
Tampere University Dissertations 659

Succinctness and
Formula Size Games

MIIKKA VILANDER

TUNI_Vilander_Miikka_kansi.indd 1 1.9.2022 11:42:21

Tampere University Dissertations 659

MIIKKA VILANDER

Succinctness and Formula Size Games

ACADEMIC DISSERTATION
To be presented, with the permission of

the Faculty of Engineering and Natural Sciences
of Tampere University,

for public discussion in the auditorium B1096
of the Pinni B building, Kanslerinrinne 1, Tampere,

on 23 September 2022, at 12 o’clock.

ACADEMIC DISSERTATION
Tampere University, Faculty of Engineering and Natural Sciences
Finland

Responsible
supervisor

Professor Esko Turunen
Tampere University
Finland

Supervisor Professor Lauri Hella
Tampere University
Finland

Pre-examiners Professor Hans van Ditmarsch
Open University of the Netherlands
Netherlands

Professor Martin Grohe
RWTH Aachen University
Germany

Opponent Professor Juha Kontinen
University of Helsinki
Finland

Custos Professor Lauri Hella
Tampere University
Finland

The originality of this thesis has been checked using the Turnitin OriginalityCheck
service.

Copyright ©2022 Miikka Vilander

Cover design: Roihu Inc.

ISBN 978-952-03-2540-4 (print)
ISBN 978-952-03-2541-1 (pdf)
ISSN 2489-9860 (print)
ISSN 2490-0028 (pdf)
http://urn.fi/URN:ISBN:978-952-03-2541-1

Carbon dioxide emissions from printing Tampere University dissertations
have been compensated.

PunaMusta Oy – Yliopistopaino
Joensuu 2022

ACKNOWLEDGEMENTS

First and foremost I would like to thank my supervisor Lauri Hella. You have been

an inspiring supervisor, a skilled co-author and a kind friend. This thesis would not

have been possible without you.

I would also like to thank my other co-author Martin Lück and his thesis supervisor

at the time Heribert Vollmer. Thank you for the opportunity to visit Hannover and

work with you.

I would like to thank the pre-examiners Hans van Ditmarsch and Martin Grohe for

your careful reading of this thesis and your kind comments on it.

Thank you to my colleagues in both campuses of Tampere University for a welcom-

ing and inspiring atmosphere. Whether the topic was mathematics or the weather, I

always had someone to talk to at work.

Thank you to my family for always being there for me. Thank you to my friends

for all the good times and support. Thanks to all of you, even if work on the thesis

was hard, life never was.

And finally thank you to my wife Anni for everything.

This thesis was financially supported by the Doctoral Programme in Engineering

and Natural Sciences at TUT and later TAU as well as the Academy of Finland

project Explaining AI with logic (XAILOG), project number 345612.

Tampere, September 2022

Miikka Vilander

iii

iv

ABSTRACT

This thesis studies the succinctness of various logics using formula size games. The

succinctness of a logic refers to the size of formulas required to express properties.

Formula size games are some of the most successful methods of proof for results on

succinctness. The contribution of the thesis is twofold. Firstly, we define formula

size games for several logics, providing methods for future research. Secondly, we

use these games and other methods to prove results on the succinctness of the studied

logics.

More precisely, we develop new parameterized formula size games for basic modal

logic, modal 𝜇-calculus, propositional team logic and generalized regular expressions.

For the generalized regular expression game we introduce variants that correspond

to regular expressions and the newly defined RE over star-free expressions, where

stars do not occur inside complements.

We use the games to prove a number of succinctness results. We show that

first-order logic is non-elementarily more succinct than both basic modal logic and

modal 𝜇-calculus. We conduct a systematic study of the succinctness of defining

common atoms of dependency in propositional team logic. We reprove a classic

non-elementary succinctness gap between first-order logic and regular expressions in

a much simpler way and establish a hierarchy of expressive power for the number

of stars in RE over star-free expressions.

Many of the above results utilize explicit formulas in addition to game arguments.

