rest of this chapter will be devoted to the proof of the results presented
in the graph of Fig. 3.32.

3.3.1 Classical Results

We start by recalling well-known results from the literature.

Theorem 3.25 (DBA ⊂ NBA) DBA are strictly less expressive than NBA. ¥

Proof 3.25

See [156]. The language {a, b}∗ · {a}ω is not recognized by any DBA. ¤

Theorem 3.26 (LTL ⊂ NBA) LTL is strictly less expressive than NBA. ¥

Proof 3.26

See [181]. LTL coincides with the class of languages recognized by counter-
free non-deterministic Büchi automata. ¤

As a corollary of these two theorems, it comes that
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Corollary 3.27 (LTL and DBA incomparable) LTL is not as expressive as
DBA and DBA is not as expressive as LTL. ¥

Proof 3.27

LTL 6⊆ DBA: the language presented in the proof of Theorem 3.25 is defined
by the LTL formula ♦¤a.

DBA 6⊆ LTL there is a language expressible as a DBA which is not counter-free.
For instance, (aa)∗bω is recognized by the following DBA and we just have
to show that this language is not counter-free.

a

a

b
b

Take any DBA recognizing this language. A counter for u ∈ Σ∗ is a se-
quence of states q1 . . . qn such that, from qi, u leads to qi+1 mod n, and from
these states, different ω-words are accepted. Assume that A is counter-
free and recognizes the language considered. Pick some n larger than the
number of states of A. Then, a2nbω, which belongs to the language, must
visit twice the same state (i.e. follow a loop), by the pigeonhole principle.
In other words, the (unique) infinite sequence of states followed on a2nbω

is q0 . . . q2n+1q2(n+1) . . . with

1. q2n
b
−→ q2n+1

b
−→ . . .,

2. qi−1
a
−→ qi, 1 ≤ i ≤ 2n,

3. there are j, k, with 1 ≤ j < k ≤ 2n, such that qj . . . qk and qj = qk.
Let l = k − j.

Thus, al+1 is a counter for qj . . . qk−1 if, different words can be accepted
from qk−1 than from qj . Since A is assumingly counter-free, qj and
qk−1 recognize the same language. Hence, ajala2n−l−jbω = a2nbω and
ajal+1a2n−l−jbω = a2n+1bω should both be accepted by A, whereas the
latter a2n+1 /∈ ({a} · {a})∗ · {b}ω. Contradiction.

¤

From this, it comes that the the semantic class DBA∩LTL is a strict sub-class
of both LTL and DBA.

Theorem 3.28 (LTL = ALA) LTL is exactly as expressive as ALA (Alternat-
ing Linear Automata). Furthermore, LTL is linearly as succinct as ALA and
vice-versa. ¥
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Proof 3.28

The proof is provided in [109] and [151]. ¤

Theorem 3.29 (ACTL ∩ LTL = ULA) The class of languages definable in LTL
and ACTL is exactly the class of languages recognized by universal linear au-
tomata (ULA). ¥

Proof 3.29

Maidl shows that a formula φ ∈ LTL is expressible in ACTL (i.e. ∃φ′ ∈
ACTL : L (φ) = L (φ′)) iff L (φ) is recognized by a non-deterministic linear
Büchi automaton.

We simply show that the complement of a non-deterministic linear automa-
ton is a ULA. Take any non-deterministic linear automaton and simply change
its status: all states become universal instead of existential. Then, swap accept-
ing and non-accepting states. A word is rejected by a non-deterministic linear
automaton iff all the runs on this word visit only finitely often accepting states.
Since the automaton is linear, all infinite runs must stabilize in some state, i.e.
remain in that state forever. Hence, a run visits only finitely often accepting
states iff it visits infinitely often non-accepting states. We are done. ¤

3.3.2 Expressiveness

We start by characterizing exactly the languages definable by Universal LSCs.
We come up with an artificial language class, dubbed ∩NOCEXFIN, the sole
interest of which is to coincide with ULSC-Spec and to facilitate some of the
future proofs.

We introduce the following class, called FCmP . Intuitively, a language L is
in FCmP if projecting every word of L onto A yields a finite language.

Definition 3.30 (A-Finite/Closed modulo Projection Languages) A lan-
guage L ⊆ Σ∗ is Finite/Closed modulo Projection (FCmP ) if, for the given set
of symbols A ⊆ Σ, letting w ∼A w

′ ⇐⇒ w|A = w′|A,

1. L is closed under ∼A (w ∼A w
′ =⇒ (w ∈ L ⇐⇒ w′ ∈ L))

2. L has a finite number of ∼A equivalence classes: ([L]/∼A
is finite and

non-empty).

We let FCmP denote the class of A-FCmP languages, for all A. ¥

Lemma 3.31 (CLPO = FCmP ) A language L is definable by an A-CLPO iff
L is in A− FCmP . ¥

Proof 3.31

Consider some A-LPO L. Its (finite) language is the set of words {w ∈
Σ∗|w|A is a linearization of L}. First, this language is closed under projection.
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Second, L has only a finite number of linearizations. Therefore, L (L) is in
A-FCmP . Since A-CLPO languages are unions of A-LPO languages, the two
conditions hold, too. In the other direction, we build a CLPO from an arbitrary
language L ∈ FCmP . To do so, we let L′ = L|A. Remark that L′ is finite, i.e.
can be written as a finite union of singletons

⋃

w∈L{w}. Each singleton defines a
total order, thus an LPO. Putting together all these LPOs into some big CLPO
yields the desired CLPO. ¤

We forge a new class of languages, NOCEXFIN, to correspond to ULSC.
The languages in this class all assert that it is forbidden to match a “prechart”
without matching a “main chart” afterwards.

Definition 3.32 (NOCEXFIN) A language L is in NOCEXFIN (no finite counter-
example) iff, for some alphabet A ⊆ Σ, there are two A-FCmP languages V
and W , such that

L = Σ∗ · V ·W · Σω.

¥

Proposition 3.33 (NOCEXFIN not boolean closed) The class NOCEXFIN
is not closed under any boolean operation. ¥

Proof 3.33

Closure under complement. Let L = Σ∗ · a · b · Σω. It is clearly the com-
plement of a language in NOCEXFIN. We start by remarking the fol-
lowing fact above L: for every γ ∈ Σω, aaγ ∈ L. This is because
aγ ∈ b · Σω. Suppose that NOCEXFIN is closed under complement, then
there are two FCmP languages, V,W , defining a NOCEXFIN language

L′ = Σ∗ · V ·W · Σω such that L′ = L. Remark that L′ 6= Σω, which
implies that its complement is nonempty. Hence, we can take some arbi-
trary γ′ /∈ L′. Then, by hypothesis, γ′ /∈ L neither. Because aa ∈ Σ∗, it
is the case that aaγ ′ /∈ L′. But, we remarked above that aaγ ′ ∈ L, for
every γ ∈ Σω. We reached a contradiction, and are obliged to conclude
that NOCEXFIN is not closed under complement.

Closure under intersection. Consider the two following languages, over Σ =

{a, b, c}: Σ∗ · a · b · Σω and Σ∗ · b · a · Σω. Their intuitive meaning is“when-
ever an a (resp. b) occurs, it must be followed by a b (resp. an a)”. There
is no NOCEXFIN language recognizing their intersection. The argument
is tedious but simple. First, we have to recognize that in the candidate

language, that we let Σ∗ · V ·W · Σω, V,W are {c}-FCmP language, i.e.
occurrences of c are projected away. Then, we remark that V must con-
tain a and W must contain b. To ensure this, we simply remark that
acω is not in the considered language. Neither is aa{c}ω, but Σ∗abcω i,
which rules out the possibility that V = ∅ and W = {a, aa}. The same
argument is applied to obtain that V contains b and W must contain a.
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Then, it comes easily that aacω is in the language, which contradicts our
hypothesis.

Closure under union. Follows the same argument as above. We let V1 be
{c, d}∗{a}{c, d}∗ and W1 = {c, d}∗{b}{c, d}∗. Thus, the first NOCEXFIN

language obliges every a to be followed by some b, ignoring all occurrences
of c and d. The second language is the same, except that c, d and a, b
exchange their roles. Then, it is simple to show that their complement
is not definable within coNOCEXFIN, i.e. by some language Σ∗VWΣω,
because there can be any number (≥ 2) of a in the word. The same is
true of c. Yet, their must be at least two a. Thus, V must be infinite.

¤

We can characterize the languages definable by universal LSC. As announced,
it is a strict subclass of the languages (already of a low Borel level) used in
Prop. 3.36.

Theorem 3.34 (ULSC = NOCEXFIN) Universal LSCs define exactly languages
in NOCEXFIN. ¥

Proof 3.34

(⇒)

Suppose thatX is definable by some universal LSC,¤(P,M), with restricted
events ΣR. We let V = L (P ) and W = L (M). V and W are ΣR-FCmP
languages by Lem. 3.31. It remains to show that

Σ∗ · V ·W · Σω = X.

We prove that their complement coincides, for it makes the argument simpler:

Σ∗ · V ·W · Σω = X.

Let γ ∈ X. Then,γ 6|= ¤(P,M) and thus, γ can be decomposed into u ∈ Σ∗,
p |= P and γ′ 6|= M . Since p |= P , p ∈ V and, because γ ′ 6|= M , there is no
prefix w @ γ′ such that w |=M , i.e. γ′ ∈W · Σω. The other direction is similar:
consider some upγ ′ with p ∈ V and γ′ ∈ W · Σω. It comes immediately that
upγ′ 6|= ¤(P,M), i.e. upγ′ /∈ X.

(⇐)

Take any language Σ∗ · V ·W · Σω and show that it is definable by some
universal LSC. Since V and W are both A-FCmP languages, there are CLPOs
defining them, by Lem. 3.31, say CV and CW , respectively. The desired ULSC
is then ¤(CV , CW ). The correctness can be proved using the same argument as
in the first part of the proof. ¤

It is interesting to note that the two parts upon which LSCs are built,
namely their precharts and main charts, describe in fact very simple languages.
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Those languages are finite, modulo some technicalities. Thus, they are much
poorer than regular languages, for instance, as they impose a very restricted
use of Kleene’s star.

Corollary 3.35 Languages definable by universal LSCs are strictly included
in the languages of the form

Σ∗ · V ·W · Σω,

with V,W being regular languages. ¥

We will now prove that the semantics of an LSC, which is an ω-language can
be recognized by a Deterministic Büchi Automaton (DBA). By corollary 3.35,
we thus obtain strict inclusion of LSCs in DBA. In fact, we prove a stronger
result, which is expected, from the results of [22] on languages of low Borel
level.

Proposition 3.36 If V ⊆ Σ∗ and W ⊆ Σ∗ are regular languages, then

Σ∗ · V ·W · Σω

is recognized by some DBA. ¥

Proof 3.36

Since W is regular, there is a DFA

AW = 〈Σ, QW , q
W
0 ,∆W , FW 〉

recognizing it. By definition, w ∈ W · Σω iff ∃v ∈ Σ∗ : ∃w′ ∈ Σω : v · w′ =
w ∧ v ∈W . Membership to W · Σω is thus characterized as

w /∈W · Σω ⇐⇒ ∀v ∈ Σ∗ : ∀w′ ∈ Σω : v · w′ = w =⇒ v /∈W.

If qW0 ∈ FW , then W · Σω = ∅ , and it is possible to build a DBA recognizing ∅.

Otherwise, we claim that the following DBA recognizes W · Σω, provided
that # is a fresh state name,

A′W = 〈Q′W , q
W
0 ,∆

′
W , F

′
W 〉

with

Q′W = QW ∪ {#} \ FW ,

∆′W = (∆W \ {(q, a, q′)|q′ ∈ FW }) ∪ {(q, a,#)|(q, a, q′) ∈ ∆W ∧ q′ ∈ FW },

F ′W = QW \ FW

This automaton is essentially the same as AW , except that every transition
which previously ended in a final state is now redirected to a sink state. Thus,
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a run of this automaton is accepting if it never reaches a final state of AW .
Precisely, none of its prefixes is accepted by AW .

Moreover, A′W is weak. Indeed, its states can be partitioned in two classes:
QW \ FW and {#}, such that it is not possible to go back from {#} to QW \
FW and these classes contain either only accepting states (QW \ FW ) or non-
accepting states ({#}).

Of course, Σ∗ ·V is regular and recognized by a DFA AV . The concatenation
of AV and A′W yields a nondeterministic weak Büchi automaton, since all states
of AV are made non-accepting and it is impossible to go back from A′W to AV .

Following [103], it is possible to use the breakpoint construction in order
to obtain a deterministic co-Büchi automaton B recognizing Σ∗ · V ·W · Σω.
Considering this automaton as a Büchi automaton implies, by the fact that it
is deterministic, that it recognizes the complement of the language of B, i.e.

Σ∗ · V ·W · Σω. ¤

Definition 3.37 (∩NOCEXFIN) A language L belongs to ∩NOCEXFIN iff
there exists L1, . . . , Ln ∈ NOCEXFIN such that

L =
⋂

i=1

Li.

¥

Theorem 3.38 (∩NOCEXFIN = ULSC-Spec) The class of all languages de-
finable by LSC specifications coincides with ∩NOCEXFIN. ¥

Proof 3.38

By the obvious symmetry of Def. 3.19 and Def. 3.37, this theorem follows
from Theorem 3.34. ¤

Thus, we obtain, as desired, that

Theorem 3.39 (ULSC-Spec ⊆ DBA) Every language definable by ULSC spec-
ifications is recognized by some DBA. ¥

Proof 3.39

Combination of Theorem 3.38 and Prop. 3.36. ¤

Now, we turn to the comparison between ULSC Specifications and LTL and
first demonstrate that LSCs can be translated to LTL. The following fact is
known from [72, 102].

Theorem 3.40 (ULSC-Spec ⊆ LTL) Every language definable by a universal
LSC specification is definable in LTL. ¥
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Proof 3.40

We only prove inclusion and delay the proof of strictness until later in this
section. This proof is constructive, we exhibit the translation between LSCs
and LTL. Consider a universal LSC S = ¤(P,M), with restricted events ΣR
the LTL formula expressing it is ϕS

ϕS = ¤
∧

w∈prech

(

φΣR
(w)→

∨

w′∈w·main

φΣR
(w′)

)

,

where

prech = {w|ΣR
∈ Σ∗|w is a linearization of P}

main = {w′|ΣR
∈ Σ∗|w′ is a linearization of M}

and the function φΣR
: Σ∗ → LTL is defined inductively, on the length of its

argument as:

φΣR
(ε) = >

φΣR
(a · w) = a ∧©








∧

e∈ΣR

¬e



 U (φΣR
(w))





The formula corresponding to a specification S = {S1, . . . , Sn} is simply the
conjunction of the formulae of its components:

ϕS =
∧

S∈S

ϕS .

We need to check that L (ϕS) = L (S). This is rather obvious. First,
φΣR

(w) is equivalent to projecting w on ΣR: γ |= φΣR
(w) ⇐⇒ ∃u @ γ :

u|ΣR
= w. This comes from a simple induction on w, which we skip.

Then, ϕS is the encoding of the semantics of universal LSCs, from def. 3.19
and the same holds of ϕS : it is an immediate translation of the semantics of an
LSC specification. ¤

DBA are not as expressive as NBA. We have already stated, as illustrated
by Fig. 3.32, that the languages definable both in DBA and LTL are even a
lower class. Now, we prove that the expressiveness of LSC specifications is even
less expressive.

Theorem 3.41 (ULSC-Spec ⊂ DBA ∩ LTL) Every language definable by a
ULSC Specification is also recognized by a DBA and definable by an LTL
formula. ¥

Proof 3.41

Inclusion follows from the conjunction of Theorems 3.40 and 3.36.
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Strictness is implied by Lemma. 3.42. Actually, the language (a|b)∗aa(a|b)ω

is definable in LTL (by the formula ♦(a∧©a) and recognized by a DBA,
namely

a

b

a

b

a, b

Consider any ULSC Specification, {S1, . . . , Sn} and suppose without loss
of generality, that, ∀i : 1 ≤ i ≤ n : L (Si) 6= Σω. Otherwise, remove all
these scenarios without changing the semantics of the specification. By
Lemma 3.42, in every scenario Si, there is a word in (a|b)∗aa(a|b)ω. which
is missing from L (Si). Since L (S) =

⋂n
i=1L (Si), all these words are

also missing from the intersection of languages.

¤

For the sake of completeness, we prove the lemma used in the proof of
Theorem 3.41.

Lemma 3.42 For every ULSC S, either L (S) = Σω or there is a word in
Σ∗ · {aa} · Σω which does not belong in L (S). ¥

Proof 3.42

Assume that L (S) 6= Σω. Then, we show that there is a word w /∈ L (S)
but w ∈ Σ∗ · {aa} ·Σω. Since S is a ULSC, Theorem 3.34 implies that L (S) ∈
NOCEXFIN. Thus, there are two A-FCmP languages V,W , with

L (S) = Σ∗ · V ·W · Σω.

Thus, γ /∈ S iff w ∈ Σ∗ · V ·W · Σω. Clearly, if γ /∈ S, then, for every u ∈ Σ∗,
u ·γ /∈ L (S). In particular, since, L (S) 6= Σω, then there is a γ /∈ L (S), which
implies that aaγ /∈ L (S). However, aaγ ∈ Σ∗ · {aa} · Σω. ¤

Lemma 3.43 (ULSC-Spec ⊆ ULA) Every ULSC-Spec defines a language that
is recognized by some Universal Linear Automaton. ¥

Proof 3.43

We show that the complement of every ULSC-Spec definable language is
recognized by a non-deterministic linear Büchi automaton. Then, by Theo-
rem 3.29, we obtain the desired result. Consider an arbitrary ULSC Specifica-
tion S = {S1, . . . , Sn} and a word γ /∈ L (S). By Def. 3.19, this is equivalent
to

∃i : 1 ≤ i ≤ n : γ /∈ L (Si).
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For every 1 ≤ i ≤ n, we build a linear NBA recognizing L (Si). A word γ
violates a ULSC if, at some point in γ, the prechart is matched but is not
followed by the main chart. This automaton is

〈Q, q0,∆, F 〉,

where

• Q = {c|c is a cut in some C ∈ lpo expand(P )∪lpo expand(M)}∪{Start,Fail},

• q0 = Start,

• ∆(q, a, q′) iff one of the following conditions holds

– q
a
−→ q′ and q′ is not a full cut in P ,

– there is some q′′ such that q
a
−→ q′′, q′′ is a full cut in P and q′ = ∅

(the first cut in M).

– q = Start = q′,

– q = Start and ∅
a
−→ q′, in P ,

– q contains all prechart locations (∃c ∈ lpo expand(P ) : c ⊆ q), q is
not full (@c ∈ lpo expand(L) : c = q), there is no q′′ such that q

a
−→ q′′

and q′ = Fail.

– q = Fail = q′.

• F = {q|∃c ∈ lpo expand(P ) : c ⊆ q and @c ∈ lpo expand(L) : q = c} ∪
{Fail}.

The automaton waits in its initial state and nondeterministically guesses when
the prechart is to be matched. It checks that the prechart is indeed matched
but is not followed by the main chart. There are two ways to fail the main
chart: (1) an unexpected restricted event occurs or (2) a non-full cut is reached
and never left. The former case is dealt with by transitions to Fail and the
latter is tackled by accepting states. By a simple inspection, one can check
that this automaton is indeed linear and non-deterministic. Linearity follows
from the definition of the operational semantics of CLPOs. Then, all Ai can
be combined into a single linear NBA, which starts its execution by guessing
which Ai to simulate. ¤

Theorem 3.44 (ULSC-Spec ⊂ ACTLdet) All languages definable by ULSC
Specifications are also definable in ACTLdet, the common fragment of LTL
and ACTL. This inclusion is strict. ¥

Proof 3.44

We only need to demonstrate strictness, as inclusion is deduced from Lemma 3.43
and Theorem 3.29. Strictness is shown in a way very similar to Theorem 3.41.
Let L = {b}∗ ·{a}·{a}∗{b}·{a, b}ω. This language is defined by ♦(a∧♦b) in LTL
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and A♦(a ∧ A♦b) in ACTL. We rely on a lemma stating that, for every ULSC
S, either L (S) misses some word from L or L (S) is useless in a specification,
for L (S) = Σω. This lemma is formally stated and proved below. With such
a lemma at hand, it comes immediately that, in every ULSC Specification S,
some word from L must also be missing in L (S), unless L (S) = Σω 6= L. ¤

Lemma 3.45 There is a language L ∈ ULA such that, for every ULSC S, either
L (S) = Σω or ∃γ ∈ L : γ /∈ L (S). ¥

Proof 3.45

Let L = {b}∗·{a}·{a}∗{b}·{a, b}ω. Consider some ULSC S. Its language is of

the form Σ∗ · V · Σω, with V,W A-FCmP languages. Suppose that L (S) 6= Σω.
Then, there is a word γ /∈ L (S). By definition, abγ /∈ L (S), neither, since
γ /∈ L (S) iff γ ∈ Σ∗ · V ·W · Σω. But abγ ∈ L. Thus, we obtain the desired
result. ¤

3.3.3 Succinctness

Expressiveness provided us with a first criterion to compare languages. We
showed that ULSC-Spec is strictly less expressive than many other languages,
either automata-based (ULA, DBA, . . . ) or based on logic, like LTL. Our goal,
in the previous section, was to sustain the first part of our thesis: those classical
formal languages are probably too expressive, for real-world usage. ULSC-Spec
enjoys a “reduced expressiveness”, which would make it more suitable.

In this section, we consider a more fine-grained criterion to compare ULSC-
Spec with other linear-time specification formalisms, viz. succinctness. Suc-
cinctness is a quantitative notion. Intuitively, a language L1 is as succinct as
a language L2 (within some to-be-defined bound) if there is a computer pro-
gram translating every model of L1 to an equivalent model of L2, with only
some reasonable size inflation. The difficulty of definition 3.24 is to introduce
the notion of “reasonable size inflation”. As a first approximation, one could
ask the model in L2 not to be larger than L1. However, this is too drastic as,
for instance, if there is a bijective mapping between L1 and L2 constructs, we
would expect these two languages to be just as succinct as each other. Yet, if
keywords in L2 are longer than in L1, we will not get this result. The situation
is even worse if some L1 keywords are longer than L2’s but the reverse holds for
other constructs. Then, two “intuitively equivalent” formalism would become
incomparable. Thus, we are interested in “rough” bounds, as in computational
complexity. Secondly, defining what “the size of a model” is, can raise subtle
difficulties. For instance, in the case of LTL, we will have to consider two cases:
the number of operators appearing in a formula and the number of distinct
sub-formulae [54].

The translations from ULSC-Spec to other languages proposed in the previ-
ous section are all computable. However, none of them is efficient. Actually, all
of them is exponential. They give us a first theorem: all the languages discussed
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in the previous section (DBA, NBA, LTL, ULA, ACTL, ACTLdet, ULA) are
exponentially as succinct as ULSC-Spec. On the one hand, it is interesting to
know that ULSC-Spec can be embedded in all these languages, as it opens the
way for tool reuse. On the other hand, an exponential upper-bound is neither
very informative (what if there is a more efficient translation) nor very encour-
aging (even efficient tools are not of practical use if their input is gigantic). In
this section, we show that these bad translations are actually optimal for all
translations, but for the translation of ULSC-Spec to LTL and, consequently,
to ALA.

From the point of view of tool reuse, this is bad news. However, this result
sustains very well our thesis about the naturalness of ULSC-Spec. It can be
seen as a “specialized” language, capable of expressing some facts in a much
more compact way than other “wide-spectrum” languages.

The translation from ULSC-Spec to LTL presented in the proof above can
yield formula that are exponentially larger than the specification. This state-
ment should be understood as “there is a family of ULSC-Spec F = {Si}i=0,1,...
such that the function associating |Si| to i is in O(n) but the size function of
{ϕSi

}i=0,1,... is in 2Ωn. This construction can be made more efficient, using a
counting automaton. In order for this construction to be correctly defined, we
need to introduce some technical subtlety, viz. the concept of deterministic
LPO. An LPO is deterministic if its unordered locations have different label-
ings. Or, equivalently, if all locations with identical labels are ordered. These
LPOs are called deterministic because their associated transition system is de-
terministic (and vice-versa: an LPO with a deterministic transition system is
necessarily deterministic). We do not prove this fact here, because it will not
be used in the succinct translation between ULSC-NC and LTL. The interested
reader will find the proof in [24] and [27].

In full generality, deterministic LPO is strictly less expressive than CLPO.

Proposition 3.46 (DLPO ⊂ LPO) There is an LPO L such that no determin-
istic LPO has the same set of linearizations as L. ¥

Proof 3.46

Consider the following LPO: L =







l1 : b

≤
²²

l2 : c

≤

²²
l3 : a l4 : a







Its set of linearizations is {bcaa, baca, cbaa, caba}. Now, assume that some
deterministic LPO has the same linearizations. It necessarily has 4 locations,
with the same labeling. First, its two a labeled locations must be ordered l3 < l4.
Secondly, remark that l1 must be ordered with either l3 or l4. Otherwise, there
would be a linearization in which b occurs after two a. Assume thus that l1 < l4,
because there is one a occurring before b in caba, thus l1 < l3 is not possible.
Apply the same reasoning to l2 and deduce that l2 < l4, too (as otherwise,
baca would not be possible). However, we then obtain that abca is a possible
linearization, which is a contradiction. ¤
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Nevertheless, when considering LPOs obtained from ULSC-NC, they are
equivalent. Indeed, two equivalently labeled locations are necessarily ordered,
because they must appear on the same lifeline or on the ends of the same
arrow, unless they belong to the same coregion. If they do belong to the same
coregion, they can be arbitrarily ordered without changing the semantics of the
ULSC-NC.

We will show that, for the subset of ULSC-NC, that are thus mapped on
deterministic LPOs instead of CLPOs, there is a translation to a linear alternat-
ing automaton, of size polynomial in the LSC. A linear alternating automaton
is an alternating automaton, i.e. its states are partitioned between universal
and existential states, with the constraint that its transition relation induces a
partial order on states. In words, one can assign “levels” to the states. In every
state, only transitions to strictly lower levels or self-loops are allowed.

If one considers the size of an LTL formula as its number of distinct sub-
formulae, then linear alternating automata can be linearly translated to LTL
[151, 109]. The translation is inductive, going “upwards” from lowest levels.
Defining the size of an LTL formula as its number of distinct subformulae is not
as unnatural as it might sound. Actually, the complexity of algorithms deciding
satisfiability for LTL depends merely on this parameter [149, 171].

Consider a deterministic LPO (recall def. 3.1) and a finite word. Under
what condition is that finite word a linearization of this DLPO? The answer is
quite simple: when all locations appear in order. That is, suppose that location
l appears at the j-th position in this word, then all predecessors of l must have
appeared before the j-th position. Furthermore, this word shall be just as long
as the size of the LPO. As a matter of fact, if e1 . . . en is a linearization of a
DLPO, it is possible to map easily some location l to the position at which it
“appears” in e1 . . . en, by counting the number of λ(l) labeled locations occurring
before l in the DLPO.

Example 3.47 The sequence acbcda is a linearization of the DLPO of Fig. 3.33.
It corresponds to the sequence of locations l0l1l2l3l4l5. Now, take abcdca, match-
ing l0l2l1l4l3l5. Notice that, in both sequences, location l3 appears at the po-
sition of the second occurrence of c. This is natural, as there are exactly 2
c-labeled locations ≤ l3. Hence, in every linearization, l3 must be the second
occurrence of c. This is true of every location: we can retrieve the position at
which it appears in the word by counting the number of occurrences of its label.
In a DLPO, we call the index of a location l (idx(l)) the number of locations
bearing the same label as l and smaller than or equal to l. The translation used
in the proof of Th. 3.48 relies on this fact. ¥

Theorem 3.48 (ULSC-NC-Spec polynomially as succinct as LTL) ULSC-
NC-Spec is O(n6)-as succinct as LTL, i.e. specifications made of universal LSCs
without choice can be translated to LTL with a polynomial blow-up. ¥

Proof 3.48



3.3 Expressiveness and Succinctness 95
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Figure 3.33: Deterministic LPO

The LTL formula that we build from an LSC ¤(P,M) is of the form

¤(nprech ∨mainch),

where

1. nprech is a formula that asserts that the prechart will not be matched by
the subword starting at the current position. It is of the form

∨

l∈P

notoccurs(l) ∨ notorder(l),

where notoccurs(l) asserts that there will not be idx(l) occurrences of λ(l)
before having seen |P | occurrences of restricted (ΣR) events, and notorder
is a disjunct over all direct predecessors of l. For every direct predecessor
l′, it says that the number of occurrences of λ(l′) is smaller than idx(l′)
when the idx(l)-th occurrence of λ(l) is encountered. Again, we verify
this property within |P | steps. This formula is of size O(|P |4), because
we need 3 counters, ranging over |P |, and the outermost disjunction is
over all prechart locations.

2. mainch is a formula asserting that, after |P | occurrences of restricted
events (i.e. exactly the prechart), for every l and l′, where l′ is a predeces-
sor of l, l occurs after l′ has occurred, yet within |M | steps. Determining
the position of l and l′ relies on counting idx(l) and idx(l′) occurrences of
λ(l) and λ(l′), respectively. Again, this formula is of size O(|M |5).

¤

The translation proposed in the proof above is a generalization of the“pivot”
technique proposed by the author to generate smaller formulae from universal
LSCs in [23]. The original pivot technique considered only total order points
and, in the worst case, could not help in reducing the size of generated formulae.
Kugler et al. proposed a polynomial translation of LSCs to LTL [102] under
the restriction that no event appears twice in the chart.
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Theorem 3.48 states that there is a polynomial “reduction” of ULSC-NC-
Spec to LTL. Hence, every decision problem on LSC will belong to the same
complexity class as the same decision problem over LTL.

We will now prove that the same does not hold for automata-based for-
malisms, without alternation. There is a case in which LSCs always beat non-
alternating automata. For achieving greater compactness, ULSCs need to use,
in a crucial way, their ability to tell about the possible orderings of a sequence
of events. Next, we thus introduce a sequence of languages, parameterized by
some natural number n, called CopyCatn. Depending on n, we let the alpha-
bet be made of three types of events: a1, . . . , an, which are “triggers”, $, a
marker, and b1, . . . , bn, that are “responses”. CopyCatn imposes the following
rule: “whenever some permutation of a1, . . . , an occurs, the marker must fol-
low, and, immediately, the same permutation, over b.” The ULSC-Spec-NC
CopyCatn defines a language with such a property.

PSfrag replacements

Env Sys

a1

an

.

.

.

.

.

.

$

b1

bn

PSfrag replacements

Env Sys

ai

aj

bi

bj

$

j 6= i and 1 ≤ i, j ≤ n.

Figure 3.34: LSC specification CopyCatn

Lemma 3.49 (CopyCatn can start with any permutation of a1 . . . an) For
every n, and every permutation w of a1 . . . an, there is some γ ∈ Σω, such that
wγ ∈ L (CopyCatn). ¥

Proof 3.49

Remark that all precharts of CopyCatn terminate with a marker $. Since
any permutation of a1 . . . an does not include such a marker, they never activate
any ULSC and thus are unconstrained by CopyCatn. ¤

Lemma 3.50 (CopyCatn imposes matching order) For every n and every
γ ∈ L (CopyCatn), if there is some permutation of a1 . . . an, say w = ai1 . . . ain
such that w @ γ, then w$bi1 . . . bin @ γ. ¥

Proof 3.50

After w, the prechart of the first scenario is matched. Since w @ γ, this first
scenario implies that there is some permutation of b1 . . . bn, say v, such that
w$v @ γ.
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Now, assume that events in w and v are not in matching order. We prove
that this hypothesis leads to a contradiction. Precisely, w and v’s events not
being in “matching order” means that there are some indices j and k with
1 ≤ j < k ≤ n, i.e. ak precedes aj in w, but bk follows bj in v. This is not
possible, as this violates the requirement stating that if aj precedes ak then,
bj shall precede bk, after the occurrence of $ from CopyCatn. This constraint
corresponds to the right-hand side scenario of Fig. 3.34, where i = k. Therefore,
w$v could not be a strict prefix of γ. ¤

Lemma 3.51 Consider a family of NBA (An)n=0,1,..., with

L (An) = L (CopyCatn).

Then, there is some k such that, ∀i ≥ k.|Ai| ≥ 2i log i. ¥

Proof 3.51

Suppose that An does not grow exponentially, but polynomially. Assume,
without loss of generality, that An does not contain any dead state (i.e. states
from which no accepting state is reachable).

Because the growth of An size is only polynomial in n, at some point,
there are less states in this automaton than there are permutations of a1 . . . an,
because permutations of n grow like 2n logn.

Consider two permutations w and w′ of a1 . . . an, such that w 6= w′ and,
yet, An reaches the same state after w and w′, say q. Because L (An) =
L (CopyCatn), lem. 3.49 imposes the existence of q. Since there are no dead
states in An, there is an accepting infinite path starting at q, labeled by γ.
Thus, wγ ∈ L (An), but also w′γ ∈ L (A). Though, lem 3.50 imposes that
γ starts with $, followed by a permutation b1 . . . bn matching the permutation
of w. The same holds true of w′, which implies that w′γ /∈ L (CopyCatn). We
reach a contradiction and are obliged to conclude that the size of An grows at
least like 2n logn. ¤

We have proved that there is no small automaton recognizing the same
language as CopyCatn. Yet, we need to check that the growth rate of CopyCatn
is small, i.e. polynomial. This is achieved simply by counting the number of
locations in the scenarios of Fig. 3.34.

Proposition 3.52 The size of CopyCatn is quadratic in n. Thus, it grows only
linearly in n:

|CopyCatn| = 5n2 + 2n+ 1.

¥

As a corollary, they are also at least exponentially as succinct as DBA. It is
quite easy to apply the proof of Lemma 3.51 to ULA as well. Hence, from the
results of [114], which proved that ACTLdet is linearly as succinct as ULA, it
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also comes that every translation from ULSC-NC-Spec to ACTLdet also implies
an exponential blow-up.

To conclude this section, we prove that there is a translation of ULSC-Spec
to DBA which involves an exponential blow-up. The translation provided by the
previous section were not concerned about the size of the resulting automaton,
and yielded double-exponentially large Büchi automata. Thus, we will have
shown that (1) ULSC-NC-Spec are exponentially as succinct as DBA and (2)
ULSC-NC-Spec are exponentially more compact than DBA. Therefore, any
translation of LSCs to DBA implies an exponential blow-up. We will also note
that this translation requires simply exponential time.

We can use these results to show that ULSC-Spec can be translated to DBA,
with only a single exponential blow-up. From a single ULSC ¤(P,M) we build
an automaton recording the last |P |+ |M | symbols of the word read. According
to these symbols, it decides whether to allow a transition, if the next symbol
read is not forbidden. The liveness condition is encoded in the acceptance
condition.

Definition 3.53 (AS)

AS = 〈{0, 1} × ((ΣR ∪ {t})
n),tn,∆, {1} × (ΣR ∪ {t})

n〉,

with the transition relation being defined as follows: ∆((i, w), a, (i′, w′)) iff, let
b ∈ Σ ∪ {t} and w = bv,

• Update sliding window:

– if a ∈ ΣR, then

∗ w′ = va,

∗ whenever the prechart is matched and the main chart is being
matched, there is a continuation starting with a (viz. at): ∀pu w
w : if p |= P and @m v u : m |=M , then ∃t ∈ Σ∗ : uat |=M .

– if a /∈ ΣR, then w
′ = w.

• Update liveness counter:

– if i = 0 then i′ = 1 if either a is restricted (a ∈ ΣR) or whenever
the prechart is matched, the main chart is also matched afterwards:
∀pu w w : p |= P =⇒ ∃m v u : m |=M .

– if i = 1 then i′ = 0.

¥

Lemma 3.54 (AS is safe) AS has a run on γ iff γ is ΣR-safe. ¥

Proof 3.54

Take some run γ which is not ΣR-safe. It means that there is a prefix w @ γ
which forbids some e ∈ ΣR but we @ γ. Consider, without loss of generality,
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the smallest such w, wrt @ ordering. Remark that this implies that all prefixes
of w are ΣR-safe. We prove that w forbids e iff the subword of size n of w
forbids e. By definition, w forbids e iff there is a decomposition of w in uv
with (i) some p v v linearizing the prechart, (ii) no m v v linearizing the main
chart and (iii), for every r, ver not linearizing the main chart. By definition,
the length of v is smaller or equals to the maximal number of locations in the
chart, i.e. n. Hence, only the last n elements of w determine the truth of the
previous clauses.

Then, remark that the automaton records the last n restricted events of the
word read, i.e. for every w ∈ Σ∗, if AS reads w and reaches some state q, then,
w = vq, after removing all blank (t) symbols from q.

Finally, consider a word w ∈ Σ∗. Let q be the state reached by AS on w.
We claim that a transition is defined from q on e iff e is not forbidden by w. By
the observation above, w forbids e iff its n last restricted events forbid e, i.e. q
forbids e. Remark that the transition condition embeds the safety definition,
to ensure the desired result. Thus, AS has a run on γ iff for every a ∈ ΣR, for
every prefix wa @ γ, w is a-safe iff γ is ΣR-safe. ¤

Proposition 3.55
L (AS) = L (S)

¥

Proof 3.55

We have to prove that AS has an accepting run on γ iff γ |= S. Lemma 3.54
asserts that γ is safe iff AS has a run on γ. Since AS has an accepting run on
γ, this run visits infinitely often states flagged with 1. This is only possible if
either (i) some ΣR symbol appears infinitely often in γ or (ii) ultimately, no
e ∈ ΣR gets required by γ. The second clause can be checked by an argument
similar to the proof of Lemma 3.54, by ensuring that only the n last restricted
events in any word w determine whether w requires e or not. Then, since the
automaton records exactly those last n events and the condition for flagging
states embeds the liveness condition, we get that the run is accepting iff γ is
ΣR-live as well. ¤

The automaton AS has three essential properties:

1. it is deterministic; This is easily checked, since, in w′ = va defines uniquely
w′, from the transition relation defined in 3.53.

2. its size is 2O(n log(n+1)). Remark that there are as many states as there
are permutations of Σ+1 elements of size n (n-tuples of Σ∪{t}). There
are (|Σ|+1)n such permutations. Since |Σ| = O(n), we get that there are
O((n+ 1)n) states, i.e. 2O(n logn+1).

3. computing AS from S is in EXPTIME. We simply need to show that, for
every state q and every a in ΣR, checking that ∆(q, a) can be done in
EXPTIME. This is left to the reader.
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Thus, we have shown that (1) every ULSC-Spec can be translated to an
NBA, with an exponential blow-up and (2) this blow-up is unavoidable.

Theorem 3.56 ULSC-Spec is 2Θ(n log n)-as succinct as NBA (and DBA, and
ULA). ¥

3.4 Conclusion

In this chapter, we have formally defined the subset of Live Sequence Charts
that will be used in the rest of this thesis. It is a graphical language and is given
a very precise semantics, based on the classical logical concepts of interpretation
and model. As a matter of fact, LSCs are a graphical form of temporal logic.

Thus, we can fall back on classical approaches to evaluate languages. In
particular, we have compared LSCs with automata-based formalisms (NBA
and DBA) and logic-based formalisms (LTL and ACTLdet). We assessed LSCs
with respect to two criteria: expressiveness and succinctness. The former tells
about the ability to describe more behaviours/objects/concepts in a language
than in another. It turns out that LSCs are less expressive than all other
languages to which they have been compared. We claim that they enjoy an
adapted expressiveness, as it is still possible to model real-world problems with
LSCs. The latter criterion, succinctness, allows us to tell whether a language
can express some facts more compactly than another language. We proved
that LSCs are more succinct than automata. They are also more succinct than
ACTLdet.

In the next chapter, LSCs will be inserted into the development process of
reactive systems. It will be explained how LSCs can be used and when we pro-
pose to use them, in a process life-cycle. Since modern software development is
becoming ever more model-based [127], different models specialized for different
phases of the software development life cycle, and some relationships between
these models will be described. As we are dealing with formal languages, these
relationships can be automated. Because LSC is a simple language, one can
hope that this automation is practically feasible. We will show that this sensi-
ble expectation is actually false.
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What could you say to a girl who asked a question of such simplicity, when the
answer was of great complexity?

A. Christie, “At Bertram’s Hotel”

4.1 Introduction

Fig. 4.1 presents Harel’s dream of supporting scenario-based software engineer-
ing through software tools. As is highlighted in [71], much research has been
devoted to linking executable models, such as Statecharts, to code and vice-
versa. This problem, although not obvious, amounts to high-level compilation.

In this chapter, we will consider the relation between “requirements”, for-
malized as ULSC and a behavioural model. This model describes the behaviour
of system components. Every component is a reactive system, i.e. reacting to
changes in its environment. We will consider them from a very abstract point
of view, as strategies. We have already defined the language of Live Sequence
Charts and shown that this language is simpler than LTL and more compact
than automata. On an example, we have illustrated that it is indeed possi-
ble to manually translate use cases, expressed in a textual form, to an LSC
specification.

We will now investigate the problems related to adopting the dual inter/intra-
agent view on behaviour. Each view has its own advantages: ULSCs are closer
to informal use cases and can easily be matched against user’s requirements,
whereas strategies (automata) offer a component-based view which is easier
to translate to a program fitting a particular software architecture. However,
having two different views on a single conceptual model opens the way for incon-
sistency. The two views might be contradictory, in that they do not describe
exactly the same underlying concept. Hence, engineers should be provided
with tools that support their work and detect these inconsistencies as soon as
possible. This is in essence what is proposed in [71]. We will consider three
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Figure 4.1: From Requirements to Code

problems that such tools could support: use case checking, synthesis and ver-
ification. Inter-relationships between these tools, models and a basic software
development process are shown in Fig. 4.1.

1. Use case checking will be used by engineers when they are deriving an
inter-agent specification from use cases. They constrain the future sys-
tem’s behaviour by adding more and more rules. Every new universal
LSC restricts a little bit more the set of possible executions of the future
system. At some point, it makes sense to check that it is still possible to
perform a certain sequence of operations. If it is not, engineers need to
relax the behaviour. This problem will be investigated in section 4.3.

2. When engineers are satisfied with their requirement specification, they
have to build an intra-object design model of their system. Currently, this
is a manual operation: analysts have to consider the whole specification,
focus on a single agent and write down a state-machine implementation
for it. This tedious and error-prone process can be automated thanks to
synthesis. Synthesis is not a simple compilation problem; technically, it is
a constructive proof that the specification is implementable, that it does
not contain any conflicting requirements. This problem will be studied in
section 4.5.

3. The design model, be it built automatically or manually, will often be
modified by engineers. The specification is likely to be updated after the
design model has been built, too. This phenomenon is known in Require-
ments Engineering as “requirements creep”: during the life of a software
project, new requirements are discovered and must be integrated to the
software product [179]. As a matter of fact, the two artifacts, specification
and design, will grow independently. Nevertheless, ultimately, the design
model will have to comply with the requirements. Therefore, engineers
need tools that will help them verify this compliance. We will analyze
this problem in section 4.4.
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4.2 Models

In this section, we present the abstract models that are used in Fig. 4.1. So far,
we have only presented the language of LSCs, but we also need a language for
describing the structure of the system to be built and the behaviour of these
components.

4.2.1 Structure

The structural view of the system provides a static view of it. It lists the various
agents and shows what events they trigger (send) or sense (receive).

Definition 4.1 (System Structure) A system structure (in abstract syntax)
is a tuple

〈Ag, (Σsa)a∈Ag, (Σ
r
a)a∈Ag,Sys〉 ,

where

• Ag is a finite set of agent names.

• Σsa gives, for every agent, the events that it sends. These sets are disjoint,
as two agents may not control the same event.

• Σra is the set of events received by agent a. Again, these sets must be
disjoint.

• Sys ⊆ Ag is the set of system agents. All agents not in Sys are called

environment agents: Env
4
= Ag \ Sys.

We let the set of all events be Σ and require that
⋃

a∈AgΣ
r
a =

⋃

a∈AgΣ
s
a = Σ.

We let Σa = Σra ∪ Σsa. ¥

In the rest of this section, we will refer to this structure and assume that it
is fixed.

Concretely, a system structure is specified thanks to diagrams, which are
a slight variation of context diagrams [91] and object diagrams [130] as shown
in Fig. 3.2. Agents are drawn as boxes, in which their name is written. Ag is
the set of all names appearing in boxes. System agents are tagged with an icon
representing a computer terminal.

In order to describe Σ, we use interfaces. An interface is an ellipse, in which
some event names are listed, separated by commas. If the list is too long, an
alias can be given and expanded in an appendix, see Tab. 3.2. Let us denote
with I ⊆ Σ the set of events belonging to a given interface. There is an arrow
going from the ellipse to agent a’s box if I ⊆ Σra. There is a line (without arrow)
linking agent a’s box with the ellipse if I ⊆ Σsa.
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4.2.2 Inter-Agent Behaviour

Inter-agent behaviour is specified thanks to Live Sequence Charts. Every piece
of textual requirements gets translated and generalized to some ULSC. These
ULSCs are then gathered in a ULSC Specification. As ULSCs come with a pre-
built notion of scenario integration, through conjunction, they form a consistent
whole, specifying the desirable behaviours of the future system.

Of course, there are syntactic requirements, in order to be sure that the
LSC specification complies with a given structure.

Definition 4.2 (Inter-agent specification) An inter-agent specification is a
couple

〈S,S〉 ,

with S being a system structure and S a ULSC-Spec, over alphabet Σ. It is
required that only agents from Ag take part in S and that they respect their
interfaces, i.e. an arrow from agent a1 to a2 may only be labeled by events from
Σsa1 ∩ Σra2 . ¥

4.2.3 Intra-agent Behaviour

System structure specifies which agents belong to the system (Sys) and which
agents are part of their environment (Env). Sys implementation will be deployed
among Env agents that provide thus the model-time context of the specification.
It also tells what every agent can do. These abilities should be rendered in the
behavioural specification of agents.

We consider abstractly agents as“reactive (sub-)systems”. A reactive system
keeps an ongoing relationship with its environment, reacting to environment
inputs (stimulus) by producing outputs (responses). These reactuisThey react
to changes in their environments, by sending new events. Our abstraction
highlights that every agent has some powers: it can make some events happen,
because they are under its control. Other events, which are beyond its control,
cannot be handled or constrained by this agent. Thus, a single agent cannot
force to nor prevent its environment from performing an action. Agents can
only select events in such a way that, according to their knowledge of the
environment, they will lead the environment to behave in a certain fashion. Our
abstract view of agent a is a strategy f : Σ∗ → 2Σ

s
a . A strategy f represents an

agent for which it is advisable to perform any action in f(w) after some history
w. Although this view is very appealing from a mathematical point of view, we
will have to focus on strategies which are representable within computers. We
use the notion of input/output automata for this purpose [110].

An input-output automaton for agent a ∈ Ag is a finite automaton, the
alphabet of which is Σa. A distinction is made between input events (Σra) and
output events (Σsa). Syntactically, an I/O automaton for agent a must be input-
enabled: in every state q, agent a should have one transition labeled by every
input event. In other words, a may never block incoming events. This fulfills
our desire to model agents powers, as explained above.
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Definition 4.3 (Input/Output Automaton) An input/output automaton (I/O
Automaton) is a tuple

〈q0, Q,∆,Σi,Σo〉,

where

• Q is a set of states,

• q0 ∈ Q is an initial state,

• ∆ ⊆ Q × (Σi ∪ Σo) × Q is a transition relation. The transition relation
should fulfill the two following constraints:

– ∀q ∈ Q : ∀e ∈ Σi : ∃q
′ ∈ Q : (q, e, q′) ∈ ∆,

– ∀q ∈ Q : ∃e ∈ Σo : ∃q
′ ∈ Q : (q, e, q′) ∈ ∆.

• Σi is a set of input events,

• Σo is a set of output events.

The second constraint on ∆ is not standard, but has been added to ensure that
I/O automata actually correspond to totally defined strategies. Practically, a
simple “stutter” move, labeling self-loops, can be added to Σo to satisfy this
requirement. ¥

A run of an I/O automaton is an infinite path in the automaton, following
the transition relation and starting from the designated initial state. A fair run
is a run in which infinitely many transitions labeled by output events are taken.
The word generated by a run is the infinite sequence of events encountered
along the transitions of the run. The language of an I/O automaton A, denoted
L (A), is the set of words generated by A’s fair runs. The composition of two
I/O automata (A1 × A2) is defined as a variation of the classical synchronous
product of automata, see [110] for details. We quickly recall how this operation
works and some of its basic properties.

Definition 4.4 (Composition of I/O automata) The composition of two
automata A1 and A2 is defined if their output events are distinct (Σ1o∩Σ

2
o = ∅).

In that case, A = A1 ×A2 is

1. Q = Q1 ×Q2;

2. q0 = (q10, q
2
0);

3. Σi = (Σ1i \ Σ
2
o) ∪ (Σ2i \ Σ

1
o) i.e. only input events controlled by neither

agents are input events of the composition;

4. Σo = Σ1o ∪ Σ2o: “local events” are not hidden, in order to ensure associa-
tivity;

5. ∆((q1, q2), e, (s1, s2)) iff
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• e ∈ Σ1 ∩ Σ2 and ∆i(qi, e, si), for i = 1, 2;

• or, e ∈ Σ1 \ Σ2, q2 = s2 and ∆1(q1, e, s1) or vice-versa.

¥

The composition operation enjoys the following properties:

Lemma 4.5 For every I/O Automata A1,A2,A3, provided composition is de-
fined, we have

Associativity: A1 × (A2 ×A3) = (A1 ×A2)×A3.

Commutativity: A1 ×A2 = A2 ×A1.

Refinement (Trace inclusion): L (A1 ×A2) ⊆ L (A1)

¥

Proof 4.5

Associativity and commutativity are shown in [110]. The former relies on
the fact that A1 output events caught by A2 are not hidden. Trace inclusion
comes from the fact that A2 cannot block an A1 transition in the composition,
by input-enabledness (see def.4.3) . Therefore, fairness is preserved. ¤

A finite state I/O automaton represents a finite-memory strategy for agent a.
Formally, a (non-deterministic) strategy for agent a is a function f : Σ∗ → 2(Σ

s
a).

It is of finite memory if there is an equivalence relation ' on Σ∗ such that (1)
' is of finite index and (2) ∀w ' w′ : f(w) = f(w′). The size of the memory
is the index of the smallest such equivalence relation. Clearly, every finite
memory strategy can be translated to an I/O automaton. Conversely, every
I/O automaton can be turned into a strategy. The outcome of a strategy f is
the set of all runs in which Σsa events appear only according to the strategy:

Out(f) = {u0e0u1e1 . . . |∀i ≥ 0 : ui ∈ (Σ \ Σsa)
∗ and ei ∈ f(u0e0 . . . ui)}.

Agents can be organized in societies. A society is a set of agents A ⊆ Ag. Its
triggered events and sensed events are the union of all triggered/sensed events
of its composing agents: ΣsA =

⋃

a∈AΣsa and ΣrA =
⋃

a∈AΣra. The strategy of A
is also the union of its agent’s strategies: fA(w) =

⋃

a∈A fa(w).

It is easy to check the following proposition and we leave it to the reader:

Proposition 4.6 Let A1 and A2 be two I/O automata representing strategies
fa1 and fa2 . Then, A1 ×A2 represents f{a1,a2}. ¥

Definition 4.7 An intra-agent specification is a couple

〈S, fSys〉 ,

where S is a system structure and fSys is a strategy for society Sys. ¥
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We are in position to define when a society of agents is behaving correctly,
wrt some given LSC specification. Intuitively, agents within A are only required
to respect the specification if agents outside A also do so. This is similar to
the well-known assume/guarantee principle in Computer Science. In summary,
agents are only responsible for the correct occurrence of their own events.

Definition 4.8 (Correct Implementation) An intra-agent specification (S,F)
associated to a society of agents Sys is a correct implementation of an inter-agent
specification (S,S) iff

∀γ ∈ Out(fSys) :

{
γ is ΣEnv-live =⇒ γ is ΣSys-live
γ is ΣEnv-safe =⇒ γ is ΣSys-safe

¥

The reader will probably wonder about the condition above, because one is
more naturally led to formalize our intent as:

(
γ is ΣEnv-safe

and γ is ΣEnv-live

)

=⇒

(
γ is ΣSys-safe

and γ is ΣSys-live

)

This condition would allow the system to make unsafe moves disabling the pos-
sibility for the environment to be live. We give an example of this situation.
We are asked to build a controller for a car lift. The controller can set the
engine to three positions: up, neutral or down. It is expected that, when the
engine is on position “down”, the car lift will be going downwards. This is a
liveness assumption on the environment. However, we require that the engine
must be on “neutral” position when the brakes are on. Otherwise, the trans-
mission breaks down and the car lift will never move anymore. It is possible
to design an implementation fulfilling the condition above, yet naturely incor-
rect: the controller first breaks the transmission by setting the brakes on and
putting the engine to position “up”’. Then, the controller sets the engine to
position “down”. Since the environment cannot fulfill its liveness constraints
(the car lift cannot go down, because the transmission is broken), the condition
above is vacuously verified, hence the implementation is correct. Our condition
in Def.4.8 is stronger and rules out that situation. Def 4.8 clearly separates
constraints that can be finitely falsified (safety) from conditions that can only
be falsified by infinite runs (liveness) [4].

4.3 Use Case Checking and Refinement

The first problem we consider is whether an LSC specification is compatible
with an existential LSC.

Problem 4.9 (Reachability) Given an ELSC ♦(M) and an inter-agent spec-
ification (S,S), decide whether

L (S) |= ♦(M).
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¥

Reachability checks that a certain specification, together with assump-
tions over the domain still makes it possible to achieve a certain behaviour. In
software engineering terms, Reachability is used when one wants to check
that the future system specification does not disallow a certain use case.

Theorem 4.10 Reachability is complete for PSPACE. ¥

Proof 4.10

(Membership) The proof of statisfiability from [149] is adapted to LSCs.
Let S = {L1, . . . , Lm}. Firstly, it is easy to devise a nondeterministic Büchi
automaton recognizing all words γ ∈ Σω such that γ |= L. This automaton, that
we call AE , skips some finite input in its initial state and nondeterministically
guesses when the LSC should be matched. Then, it follows the “cut transition
system” and, as soon as some full cut is reached, it accepts all input. Secondly,
we have to find a finite path π in the Büchi product AE×

∏m
i=1ALi

, where ALi

is the tableau automaton defined in def. 3.53, such that

1. π is lasso-shaped, with a head of size j. The first state within the loop is
the j-th state. Thus, there is a transition between the last state of π and
its j-th state.

2. There is an accepting state in the segment between the j-th state and the
last one. There is thus an accepting state visited infinitely often.

q0 . . . qj . . . qk . . . qn−1

Figure 4.2: A satisfying run of length n

We may restrict ourselves to simple paths in AE ×
∏m
i=1ALi

, i.e. paths in
which no state appears twice. Actually, in all non-simple paths, there is a“short-
cut” that skips the loop and is equivalent with respect to language emptiness.
There is a nondeterministic PSPACE TM finding such a path. The reader shall
notice here that π has a length upper-bounded by (logm + 1)2(m+1)·n, with n
the size of the largest scenario in the specification, because it is an upper bound
on the number of states in AE ×

∏m
i=1ALi

. This element can be recorded with
log((logm + 1)2(m+1)·n) bits, i.e. O(m · n) bits. The TM initializes itself by
guessing the following information:

• the length of π,

• the value of j.

and then it runs to find such a π. The TM records the following information:
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• current state in AE ×
∏m
i=1ALi

,

• next state in AE ×
∏m
i=1ALi

,

• current position (index) in π.

• the length of π,

• the value of j,

• the state at position j in π.

• whether some final state has been visited.

For i = 1 to |π|, the algorithm performs the following operations.

• if i− 1 = j, it stores the current state to qj .

• it nondeterministically guesses the next state (qi) and checks that there
is a transition between qi−1 and qi.

• If i > j and qi−1 is accepting, it records that some accepting state has
been visited in the loop.

• If i = |π|, it checks that qi = qj , i.e. the loop properly closes.