We use such formulas and a type counting argument to obtain non-elementary lower

and upper bounds for the succinctness of defining single words in first-order logic

and monadic second-order logic.

v

vi

TIIVISTELMÄ

Tämä väitöskirja tutkii erilaisten logiikoiden tiiviyttä kaavan pituuspelien avulla.

Logiikan tiiviys viittaa ominaisuuksien ilmaisemiseen tarvittavien kaavojen kokoon.

Kaavan pituuspelit ovat hyväksi todettu menetelmä tiiviystulosten todistamiseen.

Väitöskirjan kontribuutio on kaksiosainen. Ensinnäkin väitöskirjassa määritellään

kaavan pituuspeli useille logiikoille ja tarjotaan näin uusia menetelmiä tulevaan tut-

kimukseen. Toiseksi näitä pelejä ja muita menetelmiä käytetään tiiviystulosten todis-

tamiseen tutkituille logiikoille.

Tarkemmin sanottuna väitöskirjassa määritellään uudet parametrisoidut kaavan

pituuspelit perusmodaalilogiikalle, modaaliselle 𝜇-kalkyylille, tiimilauselogiikalle ja

yleistetyille säännöllisille lausekkeille. Yleistettyjen säännöllisten lausekkeiden pelistä

esitellään myös variantit, jotka vastaavat säännöllisiä lausekkeita ja uusia “RE over

star-free” -lausekkeita, joissa tähtiä ei esiinny komplementtien sisällä.

Pelejä käytetään useiden tiiviystulosten todistamiseen. Predikaattilogiikan näytetään

olevan epäelementaarisesti tiiviimpi kuin perusmodaalilogiikka ja modaalinen 𝜇-kalkyyli.

Tiimilauselogiikassa tutkitaan systemaattisesti yleisten riippuvuuksia ilmaisevien atom-

ien määrittelemisen tiiviyttä. Klassinen epäelementaarinen tiiviysero predikaattilogi-

ikan ja säännöllisten lausekkeiden välillä osoitetaan uudelleen yksinkertaisemmalla

tavalla ja saadaan tähtien lukumäärälle “RE over star-free” -lausekkeissa hierarkia

ilmaisuvoiman suhteen.

Monissa yllämainituista tuloksista hyödynnetään eksplisiittisiä kaavoja peliargu-

menttien lisäksi. Tällaisia kaavoja ja tyyppien laskemista hyödyntäen saadaan epäele-

mentaarisia ala- ja ylärajoja yksittäisten sanojen määrittelemisen tiiviydelle predikaat-

tilogiikassa ja monadisessa toisen kertaluvun logiikassa.