Then, it accepts. If any of the conditions above fails, it rejects. This algo-
rithm uses only polynomial space and is nondeterministic. Since NPSPACE =
PSPACE, we have shown that Reachability is in PSPACE.

(Hardness)We encode the execution of a PSPACE Turing Machine on the
blank input within an LSC specification. Assume that the control locations of
the TM are taken from a a finite set Γ. Furthermore, suppose that the TM
has been modified in such a way that, when it moves the tape head beyond
the input, it loops forever in some non-halting state. We let the alphabet of
the tape cell be the binary alphabet {0, 1}. Finally, we suppose that, among
Γ, the halting location is γh, which is never left once it is reached. Since it is
a PSPACE TM, it uses at most n cells of memory. The run of the TM will be
encoded as an infinite word over the alphabet:

(Γ ∪ {in, $} ∪ {0, 1})× {0, . . . , n}.

The LSC specification contains only one agent; we will thus omit it in the rest
of the proof. A correct encoding will have the following form init · exec, where

init = (in, 0)(0, 0)(in, 1)(0, 1) . . . (in, j)(0, j) . . . (in, n)(0, n)(γ0, 0) (4.1)

The “init” sequence ensures that, at the beginning of the run, the tape cell
contains n blank cells and the initial location is γ0, with the tape head on cell
0. An event (in, j) requires the agent to perform (0, j), i.e. to immediately
initialize the j-th tape cell to 0.
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(in, j)

TM

(0, j)

(in, j + 1)

∀j : 0 ≤ j < n

restricts all events

(in, n)

TM

(0, n)

(γ0, 0)

restricts all events
(a) (b)

Figure 4.3: Initialization Sequence of PSPACE TM

We express this “initialization sequence” using the LSCs in Fig.4.3, which
restrict all events.

Consider an arbitrary configuration of the TM: C = (T, γ, i), where T is the
tape content, γ is the control location and i is the tape head position. We say
that it is encoded by a word w if

1. ∃v ∈ Σ∗ : w = v(γ, i)

2. ∀j : 1 ≤ j ≤ n : T [j] = a =⇒ ∃u, v ∈ Σ∗ : w = u(a, j)v and neither (0, j)
nor (1, j) appears in v.

Notice that, when w fulfills these conditions, C can be unambiguously retrieved
from w.

It is easy to check that init encodes the initial configuration C0 = (T0, γ0, 0),
where T0[j] = 0, for all j. We need to express the successor relation between
two configurations C →M C ′.

Suppose without loss of generality, that C = (T, γ, i), T [i] = 0 and C ′ =
(T ′, γ′, i + 1), where T ′ is like T , except that 1 has been written at the i-th
position. Assume that C is encoded by some word w. By definition of configu-
ration encoding, w = v · (γ, i), and the last occurrence of either {(0, i), (1, i)} is
(0, i) in w. The transition will be encoded as the following continuation:

w′ = v (γ, i)(0, i)($, i)(1, i)(γ, i+ 1)
︸ ︷︷ ︸

u

.

One can check that w′ is indeed an encoding of C ′, by noting that

1. it ends with (γ, i+ 1);

2. in u, no event of the form (0, j) or (1, j) (j 6= i) has been added. Hence,
the tape content of the configuration encoded by w does not differ from
that of C on these cells.
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The proof is almost over, we simply need to describe all sequences of the
form above with a conjunction of LSCs. This is achieved with the scenarios
of Fig. 4.3 to 4.6. The first one retrieves the last occurrence of an event of
the form (0, i) or (1, i). It is copied immediately after (γ, i). This retrieval is
presented in Fig.4.4. One should take care of a detail, here: we want to be sure
that after (γ, i), only one occurrence of (0, i) will be repeated. This is achieved
by using no-scenarios, the prechart asserts that matching a sequence of the
form (a, i)(a′, i)($, i), where a, a′ ∈ {0, 1}, should cause a contradiction in the
specification. Therefore, such a “bad” encoding is forbidden.

(a, i)

TM

(a, i)

restricts all events
indexed by i

(γ, i)
(γ, i)

TM

($, i)

restricts all events
but {(0, i), (1, i)}

(a) (b)

Figure 4.4: Retrieving tape cell content

(γ, i)

TM

(a′, i)

restricts all events indexed by i

($, i)

(a, i)

(γ′, i+ 1)

Figure 4.5: Transition (γ, a, a′, r, γ′)

A third scenario encodes the rest of the transition, i.e. writing to the i-th
cell and moving the tape head to the right. This scenario is shown in Fig.4.5.

To conclude, we use the existential LSC to encode the property that, after
having been initialized, the TM eventually halts. This scenario, in Fig.4.6,
ignores all events, but the two in it.

¤

Another natural problem pertaining to the analysis of inter-agent specifica-
tions is specification refinement checking. This occurrs naturally in the frame-
work of a progressive software development approach. Given a certain abstract
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(in, 0)

TM

(γh, 0)

Figure 4.6: Existential scenario: TM initializes and eventually halts.

specification (S,S), a more precise specification (S,S ′) is designed and we want
to verify that every behaviour induced by (S,S ′) is a legal behaviour of (S,S).
Logically, this boils down to verifying the validity of S ′ → S, or in language
terms, that L (S ′) ⊆ L (S).

Problem 4.11 (LSC-Impl) The problem of implication of LSC specifications
(LSC-Impl) is given two inter-agent specifications (S,S) and (S,S ′), to decide
whether

∀γ ∈ Σω : γ |= S =⇒ γ |= S ′.

¥

Satisfiability of LSC specifications is polynomial-time reducible to reacha-
bility. One can add a scenario obliging the machine to perform an infinity of
computations: every time it reaches the halting location, it is launched again,
from the initial location. Hence, only runs in which the machine can“halt” from
the initial location will be models of the specification.

Problem 4.12 (LSC-SAT) The problem of LSC satisfiability (LSC-SAT) is
to decide, given an LSC specification S, whether

∃γ ∈ Σω : γ |= S.

¥

Hence, the two problems also considered in this section are as difficult as
reachability. This is not surprising as reachability is an important primitive of
most verification algorithms.

Corollary 4.13 LSC-SAT and LSC-Impl are PSPACE-complete. ¥

In 2001, Harel and Marelly introduced an algorithm and an approach to the
validation of LSC-based specifications, called play-out [75]. The specification
is immediately executed, without generating any code from it, but using an
animation engine instead. This animation engine uses a super-step approach:
when the environment or user inputs some new event, by performing some action
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on the graphical user interface, the engine performs all system-controlled events
that become required, until it reaches some stable status, in which no event is
required anymore. There may be more than one event required and enabled
at the same time. Thus, several supersets may exist. The theorems provided
in this section can be adapted to show that computing whether a finite super-
step exists is PSPACE-complete. A technique named smart play-out as been
developed by Kugler, Harel, Marelly and Pnueli to find a superstep avoiding
deadlocks and divergence, if it exists. This technique translates the LSC to a
transition system and, thanks to a model checker, finds an execution of this
system that succesfully terminates. This execution is then used to drive play-
out.

4.4 Verification

In this section, we will investigate the problem of agent verification. Informally,
this problem is to check that an implementation of a society is correct. We will
consider several consecutive problems. The most general case considers that
the society Sys consists of at least one agent, and that there might be agents
out of Sys interacting with them. We will investigate “degenerated” versions,
along the following axes:

1. Sys consists of a single agent or several agents (viz. centralized vs dis-
tributed agent verification);

2. Env is empty or not (viz. closed vs open agent verification).

We will start with the simplest problem and progressively consider more
difficult ones.

Problem 4.14 (CCMC) CCMC (Closed Centralized Model Checking) is the
problem of verifying that an intra-agent specification (S, fAg) is a correct imple-
mentation of an inter-object specification (S,S), with Sys = Ag and fAg being
presented as an (I/O) automaton A. ¥

In the hardness proof of “closed centralized model checking”, we will make
use of the fact that the complement of “Traveling Salesman Problem” is coNP-
complete.

Problem 4.15 (coTSP) The Complement Traveling Salesman Problem (coTSP)
is to decide whether, for some given constant k, in a given complete graph G,
with weights on edges dij , all tours have a total weight ≥ k. The weights are
all polynomial in |G|. ¥

Even with the additional assumption that weights are polynomial in |G|, this
problem is coNP-complete. Indeed, by inspecting the hardness proof in [132],
it actually suffices to consider weights bounded by 2 to obtain coNP-hardness.

Theorem 4.16 CCMC is complete for coNP. ¥



114 Analysis Problems

Proof 4.16

(Membership) A counter-example is a path in which (i) the prechart is
matched and (ii) the main chart never finishes or a safety condition is not met.
Such a violation must occur in at most n steps, where n is the number of
locations in the Live Sequence Chart. The non-deterministic algorithm guesses
the following elements: the LSC L to violate, a state q in A and a simple path in
the synchronous productA×A¬L, withA¬L is the linear nondeterministic Büchi
automaton recognizing all counter-examples of L. Remark that the simple path
is at most of length n× |A|, which suffices to obtain that the algorithm runs in
time polynomial in the size of the intra- and inter-agent specifications.

(Hardness) There is a polynomial reduction of Complement TSP (see
[132]) to CCMC. Here, we consider a special case of CCMC, in which all
events are system-controlled. A graph G, with a distance dij is turned into an
automaton having states of the form (vertex, counter). The counter sums the
weight of the current path, up to the current state. Of course, this counter is
bounded by the longest possible path in G. It is thus polynomial in |G|, too.
The alphabet is the set of vertexes from G. From a state (v, n), there is a

transition (v, n)
v′
−→ (v′, n+ dqq′), iff the edge between q and q′ in G has weight

dqq′ . Thus, a path (v0, i0) . . . (vj , ij) in the automaton corresponds to a path
v0 . . . vj in G. Furthermore, the total weight of v0 . . . vj is ij .

In any state, there is also a transition to the “billing” states: (v, n)
$
−→ ($, n).

From these states, the automaton counts down, decreasing the counter by one

unit at a time, until its counter equals 0: for n > 0, ($, n)
tick
−−→ ($, n − 1).

When zero is reached, the automaton reads an infinite sequence of “end” events:

($, 0)
end
−−→ ($, 0). Finally, we add an initial state q0, with a transition q0

init
−−→

(q, 0), for all q. This automaton has 2 + D · (|G| + 1) states, where D is the
maximal distance. It is thus polynomial in the size of the original graph.

The fact that all tours have length ≥ k is encoded in an LSC as follows: the
prechart contains {q1, . . . , qn, $}, where qi’s are unordered, whereas $ is greater
than all qi.

q1

G

tick

restricts end

qn

tick

....

$

... (k times)

Figure 4.7: All tours have length ≥ k

The prechart is matched when all vertexes have occurred exactly once and,
then, the automaton has announced that it will start down-counting. Then, the
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main chart checks that tick occurs k times, without any end event in between.
It is clear that there is a tour of total weight < k iff the automaton violates
the LSC, i.e. the prechart is matched (we found a tour), but the main chart is
violated afterwards. Violating the main chart means that, before k ticks, the
“end” event occurs. Hence, the total weight of the tour is smaller than k. ¤

A first extension to this problem is to consider that some agents belong to
the environment, while others are system agents. Then, we are presented with
an implementation of system agents only and the question becomes: “when-
ever environment agents do behave correctly, does this implementation behave
appropriately?”.

Problem 4.17 (OCMC) OCMC (Open Centralized Model Checking) is the
following problem: “Decide whether (S, fSys) is a correct implementation of
(S,S), where fSys is represented as an I/O automaton A”. ¥

Theorem 4.18 OCMC is complete for PSPACE. ¥

The proof of this theorem is similar to the proof provided in Sec. 4.3. The
computations of a PSPACE Turing Machine can be encoded in an LSC specifica-
tion, in polynomial-time and logarithmic space. The automaton generates only
traces starting with an initialization event and, eventually, emitting a halting
event.

The second restriction imposes that we consider monolithic systems only,
made of a single component. As it was clear from the introduction, we are
mostly interested in distributed systems. The design-time specification of such
systems will typically be presented as a “network” of automata, one for each
agent. Every automaton prescribes how its owner shall behave.

Problem 4.19 (CDMC) CDMC (Closed Distributed Model Checking) is stated
as follows: “Decide whether an intra-agent specification (S, fSys) is a correct im-
plementation of an inter-agent specification (S,S), with fSys represented as a
set of I/O automata {Aa}a∈Sys. ¥

Unfortunately, as usual in verification, distribution makes model checking
more complex [78]. The problem becomes PSPACE-complete instead of coNP-
complete. Remark that , CDMC is a degenerated problem, because the spec-
ification contains only one ULSC. Considering an actual specification is not
harder. Actually, there is an immediate nondeterministic PSPACE algorithm
deciding the complement of the problem: pick nondeterministically one scenario
in the specification and check that the implementation violates it. This problem
is exactly the complement of CDMC, which is thus in coPSPACE=PSPACE, by
Savitch’s theorem [146].

Theorem 4.20 CDMC is PSPACE-complete. ¥
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Proof 4.20

(Membership) Let m be the size of Ai’s and the LSC be of size n. By Sav-
itch’s theorem, it suffices to build a nondeterministic PSPACE Turing machine
deciding the complement of the distributed model checking problem. This al-
gorithm guesses an initial state and a path in the product of the automata. As
this path needs to be ultimately periodic, it also guesses the following elements:
the index in the path at which the loop is entered and the length of the path,
as in [149]. We then check that the transition relation of the LSC is correctly
followed , thus only two configurations need to be saved, plus the configuration
at the entry of the loop. Within the loop, either no environment event occurs,
but no such event is required, or some event occurs infinitely often.

(Hardness) Consider an arbitrary PSPACE Turing machine. Assume that
its set of control locations is Γ and its symbols are Σ. One can without loss
of generality, assume that the machine uses only its input space. Otherwise,
the input can be padded with nk blank spaces, see In-Place Acceptance in
[132]. For every cell tape, we build an automaton, say Ai. The alphabet of the
system is {init, halt} ∪ (Γ × {1, . . . , n}). An event (γ, i) means that the tape
head moves to cell i and the control location becomes γ. Ai has two types of
control locations, to record the fact that the tape head is on its cell or not.
The former is of the form (a, γ) ∈ Σ × Γ and the latter of the form a ∈ Σ.
Assume that we want to encode a transition (γ, a, r, a′, γ′), i.e. when the TM
control location is γ and it reads a from the cell on which the tape head resides,
the TM writes a′, moves the tape head to the right and the control location
becomes γ′, of the Turing machine. Let the tape head be on cell i. Then,
Ai will contain a transition ((a, γ), (γ ′, i + 1), a′), while Ai+1 has a transition
(b, (γ′, i+ 1), (b, γ′)). All automata synchronize on a first common event “init”.
The “init” event is caught by the prechart. The main chart then asserts that
“halt” will eventually occur. ¤

Combining distribution and openness does not increase the problem com-
plexity; it is still PSPACE-complete.

Theorem 4.21 ODMC is PSPACE-complete. ¥

4.4.1 Related Work

There has been much work on model checking and we only refer the reader to
recent surveys [133, 38]. This technique has undergone many optimizations to
match industrial standards, such as partial-order reduction [62, 182], symbolic
state space exploration [124] or SAT-based model checking [19]. In 1996, a
collegial paper by Clarke, Wing et al. reported many industrial success stories
[39].

There has been some work on the verification of scenario-based languages.
Alur and Yannakakis investigated the problem of model checking MSC [11].
Schäffer and Knapp build a model checker to verify that state-machine imple-
mentations allow traces specified by collaboration diagrams [147].
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Klose and colleagues use LSC as a specification language and verify that
reactive systems specified with Statemate satisfy them, using model checking
[98, 97]. Their technique can deal with real-time constraints and has been
applied to the validation of a radio-based train system [21]. The tool developed
on the basis of this work is commercially available with Rhapsody.

Bunker uses LSC to specify the properties of a hardware VCI (Virtual Com-
ponent Interface) bus [33, 32]. The protocol specified in this standard is modeled
as LSC, which strengthens guarantees that the formal model reliably captures
the intent of the standard. These properties are then translated to a series
of assertions in temporal logic, using a tool named lscAssert and a register
transfer level model of the implementation can be model checked.

Kupferman and Vardi study the problem of verifying open systems against
temporal logic formulae in LTL, CTL and CTL∗. This problem is called module
checking [104]. The main difference here is that modules are open: they are finite
structures in which states are partitioned into environment and system states.
In environment states, choices are external. Properties shall thus be verified
against every environment. Kupferman and Vardi show that this problem is
substantially harder than model checking for CTL and CTL∗. However, it
coincides with model checking when one considers universal temporal logics,
i.e. formulae should hold along all paths in the computation tree. This is the
case of LTL and ACTL. It is also the case of ULSC specifications: they are
linear-time properties by definition, hence universal temporal properties.

4.5 Synthesis

In this section, we turn to the last class of problems that we will consider. We
want to determine whether agents can indeed be implemented in order to satisfy
the protocol. Ideally, the proof of implementability should be constructive:
some strategy, for every agent, must be built. Would this implementation be
compact and readable, the burden of designing the system would be taken away
from engineers. This would achieve Harel’s “achievable dream” [71].

4.5.1 Centralized Synthesis

As in the previous section, we will consider two versions of this problem. The
first version requires us to build a strategy for Sys, say fSys, which is represented
as a single automaton A. The second version, that we call “distributed”, obliges
us to find a “distribution” of fSys into (fa)a∈Sys. This problem turns out to be
undecidable.

Remark that we will not be considering the problem of synthesizing closed
agent systems. This is because this problem is rather trivial. It suffices to test
whether L (S) is nonempty, which is formally equivalent to LSC-SAT.

We are more interested in the design of open agent systems. They are go-
ing to be deployed in adversarial environments. Under these conditions, the
problem of implementability is not equivalent to satisfiability [2]. The ques-
tion is more accurately posed as “is there an implementation of system agents
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such that, when deployed in any possible environment, the specification will be
respected?”. Satisfiability asks whether there is a benevolent environment in
which some implementation can be deployed in order to meet the specification.
When considering implementability, engineers have to consider malevolent en-
vironment, that will always try to drive the system into faulty states. However,
remember that, in our approach, not every environment needs to be considered,
since ULSCs enable analyst to make explicit safety and liveness assumptions
on environment agents. Hence, only environment agents satisfying those hy-
pothesis must be considered. COAD is therefore concerned with building an
implementation of a system that will work in adverse conditions.

Problem 4.22 (COAD) Centralized Agent Design (COAD) is the problem
of deciding, whether there exists an intra-agent specification (S, fSys) that im-
plements correctly a given inter-agent specification (S,S). ¥

It is important to remark that a single monolithic strategy, for all Sys is
enough to solve COAD. This problem makes the perfect information hypoth-
esis. This means that agents may observe every event and every agent knows
instantaneously in what state other agents are.

There is an exponential-time algorithm solving COAD. A two-player game
graph, with a one-pair Streett winning condition is built, with the property that
a winning strategy for player 0 exists if the specification is implementable. The
game graph is exponentially larger than the initial specification. So, let us fix
S = {L1, . . . , Lm}. We let every ULSC be of size O(s). We let n represent the
size of S. By definition, we have O(n) = m · O(s) = O(m · s), because there
are m ULSCs of size O(s). The game graph is the product of the deterministic
automata obtained from every LSC, see Def. 3.53. We will denote by Ai =
〈Qi, q

0
i ,∆i, Fi〉 the DBA recognizing all models of Li. Remember that, in this

automaton, states are finite words (of length ≤ |Li|). Thus, we may say that “a
state requires/forbids a certain event”, without any problem. Furthermore, we
extend the alphabet Σ with a fresh environment-controlled event τ , which stands
for environment stutters. This event is used by Env to warn the other player
of a “turn change”. When τ occurs, Sys has to perform an event afterwards.
To ensure that Env lets Sys play infinitely often, a scenario is added to the
specification, as shown by Fig. 4.8.

PSfrag replacements

Env

τ

Figure 4.8: Ensuring that turns alternate

We also assume that there are two events, say λSys (resp. λEnv), in ΣsSys
(resp. ΣsEnv) that are not restricted by any scenario in S. This allows us to



4.5 Synthesis 119

deal easily with safety conditions by removing some pathological conditions
and corresponds intuitively to the situation in which the system (resp. its
environment) does nothing. In this setting, the following fact is easy to prove:
every run in which no safety condition has been violated can be prolongated to
a safe infinite run, by adding an infinity of “do nothing” steps.

Proposition 4.23 For every finite word w ∈ Σ∗, w is Σ-safe iff wλωj is Σ-safe
as well. ¥

When regarding only safety conditions, the first player to perform an unsafe
move will be losing the game [1]. The first proposition asserts that, if Env
performs the first bad move, then, there is a simple correct implementation
that can continue the play from that situation.

Proposition 4.24 There is a strategy hSys such that for every w ∈ Σ∗, if w is
ΣsSys-safe but not ΣsEnv-safe, Out(hSys) ∩ (w · Σω) are all correct (see Def. 4.8).

¥

Proof 4.24

Since all runs in w · Σω are not ΣsEnv-safe, the strategy hSys has to check
that the liveness condition is matched. The strategy does this in a simple way:
it performs a restricted event for every scenario, in turn. Thus, in all outcomes,
every scenario has some restricted event which occurs infinitely often. Formally,
hSys is specified as the following I/O automaton:

〈{0, . . . ,m− 1}, 0,∆,ΣsSys,Σ
r
Sys〉,

where ∆(i, a, i), for every a ∈ ΣrSys, and ∆(i, b, j), with b ∈ ΣRi
∩ ΣsSys and j is

the first index > i (modulo m) for which Lj restricts some event controlled by
Sys.

¤

The second proposition says that no correct implementation contains a trace
in which Sys violates first some safety condition.

Proposition 4.25 Let fSys be a correct implementation. Then, there is no
wγ ∈ Out(fSys) such that w is ΣsEnv-safe but not ΣsSys-safe. ¥

Proof 4.25

By contradiction. Suppose that such a wγ exists. Hence, substituting in
γ all occurrences of ΣsEnv events by λEnv yields a run wγ′ that (i) belongs to
Out(fSys) but (ii) is ΣEnv-safe and not ΣSys-safe. Hence, fSys is not a correct
implementation. ¤

The game graph built to solve COAD is, as specified in Sec. 1.3, an object
of the following form:

〈V, V0,∆,Ω〉,

where, in our particular case,
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• The set of vertexes is

V = {Sys,Env} ×
m∏

i=1

Qi × {0, . . . ,m} × {0, . . . ,m}

Thus, in addition to the product of the states from the ULSC “tableau”,
we add a flag, indicating whose turn it is to play (Sys or Env) and two
counters, that will take liveness into account, as in the synchronous prod-
uct of Büchi automata.

• Player 0’s vertexes are all vertexes flagged with Sys:

V0 = {v ∈ V |π1(v) = Sys}.

• Edges are ∆ ⊆ V ×Σ×V . There is a transition ∆(q, e, q′) iff, if we let q =
(i, q1, . . . , qn, cSys, cEnv) and q′ = (i′, q′1, . . . , q

′
n, c

′
Sys, c

′
Env), the following

conditions hold:

– Player Env passes his turn by making a τ move. Player Sys may
only perform one move:

∗ if i = Env and e = τ , then i′ = Sys;

∗ if i = Env and e 6= τ , then i′ = Env.

∗ if i = Sys, then i′ = Env;

– e is controlled by the player who it is to play in vertex v: e ∈ Σsi .

– All transitions are legal, with respect to every tableau:

∀j : 1 ≤ j ≤ m :

{
qj does not forbid e
∆j(qj , e, q

′
j)

– Counters are updated as in Büchi synchronous product (for j ∈
{Sys,Env}):

∗ cj = m =⇒ c′Sys = 0, or

∗ cj < m and, if e ∈ ΣRcj+1
∨qcj+1 does not require any e

′ ∈ Σscj+1
then c′j = cj + 1 else c′j = cj .

– Ω = Streett(E,F ), where

E = {(i, q1, . . . , qm, cSys, cEnv) ∈ V |cEnv = m}
F = {(i, q1, . . . , qm, cSys, cEnv) ∈ V |cSys = m}.

Finally, we obtain GS = 〈V ′, V ′0 ,∆
′,Ω′〉, by “completing” the game graph

above, i.e. adding new transitions to ∆ to ensure that every vertex has a
successor. We add two vertexes: V ′ = V ∪{FailSys,FailEnv}. They both belong
to V ′1 = V ′ \V0 and act as sink states. Their only outgoing transition is labeled
by τ : ∀e ∈ Σ : ∆′(Failj , τ,Failj), for j ∈ {Sys,Env}. They are entered from a
vertex v, when an unsafe event is performed in that vertex:

∀v ∈ V0 : ∀e ∈ ΣsSys : (@v
′ ∈ V : ∆(v, e, v′)) =⇒ ∆′(v, e,FailSys)

and ∀v /∈ V0 : ∀e ∈ ΣsEnv : (@v
′ ∈ V : ∆(v, e, v′)) =⇒ ∆′(v, e,FailEnv)
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Finally, the vertex FailSys is good for player 1 while state FailEnv is good for
player 0: Ω′ = Streett(E ∪ {FailSys}, F ). It is easy to see that FailSys belongs
to the winning region of player 1: the winning strategy is to remain forever in
that state. FailEnv is in the winning region of player 0, as staying there forever
is winning for player 1.

Remark that GS is deterministic. This follows easily from an inspection of
the conditions above. The conditions defining i′ are all mutually exclusive, as
well as the conditions for the liveness counters cSys and cEnv. Since all Aj are
deterministic, their product is also deterministic. The size of GS is exponential
in the size of the specification S:

|GS | = 2 ·
(
∏m
j=1 |Aj |

)

· (m+ 1) · (m+ 2)

= 2 ·
(
∏m
j=1 2

O(s log s)
)

· (m+ 1) · (m+ 2)

=
(
2O(m·s log s)

)
· O(m2)

= 2O(n log s)

The following lemma asserts that we are maximal, with respect to safety:
the construction of GS did not remove any safe move. To put it differently,
every Σ-safe run corresponds to a path in the V part of GS .

Lemma 4.26 w is the prefix of a Σ-safe run iff the unique path labeled by w
from (Env, q10, . . . , q

n
0 , 0, 0) leads to a vertex in V . Thus, v is not one of the two

Fail states. ¥

Proof 4.26

The proof is by induction. Clearly, ε leads to the initial state that belongs
to V . Take a Σ-safe run γ and assume that the property above holds for a
prefix of size n. Let we be the prefix of γ of size n + 1. Let v be the vertex,
by induction hypothesis in V , to which w leads. Then, w forbids some event
e iff some Aj does in v, by construction of Aj . Remark that w cannot forbid
e, since we is a prefix of γ. By looking at the definition of ∆, it is clear that
there is a continuation e to some vertex v′ ∈ V . The other direction follows
from Prop. 4.23, which asserts that every safe finite word can be prolongated
to a safe infinite word. ¤

Every run wγ where w is not ΣsSys-safe but w is ΣsEnv-safe labels a path from

(Env, q10, . . . , q
n
0 , 0, 0) to FailSys.

We show that the Streett acceptance condition encodes faithfully the liveness
part of Def. 4.8.

Lemma 4.27 Let γ ∈ Σω be a Σ-safe run. Then, the two following assertions
hold.

1. γ labels a path π in GS starting from (Env, q10, . . . , q
n
0 , 0, 0) that remains

forever in V .
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2. π visits infinitely often E (resp. F ) iff γ is ΣsEnv-live (resp. ΣsSys-live).

¥

Proof 4.27

First, γ labels a unique path π from (Env, q10, . . . , q
n
0 , 0, 0) to FailSys, because

∆′ is complete and deterministic. Since γ is Σ-safe, π never visits any Failj state
(j ∈ {Env,Sys}).

Second, suppose that E is visited infinitely often along π. By construction
of counters, either every scenario has some restricted event that occurs or some
state in which no ΣsEnv event is required. In the former case, the run is clearly
ΣsEnv-live. We show that it is in the latter case, too. Suppose that γ = wγ ′ such
that (i) in γ′ no restricted event occurs, (ii) there are infinitely many prefixes of
γ that do not require any ΣsEnv event but (iii) there is a prefix after w, i.e. u @ γ
and w @ u that requires some ΣsEnv. It is not possible as there is another u @ w′

which does not require some ΣsEnv and, thus, w|ΣR
6= u|ΣR

or w|ΣR
6= w′|ΣR

. This
is not possible. ¤

Theorem 4.28 (GS correctness) There is a winning strategy σ on GS for
player 0 from (0, q1, . . . , qn, c0, c1) iff there is a strategy fSys implementing S.

¥

Proof 4.28

(⇒)

Suppose that σ is winning on GS . We show how to build a strategy fSys
which implements S. We define fSys as a memory strategy. The memory
component µ : Q× Σ→ Q is defined as follows, for every e ∈ Σ:

• µ(Failj , e) = Failj for j ∈ {Env,Sys}.

• µ(q, e) = ∆(q, e), for all q ∈ V .

Then, by induction, µ∗ : Σ∗ → Q is µ∗(ε) = (0, q1, . . . , qn, c0, c1) and µ
∗(ua) =

µ(µ∗(u), a).

• fSys(w) = σ(µ∗(w)), if µ∗(w) 6= Failj (j ∈ {Sys,Env}).

• fSys(w) = hSys(w), otherwise.

Suppose, for the sake of contradiction, that fSys is not a correct implementation.
Then, one of the two following assertions must hold, for some γ ∈ Out(fSys)
and we perform a case split.

γ is ΣsEnv-safe but not Σ
s
Sys-safe. By Lem. 4.26, FailSys is then reached. How-

ever, we have already stated that FailSys did not belong to player 0 winning
region, which contradicts the fact that σ is winning.
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γ is ΣsEnv-live but not Σ
s
Sys-live. If γ is ΣsSys-safe, then, from Lem. 4.27, it

comes that E is visited infinitely often but F is only visited finitely often.
Thus, it does not fulfill the Streett acceptance condition.

Thus, fSys is a correct implementation.

(⇐)

Suppose that fSys is a correct implementation. We build a winning strategy
σ from it. σ(w) is just the same as f(w), but on vertexes rather than moves:
σ(w) = v′ ⇐⇒ ∆(µ∗(w), f(w), v′). ¤

This game can be solved in time O(|GS |) = 2O(n). The Streett acceptance
condition can be turned into a three-colour parity game graph, with the accep-
tance condition Ω′ defined as

Ω′(v) = 2 if v ∈ F
Ω′(v) = 1 if v ∈ E \ F
Ω′(v) = 0 otherwise

As stated in Sec. 1.3, a parity game graph can be solved in time polynomial
in the number of colours. We have just described an inefficient algorithm for
solving COAD:

Lemma 4.29 COAD is in EXPTIME. ¥

Nevertheless, this algorithm cannot be asymptotically improved: we prove that
COAD is also hard for EXPTIME. We have already showed that satisfiability of
LSC specifications was PSPACE-hard, see Sec. 4.4. Essentially, synthesis of open
systems inserts alternation into the problem of satisfiability. This is witnessed
by our approach for solving COAD, which reduces realizability to solving a
two-player game. Since alternation shifts all complexity classes “one level up”,
PSPACE-hardness of satisfiability implies EXPTIME-hardness of synthesis [36].

Lemma 4.30 COAD is hard for EXPTIME ¥

Proof 4.30

We encode an alternating PSPACE Turing machine into an LSC, as we did
before (see Th. 4.10). The result will follow from the fact that APSPACE =
EXPTIME [36]. The only difference is that we need to distinguish between
universal and existential moves of the machine. Since alternation is built in the
realizability problem, we can use the two statuses of the player to model the
alternation of the Turing machine. In order to do so, we duplicate all events,
and assign them to player 0 and player 1. A transition is now of the form
(γ, i, A)(a, i, A)$i(a, i, A)(γ

′, j, A′), where A,A′ ∈ {∀, ∃} indicates the status of
the current state (universal or existential).

Since there are several possible moves at configurations (by definition of
alternation), we need to encode these possible continuations. All bad continu-
ations are encoded in no-scenarios, which imply contradictory requirements on
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the player (∀, ∃) who is about to play. Thus, if this player decides to pick such a
bad continuation, the outcome will certainly not respect the LSC specification.
This is equivalent to complete “a priori” the TM transition relation, without
altering its language.

Surprisingly, we assign existential moves of the TM to player 1 (the “univer-
sal player” in our two-player synthesis “game”) and universal moves to player 0
(the “existential player” of the synthesis “game”). A scenario is added, ensuring
that player 0 loses as soon as a halting configuration is met. The specification is
not realizable iff the machine has an accepting computation. Actually, player 1
can pick existential moves such that the computation tree halts on all its paths
(otherwise, player 0 would have a winning strategy to escape). ¤

Combining these two lemmas, we obtain that COAD is EXPTIME-complete.
This proves our claim that, because LSCs are less expressive than LTL, some
problems are easier on LSCs than on LTL. Actually, centralized realizability is
2EXPTIME-complete for LTL [134] and EXPTIME ⊂ 2EXPTIME.

Theorem 4.31 COAD is complete for EXPTIME. ¥

The algorithm presented above is computationally expensive, yet optimal.
However, it suffers from another problem: it yields design models, as automata,
that are exponentially larger than the specification. This is a hindrance for
readability and a possible flaw of our algorithm. A synthesis algorithm yielding
always small implementations would be much better. Nevertheless, this is hope-
less: strategies realizing ULSC specifications need exponentially large memory.
Therefore, our algorithm is optimal, in the sense that every algorithm solving
COAD will necessarily build exponentially large implementations. We show
this in the following theorem.

Theorem 4.32 (Memory Lower-Bound) There is a family of LSC speci-
fication, namely (S, (CopyCatn)n>0) such that every intra-agent specification
realizing CopyCatn has a memory of size 2Ω(n logn). ¥

This result is similar to the fact that LSC specifications are exponentially
more succinct than Büchi automata. This similarity is highlighted by the fact
that we use CopyCatn to prove it.

4.5.2 Constrained and Distributed Synthesis

The centralized agent design problem (COAD) presented in Sec.4.5.1 is lacking
some features, which lessens its applicability

1. It would be interesting to come up with an implementation which sat-
isfies the specification and guarantees that additional requirements will
be met as well. This is especially interesting if the specification is too
abstract or too loosely defined to ensure the requirements, but the ana-
lyst thinks that it is possible to refine it in a way that would fulfill the
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requirements. The problem of deciding whether there is such a particu-
lar implementation, which we call constrained centralized agent design is
2EXPTIME-complete, when we consider LTL as a language for expressing
requirements.

2. It does not take agent interfaces into account, because it assumes that the
“perfect information” hypothesis holds. Hence, agents are not obliged to
consider only events occurring at their interfaces. It seems necessary to
extend the centralized version of the problem to take this into account.
This variant is called distributed agent design. As for LTL, this problem
is undecidable [135].

Problem 4.33 (LTL-Cons-COAD) The problem of LTL-Constrained Cen-
tralized Open Agent Design (LTL-Cons-COAD) is, given an inter-agent spec-
ification (S,S) and an LTL formula ϕ, to decide whether there is an intra-agent
specification (S, fSys) such that

1. (S, fSys) is a correct implementation of (S,S);

2. Out(fSys) |= ϕ.

¥

Theorem 4.34 LTL-Cons-COAD is complete for 2EXPTIME ¥

Proof 4.34

For membership, translate LSCs to DBA, via the tableau procedure. Then,
combine these automata with the automata built from the LTL formula in [134].
Hardness comes from the fact that this problem generalizes LTL realizability,
which is 2EXPTIME complete [134]. ¤

The problem of distributed agent design is to build a strategy for every
agent in a society such that

1. agents respect their interfaces, i.e. agent a senses events from Σra only.

2. the society is well-behaving, with respect to an LSC specification.

Surprisingly, this problem is undecidable. Furthermore, the proof uses LSCs
without any fancy constructs: no loops, no alternatives, no conditions, . . . .

Problem 4.35 (DOAD) The Distributed Open Agents Design (DOAD) prob-
lem is defined as: “Given an inter-agent specification (S,S), is there an intra-
agent specification (S, fSys) such that

1. (S, fSys) is a correct implementation of (S,S)

2. fSys is the composition of (fa)a∈Sys, with, for every fa
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(a) fa : Σ
∗ → (Σsa);

(b) ∀w,w′ ∈ Σ∗ : w|Σa = w′|Σa =⇒ fa(w) = fa(w
′), i.e. if w and w′ are

the same, from a’s point of view, then a shall behave the same way
after w or w′;

¥

Theorem 4.36 DOAD is undecidable. ¥

Proof 4.36

We reduce Post’s Correspondence Problem (PCP) to the problem of deciding
whether the specification is not implementable, following [160].

We first recall the definition of PCP. A PCP instance is a list of pairs of
words
(w1, u1) , . . . , (wn, un), such that, for all i, wi 6= ui and wi, ui ∈ Θ∗ (for some
finite alphabet Θ). A solution to a PCP instance is a finite sequence of in-
dexes i1 . . . im (m ≥ 1 and 1 ≤ ij ≤ n, for all j) such that wi1wi2 . . . wim =
ui1ui2 . . . uim . The problem of telling whether any PCP instance admits a solu-
tion or not is undecidable.

Let us fix an arbitrary PCP instance. We show how to reduce the problem
of determining whether this PCP instance admits a solution to DOAD. The
alphabet of our LSC specification is Θ ∪ {k1, . . . , kn} ∪ {$} ∪ {0, 1} ∪ {A0, A1},
plus an arbitrary finite number of events that can be exchanged between system
agents, say {s0, . . . , sq}. The system is made of two agents: a1 and a2. The
first agent may observe Θ∪{$}, whereas the second can observe {k1, . . . , km, $}.
All these events, but {A0, A1} and the additional system events {s0, . . . sk}
are controlled by the environment. A play proceeds as follows. First, the
environment picks either 0 or 1. The former means that the environment chooses
to read words in the first component of the pairs of words (viz. the wi’s), the
latter means that it will read ui’s. Then, the environment must stick to that
choice until the end of the play. Namely, the environment chooses a particular
word in the list (say, wi or ui, depending on the “column” chosen) and indicates
the index of this word to the system, by performing ki. The environment must
then enumerate the letters in wi, which are thus published to agent a1. The
game goes on until the environment performs $. At this point, the system is
required to output A0 or A1, depending on what index (0 or 1) the environment
had chosen in the first place.

We claim that the PCP instance has a solution iff this specification is not
implementable. Assume that PCP has a solution i1 . . . im but there is a winning
strategy for the system. Then, upon 0i1w1 . . . imwm$, the system answers with
0. Nevertheless, the strategy of the system shall also answer 0 to 1i1ui . . . imum$,
because the projection of the two words on agent’s alphabets are the same.
Therefore, there is no winning strategy.

If PCP has no solution, then, the two system agents can get together and
compare the submitted run. Agent a2 sends the sequence of indexes that it has
been presented with to a1 (using some protocol on which they agreed, based
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on {s0, . . . , sp}). This agent can then build wi1 . . . wim and compare it with the
word that he has received from the environment. Since PCP has no solution,
either they are the same and a1 shall answer 0 or the two words differ and a1
replies with 1. ¤

4.5.3 Merciful Synthesis

Streett pairs have been used to encode games with assume/guarantee principle.
We used Streett pairs (E,F ) to describe, in the E part, the liveness assumptions
that the environment had to fulfill, and, in the F part, the liveness properties
the system had to ensure once they have been met.

This approach is common in software engineering, where components are
never developed nor deployed in isolation. Rather, some hypothesis about their
environment are needed. In the transformational paradigm they are usually
given as preconditions. In the reactive world, they must be stated as assump-
tions on the behaviour of the environment.

However, this behaviour is not only defined by the environment, but emerges
as a result of the interaction between the environment and the system. It is
thus possible that the environment behaviour does not meet the assumptions,
not because of an environment’s mistake, but because the system does not allow
him to do so!

As an example, consider an Automated Teller Machine (ATM). When a
transaction is finished, the system hands the card back to its owner, which
has to take it (assumption) and then, the system will be ready for serving a
new customer (guarantee). Now, suppose that the system does not let the
card owner take his card. Everytime the customer tries to reach the card, the
machine swallows it back and then hands it back to him. This frustrating
system is correct, as it invalidates the hypothesis about the environment: the
customer never retrieves his card.

In this chapter, we introduce the notion of mercifulness, which rules out such
problematic specifications and solutions. This property is not a linear property
anymore; it is inherently branching and cooperative.

Not every winning strategy is good. Remember that the winning condition
is of the form of a Streett condition (E,F ). Thus, a run which visits neither E
nor F infinitely often is winning. However, intuitively, it seems that a strategy
preferring such runs over runs visiting both E and F infinitely often, should be
ruled out. Indeed, we do not want the system to use such a strategy when a
more “merciful” solution exists.

In this section, we consider a game played on a game graphG = 〈V, V0,∆,Ω〉,
with

• V1
4
= V \ V0;

• ∆ ⊆ (V0×V1)∪ (V1×V0) and ∀v ∈ V : ∃v′′ ∈ V : ∆(v, v′), i.e. we assume
that the initial game graph is bipartite and that there is no dead end;



128 Analysis Problems

• Ω : Streett((E,F ))

Requiring game graphs to be strictly alternating between players is done without
loss of generality. Stutter steps can always be added to meet this requirement.

By ΠG(v), we will denote the set of all infinite paths v1 · . . . vn · . . . in G that
are rooted in v.

Definition 4.37 (ΠG(v))

ΠG(v) = {v0v1 . . . |v0 = v ∧ ∀i : i ≥ 1 : ∃e ∈ Σ : (vi−1, e, vi) ∈ ∆}

¥

Definition 4.38 (Merciful strategy) A strategy f is said to be merciful iff,
for every prefix w ∈ V +, if there is some w′ ∈ V ω such that w · w′ ∈ Out(f),
then

∃w′ ∈ ΠG(last(w)) : inf(w · w
′) ∩ E 6= ∅

⇐⇒
∃w′ ∈ ΠG(last(w)) : inf(w · w

′) ∩ E 6= ∅ ∧ w · w′ ∈ Out(f)

¥

This definition can be expressed in the so-called Game Logic of [9]. The
model-checking problem for this logic is decidable and relies on iterated ap-
plications of the module-checking procedure of [104]. However, this procedure
requires doubly-exponential time. Here, we exhibit a direct solution to the prob-
lem of solving merciful games which causes only a polynomial blow-up in the
size of the game graph. For the particular problem of one Streett pair merciful
games, the solution is polynomial, as the number of colours of the underlying
game graph is fixed to four.

A state is mercifully winning if there is a merciful winning strategy starting
from that state. The merciful winning region is the set of states from which
player 0 can use a merciful strategy and win, with respect to the Streett condi-
tion. We will say that we solve a merciful game if

1. We decide membership of states to merciful winning regions,

2. We construct a merciful strategy winning from each of these states.

By definition, the merciful winning region is included in the winning region.
One could wonder whether the two regions do not coincide. This would solve
trivially the first part of the problem. As shown in fig. 4.9, winning regions and
merciful winning regions do not coincide. Winning states (for player 0) are gray
states. However, there are no merciful winning vertices in this game: as soon
as player 0 chooses to move right and let his opponent meet an E state, player
1 can force the game to enter the rightmost vertex, and win. Any winning
strategy is thus merciless.
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F E E

Figure 4.9: Every winning state is not merciful

E F

Figure 4.10: Mercifulness requires memory

Furthermore, merciful strategies are more complex than simple winning
strategies. In order to solve mercifulness games, some memory is needed. Con-
sider the game of fig. 4.10. Player 0 needs some memory, to remember to
alternate between E and F states. Otherwise, his strategy would be either
merciful and losing or merciless and winning. Using a graph-based technique to
solve these games allow us to quantify precisely the amount of memory needed
to be merciful: three bits.

Given a game graph G, we define an extended game graph G′. It is a parity
game graph, “simulating”G. Basically, we aim at obtaining the following result
about G′, for every G′ vertex x: x ∈W ′

0 iff, given some appropriate translation s
of x to G, s(x) is in the merciful winning region of G. Moreover, the translation
shall apply to the winning strategy on G′ as well, and deliver a merciful winning
strategy on G.

Roughly, we now have three games, instead of one. They are schematically
presented in fig. 4.11.

the play game: this is the usual game. Player 0 tries to fulfill the Streett
condition. However, at any point, he can claim that the state is vacuously
merciful: there is no path starting at the current vertex and visiting E
infinitely often. This claim is made by choosing to play the lost game
onwards.

the lost game: player 1 plays alone and wins iff he can find a path running
infinitely often through an E state.

the show game is entered by player 1. The goal for player 0 is to find a path,
starting at the current vertex which visits infinitely often both E and F .
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Thus, player 0 will play twice in a row: first, he plays on behalf of player
1 and then, plays his own move. However, player 1 can then decide to
switch back to the original game. This accounts for the fact that merciful
winning strategies must also be winning in the original game.

lost

play
show

Figure 4.11: Schematic view of mercifulness reduction

Definition 4.39 (Extended game graph for mercifulness)

G′ = 〈V ′, V ′0 ,∆
′,Ω′〉,

where

• V ′ = (V × {play, show} × {0, 1}) ∪ (V × {lost})

• V ′0 = V0 × {play} × {0, 1} ∪ (V × {show} × {0, 1})

• For all q, q′ ∈ V ′, ∆′(q, q′) if one of the following statements holds

1. q = (u, lost), q′ = (v, lost) and ∆(u, v);

2. q = (u, play, i), q′ = (u, lost), for u ∈ V0;

3. q = (u, play, i), u ∈ V0, q
′ = (v, play, κ(i, u)) and ∆(u, v);

4. q = (u, show, i), u ∈ V0, q
′ = (v, play, κ(i, u)) and ∆(u, v);

5. q = (u, play, i), u ∈ V1, q
′ = (v, play, κ(i, u)) and ∆(u, v);

6. q = (u, play, i), u ∈ V1, q
′ = (u, show, i).

7. q = (u, show, i), u ∈ V1, q
′ = (v, show, κ(i, u)) and ∆(u, v).

where

κ(i, u) =







0 if u ∈ F ∧ i = 1
1 if u ∈ E ∧ i = 0
i otherwise

• Ω : V ′ → [4] is defined as follows
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1.

Ω((u, lost)) =

{
3 if u ∈ E
2 otherwise

2.

Ω((u, x, 0)) =

{
2 if x = play ∧ u ∈ V0
1 otherwise

3.

Ω((u, x, 1)) =







4 if u ∈ F
3 if u ∈ E \ F
2 if x = play ∧ u ∈ V0 \ (E ∪ F )
1 otherwise

¥

Lemma 4.40 For all path w in G′, w is accepted iff only one of these conditions
holds:

1. From some point on, this path remains in“lost”and no state in E is visited
infinitely often.

2. This path visits infinitely many states in V0×{play}×{0, 1} and satisfies
the Streett condition (E,F ).

3. It visits only finitely many times V0×{play}× {0, 1}, but visits infinitely
many times V0 × {show} × {0, 1} and goes infinitely often through both
E and F .

¥

Proof 4.40

These conditions are clearly mutually exclusive. To see this, note that a
path hitting a “lost” state cannot go back to a “play” or “show”.

“If” direction

We show that a path w fulfilling none of the conditions is rejected. By a simple
boolean manipulation, w fulfills none of the conditions above iff it fulfills one
of the following:

1. w remains in “lost” and inf(w)∩E 6= ∅: Then, the maximal color is 3 and
w is rejected in G′.

2. inf(w) ∩ V0 × {play} × {0, 1} 6= ∅, w visits infinitely often E and finitely
often F . Then, w remains stuck with its last component at 1. Since it
visits infinitely often E, the maximal color is 3 and w is rejected.

3. inf(w) ∩ V0 × {play} × {0, 1} = ∅ but inf(w) ∩ V0 × {show} × {0, 1} 6= ∅
and it goes finitely often either through F or E. Then, w remains stuck
with its last component either at 0 or 1, by definition of κ.
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• If it remains at 0, because inf(w) ∩ V0 × {play} × {0, 1} = ∅, the
maximal color is 1.

• If it remains at 1, then F occurs only finitely often and the maximal
color is either 3 (E occurs infinitely often) or 1 (E does not occur
infinitely often but inf(w) ∩ V0 × {play} × {0, 1} = ∅).

“Only if” direction

A path behaving as described by condition 1 is accepted, since the highest
colour appearing infinitely many times is 2.

A path behaving as prescribed by condition 2 will also be accepted. To see
this, consider these two cases: either F is seen infinitely often or E only occurs
finitely often.

F inf. often: Then, the play visits infinitely many states the last component
of which is 0. In that case, either it does not visit infinitely often 1
components, or it does. In the former case, the maximal color is 2, because
inf. many states in V0×{play}×{0, 1} are met. In the latter, the maximal
color is 4 (because F inf. often).

E fin. often In that case, at some point, the run remains within 0 and the
maximal color is 2. So, the run is accepted.

Finally, condition 3 imposes that infinitely many visits to E and F are
performed. Clearly, in that case, the run alternates between 0 and 1 states, and
the maximal color is 4.

¤

Without loss of generality, we assume that there is no “lost” states in W ′
0.

If there are such states, then, remove them from G, because they are trivially
merciful, i.e. on all paths E is seen only finitely often. So, assume from now on
that, from every state u, there is a path going infinitely often through E.

Theorem 4.41 For all states u in G, u is mercifully winning for player 0 iff
(u, play, 0) is winning for player 0 on G′. ¥

Proof 4.41

“If” direction

Assume that we are given a mercifully winning strategy σ. We build a winning
strategy on G′. For the sake of simplicity, we have assumed that every prefix
in Out(σ) can be extended to some run visiting E infinitely often above.

For every w ∈ V ∗, such that ∃w′ ∈ Out(σ) : w v w′, we let γw ∈ V ω be
such that

1. w · γw ∈ Out(σ)
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2. inf(w · γw) ∩ E 6= ∅

3. ∀w′ ∈ V ∗ : (w v w′ ∧ w′ v w · γw) =⇒ w · γw′ = w · γw

It is easy to show that a γw always exists, for every σ-prefix w , as we
assumed that every σ-prefix could be extended to some well-behaved path.
Hence, this prefix can also be extended to some well-behaved path in σ, for σ
is merciful.

Note now that every path w′ ∈ (V ′)ω can be turned into a path w ∈ V ω,
by removing the “stuttering” moves (when player 1 asks for a show move) and
projecting it on the first component.

For any w′ ∈ (V ′)+, letting w ∈ V + be w′ transformed as explained above,

• If last(w′) = (u, x, i) with u ∈ V0, then σ
′(w′) = (σ(w), play, κ(u, i))

• If last(w′) = (u, show, i) with u ∈ V1, then σ
′(w′) = (first(γw), show, κ(u, i)),

To show that this strategy is winning, we prove that every w′ ∈ Out(σ′)
is winning. We refer to lemma 4.40 and perform a case split, for an arbitrary
w′ ∈ Out(σ′):

1. There are infinitely many “lost” states. This case cannot occur (we re-
moved vacuously merciful states).

2. There are infinitely many V0 × {play} × {0, 1} states occurring. Then,
since we follow σ in the first component and σ is winning, the outcome
fulfills the Streett condition, which results in w′ being accepted.

3. At some point onwards, only“show”states occur in the second component,
when the first part is at V0. Then, from this point on, the first component
follows a certain γw, by definition of σ′, where w is w′ operating on G.
Since γw sees infinitely many E and w is winning, w′ also visits infinitely
many F , in its first component, which implies that w′ is accepted.

“Only if” direction

Given a memoryless strategy for player 0 σ′ on G′, we show how to construct a
winning merciful strategy with finite memoryM = {play, show}×{0, 1}, acting
on G.

The memory update function τ : ∆ ×M → M is responsible for updating
the memory, on every transition followed in G. This memory update function
is defined according to the given strategy σ′.

• If u ∈ V0, τ((u, v), (x, i)) = (play, κ(u, i)).

• If u ∈ V1,

τ((u, v), (x, i)) =

{
(play, κ(u, i)) if (v, show, κ(u, i)) 6= σ′((u, show, i))
(show, κ(u, i)) if (v, show, κ(u, i)) = σ′((u, show, i))
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The game with memory is played on Gτ = 〈V ×M,V0 ×M,∆τ ,Ωτ 〉, where

• ∆τ ((u,m), (v,m′)) iff ∆(u, v) and m′ = τ((u, v),m).

• Ωτ is Streett((E ×M,F ×M)).

We let σ(u, (x, i)) = (v, τ((u, v), (x, i))), with σ′(u, x, i) = (v, x′, i′).

Clearly, if σ is mercifully winning on Gτ , one obtains that σ is an automaton
strategy, also winning and merciful on G. This part is easy, simply show that
G is a game reduction of Gτ and adapt the proof that game reduction preserves
winning strategies, to merciful winning strategies [159].

Now, we show that σ is winning on Gτ . In order to do so, we transfer every
σ-play to a σ′-play, as follows:

if u ∈ V0, f((u, (play, i)), (v, (play, i′))) = (v, play, i′)
if u ∈ V1, f((u, (play, i)), (v, (play, i′))) = (v, play, i′)
if u ∈ V1, f((u, (play, i)), (v, (show, i′))) = (u, show, i) · (v, show, i′)

Given a Gτ -play w = u1u2u3u4 . . ., we let

f(w) = (u1, play, 0) · f(u1, u2)f(u2, u3) . . . f(ui−1, ui)f(ui, ui+1) . . .

By inspection of these rules, one can show that

1. f is injective;

2. for every w ∈ Out(σ), f(w) ∈ Out(σ′). (At every V ′0 positions, w follows
σ′, because, when the game moves to a (v, (play, i)) position, σ chooses
the same move as σ′, whereas, when the game moves to a (v, (show, i))
position, then, by definition of τ , (v, show, i) = σ′(u, show, i));

3. f is invertible if we restrict the range to the set of all runs w such that
“play” never appears on V0 positions. (A run w in G′ that always follows
“show” corresponds directly to the same run on Gτ , because, at V1 posi-
tions, the moves obey σ, which ensures that the memory is updated to
“show” by τ .)

We want to prove the following: Assuming that σ′ is a winning strategy on
G′, then σ is winning and merciful (on Gτ ).

σ is winning on Gτ : assume that σ is losing. Then, there is some path w ∈
Out(σ) such that inf(w) ∩ (E × M) 6= ∅ but inf(w) ∩ (F × M) = ∅.
Recall that f(w) ∈ Out(σ′). Clearly, along f(w), infinitely many E states
occur while only finitely many F states are visited. Since no “lost” states
are ever met, and f(w) is winning, then, by lemma 4.40, the Streett
condition should be fulfilled. We reach a contradiction (σ′ is winning but
w ∈ Out(σ′) is not accepted) and conclude that σ is winning.
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σ is merciful on Gτ : We take w such that w is a σ-prefix. Then, f(w) is
a σ′-prefix. Assume, without loss of generality, that last(f(w)) ∈ V ′1 .
Note that there is a γshow ∈ (V ′)ω such that, at every V0 position, the
second component indicates “show” and f(w) ·γshow ∈ Out(σ

′). Since σ′ is
winning, f(w) ·γshow is accepted, which, in turn, implies that E and F are
encountered infinitely many times in the first component (lemma 4.40).
Furthermore, by the form of γshow, f is invertible on it, delivering a σ-play
f−1(γshow) such that w · f−1(γshow) visits infinitely often E ×M . Hence,
we have shown that, from every σ-prefix w, it was possible to extend it
into a well-behaved prefix, within σ, i.e. σ was merciful.

¤

4.5.4 Related Work

There has been much work in synthesis of concurrent reactive systems. The ini-
tial question is due to Church [37] and has been solved by Büchi and Landweber
in [29]. Pnueli and Rosner describe how to synthesize reactive modules from
LTL specifications, either in a synchronous or asynchronous setting [140]. They
reduce the realizability problem for LTL to the satisfiability problem for CTL∗.
Basically, the set of variables occurring in an LTL formula is partitioned be-
tween environment variables (say, x) and system variables (say, y). The full
computation tree is a tree such that, for every x value, each node has a succes-
sor “corresponding” to x. Formally, if X is the domain of x, the full tree on X
is X∗. The problem amounts to finding such a tree whose nodes are labeled by
y values, such that every path in the tree fulfills the given LTL formula.