vii

viii

CONTENTS

1 Introduction . 1

1.1 Succinctness . 1

1.2 Formula size games . 3

1.3 Other methods . 6

1.4 Research objectives . 7

1.5 Structure of the dissertation . 8

2 Background . 9

2.1 First-order logic . 9

2.2 Modal logic and modal mu-calculus 11

2.3 Team semantics . 14

2.4 Logics on words . 17

3 Results and discussion . 21

3.1 Modal logics . 21

3.2 Propositional team logics . 22

3.3 Logics on words . 24

4 Conclusions and future outlook. 27

4.1 Summary of results . 27

4.2 Future directions . 28

References . 31

Publication I . 39

Publication II . 75

Publication III . 105

ix

Publication IV . 123

x

LIST OF SYMBOLS AND ABBREVIATIONS

D Delilah, the second player of formula size games

𝐷 (A,B) the density of the sets of teams A and B

Dim(𝜑) the upper dimension of the propositional team formula 𝜑

DN(𝐿) the definability number of the fragment 𝐿

EF-game Ehrenfeucht-Fraïssé game

FO first-order logic

FO𝑘 the quantifier rank 𝑘 fragment of FO

FO[𝑛] the size 𝑛 fragment of FO

FSΦ𝑘 (A,B) the formula size games forML and propositional team logic

𝜇−FSΦ𝑘 (A,B) the formula size game for modal 𝜇-calculus

GFP greatest fixed point

GRE generalized regular expressions with complement

GRES(𝑘, 𝑠, 𝐴, 𝐵) the GRE size game

H(𝐿) the Hanf number of the fragment 𝐿

LFP least fixed point

𝐿𝜇 modal 𝜇-calculus

log∗ the iterated logarithm function

LS(𝐿) the Löwenheim-Skolem number of the fragment 𝐿

ML basic modal logic

ML2 two-dimensional modal logic

MSO monadic second-order logic

xi

MSO𝑘 the quantifier rank 𝑘 fragment ofMSO

MSO[𝑛] the size 𝑛 fragment ofMSO

PL(Σ) propositional team logic with the connectives in Σ

PL({∧,�,∨,∨� }) the existential fragment of propositional team logic

qr(𝜑) the quantifier rank of the formula 𝜑

RE regular expressions

RES(𝑘, 𝑠, 𝐴, 𝐵) the RE size game

RESFS(𝑘, 𝑠, 𝐴, 𝐵) the RE over star-free expression size game

S Samson, the first player of formula size games

sz(𝜑) the size of the formula 𝜑

twr the exponential tower function

𝑉𝑛 level 𝑛 of the cumulative hierarchy of finite sets

� the truth relation between models and formulas

∨ disjunction connective, ‘or’, in propositional team logic the lax

splitting disjunction

∧ conjunction connective, ‘and’

¬ negation connective, ‘not’, in propositional team logic the dual

negation, in RE the complement operator

� logical constant verum, always true

⊥ logical constant falsum, always false

∃ the existential quantifier, ‘there is’

∀ the universal quantifier, ‘for all’

♦ the existential diamond operator of modal logic

� the universal box operator of modal logic

𝜇𝑋 the least fixed point operator in modal 𝜇-calculus

𝜈𝑋 the greatest fixed point operator in modal 𝜇-calculus

� the intuitionistic or Boolean disjunction in propositional team

logic

xii

∨� the strict splitting disjunction in propositional team logic

⊗ the lax splitting conjunction in propositional team logic

⊗� the strict splitting conjunction in propositional team logic

∼ the contradictory or Boolean negation in propositional team

logic

=(𝛼� ; 𝛽�) a dependence atom

𝛼� ⊥ 𝛽� an independence atom

𝛼� ⊥𝛽� 𝛾� a conditional independence atom

𝛼� ⊆ 𝛽� an inclusion atom

𝛼� | 𝛽� an exclusion atom

𝛼�Υ𝛽� an anonymity atom

·∗ the Kleene star

𝜒(G) the colouring number of the graph G

xiii

xiv

ORIGINAL PUBLICATIONS

Publication I Lauri Hella and Miikka Vilander. “Formula size games for modal

logic and 𝜇-calculus”. In: J. Log. Comput. 29.8 (2019), pp. 1311–

1344. DOI: 10.1093/logcom/exz025.

Publication II Martin Lück and Miikka Vilander. “On the Succinctness of

Atoms of Dependency”. In: Log. Methods Comput. Sci. 15.3

(2019). DOI: 10.23638/LMCS-15(3:17)2019.

Publication III Miikka Vilander. “Games for Succinctness of Regular Expres-

sions”. In: Proceedings 12th International Symposium on Games,

Automata, Logics, and Formal Verification, GandALF 2021,

Padua, Italy, 20-22 September 2021. Ed. by Pierre Ganty and

Davide Bresolin. Vol. 346. EPTCS. 2021, pp. 258–272. DOI:

10.4204/EPTCS.346.17.

Publication IV Lauri Hella and Miikka Vilander. “Defining Long Words Suc-

cinctly in FO and MSO”. In: Revolutions and Revelations in

Computability - 18th Conference on Computability in Europe, CiE

2022, Swansea, UK, July 11-15, 2022, Proceedings. Ed. by Ulrich

Berger et al. Vol. 13359. Lecture Notes in Computer Science.

Springer, 2022, pp. 125–138. DOI: 10.1007/978-3-031-08740-

0_11.

xv

Author’s contribution

Publication I Miikka Vilander wrote the entire article with the exception of

the introduction, which was written by Lauri Hella. The results

and proofs were jointly devised by both authors based on initial

ideas of Lauri Hella.