This work is extended to cope with partial information, generalized par-
allelism and real-time systems by [184]. The approach is trace-based and the
realizability problem is exactly given as here: find a strategy for the program
such that whatever strategy the environment chooses, the specification is met.
Again, Rabin tree automata are at the heart of the approach for the finite-
state case, together with Safra’s determinization procedure [145]. This makes
the procedures hard to implement. Harding et al. propose an algorithm for
solving LTL games that avoids using determinization [68]. Their method is not
complete. They characterize the conditions under which completeness is guar-
anteed and argue that the counter-examples to this condition are rare enough
to justify the practicability of their approach. Their algorithm can be imple-
mented symbolically using Ordered Binary Decision Diagrams (OBDDs) [28].
We are currently working on the implementation and evaluation of a symbolic
solution to LSCs centralized realizability, basing our work on the framework
of Wallmeier et al., who provide a symbolic implementation of several game
solving algorithms [173], and Harel et al. who encode the semantics of LSCs as
a boolean relation in order to perform “smart play-out” [69].

We have shown how to decide the realizability property for LSCs, using
existing game theoretical algorithms and automata-theoretic techniques. Our
solution, for the particular case of LSCs, is more interesting than first trans-
lating LSCs to LTL [23] and then using the procedure of [134] to check its
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realizability, because it is more direct. In particular, we have shown that our
solution is simply exponential. If we first translate LSCs to LTL, we will have to
build an acyclic automaton, which already contains exponentially more states
than the LSC. Then, this automaton will be traversed to construct an LTL
formula [23]. Here, we build exactly the same automaton but directly use it to
solve the problem in which we are interested.

The so-called “supervisory control synthesis” problem for Discrete Event
Systems (DES) focuses on the controllability of finite languages, generated by
a plant [138]. Basically, a plant generates some prefix-closed language L, a
subset of which is marked, Lm. We are given some language K ⊆ Lm. Then,
we would like to know whether we can build a strategy, disabling some transi-
tions of the plant, such that the marked “closed-loop” behavior of the plant is
K. The computational complexity of this problem makes it difficult to apply
practically, hence horizontal and vertical decomposition have been devised as
means to make solutions more tractable. In [152], a survey of this area is pre-
sented. The problem of DES supervisory control has been extended to real-time
[108], branching-time specifications [15], infinite behaviors [154, 155] and par-
tial information/decentralized supervision for which results are mostly negative
[160, 106, 137]. In spirit, our solution is not too different from the one presented
in [154, 155]. The basic difference between our work and theirs is that we do
not require the “plant” and the “legal language” to be explicitly defined. On the
contrary, they are described in a succinct and intuitive way, using LSCs. Actu-
ally, we could have reduced our problem to a supervisory control problem for
DES, but we chose to follow a reduction to game solving problems, with which
we are more familiar and, we believe, are easier for the reader to grasp. The
two areas are closely related, differing mostly in terms of vocabulary. Here, we
deal with pure liveness assumptions. These assumptions can be encoded in the
plant as in [154]. Because of the restricted form of our acceptance condition,
we have an efficient algorithm (wrt the size of the plant). Another approach
to obtain efficient algorithms, as in [153], is to add a strong fairness assump-
tion, which makes the synthesis of controllers for Rabin automata computable
in polynomial time, modulo a modification of the synthesis routine.

Our solution synthesizes a global strategy, for all agents of the reactive
systems. Nevertheless, it seems that practically, synthesizing a distributed im-
plementation would be of greater interest. It turns out that the realizability
problem over fixed architectures is undecidable for almost every interesting ar-
chitecture [140]. Rosner presented a type of architecture for which the problem
becomes decidable, which he calls hierarchical architectures. In this architec-
ture, one agent receives all inputs and the information flow between agents in-
duces a tree, hence the term “hierarchical”. Observing that decidability in this
case comes from the fact that the “root” agent can always simulate the behavior
of every other agent, Kupferman and Vardi came with other architectures for
which realizability is also decidable [103]. These architectures simply require
the agents to be ordered either linearly or in cycle. More generally, Madhusud-
han and Thiagarajan present three properties making the distributed controller
synthesis problem decidable [112]. These restrictions are: trace-closure of spec-
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ification, strategy must be com-rigid and clocked. As soon as one of them is
dropped, the problem becomes undecidable. This result generalizes their work
on the synthesis of distributed controllers from local specifications, which are, by
definition, trace-closed [111]. LSC specifications are typical global-specifications
and are not trace-closed. Gastin et al. study the problem of solving distributed
games and thus, synthesizing distributed controllers for asynchronous systems
[57]. Again, the conditions set for decidability do not apply here. In [160],
Tripakis studies the problem of distributed observability, which amounts to,
given n alphabets A1, . . . An (Ai ⊆ Σ, for i = 1, . . . , n) and a regular language
R ⊆ Σ∗ building a function o : A∗1× . . . A

∗
n → {0, 1} such that for every w ∈ Σ∗,

w ∈ R ⇐⇒ o(w|A1 , . . . , w|An) = 1. This problem is shown to be undecidable.
We adapted Tripakis’ proof to the case of LSCs, in the proof of Th. 4.36.

Facing this undecidability result, one could tackle the“distribution”problem
by first synthesizing a global strategy and then trying to distribute it over the
various agents [118, 52]. This technique is sound and not complete, in the
sense that there might exist some distributed implementation even though the
centralized solution is not distributable.

In the realm of scenarios, previous research on “synthesis” followed three
directions: induction, compilation and controller synthesis. Every approach
finds a justification, depending on the purpose of the scenarios and the phase
of the software life cycle in which it is used [13, 174].

Induction: Typically, scenarios are considered as a partial view on the behav-
ior of the future system. A set of scenarios is thus a finite set of example
computations. The problem is to induce, from these examples, a uni-
versal rule describing every acceptable behavior of the system. The user
has some (regular) set of behaviors W in mind and gives a finite set of
examples E ⊆W . We are asked to build an automaton A recognizingW .
[99] have used an algorithm, due to Biermann and Krishnaswamy [20],
which computes the “best” deterministic AE . At the limit, the language
of the synthesized automata converges to W . Practically, this automaton
needs to be checked, in order to ensure that it does not contain inap-
propriate behaviors. It has been integrated to the CASE tool FUJABA
(From UML to Java and Back Again) and validated on a case study from
manufacturing industry [45].

Minimal Adequate Synthesizer (MAS) is an interactive approach to ma-
chine learning from synthesizer which is based on the Minimal Adequate
Teacher paradigm. MAS finds missing scenarios in the set of scenarios
and asks its operator whether such scenarios should be integrated in the
specification or not. It has been implemented by Koskimies and Systä
[115] and validated on the “Paderborn New-Rail Technology”Shuttle case
study [100].

Hsia et al. use example scenarios, given as an execution tree, to build
a grammar and analyze the specification, wrt consistency criteria, using
automata analysis techniques [87] . By hand, they produce, from such
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a set of examples, a prototype of the future system. This prototype can
then be used to validate the specification with the end-user.

Compilation: Scenarios can also be seen as a complete description of the fu-
ture system. Thus, the desired behavior W equals the given traces E.
This is especially useful if the system to be built is closed. Then, state
machines must be built from the various scenarios, projecting them onto
every instance [101, 177, 162, 6]. The main problem that arises then is
that there might be some discrepancies between the global view of the
behavior, induced by the scenario and the local view that every instance
has of this behavior. When recomposing the full system from the indi-
vidual state machines, yielding a set of behaviors C, it might be that
C ⊃W . These additional scenarios, C \W , are called “implied scenarios”
[6]. Techniques have been developed to detect such implied scenarios and
report on them [163, 6]. In [55], the authors give syntactical restrictions,
namely causality, which ensures that MSCs, with control flow constructs,
such as iteration or choice, can be distributed, i.e. that the liveness/safety
constraints imposed by lifelines match the global constraint stated by the
considered MSC.

One result, which is in spirit close to ours, is due to Desharnais et al.
[44], except that their setting is state-oriented, whereas most researchers
on scenarios, including us, focused on an event-based setting. In [44],
the authors present a way to represent scenarios as a relation between
states. This presentation can be graphical, thanks to relational transition
systems. They make a distinction between environment moves and system
moves, allowing moves “within” the environment and “within” the system,
as we do it. A scenario is assumed to describe possible environment
inputs and all legal system reactions. The authors propose an operator for
integrating scenarios, based on the “demonic meet” operator. Like in our
work, the integration of two scenarios relative to the same input obliges
the system to answer as specified by both scenarios.

Controller synthesis: this approach corresponds to what we have proposed
here. One uses an expressive scenario-based specification language and
then tries to synthesize a program satisfying it. LSC is so far the only
candidate language for this approach, thanks to its higher expressiveness.

The main work in this field is due to Harel and Kugler [72]. They deal
with very simple LSCs: precharts contain only one environment mes-
sage (∈ Ain) and main charts contain only system messages (∈ Aout).
They choose the super-step approach of [77]: the environment provides
one input and the system answers with a sequence of output messages:
(AinA

∗
out)

ω. They show that realizability is equivalent to a consistency
condition. This condition asserts the existence of a nonempty regular
language L ⊆ (AinA

∗
out)

∗ such that

1. L contains one execution for every existential chart,

2. L satisfies all universal charts,
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3. for every w ∈ L and every a ∈ Ain, there is some r ∈ A∗out such that
war ∈ L.

4. for every xyz ∈ L such that y ∈ Ain, x ∈ L.

They build a minimal deterministic automaton recognizing the intersec-
tion of universal LSCs and progressively prune it to remove “bad states”,
i.e. states that do not satisfy condition (3). The resulting automaton
can then be transformed to some strategy automaton. Our solution is
an extension of their work. Firstly, we tackle the problem for more gen-
eral LSCs, allowing choice constructs, complex precharts and environment
messages in the main chart. The latter extension enabled us to use LSCs
in assume/guarantee development of reactive systems. Secondly, instead
of relying on an ad-hoc technique, we proposed a reduction to parity
games, for which a range of results and algorithms is available.

They also propose three strategies to distribute the synthesized strategy
among the various agents:

1. build a central controller, driving the execution of the individual
agents;

2. duplicate the central controller in every agent;

3. duplicate the central controller and remove states that are not rele-
vant to the object in question.

Harel and Marelly have developed a technique called“play-out”for executing
LSC specifications [75]. In this approach, the interpreter (called play-engine)
follows a built-in strategy: it selects (in a predefined way) a required event
and performs it. Of course, this strategy can lead to deadlocks. To solve this
problem, Harel et al. have developed a“smart play-out”algorithm [69]: they use
model-checking to compute a “non-blocking” strategy. This strategy proposes
a sequence of events which leads to a state in which there are no more required
events, for the system, if such a sequence exists. However, even though this
approach ensures that a successful “super-step” s starting at state q will be
found if it exists, it might be that, for some environment input, say i, there is

no super-step starting at state q′ with q
s·i
−→ q′. This shows an advantage of our

method, which ensures that such situations will be avoided, at the price of a
higher complexity.

In our work, we verify that a specification is consistent, by performing a
full search on the state space, while Harel and Marelly use play-out to validate
a specification, by letting a user execute it. Our work could be integrated
with theirs: if the specification is inconsistent, our algorithm builds a counter-
strategy, i.e. a strategy for the environment, making the system fail. This
strategy could be given to the play-out engine to illustrate the flaws of the LSC
specification.
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4.5.5 Summary

In this section, we have presented several versions of the synthesis problem.
Centralized synthesis is the simplest, but it is already intractable, as it is an
EXPTIME-complete problem. Constrained realizability is a possible flavour of
this problem which gets 2EXPTIME-complete. Finally, we presented the most
general, industrially relevant, problem of distributed synthesis and we proved
that it is undecidable, just as full linear temporal logic. In the next section,
we introduce another version of centralized synthesis, which we call “synthesis
under mercifulness assumption”. It introduces a qualitative criterion on the
synthesized implementation. We exhibit an algorithm for solving merciful games
which runs in time polynomial in the size of the game graph.

4.6 Incomplete Approaches

In this section, we investigate more “lightweight” approaches to the verification
and synthesis problems. The former class of problems is intractable, because of
its high complexity. There are two sources of complexity in verification:

• the formula or the automaton generated from a ULSC needs to be large.

• the intra-agent specification is made of many small automata. However,
computing the product of these automata is an expensive operation, giving
rise to the well-known state explosion problem. This is one of the main
problems in verification and there are other solutions, in the spirit of ours,
trying to address it [49].

We will propose two small techniques that can help in tackling these problems.
They must be combined with other, more efficient, techniques for fighting state-
space explosion such as partial order reduction [62, 182], symbolic approaches
[28] or bit-state hashing [183].

The latter problem, namely distributed synthesis, is undecidable, as we have
shown in the previous section. We will present a sound but incomplete technique
for synthesizing distributed implementations. Synthesized implementations are
guaranteed to be correct, but our algorithm may fail to find an implementation,
even though it exists.

4.6.1 Verification

First, we suggest to use the techniques for minimizing the size of the formulae
generated from ULSCs devised in [23, 102]. Typically, a ULSC can be split into
several small formulae, in which we only need to check the proper ordering of
pairs of events, and not all linearizations (as in sec. 4.4).

In order to address the state explosion problem, we suggest to ignore all
components that do not participate in the verified ULSC. Suppose that only
agents i through k participate in S. Hence, it is sufficient to check that the
ULSC is correct, wrt the subsystem composed of agents i through k only. Since
we demonstrated that I/O automata composition is a refinement, proving that
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the ULSC is satisfied by this reduced system is enough to show that the global
system is correct, too:

L





n∏

j=1

Aj



 ⊆ L





k∏

j=i

Aj



 ⊆ L(S).

Furthermore, when the subsystem can satisfy the LSC on its own, it indicates
that the design achieves low coupling: the fulfillment of the property does not
depend on components which are not directly involved in it.

However, if model checking fails, it might be a false negative: the counter-
example could have been avoided, had we included more agents in the system,
which one can try.

4.6.2 Synthesis

Our lightweight algorithm is illustrated in fig. 4.12. The automaton at the
bottom of this figure contains dotted-line transitions. They represent “default
transitions”, which are taken when some input event occurs that does not la-
bel any outgoing transition from the current state. The various steps of our
lightweight algorithm are detailed in the rest of this section.

4.6.2.1 (1) Agent Selection

As opposed to the previous algorithm, the lightweight algorithm focuses on a
single agent at a time. It does not try to find a strategy for all participants in
one run. For the rest of this section, let a be the selected agent.

4.6.2.2 (2) Sanity check

All scenarios in which a participates actively are checked to ensure that their
causal order matches their visual order. Two locations are causally related
if they are sending locations on the same lifeline or if they are the sending
and receiving locations of the same event. This is done in polynomial time
[10]. Fig.4.13 gives an example of a ULSC which does not fulfill this condition.
Clearly, it is not simply distributable for agent obj3, because d may only be
sent after c has occurred, which obj3 cannot see.

If this sanity check fails, the algorithm stops and explains why specification
is not distributable.

4.6.2.3 (3) Scenario Projection

All scenarios are projected onto the lifeline of agent a (e.g., the upper part
of fig.4.12 illustrates an attempt to synthesize an implementation for c[1]).
All ULSCs in which a is not required to perform any event are discarded. For
instance, the scenario of fig 3.23 would be discarded because c[1] does not take
part in it. In summary, Step 3 produces a set of non-empty ULSCs, reduced to
the lifeline of a, one for each ULSC in which at least one event controlled by a
is restricted.
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CommMgr :: cm

get_new

status_up

Client :: c[1]Database :: db

get_new

yes

yes

,no

no

ALT

cm ! get_new ? c[1] c[1] ! get_new ? db

db ! yes ? c[1]

db ! no ? c[1]

c[1]! yes ? cm

c[1]! no ? cm

cm ! get_new ? c[1]

cm ! get_new ? c[1]

cm ! get_new ? c[1]
cm ! get_new ? c[1]

(1) Agent Selection

(3) Scenario projection
(4) Construction of most
representative SLI

(5) Liveness analysis

(6) Refinement search

(2) Sanity check

Figure 4.12: Standard Local Implementation (SLI) for c[1]

Ob::obj1 Ob::obj2 Ob::obj3

a

b
c

d

Figure 4.13: Mismatch between causal order and visual order



4.6 Incomplete Approaches 143

4.6.2.4 (4) Construction of Most Representative SLI

The I/O automaton built is input-enabled. It records in I all possible cuts of
every scenario. The invariant of the automaton is: for every word w, if the
automaton reads w and ends up in a state I then, for every cut c, c ∈ I iff
some suffix of w|ΣR

linearizes c. For instance, in Fig.4.12, the center state of
the I/O automaton records the configuration where the last event was get_new
(from cm to c[1]), as all its incoming transitions indicate. This means that the
prechart of the projected scenario has been matched and get_new (from c[1]

to db) is now required from agent c[1]. Since this event is not forbidden at
that state, the Standard Local Implementation (SLI) rule (see below) allows it
to be scheduled.

Definition 4.42 (Standard Local Implementation (SLI)) Let the projected
specification be composed of m non-empty ULSCs: {S1, . . . , Sm}. An I/O au-
tomaton fulfilling the following constraints is called a Standard Local Implemen-
tation (SLI):

〈Σra,Σ
s
a, Q, q0,∆, {Σ

r
a}〉

where

• Q =
∏m
i=1 2

2Li , i.e. every state keeps one configuration per ULSC, a
configuration being a set of cuts.

• q0 = ({∅}, . . . , {∅}),

• ∆((I1, . . . , Im), e, (I
′
1, . . . , I

′
m)) implies both the following statements

1. ∆ follows the cuts transition system:

– if e /∈ ΣiR, I
′
i = Ii;

– if e ∈ ΣiR, I
′
i = {c′|∃c ∈ Ii : c

e
−→ c′} ∪ {∅}. The empty cut is

always added, because it is linearized by the empty word, which
is a suffix of every word w ∈ Σ∗, thus preserving the invariant.

2. If e ∈ Σsa, there is some i such that c ∈ Ii requires e and, for every
j, there is no c ∈ Ij forbidding e.

¥

Such an implementation is called “standard” because it follows the classical
way of extracting state machines from MSCs (see sec.4.5.4). It is dubbed“local”
because it only considers a single agent, restricting a scenario to the local view
of that agent.

Note that there may exist many SLIs for a given specification, because the
condition on ∆ is only an implication. They differ only in the scheduling of Σsa
events. Thus, it is possible to order SLIs: an SLI A is more general than an
SLI A′ (A′ @ A) iff, at every state q, if A′ allows e ∈ Σsa event, then A allows
e, too.
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4.6.2.5 (5) Liveness Analysis

The I/O automaton built according to the SLI rule is always safe, because
the forbidden events may not be scheduled. To show this, we prove that the
hypotheses made by a about the global state are valid:

Lemma 4.43 (SLIs are sound) Let A be an SLI. Consider a finite run w ∈
Σ∗, decomposed in two parts uv = w and a scenario Lj . If v|ΣR

linearizes some
cut c in Lj and A has a run on v|Σa leading to a state (I1, . . . , Ij , . . . , In), then
Ij contains c|Σa . ¥

Proof 4.43

By induction on w. ¤

Lemma 4.44 (SLIs are safe) All behaviours induced by an SLI are Σsa-safe.
¥

Since SLIs guarantee Σsa-safety, it suffices to ensure that the considered
automaton is Σsa-live to verify that it is a correct implementation.

Theorem 4.45 Let A be an SLI. If all runs in A are Σsa-live, then A is a correct
implementation of a system consisting of agent a. ¥

Proof 4.45

By definition 4.8, if A is Σsa-live (assumption) and Σsa-safe (Lem.4.44), it is
a correct implementation. ¤

In general, liveness is not true of all SLIs, because some required event might
be postponed forever, since it is always unsafe. The liveness condition needs to
be algorithmically checked; this is done in time quadratic in |A|: A is analyzed
to check that, on all fair infinite paths, there are infinitely many occurrences of
e or e is not required in infinitely many states, for every e ∈ Σsa. In fig. 4.12,
the states in which no event is required are drawn with a double line. This SLI
example is live for agent c[1].

4.6.2.6 (6) Refinement Search

If A> is not a correct implementation, i.e. it is not live, we can try to find
another SLI A such that A @ A> and A is live. In order to do so, we consider
refinement as a two-person game, between a “protagonist” and an “antagonist”.
The protagonist may remove some edges labeled by Σsa events while the an-
tagonist tries to prove that the resulting automaton is still not live. If the
protagonist has no winning strategy in this game, there is no live SLI for agent
a. This game can be solved using classical algorithms, in time polynomial in
the size of the graph [95].
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Remark 4.46 (Safety Assumptions) An SLI allows agents to make safety
assumptions about their environment, which makes compositional reasoning
feasible [1]. For instance, when synthesizing agent i, we can make use of the
fact that we know beforehand that agents 1, . . . , k will also be synthesized using
the same method. In that case, when agent i receives an event from another
“to-be-synthesized” agent j, he knows that some cuts of the configuration are
not valid anymore. Indeed, if agent j sends this message, he must be required
to do so. Now, if there is only one scenario which requires him to send j, the
agent we are synthesizing can deduce the exact position in this scenario. For
synthesizing the SLI of fig.4.12, our algorithm used this assumption. ¥

Remark 4.47 (Efficiency) By construction, the I/O Automaton built here
is necessarily smaller than the automaton constructed by the algorithm of
Sec.4.5.1. This justifies our claim that this localized technique can sometimes
be more efficient than the exact centralized one. However, in the worst case,
the SLI is as big as the solution for the centralized case (and thus, exponential
in the size of the specification, see Th. 4.32).

Our running example is specified with 25 scenarios and contains 8 com-
ponents. Our implementation of the centralized synthesis algorithm fails to
analyze it, because of its size. However, the implementation of the lightweight
algorithm successfully synthesizes an SLI for every component, but cm and db.
cm cannot be synthesized because it participates in all scenarios; projecting the
specification on it does not drastically reduce the size of the specification. The
SLIs that we obtained had less than 20 states each and their synthesis took only
a couple of seconds. This synthesis relied on the additional safety assumptions
explained above. ¥

4.7 Conclusion

In this chapter, we have presented and analyzed the “dream”of moving from re-
quirements to code in an automated way. This dream relies on several artifacts:
formal modeling languages, precise definitions of the problems to automate and
tools supporting this automation.

The languages should enable analysts to cope efficiently with the tasks rel-
ative to the various software life cycle development phases. When considering
requirements analysis and design, we advocated that two usual views of the be-
haviour of distributed reactive systems should be used. The first specification
language is scenario-based and provides analysts with an inter-agent view. The
second language is state-based and makes it possible to describe the complete
behaviour of every agent/component/object individually. We have argued that
the former view makes it easier to validate the model of the system, by relat-
ing informal user requirements with a formal behavioural description, while the
latter is closer to code, fitting a particular architecture.

We have introduced abstract models of reactive systems, in two forms: intra-
agent specifications and inter-agent specifications. They both describe the be-
haviour of distributed reactive systems. This behaviour takes place on some
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structure, which is common to the two modes of specification. Intra-agent
specifications are mathematically considered as (non-deterministic) strategies
and concretely represented by Input/Output Automata, while inter-agent spec-
ifications are expressed by universal Live Sequence Charts. Our intra-agent
specification language supports composition. Furthermore, composition enjoys
several nice properties, the most significant of which is that it is a linear-time re-
finement. This means that properties proven about a single component cannot
be broken by plugging this component into a larger architecture.

In order to benefit fully from the use of these languages, tools are needed to
assist the analyst. These tools should be able to detect inconsistencies between
the inter- and intra-agent views. We have identified three classes of features
that these tools shall provide:

use case checking and refinement, which are centered on inter-agent spec-
ifications.

synthesis of an intra-agent specification from an inter-agent specification. Un-
derlying this functionality is the problem of deciding whether the inter-
object specification is actually meaningful and implementable.

verification that an intra-agent specification complies with an inter-agent
specification.

The formality and rigour of our framework allowed us to define precisely the
meaning of each of these features, as well as to investigate the complexity of
each of them. It turned out that all these problems are difficult. The simplest,
and least interesting, an unrealistic flavour of verification, viz. verification of
closed and centralized systems, is already coNP-complete. The most complex is
the industrially relevant problem of distributed synthesis, which is undecidable.
In-between, we found that use case checking is PSPACE-complete and synthesis
of centralized systems is EXPTIME-complete.

Facing the intractability and undecidability of these problems, we proposed
some partial approaches. These approaches are imprecise, in the sense that
they sometimes provide the analyst with false negatives. This thesis does not
claim to solve, or even try to cope with, the infamous state explosion problem
in verification. We only introduced a small technique, relying on the properties
of agent composition, in our setting. This technique can be combined with
other, more advanced techniques for dealing with state-space explosion. We
also proposed an algorithm that synthesizes a distributed implementation from
an inter-agent specification. On our running example, an implementation of this
algorithm has been able to generate some intra-agent models. In comparison,
our implementation of the centralized algorithm, which is presented in Chapter 6
ran out of memory on this example.

The high complexity of these problems has to be compared with the low
expressiveness of our specification language, as investigated in Chapter 3. This
complexity is surprising, as most researchers and practitioners are naturally led
to believe that “analyzing simple diagrams built from a few lines and arrows
should not be that difficult”.



4.7 Conclusion 147

The next chapter presents some extensions to the LSC language and study
their impact on the complexity of the problems introduced in this chapter.
Chapter 6 will describe an implementation of the algorithms defined in this
chapter.
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Chapter 5
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And now, for something completely different. . .

Monty Python’s Flying Circus

5.1 Introduction

In this chapter, we introduce three extensions to the language of LSCs: con-
ditions, real-time and symbolic instances. Conditions were part of the initial
definition of the language, by Damm and Harel [42], while the two latter features
have been introduced later [75, 74, 119].

5.2 Conditions

5.2.1 Introduction

So far, we have considered our systems as being purely event-based. This can
be the right abstraction for designing interacting reactive systems. However,
in some situations, it is natural to express behavioural constraints that depend
on state-based conditions. For instance, in the CTAS example, the following
requirement is quite obvious: “if the user interface (weather control panel) is
disabled and the user clicks on it, it has no effect” or “when a disconnected
client sends a message to the idle communication manager, asking to become
connected, the communication manager must acknowledge this query and start
an initialization process”. Statements as “disconnected client”, “disabled user
interface”, “idle communication manager” refer to the state of these objects, or
of the overall system.

In LSCs, conditions can be used to refer to states. Thus, in addition to
events, it is also possible to constrain the possible system behaviours thanks
to conditions. The original language made a distinction between two modes of
conditions: hot conditions and cold conditions. Hot conditions must be true
in order to be traversed whereas a cold condition may be false, forcing the
execution to abort prematurely but successfully.



5.2 Conditions 149

In [75], the authors discuss several possible design choices as to when con-
ditions should be evaluated. When the execution reaches a condition, there are
three possibilities: evaluate the condition immediately, wait for some “random”
amount of time before evaluating it, or wait until the condition becomes true.
They took the following decision, with respect to the operational semantics of
LSCs, as implemented by the play-out engine: cold conditions are evaluated as
soon as possible whereas the animator waits until hot conditions become true.
The former decision is justified on the grounds of the fact that users find it
more intuitive. The latter decision is simply considered “easy”. It is true that,
in the framework of play-out, evaluating a hot condition to false leads to an ir-
remediable error and execution must be halted abruptly. However, our interest
is on the use of LSCs as a behaviour specification language. As such, it must
be able to draw a hard line between allowed and forbidden behaviours. Having
said that, bad executions are at least as interesting for us as good executions
are. Thus, we do not want to rule out or try to avoid the possibility of hot
conditions being evaluated to false.

Therefore, we propose to consider two types of conditions in addition to
the usual hot/cold distinction: ASAP conditions and eventual conditions. The
former are going to be evaluated as soon as possible and the latter will be
eventually evaluated. We underline the fact that ASAP means “as soon as the
location labeled by the considered condition is enabled, i.e. all its predeces-
sors have been reached” while, by eventual, we mean “as soon as (i) all the
predecessors have been reached and (ii) the condition becomes true”. The lat-
ter definition will thus oblige the condition to be matched without delay, thus
eliminating nondeterminism regarding conditions. We oblige cold conditions to
be ASAP. We are still backwards-compatible with the decisions taken by Harel
and Marelly in [75].

5.2.2 LSC with Generic Conditions

In order to use conditions, we need some basic language in which state formulae
are expressed. We will start with a generic setting that will be instantiated
shortly. We thus assume that some logic is given. We see a logic as a triple
(Ψ, I, |=) with Ψ a set of sentences, I their interpretations and |=⊆ I × Ψ a
model relation, with i |= ψ representing that ψ is true under interpretation i1.
States, in our approach, will be interpretations. We will also require to have at
our disposal some way to link executions, that are traces of events with states.
This is achieved through state functions ζ : Σ∗ → I.

The set of conditions that may be used in ULSC is Φ. As said above, it
contains cold (Φc) and hot conditions (Φh). The sets of ASAP and eventual
conditions are respectively denoted by ΦA and ΦE . Remark that all these
conditions are built using the same underlying logic, but we use disjoint union
(]) to ensure that conditions of a different nature are distinguishable. In other
words, it is possible to tell whether some sentence is taken from Φc or Φh.

1The model relation is conventionnally written in infix notation: i |= ψ represents (i, ψ) ∈|=.
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Definition 5.1 (Conditions (Φ))

Φc,Φ
A
h ,Φ

E
h

4
= Ψ

Φh
4
= ΦAh ] ΦEh

ΦA
4
= Φc ] ΦAh

ΦE
4
= ΦEh

Φ
4
= Φc ] Φh

¥

We need to adapt the notion of LPO and linearization to introduce condi-
tions to LSCs. All definitions, provided in Chapter 3 can then be used without
modifications.

Definition 5.2 An LPO is a tuple

〈L,≤, λ,ΣR〉,

such that

• L is a finite set of locations,

• λ : L→ ΣR ∪ Φ,

• ≤⊆ L× L is a partial order on L,

• ΣR ⊆ Σ.

¥

Matching finite words with LPOs was previously simple: we checked that
the events occurred in the proper order, with respect to locations. We keep
the same idea here, except that several locations can be mapped onto the same
event now, because of ASAP conditions. Furthermore, cold conditions can cause
premature, but not invalid, abortion of the execution.

A finite word e1 . . . en is a linearization, under the interpretation of some
state function ζ, of an LPO (with conditions) if there is a partial function
f : L 6→ [n] such that

1. Some location is mapped on the last index of the finite word. Thus, there
is no “trailing garbage” in the word:

∃l ∈ L : f(l) = n.

2. location ordering is respected in the linearization:

∀l, l′ ∈ dom(f) : l ≤ l′ =⇒ f(l) ≤ f(l′).
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3. only unrestricted events may be skipped:

∀i ∈ [n] : i /∈ ran(f) =⇒ ei /∈ ΣR.

4. events in the finite word match the labeling of event-labeled locations,
according to the indexes returned by f :

∀l ∈ dom(f) : λ(l) ∈ Σ =⇒ λ(l) = ef(l).

5. event-labeled locations must be strictly ordered by f :

∀l, l′ ∈ dom(f) : (λ(l) ∈ Σ ∧ λ(l′) ∈ Σ ∧ l < l′) =⇒ f(l) < f(l′).

6. premature abortion is only possible if a cold condition is violated

dom(f) ⊆ L =⇒ (∃l ∈ L : f(l) = n ∧ λ(l) ∈ Φc ∧ ζ(e0 . . . en) 6|= λ(l)).

7. hot conditions must be matched:

∀l ∈ dom(f) : λ(l) ∈ Φh =⇒ ζ(e1 . . . ef(l)) |= λ(l).

8. non-terminal conditions must be matched:

∀l ∈ dom(f) : f(l) < n ∧ λ(l) ∈ Φ =⇒ ζ(e1 . . . ef(l)) |= λ(l).

9. eventual conditions could not be matched sooner:

∀l ∈ dom(f) : λ(l) ∈ ΦE =⇒ @i : 1 ≤ i ≤ n :







f(l) > i
ζ(e1 . . . ei) |= λ(l)
∀l′ ≤ l : f(l′) ≤ i.

10. ASAP conditions are actually verified as soon as possible:

∀l ∈ dom(f) : λ(l) ∈ ΦA =⇒ f(l) = max({0} ∪ {f(l′)|l′ < l}).

The last condition is recursive and well-founded, because it follows the partial
order on locations downwards. The previous definition of CLPO can be applied
with the simple modification to get CLPO with conditions and the notion of
linearization is not modified by LPOs with conditions entering the stage.

Definition 5.3 (|=⊆ Σ∞ × (Σ∗ → I)× LPO) LPOs with conditions are in-
terpreted against finite or infinite words and state functions:

• γ, ζ |= L with γ ∈ Σ∗ if γ linearizes L,

• γ, ζ |= L with γ ∈ Σω if there is some w @ γ such that w, ζ |= L.

¥
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Henceforth, universal LSCs are easily defined, as a couple of two CLPOs,
with the same restricted events (prechart/main chart). An infinite word γ, with
a state function ζ, satisfies a universal LSC iff, for every prefix uv ∈ Σ∗ of γ,
if v linearizes the main chart, under the function ζu, that maps x to ζ(ux), for
every w, then there is some w such that uvw is a prefix of γ and w linearizes
the main chart, under ζuv.

Definition 5.4 (|=⊆ Σ∞ × (Σ∗ → I)× CLPO) A CLPO C is satisfied by a
word γ ∈ Σ∞ and a state function ζ, if there is some LPO L ∈ lpo expand(C)
such that γ, ζ |= L. ¥

Definition 5.5 (|=⊆ Σ∞ × (Σ∗ → I)× ULSC) A word γ ∈ Σ∞ and a state
function ζ satisfy a ULSC ¤(P,M), denoted γ, ζ |= ¤(P,M) iff ∀u, v ∈ Σ∗ :
∀γ′ ∈ Σω :

(uvγ′ = γ and v, ζu |= P ) =⇒ γ′, ζuv |=M,

where ζw(x) = ζ(wx). ¥

5.2.3 Fluents

The language of LSC with conditions presented in the previous section is generic
and needs to be instantiated to some particular logic to express conditions. The
link between event traces and interpretations need also to be defined, in order to
exploit it. In the play-out mechanism, the language is made of conjunctions of
basic boolean functions over some primitive data type. Typically, comparisons
between integers and equality between other data types is supported. These
properties evolve because of the occurrence of events. The user defines what
special events set the value of each property. We will follow a similar idea.
Of course, in order to keep properties decidable, we will restrict ourselves to
finite data type. Actually, we limit ourselves to propositional logic. The basic
propositions will be fluents [60]. A fluent is a proposition which is associated to
two sets of events: setting and unsetting events. When a setting event occurs,
the fluent becomes true and remains true until an unsetting event happens.
Then, it becomes and remains false until the next setting event occurs. Fluents
have proved their value for adding state-based notions to event-based models.
For instance, a model-checker has been developed for LTSA, which allows one
to verify LTL formulae that mix fluents and events, against FSP (Finite State
Processes) which are purely event-based [60].

Let F be a countable set of fluent names. A fluent formula is simply a
propositional logic formula, defined over F . We denote this logic with B(F)
(boolean combinations of fluents).

ϕ ::= p (with p ∈ F)
| ¬ϕ1
| ϕ1 ∨ ϕ2

An interpretation is a function i : F → {>,⊥}, that assigns a truth value to
every fluent.
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Definition 5.6 (Fluent Specification) A fluent specification is a triple of
functions 〈Fluentin,Fluenton,Fluentoff〉, with Fluentin : F → {>,⊥}, Fluenton :
F → 2Σ and Fluentoff : F → 2Σ. Given a fluent specification

FS = 〈Fluentin,Fluenton,Fluentoff〉,

we need to define a state function ζFS . It is defined recursively as ζFS(ε) =
Fluentin and ζFS(wa) = {x 7→ upd(x, ζFS(w)(x), a)|x ∈ F} where upd(x, t, a)
returns

• >, if t = > and a /∈ Fluentoff(x);

• ⊥, if t = ⊥ and a /∈ Fluenton(x);

• ¬t, otherwise.

¥

5.2.4 Inter-Agent Specification with Fluents

In previous chapters, we relied heavily on the liveness-safety theorem: it en-
abled us to share out responsibilities among agents. In case of violations of a
specification, it makes it possible to determine which agent is responsible for
failure, i.e. whether an assumption on the environment has been falsified or
whether the system is flawed. We need of course to adapt this theorem for
dealing with conditions. First, we say that a condition depends on an event e if
this condition contains a fluent p such that e ∈ Fluenton(p) or e ∈ Fluentoff(p).
We extend safety and liveness conditions to formulae of B(F). This obliges us
to consider state functions in the definition as well. The following statements
shall be understood as “under the interpretation of a state function ζ”. ASAP
formulae introduce new safety conditions on events: an event e is forbidden
after a partial execution w if we violates some hot ASAP condition appearing
in the main chart. Eventual conditions introduce liveness conditions on runs:
a condition is required by some word w if some suffix v of w linearizes some
cut in the main chart that enables a location labeled by this condition. The
formalization of this expression is left to the reader.

An infinite run γ, with state function ζ, is e-safe iff, for every prefix w @ γ,
if w forbids e (wrt ζ), we is not a prefix of γ. An infinite run is e-live iff
(i) it is e-live, according to the previous definition, and (ii) there is no prefix
uv @ γ such that v linearizes some cut c in some ULSC, in which one successor
location is labeled by a condition depending on e and for all subsequent prefixes
of uvv′ @ γ, v linearizes c. For short, a condition, depending on e should be
evaluated to true but is never evaluated. The complex definition of liveness
is needed in order to take into account LSCs containing conditions only or
conditions terminating the LSC, combined with alternatives.

With this said, it is clear that we can again share out responsibilities be-
tween agents as before. But, first, intra-agent specifications must be adapted
to include some fluent specification.
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Definition 5.7 (Inter-Agent Specification) An inter-agent specification is
a triple

〈S,S, FS〉,

where S is a structural model, S is a ULSC specification and FS a fluent
specification. ¥

It should be noted that safety and liveness have been defined on the level of
LSCs with conditions, instantiated to fluents. We did not define it at the generic
level, for we have no means at th is higher level to link conditions and events.
Hence, we cannot assign the violation of eventual conditions to agents. Because
fluents associate propositions with events, by telling which events can make
propositions true and false, we can assign responsibilities. We have chosen a
rough assignment: every agent owning an event that can change the value of
a fluent appearing in some condition is responsible for the eventual occurrence
of this condition. It is problematic when conditions mix fluents owned by the
system and the environment. This association could be more fine-grained, but
this needs more research.

It took us some effort to adapt the notions of liveness and safety to LSCs
with conditions. The reward is that the notion of correct implementation is
not different from the simpler event-based case. Thus, all analysis problems are
identical.

Definition 5.8 (Correct Implementation) An intra-agent specification (S,F)
associated to a society of agents Sys is a correct implementation of an inter-agent
specification (S,S, FS) iff

∀γ ∈ Out(fSys) :

{
γ, ζFS is ΣEnv-live =⇒ γ, ζFS is ΣSys-live
γ, ζFS is ΣEnv-safe =⇒ γ, ζFS is ΣSys-safe

¥

5.2.5 Analysis Problems with Fluents

When adding fluents to our model, it is clear that all our algorithms remain
as efficient as before, because automata do not grow in size. Exponential-size
automata remain simply exponential. The only problem for which membership
in its complexity class relies on an additional argument is CCAV. It is is still
in coNP, because exponentially long paths need not be taken into account for
model-checking: there are always linear shortcuts. In particular, only the case
of conditions can be problematic. Suppose that in the tableau automaton, we
need to verify a condition with n fluents. There is no need to follow a path
with exponentially many events: at most n events are needed to switch fluents
to satisfying values. Actually, this number of events is upper-bounded by the
largest Hamming distance between the current valuation and any satisfying
valuation.
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5.2.6 Summary

In conclusion, conditions can be added to LSCs for free, both from a compu-
tational complexity perspective, and from the perspective of definitions. It is
remarkable that conditions altered only the lowest level of our definitions, viz.
LPOs, but all higher levels, up to ULSC remained unchanged. The reader shall
notice that cold conditions appearing in the prechart may cause surprising inter-
pretations. Indeed, if a cold condition is violated, the prechart ends successfully
and is matched. This is not in line with what Harel and Marelly do in [75]. They
systematically use cold conditions in the prechart, because they cannot distin-
guish between ASAP and eventual conditions. Cold conditions are the only
conditions that are evaluated as soon as they become enabled. Thus, they have
to make a distinction between basic charts used as a prechart and basic charts
used as a main chart: the prechart is satisfied if it is fully completed while the
main chart can be satisfied by the violation of a cold condition. In order to
follow completely their approach, we should define two types of linearizations:
complete linearizations, in which the function f defined above is required to be
total, and partial linearizations, which are the type of linearizations we defined.
Then, we can re-phrase their semantics in our setting. Nevertheless, we stick
to our approach and simply remark that using ASAP hot conditions instead of
cold conditions in the prechart captures the user intent: “when the prechart is
fully matched, which implies that all conditions have been verified immediately,
the main chart shall be observed afterwards”.

5.3 Time

5.3.1 Introduction

Scenarios can also be used to describe the behaviour of timed systems. In this
section, we explain how the previous arsenal can be extended to cope with
real-time specifications. This was done by Marelly and Harel, in their study of
play-out, too. We will follow Dill and Alur’s approach to describing real-time
systems. To our discrete-time model, we add real-valued clocks. These clocks
can be reset and tested for inequalities against rational numbers. As part of the
signature of our language, we now assume a countable set CF of formal clocks.
The only constants that can be used in constraints are rational-valued. We let
Q≥0 denote the set of all non-negative rational numbers.

We will successively introduce Timed Inter-Agent Specifications and Timed
Intra-Agent Specifications. We will then adapt the definition of a correct im-
plementation to the timed case and investigate how these changes impact the
problems in which we are interested. But, first, we need to define precisely what
a timed language is. Since the beginning of this thesis, we identified executions
in which observable events happen and words on a given alphabet. This allowed
us to use a well-defined and usual semantic domain that was shared with other
specification languages, and also to benefit from results and tools from this field.
When real-time is introduced in our systems, i.e. the time of occurrence of an
event becomes observable, we need to move to timed languages, to go on using
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our theoretical setting.

5.3.2 Preliminaries: Timed Languages

The concept of timed language is classical and we briefly recall the definitions
[5]. A finite timed word over some alphabet Σ is a sequence w ∈ (Σ × R>0)

∗.
Every event in the sequence is tagged with the delay that elapsed between its
occurrence and the occurrence of the event just before. Intuitively, a sequence
(e0, τ0)(e1, τ1), . . . , (en, τn) means that event ei occurs at time

∑i
j=0 τi. Thus,

τi is the delay between event ei−1 and ei. The same intuition can be applied to
infinite words. An infinite timed word is an infinite sequence γ ∈ (Σ × R>0)

ω,
fulfilling the non-Zeno condition. The non-Zeno condition asserts that “time
cannot be stopped”.

Definition 5.9 (Zeno word) Let γ = (e0, τ0)(e1, τ1) . . . ∈ (Σ × R>0)
ω, then

γ is non-Zeno if ∀t ∈ R : ∃j ≥ 0 : t <
∑j

i=0 τj . ¥

Definition 5.10 (Timed Words (T∗(Σ),Tω(Σ),T∞(Σ))) • T∗(Σ) = (Σ×
R>0)

∗ is the set of all finite timed words.

• Tω(Σ) = {γ ∈ (Σ × R>0)
ω|γ is non-Zeno} is the set of all infinite timed

words.

• T∞(Σ) = T∗(Σ) ∪ Tω(Σ).

¥

5.3.3 Timed Inter-Agent Specification

Graphically, a timed LSC is displayed in Fig. 5.1. It enforces that, if no an-
swer is received from the database within 2 minutes2 the client informs the
communication manager that its download failed. This LSC is quite subtle,
because it obliges the client to answer “no” after at least 120 seconds but sets
no upper limit on the time at which a “yes” answer will be sent. This form of
LSC is the same as in [74, 75]. Note that, instead of clock resets, assignments
are used to freeze time, i.e. store the current time in a real-valued variable.
Atomic constraints are of the form x ∼ Time + k where x is a clock name, k
is a rational number and ∼∈ {≤, <}. This is the choice of Harel and Marelly.
Experience tells us that presenting time constraints in that form improves read-
ability. Nevertheless, the two modes are interchangeable, it suffices to replace
all “time freezes” by “clock resets” and every clock constraint, which are of the
form x ∼ Time+k, by x ∼ k. Clock constraints must be interpreted“ASAP”, i.e.
we do not allow eventual clock conditions, and clock resets are guarded by an
event. We make such a decision to avoid “spontaneous” clock resets, that would
not be mapped onto events, and conditions that can be mapped at multiple
times. In the spirit of LSCs, this reduces as much as possible nondeterminism
and gives a feeling of executability to the specification formalism. This high

2We assume that seconds are used as time unit
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degree of operationalism is a characteristic of scenario-based languages. It op-
poses them to approaches relying on declarative approaches, which favour more
nondeterministic specifications, but are also more difficult to comprehend.

Figure 5.1: Real-time LSC

Formally, we introduce a new labeling of locations, namely reset, which are
sets of formal clocks. Resets are hidden, i.e. non-observable, events which will
be taken as soon as possible, in the spirit of ASAP conditions. We also add
clock constraints to our condition language. Atomic clock constraints are of
the form x ∼ k, with x, y ∈ CF , k ∈ Q≥0 and ∼∈ {≤, <}. Clock constraints
are boolean compositions of atomic clock constraints. Let Θ denote the set of
all clock constraints. We add clock constraints to the language of conditions.
Clock constraints may only be used as ASAP conditions, either in cold or hot
flavour.

Θc,Θh
4
= Θ

ΦAh
4
= Θh ]Ψ

ΦEh
4
= Ψ

ΦAc
4
= Θc ]Ψ

ΦA
4
= ΦAh ] ΦAc

ΦE
4
= ΦEh

Φh
4
= ΦAh ] ΦEh

Φc
4
= ΦAc

Clock constraints are evaluated against clock valuations. A clock valuation
is a function ν ∈ V = CF → R≥0. Given some ν ∈ V, we define the following
operations:

• Time passing of t ∈ R≥0 units: ν + t denotes the clock valuation that
returns ν(x) + t for every x.

• Reset of X ⊂ CF : ν[X := 0] denotes the clock valuation that maps every
x ∈ X to 0 and every x /∈ X to ν(x).



158 Language Extensions

ν |= φ denotes, as usual, the fact that φ is true, under interpretation ν.

Definition 5.11 (|=⊂ V×Θ) The semantics of clock constraints is defined
inductively, on the structure of clock constraints.

ν |= ¬φ iff ν 6|= φ
ν |= φ1 ∧ φ2 iff ν |= φ1 and ν |= φ2
ν |= x < k iff ν(x) < k
ν |= x ≤ k iff ν(x) ≤ k

¥

Definition 5.12 (Timed LPO) A timed Σ-LPO is a
(
Σ ] Φ ] 2CF

)
-LPO,

with the additional constraint that ∀l ∈ L : λ(l) ⊂ CF =⇒ ∃l′ ∈ L : λ(l′) ∈ Σ
and l′ < l. Thus, locations can be labeled by events, or conditions that are sim-
ple conditions or clock constraints, as explained above, and finite sets of formal
clocks, that are reset when the location is reached. The additional constraint
states that resets must be associated with observable events. ¥

Associating clock resets with observable events is an idea that can be found
in Event-clock automata [7, 139]. It is a bit restrictive, with respect to [75].
Nevertheless, all examples of timed scenarios in [75] respect this constraint.
Intuitively, it seems very strange to measure time without being able to tell
exactly from which point in time this measure started.

As in the previous section, LPOs are related to (timed) words through
linearization. Again, the mapping is made explicit, to take into account that
some events may be mapped onto the same index of the word.

A finite timed word (e1, τ1) . . . (en, τn) ∈ T∗(Σ) is a linearization, under the
interpretation of some state function ζ, of an LPO (with conditions) if there is
a partial function f : L 6→ [n] such that

1. some location is mapped on the last index of the finite word. Thus, there
is no “trailing garbage” in the word:

∃l ∈ L : f(l) = n.

2. Let ν0 = {x 7→ 0|x ∈ CF }, i.e. all clocks are initially set to 0 and
νi = (νi−1 + τi)[Resi := 0], with Resi = {x ∈ λ(l)|f(l) = i ∧ λ(l) ⊂ CF }.

3. location ordering is respected in the linearization:

∀l, l′ ∈ dom(f) : l ≤ l′ =⇒ f(l) ≤ f(l′).

4. only unrestricted events may be skipped:

∀i ∈ [n] : i /∈ ran(f) =⇒ ei /∈ ΣR.
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5. events in the finite word match the labeling of event-labeled locations,
according to the indexes returned by f :

∀l ∈ dom(f) : λ(l) ∈ Σ =⇒ λ(l) = ef(l).

6. event-labeled locations must be strictly ordered by f :

∀l, l′ ∈ dom(f) : (λ(l) ∈ Σ ∧ λ(l′) ∈ Σ ∧ l < l′) =⇒ f(l) < f(l′).

7. premature abortion is only possible if a cold condition is violated

dom(f) ⊆ L =⇒ (∃l ∈ L : f(l) = n ∧ λ(l) ∈ Φc ∧ ζ(eO . . . en) 6|= λ(l)).

8. hot conditions must be matched:

∀l ∈ dom(f) : λ(l) ∈ Φh =⇒ ζ(e1 . . . ef(l)), νf(l) |= λ(l).

9. non-terminal conditions must be matched:

∀l ∈ dom(f) : f(l) < n ∧ λ(l) ∈ Φ =⇒ ζ(e1 . . . ef(l)), νf(l) |= λ(l).

10. eventual conditions could not be matched sooner:

∀l ∈ dom(f) : λ(l) ∈ ΦE =⇒ @i : 1 ≤ i ≤ n :







f(l) > i
ζ(e1 . . . ei) |= λ(l)
∀l′ ≤ l : f(l′) ≤ i.

11. ASAP conditions are verified and resets are performed as early as can be:

∀l ∈ dom(f) : λ(l) ∈ ΦA ∪ 2CF =⇒ f(l) = max({0} ∪ {f(l′)|l′ < l}).

We can, as usual, reuse all previous definitions about LPOs to obtain the
semantics of timed LSCs. First, LPOs and CLPOs are, as usual:

Definition 5.13 (|=⊆ T∞(Σ)× (Σ∗ → I)× TLPO) Timed LPOs are eval-
uated against timed words and interpretations.

• for every γ ∈ T∗(Σ),

γ, ζ |= L ⇐⇒ γ, ζ is a linearizations of L,

• for every γ ∈ Tω(Σ),

γ, ζ |= L ⇐⇒ ∃w ∈ T∗, γ
′ ∈ Tω : γ = wγ′ and w, ζ |= L.

¥
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CLPOs can be extended to real-time, by reusing the previous definition: a
CLPO C corresponds to a set of LPOs, viz. lpo expand(C). We skip the details
and immediately define the semantics of real-time ULSC.

Definition 5.14 (|= Tω(Σ)× (Σ∗ → I)× ULSC) An infinite timed word γ
and a state function ζ satisfy a ULSC ¤(P,M) iff, for all u, v ∈ T∗(Σ) and
γ′ ∈ Tω(Σ),

uvγ′ = γ and v, ζu |= P =⇒ γ′, ζuv |=M.

¥

Finally, remark that the safety-liveness theorem (Th. 3.22) is seamlessly
adapted to the timed case: since clock constraints are ASAP conditions, they
introduce new safety conditions on events. Liveness is not modified by the
introduction of time.

5.3.4 Timed Intra-Agent Models

Since we have introduced time in our inter-agent specifications, we need to put
time into intra-agent specifications. In order to do so, we follow the approach
of timed games [105, 43]. A concurrent timed execution proceeds as follows:
at every step all agents are asked what actions they want to perform next and
when they want to perform any of these actions. Let the time of the current
step be t and the smallest chosen delay be ε. Then, all agents are put to sleep
until t+ ε. At that time, one of the actions chosen to be performed after delay
ε is non-deterministically taken and the agents gather to play another round.
Agents may only act in non-Zeno ways. That is, they may not choose smaller
and smaller delays between actions, to finally stop time.

With this additional assumption, it is noteworthy that the untimed case
corresponds exactly to the previous case: agents cannot make assumptions
about the relative speed of their environment and only propose to perform
actions. However, there is a fairness constraint: if an agent keeps asking for
performing an action at some absolute time, it will eventually do it.

Definition 5.15 (Real-time Strategy) A real-time strategy for agent a ∈
Ag is a function fa : T∗(Σ)→ (2Σ

s
a×R>0) that returns to every finite play what

the choice of agent a, i.e. what actions a wants to perform next and when one of
these actions should be performed. An infinite timed sequence (e0, τ0)(e1, τ1) . . .
is played according to such a strategy fa iff for every i ≥ 0, if ei ∈ Σsa, then
fa((e0, τ0) . . . (ei−1, τi−1)) = (A, τi), with ei ∈ A. The outcomes of a real-time
strategy fa, denoted Out(fa), are the timed sequences played according to this
strategy. ¥

Note that outcomes may be non-Zeno. In order to ensure progress, we
introduce the technical notion of a blame. In an infinite timed sequence, γ =
(e0, τ0)(e1, τ1) . . ., agent a is blamed at position i, written blame(a, γ, i) if ei ∈
Σsa.
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Definition 5.16 (Progressive strategy) A strategy fa is progressive if, for
every outcome γ, either this outcome is non-Zeno (γ ∈ Tω(Σ)) or there are only
finitely many indices i such that blame(a, γ, i). ¥

Intuitively, if the time sequence converges, agent a cannot be held responsible,
because it does not choose the smallest delay. Alternatively, agent a can be
seen as a victim: he is prevented from acting by the abusive behaviour of
its environment. We repeat that the untimed version of a real-time strategy
corresponds to the intra-agent model presented in Sec. 4.2.3.

5.3.5 Analysis Problems

The problems described in Section 4 are still relevant for real-time systems.
Here, we will focus on two of these problems: verification of closed systems
and realizability checking. These two problems can be solved by automata-
theoretic techniques, resorting to the theory of timed automata [5]. First, we
present how linearizations of timed LPOs can be recognized by deterministic
timed automata [5]. Second, we will show how these automata can be reused
to recognize all the models of a timed ULSC specification.

We start by defining the two problems. We focus on closed centralized ver-
ification. The agent system is given as a unique timed automaton, recognizing
all the runs of this system.

Definition 5.17 (TCCAV) The problem of timed centralized closed agent
verification (TCCAV) is to verify, given a timed automaton A and a timed
ULSC specification S, whether L (A) |= S. ¥

The second problem is realizability. Here, the problem is to decide whether
there is some real-time strategy that is correct with respect to some ULSC
specification.

Definition 5.18 (TCOAD) Timed Open Agent Design (TCOAD) is the prob-
lem of deciding whether there is some progressive real-time strategy fSys that
is a correct implementation a real-time inter-agent specification 〈S,S〉. ¥

The two problems will be solved using automata-theoretic techniques. Thus,
we start by introducing timed automata. Then, we will explain how TLPO
linearizations can be recognized by automata and how these automata can be
transformed to provide solutions to TCCAV and TCOAD. The solutions are
not particularly original and will mostly use well-known results, either from
the theory of timed automata [5] or controller synthesis for real-time systems
[17, 16, 116, 105].

Definition 5.19 (Timed Automaton) A timed automaton (TA) is a tuple

〈Q, q0,∆,X ,Ω〉,

where
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• Q is a finite set of locations,

• q0 ∈ Q is an initial location,

• ∆ ⊆ Q × Σ × 2X × Θ(X ) × Q is a transition relation. A transition
(q, e, R, φ, q′) means that, when the control location resides in q and event
e occurs, if the constraint φ is true (after having reset all clocks in R), the
control location moves to q′.

• X is a finite set of clocks,

• Ω is some acceptance (Büchi, Streett, . . . ) condition, relative to Q. See
section 1.1.2.

A TA is deterministic if its transition relation is functional on the source state,
the triggering event and the clock constraint. In details, for every two tran-
sitions (q1, e1, R1, φ1, q

′
1),(q2, e2, R2, φ2, q

′
2) ∈ ∆ if source states are the same

(q1 = q2), events are the same (e1 = e2) and constraints are compatible,
(∃ν : ν[R1 := 0] |= φ1 and ν[R2 := 0] |= φ2), then target states are the
same (q′1 = q′2).

A state of a TA is a couple (l, ν), where ν : X → R≥0 is a clock valuation.
Let us denote by S(A) the set of states of some TA A. A TA defines a relation
−→⊆ S(A)× Σ× R>0 × S(A) according to the following rule.

(q, ν)
(e,t)
−−→ (q′, ν ′) ⇐⇒ ∃(q, e, R, φ, q′) ∈ ∆ : ν ′ = (ν + t)[R := 0] and ν ′ |= φ.

It is easy to check that deterministic TA give rise to a deterministic −→ relation
i.e., functional on its third first arguments.

A TA accepts a timed word (e0, τ0)(e1, τ1) . . . ∈ Tω(Σ) iff there is a sequence
of states s0s1 . . . such that

1. s0 = (q0, {x 7→ 0|x ∈ X ),

2. ∀i ≥ 0 : si
(ei,τi)
−−−−→ si+1,

3. q0q1 . . . satisfies the acceptance condition Ω.

The language of a TA is L (A) = {γ|γ is accepted by A}. ¥

As previously, states are cuts in the LPO. Automata clocks are formal clocks
(X = CF ). For the sake of simplicity, we skip the treatment of fluents and focus
on time constraints. In an LPO, we define the ASAP-closure of a location l,
denoted by cl(l) as the set of all locations greater than l and labeled by ASAP
events i.e., clock resets or ASAP conditions. Formally,

cl(l) = {l′|l′ > l and (@l′′ : λ(l′′) ∈ Σ and l < l′′ ≤ l′)}.

The DTA accepting the linearizations of a TLPO L is

AL = 〈2L ∪ {ko, ok}, ∅,∆,Büchi({ok})〉,
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where ko and ok are both sink states (i.e. there is a self-loop on them). The
former represents failure (i.e. the automaton rejects) and the second represents
success (the automaton accepts). There are five types of transitions. normal
transitions describe legal occurrences of restricted events. premature success
transitions prescribe that violating a cold condition causes a premature termi-
nation. unrestricted event transitions skip unrestricted events, failure transi-
tions describe the illegal occurrences of restricted events and termination tran-
sitions indicate that when all locations have been reached, the chart succeeds.
Formally,

normal transitions are of the form


C1, e, R,




∧

φ∈Λh

φ



 ∧




∧

ψ∈Λc

ψ



 , C2



 ,

where C1 ⊂ L and there is some l ∈ L such that

• λ(l) = e,

• l /∈ C1,

• C2 = C1 ∪ cl(l),

• ∀l′ < l : l′ ∈ C1,

• R = {l′ ∈ cl(l)|λ(l′) ∈ 2CF },

• Λh = {l′ ∈ cl(l)|λ(l′) ∈ ΦAh },

• Λc = {l
′ ∈ cl(l)|λ(l′) ∈ Φc}.

premature success transitions are of the form



C1, e, R,




∧

φ∈Λh

φ



 ∧




∨

ψ∈Λc

¬ψ



 , ok



 ,

and are defined if there is some l ∈ L such that

• λ(l) ∈ Σ,

• ∀l′ < l : l′ ∈ C1,

• R = {l′ ∈ cl(l)|λ(l′) ∈ 2CF },

• Λh = {l′ ∈ cl(l)|λ(l′) ∈ ΦAh },

• Λc = {l
′ ∈ cl(l)|λ(l′) ∈ Φc}.

unrestricted event transitions are transitions of the form (q, e, ∅,>, q), where
e /∈ ΣR. They skip unrestricted events.

failure transitions are transitions that complete the automaton’s transition
relation and lead to ko.
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termination transitions are of the form

(L, e, ∅,>, ok).

They are taken when all locations in the LPO have been reached.

This automaton can be turned into a non-deterministic automaton recog-
nizing the complement of a ULSC language. For some ULSC S = ¤(P,M), we
call it A¬S . To verify that a run γ ∈ Tω(Σ) violates a ULSC, this automaton
waits in the initial state, thus skipping some finite prefix of γ. Nondeterminis-
tically, it decides to check that the ULSC will not be verified, after this prefix.
It needs to verify that the prechart is matched, namely ok is reached in AP ,
but, immediately after, the main chart is not matched i.e., ok is never reached
in AM .

Theorem 5.20 TCCAV is PSPACE-complete. ¥

Proof 5.20

Hardness comes from the PSPACE-hardness of emptiness checking for timed
automata. Membership follows from the fact there are at most |L| clocks used
in A¬S . Thus, the state-space of the region automaton for A¬S contains at most
an exponential number of regions, viz. 22·|L|. The synchronous product of A,
the timed automaton representing the intra-agent specification, with A¬S does
not increase their state space: it remains simply exponential. Hence, emptiness
can be tested in PSPACE, by guessing a simple path in the automaton, just as
in the finite state case. ¤

The TA presented above, i.e. AL can be used as a basis to recognize all
models of a ULSC. At every step, at new copy of AL is launched. However, the
clocks of this copy, that were taken from CF , are renamed, using fresh clocks, in
order to avoid conflicts. For renaming, we use a distinct set of actual clocks, CA.
An interesting fact is that the number of actual clocks needed to avoid conflicts
is upper-bounded by |L|2. This is due to the fact that live copies do not survive
for more than |L| steps. A second fact is that this TA is deterministic. Let us
call AS the DTA recognizing all models of a real-time LSC specification.

Theorem 5.21 TCOAD is EXPTIME-complete. ¥

Proof 5.21

Hardness comes from the fact that this problem extends COAD, which is
EXPTIME-complete, see Th. 4.31. Membership comes from the fact that the
problem can be reduced to solving a two-player, 3-colour, parity game, on the
region automaton. Since the region automaton of a a timed automaton with n
locations and k clocks has O(n ·2k) states and, in our case AS has a polynomial
number of clocks, we get a simply-exponentially large region automaton. ¤

Next, we provide some details on the reduction from TCOAD. Assume
that we have at our disposal a DTA with one Streett pair. We start by building



5.3 Time 165

the region automaton from it. Assume, without loss of generality, that all
constraints in A use only natural numbers. Let us denote the largest constant
in clock constraints involving clock x by kx. Two clock valuations are equivalent,
denoted ν∼ν ′ iff all the following constraints hold:

• ∀x ∈ X : (bν(x)c = bν ′(x)c) or (ν(x) > kx ∧ ν
′(x) > kx);

• ∀x, y ∈ X : ν(x) ≤ kx ∧ ν
′(y) ≤ ky : fract(ν(x)) ≤ fract(ν(y)) ⇐⇒

fract(ν ′(x)) ≤ fract(ν(y));

• ∀x ∈ X : ν(x) ≤ kx : fract(ν(x)) = 0 ⇐⇒ fract(ν ′(x)) = 0.

Let us denote by [ν] the equivalence class of ν, i.e. {ν ′ ∈ V|ν ′∼ν}. Such an
equivalence class is a clock region. Remark that there are only finitely many
clock regions.

A clock region α′ is a time-successor of a clock region α′ iff for each ν ∈ α,
there is some t ∈ R>0 such that ν + t ∈ α′. A clock region α′ is a next time-
successor of a region α iff α′ 6= α, α′ is a time-successor of α and for every
time-successors α′′ of α such that α′′ /∈ {α, α′}, α′′ is also a time-successor of
α′. The essential property of clock regions is that, for every clock constraint φ
appearing in A and every clock region [ν], all valuations in a region agree on
the truth value of the constraint3:

ν |= φ ⇐⇒ ∀ν ′ ∈ [ν] : ν ′ |= φ.

Thus, we allow ourselves to talk about the truth value of a clock constraint,
under the interpretation of a clock region.

Let κ be a symbol not in Σ. The region automaton of A is the Streett
Automaton

R(A) = 〈R(Q), R(q0), R(∆), {R(E), R(F )}〉,

where

• R(Q) = {(q, α)|q ∈ Q and α is a clock region},

• R(q0) = (q0, [{x 7→ 0|x ∈ X}]),

• The transition relation follows the rules:

– for e ∈ Σ, ((q, α), e, (q′, α′)) iff ∃(q, e, R, φ, q′) ∈ ∆ such that α′ =
α[R := 0] and α′ |= φ.

– ((q, α), κ, (q, α′)) iff α′ is a next time-successor of α.

• R(E) = {(q, α)|q ∈ E},

• R(F ) = {(q, α)|q ∈ F}.

3This property is relative to a fixed automaton A, because clock regions depend on the
largest constants, kx appearing in clock constraints of A
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Consider some timed run

w = (q0, ν0)
(e0,τ0)
−−−−→ (q1, ν1) . . . (qi, νi)

(ei,τi)
−−−−→ (qi+1, νi+1) . . . .

Its region trace is the sequence

[w] = (s0, α0)(s1, α1) . . . ,

such that

• α0 = [ν0],

• αi+1 is the next time-successor of αi,

• there is a sequence of indices I = i0 < . . . < ij < . . . such that

– ∀j /∈ {i0, i1, . . .} : sj = sj−1,

– ∀j ∈ {i0, i1, . . .} : sj = qij .

By induction, one can prove the following:

Proposition 5.22 Let A be a timed automaton. A timed run w ∈ T∗(Σ∗)
leads to state (q, ν) iff [w] leads to state (q, [ν]) in R(A). ¥

With this construction at hand, it is simple to build a game graph for solving
this problem:

GS = 〈V, V0,∆,Ω〉,

with

• V = ({Sys} ×R(Q)) ∪ ({Env} × ΣsSys ∪ {κ} ×R(Q)),

• V0 = {Sys} × Σ ∪ {κ} ×R(Q),

• (v, v′) ∈ ∆ iff

– v = (Sys, q), v′ = (Env, a, q) and a ∈ ΣsSys, or

– v = (Env, x, q), v′ = (Sys, q′) and

∗ (q, x, q′) ∈ R(∆), or

∗ ∃b ∈ ΣsEnv : (q, b, q
′) ∈ R(∆).

• Ω = Streett({(E,F )}), with E = {Sys} × R(E) ∪ ({Env} × ΣsSys ∪ {κ} ×
R(E)) and F = {Sys} ×R(F ) ∪ ({Env} × ΣsSys ∪ {κ} ×R(F ))

Note that we do not take progressiveness into account. However, it is simple
to incorporate, in the acceptance condition of A, an additional condition to cope
with this problem. In E, it is asked that player 0 is blamed infinitely often,
i.e. one additional bit is needed in the Büchi synchronous product, which is
set to 1 every time player 0 makes a move. In F , we also add |CA| bits to the
synchronous product, in order to ensure that every clock x is either reset or
larger than its largest constant kx infinitely often.
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This game graph is very similar to the one presented in section 4.36, to solve
COAD. However, the reader must remark that there is one main difference.
Here, in every turn, Sys starts by picking one move, which is to let time pass (κ)
or to perform a discrete action (a ∈ ΣsSys). Then, Env can choose to let this move
happen or to preempt this move, by performing one of its own discrete actions
b ∈ ΣsEnv. This corresponds to the intuition presented above: both players
choose a certain duration, that they want to spend idling, and a discrete action
to perform afterwards. Thus, player Sys may never assume that its opponent
will let him play, because Env can always choose a smaller (or equal) delay and
be the first to move.

5.3.6 Conclusion

We have shown, in this section, that LSCs can be extended with real-time, in a
straightforward way. In order to do so, we add clocks and clock constraints to
the language. This idea is not ours: Harel and Marelly have already extended
LSCs with the same concept [75, 74], being themselves very much inspired by
the classical work on timed automata [5]. On the contrary, Message Sequence
Charts make use of timers, instead of clock resets and clock constraints. Arrows,
decorated with time constraints, can link two locations, say l1 and l2 in the
diagram. This has the expected meaning that the time elapsing between l1 and
l2 must satisfy the decorating constraint. Timers are but syntactic sugar on an
approach with explicit clock resets and clock constraints.

One deficiency of our timed ULSCs is that they do not allow clocks to be
shared between the prechart and the main chart. It is possible to modify our
solution to cope with shared clocks, but this requires some heavy modifications
to the definitions and to the algorithms.

Extending LSCs with time did not cause much trouble to the definitions:
only timed LPOs must be defined, which is not very different from LPOs with
conditions. All other concepts remain the same as before. Algorithms for veri-
fication and synthesis are easily adapted, too. The complexity of synthesis does
not increase, while verification of closed centralized systems become PSPACE-
complete instead of coNP-complete.

We close this chapter with another extension to plain LSCs, that makes it
possible to describe parameterized systems, in which the number of agents is
not a priori fixed.

5.4 Symbolic Instances

Symbolic LSCs (SymLSC) are LSCs with symbolic instances: one instance is a
placeholder for many possible instances. It possible to describe the behaviour
of unbounded families of agents. In Symbolic LSCs, we need to introduce agent
roles. The idea is that every agent can play several roles. Thus, to every agent,
we associate a set of roles. In logical terms, Symbolic LSCs are to LSCs what
first-order logic is to propositional logic.

Definition 5.23 (Roles - Population) Role is a set of roles. A population is
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a partial function, with finite domain, Pop : Ag 6→ 2Role, mapping every agent
to the roles he plays. Let P denote the set of all populations. ¥

We assume here that agents may not change roles during system execution. We
also drop the hypothesis that Ag is finite and only require it to be countable.

We assume that we are given a countable set of first-order variables, Var.
Var and Ag are distinct. An interpretation of V ⊂ Var is a function θ : V → Ag.
Message terms are also extended to include first-order variables. We write Σ(V ),
for V ⊂ Var, to denote the set (Ag ∪ V ) ×M× (Ag ∪ V ). Ground events are
events from Σ(∅). Applying a V -interpretation to an event in Σ(V ) yields a
ground event, in which all occurrences of v ∈ V are replaced by θ(v). Let I
represent the set of all interpretations.

In the same vein, we extend LPOs, and transform them in Quantified Labeled
Partial Order (QLPO). A QLPO is an LPO over Σ′(V ), or an expression of the
form ∀x : R : Q or ∃x : R : Q, where x ∈ Var, R ∈ Role and Q is a QLPO,
in which x is a free variable. We use the usual definition of free and bound
variable. A variable is bound if it occurs within the scope of a quantifier. It is
free if it is not bound.

Applying an interpretation of variables to an LPO simply replaces all oc-
currences of variables by their interpretations in event terms (Σ(V )). If all free
variables of an LPO are interpreted in θ, this yields a ground LPO, as well.

Definition 5.24 (|=⊆ P× I× Σ∞ ×QLPO) Let γ ∈ Σ∞, Pop is a popula-
tion and θ is a first-order variable interpretation.

• Pop, θ, γ |= Q, with Q ∈ LPO iff γ |= θ(Q).

• Pop, θ, γ |= ∀x : R : Q iff, for every a ∈ Ag,

R ∈ Pop(a) =⇒ Pop, θ ∪ {x 7→ a}, γ |= Q.

• Pop, θ, γ |= ∃x : R : Q iff, there is some a ∈ Ag, such that

R ∈ Pop(a) and Pop, θ ∪ {x 7→ a}, γ |= Q.

¥

A Symbolic ULSC is a pair ¤(P,M) such that

1. P is a A-LPO, with A ⊆ Σ(P ). All variables in VP are free in the prechart
P . We do not allow quantifiers in the prechart, as is also done by [119].

2. M is a B-QLPO, with B ⊆ Σ(V ), and B ⊇ A. The sole free variables in
M are VP

Symbolic LSCs are interpreted against populations and infinite words γ ∈
Σω. An interpretation satisfies a Symbolic LSC if, whenever the prechart is
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matched, the main chart is also matched afterwards. Remark that matching
can be done according to several variable interpretations, and we take all of
them into account.

Definition 5.25 (|=⊆ P× I× Σω × SymLSC) Pop, γ |= ¤(P,M) iff, for ev-
ery first-order variable interpretation θ, for every decomposition uvγ ′ of γ,

Pop, θ, v |= P =⇒ Pop, θ, γ ′ |=M.

¥

A Symbolic LSC specification S is a finite collection of Symbolic LSCs. As
for plain ULSCs, the semantics of a specification is defined through conjunction:

Pop, γ |= S ⇐⇒ ∀S ∈ S : Pop, γ |= S.

Problem 5.26 (SymLSC-SAT) The satisfiability problem for Symbolic LSCs
SymLSC-SAT is given a Symbolic LSC specification S and a finite set Role,
to decide whether

∃Pop ∈ P : ∃γ ∈ Σω : Pop, γ |= S.

¥

Theorem 5.27 SymLSC-SAT is undecidable. ¥

Proof 5.27

We outline how one can reduce the halting problem of a two-counter ma-
chine, which is known to be undecidable, to SymLSC-SAT. A two-counter
machine (2CM) is a program (i.e. a finite list prog), that has two integer coun-
ters c0, c1 and uses the following statements:

• init is an initialization statement, that resets c0 and c1 to 0. There is
only one init statement, located at line 0 of prog.

• go to l1 or l2, where l1 and l2 are line numbers, with l1, l2 > 0. Executions
must jump (nondeterministically) at line l1 or l2.

• halt is a halting statement. There is only one halt statement. Its effect
is to make the execution back to line zero, i.e. to the init statement.

• inc i, with i = 0, 1. Its effect is to increment counter ci of one unit and
goes on with the statement at the next program line.

• dec i decrements ci and goes on with the statement at the next program
line.

• not i. The execution goes on if ci 6= 0. Otherwise, the execution stops.

• zero i. The execution continues if ci = 0, otherwise, it stops.
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The problem of deciding, given prog, if there is an execution that will eventually
execute halt is undecidable. Remark that, if prog executes halt, then there are
two bounds k0, k1 ∈ N such that ci < ki (i = 0, 1), during the whole execution.

By construction, it is easy to see that

1. determining whether there is an infinite execution that goes infinitely often
through init is undecidable, too. Actually, the same finite execution,
from init to halt can be iterated again and again.

2. if there is such an ever-looping execution, it also uses counter bounds k0
and k1.

In order to encode counter values with Symbolic LSCs, we use agent roles.
In our case, Role = {cntr}. Every agent playing role cntr can assume three
“values”: −1 (meaning unused), 0 and 1. The value of counter ci(i = 0, 1) is
the number of agents assuming value i. We also use a concrete instance, named
“CPU”, which is a “central processing unit”. It executes sequentially the 2CM
statements as prescribed by prog and sets the values of cntr agents. Agent cntr
can receive four messages: “get”, “unset”, “set0”and“set1”. The first one queries
the value currently stored (−1, 0 or 1, thus). The three last messages set the
value.

Figure 5.2: Getting x values

Figure 5.3: Setting x value

The LSC of Fig. 5.4 encodes the semantics of init: it sets c1 and c0 to 0, by
ensuring that there are no cntr agents with values 1 or −1. Then, it proceeds
to the next statement, which is at line number 1.

The CPU sends to itself the line number of the next statement to execute.
If line i is a statement of the form inc 1, this line is translated to the LSC of
Fig. 5.5. In this LSC, some agent in cntr is picked, the value of which is −1
(i.e. it does not belong to any counter), and sets its value to 1. Since all other
agents do not take part in this protocol, their value is unchanged. Remark that
the execution proceeds at the next line, i.e. i+ 1.

The same approach is taken to translate the statement dec 1. This is illus-
trated by Fig. 5.6.
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Figure 5.4: init

Figure 5.5: inc 1

Figure 5.6: dec 1
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Testing whether c0 = 0 is illustrated by Fig. 5.7. The CPU retrieves the
value of all cntr and checks that it is indeed either −1 or 1, i.e. nonzero. The
encoding of c0 6= 0 is presented in Fig. 5.8. CPU simply finds one agent the
value of which is 0. Thus, c0 6= 0, clearly.

Figure 5.7: zero 0

Figure 5.8: not 0

Finally, in Fig. 5.9, the LSC imposes that CPU executes init infinitely
often.

Figure 5.9: halt infinitely often

Thus,

1. all models of the specification execute halt infinitely often (Fig. 5.9);

2. all models of the specification simulate the 2CM.

¤

5.5 Conclusion

In this chapter, we have introduced three extensions to the language of LSCs:
conditions, real-time and symbolic instances. Conditions were part of the ini-
tial definition of the language, by Damm and Harel [42], while the two latter
features have been introduced later on [75, 74, 119]. We formalized these ex-
tensions and have shown that our previous “simple” definitions of LSCs were
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only slightly modified by their introduction. Our previous algorithms are also
straightforwardly adapted to cope with them: conditions, expressed as fluents,
do not require any change to verification and synthesis algorithms, whereas
timed LSCs obliged us to adapt the translation of LSCs to automata to obtain
a translation to timed automata. For symbolic instances, we showed that even
the “simplest” problem, namely satisfiability, is undecidable.

The goal pursued in this chapter was to convince the reader that, although
our previous results regarding expressiveness, succinctness and computational
complexity only considered a restricted subset of LSCs, this subset could be
extended to broaden its applicability. In our formalization, we had to depart
slightly from the definitions given by Harel and Marelly of these extensions.

Regarding conditions, we added a distinction between ASAP and eventual
conditions, in addition to the usual hot/cold condition. Hot conditions must
be verified, while violating some cold condition results in the premature but
successful termination of the chart. ASAP conditions are verified as soon as
they are enabled (i.e. all their successors have been reached), whereas the
execution can wait for some eventual condition to become true.

With respect to time, we obliged clock resets to be associated with events.
Our formalization forbids also clocks to be shared between the prechart and
the main chart. The former requirement is not very restrictive because most
real specifications associate clock resets with events. For instance, all examples
provided by Harel and Marelly do. The latter requirement can be dropped at
the price of a heavier formalization and a semantics which is more difficult to
comprehend.

Symbolic LSCs, as presented here, are very different from what was proposed
by [74]. The two main differences are that we force quantifiers to be linearly
ordered and that variable binding is performed “at once”.

immediate binding In our approach, we bind all variables prior to executing
the chart. Since the main motivation of Harel and Marelly was executabil-
ity, they preferred to bind variables on demand. Namely, when some
message must be sent to a symbolic variable that is not yet bound, this
variable is resolved, according to its quantifier. Here, we try all possible
bindings and keep matching ones.

ordered quantifiers In [74], quantifiers are not ordered, because symbolic
variables are resolved on demand. This can lead to strange behaviours,
because existential and universal quantifiers can be unordered. Thus,
in one execution, they will be interpreted as ∀x : R : ∃y : R′ : (. . .)
whereas in another one, they will rather be ∃y : R′ : ∀x : R : (. . .).
These two sentences have very different meanings and we could not think
of any example in which analyst would write such ambiguous statements
on purpose. Therefore, we preferred to oblige analysts to linearly order
quantifiers.
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Chapter 6

Implementation
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Look! It’s moving. It’s alive. It’s alive... It’s alive, it’s moving, it’s alive, it’s
alive, it’s alive, it’s alive, IT’S ALIVE!”

Dr. Henry Frankenstein, Frankenstein (1931)

6.1 Introduction

We have implemented a set of algorithms into a tool named REMoRDS (Re-
quirements Engineering and Modeling of Reactive Distributed Systems). REMoRDS
is written in Java. Analysts can describe inter-agent specifications using a tex-
tual language. The tool supports the following functionalities, as illustrated by
the screenshot of Fig.6.1.

Syntax check. Checking that the specification is syntactically correct. This
includes interface correctness: agents may only send/receive messages as
specified in the structural part of the specification.

Animation. Executes the specification, according to Marelly and Harel’s play-
out algorithm.

Centralized Realizability Checking. This follows the algorithm presented
in Section 4.5, without mercifulness. REMoRDS features an animator to
provide feedback on the result.

Incomplete Distributed Synthesis. This is the algorithm presented in Sec-
tion 4.6.2. If REMoRDS finds a distributed implementation for some
agent, it generates an FSP (Finite State Process) description of this im-
plementation that can be used in LTSA (Labeled Transition System An-
alyzer) [113, 60].

LTL formula generation. For every scenario in the specification, REMoRDS
generates an LTL formula that can be inserted in an FSP model and model
checked in LTSA.
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We did not provide a graphical editor for LSCs, hence, analysts must trans-
late their LSCs manually to our input language, called LPO (Labeled Partial
Order). In the remainder of this chapter, we will go through a sample session
of distributed reactive system analysis with REMoRDS.

Figure 6.1: REMoRDS: Main functionalities

6.2 Writing a Model

Analysts first have to write a model of the reactive distributed system that they
are planning to analyze. This model is made of three parts:

Structural part that presents the various agent classes, what events they
send, to what other agents, what classes belong to the system and the
list of agents that will be involved in the behavioral part. Every agent is
assigned a class. This part corresponds to the structural view described
in Sec.4.2.1.

Fluent specification that introduces the list of fluents used in the scenar-
ios, with their initial values and their activating/deactivating events, see
Sec.5.2.3.

Inter-Agent specification is made of a list of scenarios. A scenario is simply
a labeled partial order, in which some distinguished locations constitute a
prechart. A special event, start can be used in the prechart, to describe
scenarios occurring only at the beginning of the run. start is an artificial
event that is only fired once, at the beginning of every execution.

REMoRDS features a simple text editor to write models. This makes it
possible to directly edit the model within the tool, save it and parse it.
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REMoRDS’s syntax checker is a standard compiler. It has been built using
JavaCup [88] and JFLex [96]. We present in sec 6.2.1 the grammar for LPO,
in EBNF (Extended Backus-Naur Form). The reader unfamiliar with BNF is
referred to standard textbooks on compilers [3, 180].

Non-terminals are written between less-than (<) and greather-than (>)
signs, while terminals are written between single quotes. EBNF meta-symbols
are

• +, nonempty sequences,

• *, all sequences,

• (, ), for grouping expressions,

• [, ], optional expression.

• {, ..,}, used in range expressions, {x..y} represents all terminals between
terminals x and y according to an implicit order, which is clear from the
context (natural numbers, characters).

• <, >, for surrounding nonterminals,

• ::=, “reduces to” operator,

• |, choice between expressions,

• /*, */, for surrounding comments. Everything appearing between /* and
*/ has no impact on the syntax definition.

• ’, for surrounding terminals.

6.2.1 Extended Backus-Naur Form of LPO

/* Inter-Agent specification */

<iaspec> ::= ’specification’ <id>

<structure>

(<fluent>)*

(<ulsc>)+

<structure> ::= (<agent>)+ <system> <pop>

/* Declaration of an agent class */

<class> ::= ’agent’ <id> <control>

| ’reactor’ <id> <control>

<control> ::= ’controls’ ( <msgidset> ’->’ <class-group> )*

<class-group> ::= <classid> <classidset>

<msgidset> ::= ’{’ <idlist> ’}’

<classid> ::= <id>

<classidset> ::= ’{’ <idlist> ’}’
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/* Which agent classes belong to the system */

<system> ::= ’system’ <classidset>

<pop> ::= ’population’ (<instdecl>)+

<instdecl> ::= <idlistne> ’:’ <id>

/* Declaration of fluents appearing in the specification */

<fluent> ::= ’fluent’ <id> ’= ’

’<’ <eventsetne> ’,’

<eventsetne>

’>’ initially <bool>

/* Declaration of a ULSC */

<ulsc> ::= ’scenario’ <id>

(<locdecl> | <exclusions>)+

<prechart>

[<restricts>]

<locdecl> ::= <id> ’(’ <loclabel> ’)’ ’>’ ’{’ <idlist> ’}’

<exclusions> ::= <id> ’#’ <id>

<prechart> ::= ’with’ ’prechart’ <idset>

<restricts> ::= ’also’ ’restricts’ <eventset>

<loclabel> ::= <event>

| ’assert’ <boolform>

| ’start’

<boolform> ::= <id>

| <boolform> ’&’ <boolform>

| <boolform> ’|’ <boolform>

| ’~’ <boolform>

| <bool>

| ’(’ <bool> ’)’

<bool> ::= ’true’ | ’false’

/* sdr ! msg ? rcvr means

that agent sdr sends msg to agent rcvr. */

<event> ::= <agentid> ’!’ <id> ’?’ <agentid>

<agentid> ::= <id>

<eventlistne> ::= <event> (’,’ <event>)*

<eventlist> ::= [ <eventlistne> ]

<eventset> ::= ’{’ <eventlist> ’}’
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<eventsetne> ::= ’{’ <eventlistne> ’}’

/* Utility expressions (lexical) */

<char> ::= {’A’..’Z’}

| {’a’..’z’}

| {’0’..’9’}

| ’.’

| ’+’

| ’-’

| ’_’

| ’[’

| ’]’

<id> ::= (<char>)+

<idlistne> ::= <id> (’,’<id>)*

<idlist> ::= [ <idlistne> ]

6.2.2 Additional Rules

The grammar is ambiguous, because of boolean formulae. Priority is needed.
Operators priority is |, &, ~. Binary operators are set to be left-associative.

An event s ! m ? r is defined if there is an agent instance s of class cs
and an agent instance r of class cr such that m is controlled by cs and exposed
to cr, in the structural specification.

Well-formedness rules are provided and checked by REMoRDS.

• Agent classes must all have distinct names,

• Agent instances must all have distinct names,

• All agent classes referred to in the structural specification must be de-
clared. Forward references are allowed.

• Fluents only use defined events,

• Scenario names must all be distinct,

• Location labels are built from declared fluents and defined events.

• In a location expression of the form id label > { S }, all location id’s
contained in S have been declared higher up in the same scenario.

• In exclusion expressions of the form x # y, x and y are location id’s
declared higher up in the same scenario.

6.2.3 Example

specification coffee_machine

agent Customer controls
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{giveMoney,askCocoa,claimMoney} -> Machine {}

{takeCup} -> Cup {}

agent Janitor controls

{fill} -> Reservoir {}

reactor Reservoir controls

{pourWater} -> Cup {}

{iAmEmpty} -> Janitor {}

reactor Machine controls

{serveCocoa,moneyBack} -> Customer {}

{prepCocoa} -> Machine {}

{addCocoa} -> Cup {}

{getWater} -> Reservoir {}

agent Cup controls

system {Machine,Reservoir}

population

machine : Machine

reservoir : Reservoir

janitor : Janitor

customer : Customer

cup : Cup

scenario money_back

1 (customer ! giveMoney ? machine) > {};

2 (customer ! claimMoney ? machine) > {};

3 (machine ! moneyBack ? customer) > {1,2};

with prechart {1,2}

also restricts {machine ! serveCocoa?customer}

scenario serve_coffee

1 (customer! giveMoney ?machine) > {};

2 (customer! askCocoa ?machine) > {};

3 (machine! prepCocoa ?machine) > {1,2};

4 (machine! serveCocoa ?customer) > {3};

with prechart {1,2}

also restricts {machine ! moneyBack ? customer}

scenario prep_coffee
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1 (machine ! prepCocoa ? machine) > {};

2 (machine ! addCocoa ? cup) > {1};

3 (machine ! getWater ? reservoir) > {2};

4 (reservoir ! pourWater ? cup) > {3};

5 (machine ! serveCocoa ? customer) > {4};

6 (customer ! takeCup ? cup) > {5};

with prechart {1}

scenario fill_up

1 (reservoir ! pourWater ? cup ) > {}

2 (reservoir ! pourWater ? cup ) > {1}

3 (reservoir ! iAmEmpty ? janitor) > {2}

4 (janitor ! fill ? reservoir) > {3}

with prechart {1,2}

6.2.4 Comments

The textual representation differs from the graphical and abstract representa-
tion in different aspects. First, interfaces are specified at class-level. Then,
agent classes are instantiated to some finite population. In the version pre-
sented in this thesis, we supposed that agent instances were directly specified,
without referring to their class, see Section. 4.2.1.

Second, a sub-class of agents has been introduced, named reactor . A reactor
is an agent who will not spontaneously act. It will only perform some event when
a scenario of the specification requires it to do so. This type was introduced to
reduce the number of runs generated for system agents that are not expected
to act on their own. For instance, Reservoir is a reactor, in Sec. 6.2.3, because
it is not expected to pour water or call the janitor to fill it up spontaneously.
It will only perform these events in response to proper requests: getWater and
two pourWater in a row.

Third, we do not support choice LPO, for some historical reasons. We
started developing REMoRDS in 2003. At that time, we picked another ap-
proach to represent choice in LPOs, namely the addition of an exclusion relation
as in event structures [141]. An exclusion relation # on an LPO 〈L, λ,≤, A〉 is
a symmetric and irreflexive relation on L such that # is inherited along ≤:

l1#l2 and l3 ≥ l1 and l4 ≥ l2 =⇒ l3#l4.

We simply sketch how the transition relation on cuts is adapted: c
e
−→ c′ iff

there is some e-labeled location l not in c such that c′ = c ∪ {l} ∪ {l′|l′#l}.
Thus, when a location l is reached, we ensure that no excluded location will be
reached in the current execution, by removing all excluded locations from the
locations that may be executed in the run (L\ c′). It is easy to see that CLPOs
are exponentially more succinct than LPOs with exclusion relation. This is
akin to the relation between directed acyclic graphs and trees. The algorithms



6.3 Animation 181

presented in Chapter 4 work on CLPOs and their complexity is thus more robust
to the input language. This is the reason why CLPOs were presented in this
thesis instead of LPOs with exclusion relations.

Fourth, we instantiated our generic definition of ULSCs with conditions
to fluents, as explained in Section 5.2. LPO does not support temperatures
on any object (message, location, condition) and does not make it possible to
distinguish between ASAP and eventual conditions. Therefore, all objects are
hot in LPO and conditions are ASAP.

6.3 Animation

When the analyst’s model has been written, translated to LPO, loaded in
REMoRDS and succesfully parsed, its structure is displayed in the left pane
of the editor area, see Fig.6.1. Agents are grouped by classes. Scenarios and
fluents are also displayed. The analyst can easily browse the model.

When a scenario is selected in this browser, one can visualize it as a ULSC
in the “Visualizer” tab of the editor area, as shown in Fig.6.2. Since there
are scenarios in LPO without any equivalent ULSC, the visualizer may display
incorrect ULSC. However, in most cases, the analyzer will first have modelled
the system of interest with ULSCs on papers and afterwards, have translated
it to LPO. In that case, the displayed ULSC is correct, i.e. is equivalent to the
one from which the LPO was derived.

Figure 6.2: REMoRDS: Visualizer

When the analysts is happy with his model, he can start analysing it. A first
step in analysis is executing the model. We implemented Harel and Marelly’s
play-out algorithm in REMoRDS. Our animator is pretty straightforward. Its
user interface is illustrated in Fig.6.3. It is made of two main areas: a “history
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area” and a “current state area”. The history area displays the current trace
while the current state area shows the partial executions of all ULSCs.

The history area displays the animation history in two modes. On the left-
hand side, the execution tree is displayed. The nodes of this tree are labeled by
the states through which the execution passed and the various branches that
were followed. The current state is underlined. When a state that was already
encountered is visited again, the execution “jumps up” in the tree to that state
and all nodes that are labeled by this state are underlined. When a choice is
made, a new branch of the tree is created, along which the execution goes on.
On the right-hand side, the current trace, i.e. the path from the root of the
tree to the current node, is shown as an MSC-like drawing. Two points are
noteworthy. First, this MSC does not follow the usual semantics of MSC, as
the vertical position of two events determine whether they should be ordered.
Second, stuttering, i.e. “do nothing” events are removed, to avoid cluttering the
figure.

Figure 6.3: REMoRDS: Animator

A lower pane also shows what events are required in the current state. It
also lists events that must be delayed in the current state, i.e. those that are
both required and forbidden. This simple diagnoser therefore hints at possibly
conflicting scenarios.

In order to exploit this information, the analyst can visualize all the cuts
reached in the current state, by going to the “current state area”. There, all
the cuts linearized by some suffix of the current execution are listed. When a
cut is selected, the ULSC is drawn in the right-hand side panel and the events
that belong to the cut, i.e. those that have already occurred in the current
execution, are highlighted, as illustrated by Fig.6.4.
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Figure 6.4: REMoRDS: Visualizing a state

If the analyst wants to explore alternative paths, he can double-click any
node in the execution tree and jump to this node.

The interaction loop is simple: at every step, REMoRDS lists all environment-
controlled events that are not forbidden in the current state. The analyst is then
asked to choose from one of them and to tell whether he would like the system to
answer immediately to this stimulus or to input another environment-controlled
event beforehand. If the system is allowed to answer, he picks some event that
is required and not forbidden, performs it and then waits for new input from
the analyst.

Clearly, our animator is very primitive. It lacks many features that can be
found in the play-out engine, such as linking the animator with a mock-up GUI
of the future system [75], or in the AlbertII animation engine, like cooperative
animation [83]. However, it is already very helpful to explain counter-examples
and experiment with specifications.

6.4 Centralized Realizability Checking

When the analyst has written a syntactically correct model and has played
around with it to remove some possible flaws, he can use the “synthesis” algo-
rithm to ensure that his specification is realizable.

The “synthesis” functionality implements the algorithm solving COAD pre-
sented in Section 4.23. Recall that this algorithm works in two steps. First,
it builds a one-pair Streett automaton from which a three-color parity game
graph is constructed. Second, the parity game is solved. We implemented the
first part in Java. For the second part, we call an implementation in C of Vöge
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and Jurdzinski’s algorithm for solving parity games [172]. The result is then
read back to extract a strategy.

Since the strategy cannot be displayed, because it is too large to be read-
able, we have implemented an animator to provide the analyst with feedback.
Remember that the 2-player game underlying the problem of implementability
is determined. Thus, either the system has a strategy implementing correctly
the specification or its environment has a strategy, called here “sabotage plan”,
against which the system will never be able to respect the specification. Thus,
whatever the system does against a sabotage plan, the resulting execution will
violate the condition of Def. 4.8.

Figure 6.5: REMoRDS: Inconsistent specification

In the former case, the animator assumes the role of the system under de-
velopment while the analyst plays the environment. The analyst can choose
among environment-controlled events and watch the system respond according
to the synthesized strategy. If the specification is not implementable, a strat-
egy for the environment is synthesized, see Fig.6.5. In the animation process,
roles are now swapped: the analyst plays the future system and the animator
assumes the role of its environment. Then, the animator demonstrates that the
specification is not consistent by letting the analyst choose system actions and
providing answers driving the system into specification violation.

Our animator has been presented in Sec.6.3. Now, it shall be noted that the
result of animation is not a single trace of events but a tree. This is the essential
difference between model checking of linear time properties and a game-based
approach, like ours. A counter-example is not a single trace of events, but a tree,
the branches of which correspond to choices of the human operator. Against
every such choice, the animator replies in such a way that the specification
will always be met (implementable specification) or that will force the operator
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to eventually violate it (sabotage plan). Our animator supports backtracking;
by clicking on a tree node, the operator can go back to this choice node, make
another choice and creating another sub-tree. Identical nodes, which are roots of
isomorphic sub-trees, are identified. This avoids generating very large execution
trees.

REMoRDS’ synthesizer also works in a progressive fashion. It does not
attempt to build the whole game graph immediately but rather constructs an
abstract version of it. It explores the game graph up to a user-specified depth
and width. Then, all states on the frontier of this zone, which have thus not
yet been expanded are considered correct for the system. If a sabotage plan
can be found on this smaller graph, the whole implementation is not realizable.
Furthermore, the sabotage plan is a correct counter-example. The synthesizer
also tries the other combination, by letting the system lose on frontier states.
Then, if an implementation can be synthesized on the abstract game graph, it
is a correct implementation of the whole specification.

In the case of CTAS, we were unable to synthesize an implementation on
a pentium III 800Mhz computer with 256Mb RAM. REMoRDS ran out of
memory after about 15 minutes and consuming more than 200 Mb of memory.
In practice, we have found that REMoRDS can deal with specifications of less
than nine scenarios, yielding Streett automata of around 10,000 states and
400,000 transitions. When faced with larger specifications, REMoRDS runs
out of memory.

6.5 Incomplete Distributed Synthesis

The incomplete distributed synthesis algorithm has also been implemented in
REMoRDS. The analyst needs to specify the name of the agent to be synthe-
sized, in addition to an intra-object specification.

Remember that incomplete distributed synthesis resorts to game solving for
checking that the SDI (Standard Distributed Implementation) is correct or can
be refined to a correct implementation. Again, we use the algorithm of Vöge
and Jurdzinski as a toolbox. Analysts can also be provided with feedback using
REMoRDS’ animator.

If a correct distributed implementation is built, REMoRDS translates it to
dot and FSP. The former allows one to visualize small implementations as an
automaton graph, automatically layed out using Bell Labs’s Graphviz software
[50]. The latter makes a process that can readily be inserted in an FSP model
and analyzed in LTSA [113]. Thus, a synthesized model of a component can be
taken and plugged in the design model of the system.

6.6 LTL Formula Generation

Once the analyst has obtained a satisfactory inter-agent specification, which is
implementable, he can turn to the problem of designing an intra-agent model. In
order to do so, we rely on the LTSA (Labeled Transition System Analyzer) that
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has been developed at Imperial College [113]. The analyst writes his intra-agent
specification as an FSP (Finite State Process), with the additional constraint
that communication events must be expressed as sender.event.receiver.
Then, REMoRDS can be used to generate LTL formulae from the inter-agent
specification. Those formulae can be input to LTSA and model checked, to
ensure that the intra-agent model complies with the initial inter-agent specifi-
cation.

Fig.6.6 shows a window containing the LTL formula translated from the
selected ULSC which pops up. Its content can then be copied-and-pasted to
LTSA. Our translation takes advantage of the fact that conditions containing
arbitrary boolean combinations of fluents can be used in ULSCs. Of course,
one has to ensure that all fluents defined in the LPO file are also defined in the
FSP model. REMoRDS uses the formula presented in Th. 3.40. We chose to
resort to the theoretically inefficient formula because it gives very good practical
results. The polynomial translation is more intricate and is not of a great
practical help, for its power is high (O(n5)). The translation process is rather
straightforward and relies on a depth-first traversal of the cut transition system.
For performance matters, REMoRDS ensures that it never generates twice the
same sub-formula in the same execution. The formula corresponding to a cut
is cached and reused later if it needs to appear in another context.

Figure 6.6: REMoRDS: translating ULSC to LTL

It takes less than a second to generate the formula of every scenario of
our CTAS case study. Of course, this is but the simplest job in the verification
process: an external model checker needs to verify it afterwards, which is highly
resource-consuming.
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Conclusion

Always look on the bright side of life . . .

Monty Python’s Life of Brian

This thesis studied a novel approach to engineering reactive distributed
systems, described by Harel in [71]. In this approach, instead of manually
deriving a design model from informal user requirements, those requirements
are first translated to a formal inter-agent specification language, named Live
Sequence Chart (LSC). This language is based on scenarios, which have proven
their usefulness for communication with non-technical stakeholders [174]. Then,
a design model, i.e. an intra-agent specification, is derived from this inter-
agent specification. It is postulated that the translation of user requirements
to LSC is a straightforward activity. This hypothesis is not irrelevant, as we
demonstrated on a real-world case study, taken from NASA’s Center TRACON
Automation System [12]. Because scenarios are widely used to communicate
user requirements [174], we can reasonably expect LSC to be applicable to many
projects. The adoption of LSC could be sustained by the fact that LSC belongs
to the sequence chart family, a family of languages the root of which is Message
Sequence Chart, a widespread scenario-based language, standardized by ITU
[166]. This family also contains UML’s Interaction Diagrams, that were called
Sequence Diagrams [130].

Since LSC is a fully formal language, it can be manipulated by computers.
Therefore, it is natural to expect the translation from LSC to state machines to
be automated. There are nowadays many algorithms deriving state machines
from sequence charts models but most of these algorithms are poorly specified.
The relationship between the behaviour of the synthesized system and the be-
haviour specified by its inter-agent model is often left implicit. In most cases,
the only relationship is the trivial fact that the system has been derived from
the specification using the particular algorithm presented by its authors. We
payed special attention to following a neater approach. LSCs were formally de-
fined and we also precisely defined what, in our opinion, is an inter-agent and an
intra-agent specification. These models had to render the intuitive properties
of our systems of interested, namely distribution and openness. We also spent
much effort to come up with a proper notion of “correct implementation”. Our
definition amounts to saying that “an intra-agent model correctly implements
an inter-agent specification, if, whenever this model is deployed in environ-
ments respecting the assumptions stated in the inter-agent specification, the
specification is met.” This approach, that separates responsibilities from the
environment from system responsibilities as long been advocated by Jackson
[66, 187, 91] and is now widely recognized as a best practice of Requirements
Engineering. Using LSC, one can transparently specify hypothesis on the en-
vironment and guarantees that must be probided by the future system. Once
we had a formal definition of what a correct implementation is, we could also
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precisely specify the various problems implied by the transformational approach
of Fig.4. In this thesis, we defined three classes of problems:

Analysis problems are related to assessing the soundness of manual trans-
formations of inter-agent specifications. We considered two types of such
problems: use case checking and refinement. The former verifies that the
combination of all constraints put by the inter-agent specification on the
future system behaviour still allow a certain execution. The latter checks
that a transformation of the specification still preserves all linear-time
properties of the original specification.

Verification problems are related to checking that a certain intra-agent spec-
ification complies with a given inter-agent specification. We presented
several variants of these problems, depending on whether the system is
open or not, and distributed or not.

Synthesis problems are related to the derivation of an intra-agent specifica-
tion from an inter-agent specification. We considered two types of prob-
lems: centralized synthesis, which is to derive a monolythic system made
of a single component, and distributed synthesis, which builds a system
of several components, communicating through described interfaces.

Specifying more clearly those problems puts us in a more comfortable po-
sition. First, we could devise algorithms solving these problems, prove them
to be correct, analyse their efficiency and discuss their optimality. Problems
themselves become first-class objects of study. Their difficulty can be assessed
and their definition can be criticised.

Name Open Distributed Complexity

use case checking n/a n/a PSPACE-complete
refinement n/a n/a PSPACE-complete

verification no no coNP-complete
verification yes no PSPACE-complete
verification no yes PSPACE-complete
verification yes yes PSPACE-complete

synthesis no no PSPACE-complete
synthesis yes no EXPTIME-complete
synthesis yes yes undecidable

Table 6.1: Complexity of problems

We gave algorithmic solutions to all these problems and have shown them
to be intractable, according to the theory of computational complexity, see
Tab. 6.1. All our algorithms were optimal. The most interesting problem in
the above list, namely distributed synthesis, is undecidable. This means that
there exists no algorithm which can derive a distributed implementation from
an inter-agent specification, if such an implementation exists, or refuse to do
so, if it does not exist.
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Having a formal specification of our problems gave us two more advantages.
First, we could discuss incomplete solutions. That is, algorithms that are able to
solve partially the problem. Using the problem specification, we can clearly tell
what one can expect from these partial solutions. For instance, we provided a
sound distributed synthesis algorithm. When this algorithm succeeds in build-
ing a distributed implementation, the user is guaranteed that a correct solution
to the problem has been found. Failure to synthesise an implementation might
be a false negative: a solution might exist even though the algorithm did not
find one.

Second, we could discuss the problem definition itself. We proposed to
slightly modify the definition of synthesis to take some quality criterion into
account, which we called mercifulness. We adapted our synthesis algorithm to
deal with mercifulness.

In Chapter 6, we proposed an implementation of several algorithms re-
lated to the various problems presented above. This implementation, named
REMoRDS, makes it possible to specify a reactive distributed system using
LPO, a textual version of LSC, synthesise a centralized implementation from
it and generate temporal logic formulae that can be input in LTSA, a model
checker for Finite State Processes [113].

We investigated the cost of extending LSC with conditions, real-time and
symbolic instances. Conditions can be introduced at no cost: all problems re-
main in the same complexity class as before. Real-time is introduced almost at
no cost: all problems remain in the same class, except verification of central-
ized and closed systems, which becomes PSPACE-complete. Adding symbolic
instances to LSC introduces first-order quantification on agents and makes satis-
fiability undecidable. As a corollary, one can easily prove that all other problems
are also undecidable. Our simple formalization is nicely extended when those
features are introduced. We thus provide a neat formalization of conditions,
real-time and symbolic instances. Our approach is purely declarative and much
shorter than the operational semantics described in the papers that originally
introduced them [75, 74, 119, 42].

Our complexity results are mostly negative and may thus sound as bad
news. Such results are certainly unexpected for most practitioners, because,
as described in Sec. 3.3.2, LSC is a rather inexpressive language. By having
sacrificed most of Temporal Logic expressiveness, one would have hoped to get
some efficiency improvement in return. The results are pretty sad: even when
using LSCs, all problems are still too hard. One would be very much tempted
to state that moving “from play-in scenarios to code is an unachievable dream”.
As a concluding remark, we explain that such a remark needs to be mitigated.

First, this thesis puts forward a few positive results as well. There are two
problems which are significantly easier on LSC than on LTL. First, central-
ized synthesis is EXPTIME-complete on LSC and 2EXPTIME-complete on LTL
[135]. Since EXPTIME is strictly included in 2EXPTIME, this represents a great
improvement on efficiency. Well, of course, this is a purely theoretic improve-
ment, as EXPTIME is far beyond the reach of practical algorithms. Second,
closed centralized verification is only coNP-complete on LSC and is PSPACE-
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complete on LTL. This is good news, even practically. Indeed, there is an
immediate sub-class of LSC for which verification can be done in polynomial
time (resp. linear time): the class of LSC with polynomially many (resp. lin-
early many) linearizations. This class might look artificial, but actually most
real-world scenario-based specifications tend to specify a total or quasi-total
ordering among their events.

Then, the undecidability result obtained does not mean that this line of
research shall be abandoned. Such results obliges one not to set too high expec-
tations. The overall transformational approach outlined by Harel (see Fig.4)
still makes sense and research in this direction shall be pursued. We showed
that it was undecidable whether a specification is consistent, i.e. essentially
can be implemented and deployed in adverse environments without running
into deadlocks. The same problem is found with all programming languages:
it is undecidable whether they contain bugs and yet, millions of programs are
compiled and used everyday around the globe. The same idea transposes to
model transformation: semantic-preserving transformations from specification-
level models to design-level models would be greatly useful to improve current
engineering practice. Such transformations would of course also transfer prob-
lems from the specification level to the design level, just as usual compilers
transform problems in source code into executable bugs. Compilation is thus
a first possible track to follow to achieve the scenario-based transformational
software engineering dream.

Prototyping with scenarios has also a proven track record. Marelly and
Harel’s work on play-in and play-out of scenarios [75] has raised great hopes
for fast prototyping of systems. This prototype could even be used as a final
implementation, thus removing the need for programming the system. Simple
scenarios would thus be grafted on an existing application, with simple func-
tions, in order to provide it with a reactive behaviour, this behaviour being
enacted by a universal interpreter as the play-out engine.
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d’études approfondies, Facultés Universitaires Notre-Dame de la Paix,
Institut d’Informatique (University of Namur, Computer Science Dept),
Namur, Belgium, September 2003.

[25] Yves Bontemps. On the semantics of uml 2.0 interaction diagram. Tech-
nical report, University of Namur, Institut d’Informatique, 2004.

[26] Yves Bontemps, Patrick Heymans, and Hillel Kugler. Applying LSCs to
the specification of an air traffic control system. In Sebastian Uchitel and
Francis Bordeleau, editors, Proc. of the 2nd Int. Workshop on “Scenarios
and State Machines: Models, Algorithms and Tools” (SCESM’03), at the
25th Int. Conf. on Soft. Eng. (ICSE’03), Portland, OR, USA, May 2003.
IEEE. available at http://www.info.fundp.ac.be/~ybo.

[27] Yves Bontemps, Pierre-Yves Schobbens, and Christof Löding. Synthesiz-
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charts for component-based formal verification. In Proc. of OOPSLA 2001
Workshop on Specification and Verification of Component-Based Systems,
Tampa Bay, FL, USA, October 2001.

[56] FUJABA : From UML to Java And BAck Again (Uni-
versity of Padeborn). http://www.uni-paderborn.de/cs/ag-
schaefer/Lehre/PG/Fujaba/fujaba.html.

[57] Paul Gastin, Benjamin Lerman, and Marc Zeitoun. Distributed games
and distributed control for asynchronous sytems. In Proc. of Latin Amer-
ican Theoretical Informatics (LATIN’04), April 2004.

http://www.graphviz.org


BIBLIOGRAPHY 199

[58] Thomas Gehrke, Michaela Huhn, Peter Niebert, Arend Rensink, and
Heike Wehreim. A Process Algebra Semantics for Message Sequence
Charts Including Conditions. In König and Lagerdörf, editors, Proc. of
the 8th GI/ITG Workshop Formale Beschreibungstechniken für verteilte
Systeme (FBT ’98) (Formal Description Techniques for Distributed Sys-
tems), pages 185–196. Shaker, 1998.

[59] Blaise Genest, Marius Minea, Anca Muscholl, and Doron Peled. Speci-
fying and verifying partial order properties using template msc. In Igor
Walukiewicz, editor, Proc. of Foundations of Software Science and Com-
putation Structure (FoSSaCS), volume 2987 of Lect. Notes in Computer
Science, pages 195–210, Barcelona, March 2004. Springer.

[60] Dimitra Giannakopoulou and Jeff Magee. Fluent model checking for
event-based systems. In Proc. of the 4th joint meeting of the European
Software Engineering Conference and ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE 2003), Helsinki, Fin-
land, September 2003.

[61] Martin Glinz. An Integrated Formal Model of Scenarios Based on State-
charts. In Proceedings of ESEC’95 - 5th European Software Engineering
Using Scenarios, pages 254–271, Berlin, 1995. Springer-Verlag.

[62] Patrice Godefroid. Partial-Order Methods for the Verification of Concur-
rent Systems: An Approach to the State-Explosion Problem. Springer,
1996. Foreword By-Pierre Wolper.
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[115] Erkki Mäkinen and Tarja Systä. Acta informatica. Minimally Adequate
Teacher Synthesizes Statechart Diagrams, 38:235–259, 2002.

[116] Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete
controllers for timed systems. In E.W. Mayr and C. Puech, editors, Proc.
of STACS’95, volume 900 of Lect. Notes in Computer Science, pages 229–
242. Springer, 1995.

[117] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Sys-
tems: Safety. Springer-Verlag, New-York, 1995.

[118] Zohar Manna and Pierre Wolper. Synthesis of communicating processes
from temporal logic specifications. ACM Transactions on Programming
Languages and Systems (TOPLAS), 6(1):68–93, 1984.

[119] Rami Marelly, David Harel, and Hillel Kugler. Multiple Instances and
Symbolic Variables in Executable Sequence Charts. In Proc. 17th Ann.
ACM Conf. on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA’02), pages 83–100, Seattle, WA, 2002.



204 BIBLIOGRAPHY

[120] Donald A. Martin. Borel determinacy. Annals of Mathematics, 102:363–
371, 1975.

[121] Sjouke Mauw and L.M.G Feijs. MSC and Data. In Yair Lahav, Adam
Wolisz, Joachim Fischer, and Eckhardt Holz, editors, Proc. of SAM98
- 1st workshop on SDL and MSC,, pages 85–96, Humboldt-Universität,
1998. SDL Forum Society on SDL and MSC. number 104 in Informatik-
berichte.

[122] Sjouke Mauw and Michel Reniers, A. Operational Semantics for MSC’96.
Computer Networks and ISDN Systems, 17(31):1785–1799, 1999.

[123] Sjouke Mauw, Michel A. Reniers, and T.A.C. Willemse. Handbook of Soft-
ware Engineering and Knowledge Engineering, volume 1 (Fundamentals),
chapter Message Sequence Charts in the Software Engineering Process,
pages 437–463. World Scientific Publishing Co. Pte. Ltd., December 2001.

[124] Ken McMillan, L. Symbolic Model Checking. Kluwer Academic Publiish-
ers, 1993.

[125] R. McNaughton and S. Pappert. Counter-free Automata. MIT Press,
1971.

[126] Henry Muccini. An approach for detecting implied scenarios. In Proc.
ICSE 2002 Workshop on ”Scenarios and State Machines: Models, Algo-
rithms, and Tools”, Orlando, Florida, 2002.

[127] Jishnu Mukerji and Joaquin Miller. Mda guide v 1.0.1 (omg), March 2003.

[128] Anca Muscholl and Doron Peled. Deciding properties of message sequence
charts. In Stefan Leue and Tarja Systä, editors, Proceedings of Dagstuhl
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