Publication II The ideas for the results and proofs were devised jointly by both

authors. Miikka Vilander wrote parts of the Introduction and

Preliminaries, as well as Subsections 3.1 and 3.2 having to do

with the formula size game. Martin Lück wrote the rest of the

paper with constant feedback from Miikka Vilander.

Publication III Miikka Vilander wrote the paper with some comments and feed-

back from Lauri Hella.

Publication IV The ideas for the results and proofs were born in joint discus-

sions. Lauri Hella wrote Section 3 with the upper bounds and

Miikka Vilander wrote Sections 4 and 5, including the explicit

formulas. The rest of the sections were written collaboratively.

xvi

1 INTRODUCTION

Mathematical logic is a field of mathematics that concerns formal languages called

logics. These differ from natural language in that they have very strict syntax and

semantics. Indeed logics are more akin to programming languages than natural lan-

guage. A string of symbols formed correctly using the syntax of a logic is called a

formula. On the semantic side we have models of the logic. These are the objects

that give meaning to formulas of the logic. A given formula is either true or false

in a given model. If we gather all of the models that satisfy a formula, this class of

models is the property defined by the formula. We can then consider what kind

of properties the logic can define. This is called expressive power and has been the

subject of extensive research. Taking things one step further, one can consider the

size of the formulas that define these properties. If a property can be defined in two

different logics, there can be substantial differences between the sizes of formulas

required. This phenomenon is often referred to as succinctness and is the topic of

this dissertation.

1.1 Succinctness

The term succinctness refers to the size of formulas required to express properties.

Formula size could in principle be defined as the number of symbols in the formula

as a string. In practice, however, symbols deemed inconsequential such as paren-

theses are often omitted from the definition, ending up at something more akin to

the number of nodes in the syntax tree of the formula. The relative succinctness of

two logics is often discussed in the following way. We say that a logic L1 is, for

example, exponentially more succinct than another logic L2 if there is a sequence of

L1-formulas (𝜑𝑛)𝑛∈N such that for any sequence (𝜓𝑛)𝑛∈N of equivalent L2-formulas,

the size of each 𝜓𝑛 is at least exponential in the size of 𝜑𝑛. This can of course be

formulated for any function 𝑓 but the most commonly discussed cases are (double)

1

exponential and non-elementary gaps in succinctness. Here non-elementary means

that the function 𝑓 grows faster than any exponential tower of constant height. Poly-

nomial differences in succinctness between logics are usually not considered relevant

results.

Note that this definition of succinctness leaves open the possibility that two logics

L1 and L2 can both be, say, exponentially more succinct than the other. This is

intentional, as in some cases logics can be, perhaps by design, very apt at defining

some types of properties succinctly while requiring large formulas for others. An

example of this is given by [26], where Hoek et al. show that two extensions of

multimodal logic are both exponentially more succinct than each other.

Succinctness can be seen as a more fine grained version of expressive power as

logics with the exact same expressive power can be very different in terms of suc-

cinctness. In the context of comparing formalism for knowledge representation,

Gogic et al. [14] argue that succinctness is “a much more interesting, but also more

subtle question one can ask about a knowledge representation formalism” compared

to expressive power.

Aside from independent interest, succinctness also has connections to complexity.

Often, if a logic can express properties very succinctly, this comes at the cost of higher

complexity of satisfiability or model checking. An example of this is given by two-

variable first-order logic FO2 and a weak version of temporal logic called unary-TL.

Etessami et al. proved in [9] that these two logics have the same expressive power over

𝜔-words, but FO2 is exponentially more succinct than unary-TL. Accordingly, the

complexity of satisfiability for FO2 is NEXPTIME-complete, while the complexity

of unary-TL is in NP [33]. However, more succinctness does not always imply

higher complexity. For example, public announcement logic PAL is exponentially

more succinct than epistemic logic EL, but the complexity of satisfiability is the same

for both of them [30].

We would also argue that succinctness has connection to a notion of natural

expression. Formulas with immense size can hardly be considered natural or un-

derstandable to a human reader as even reading them would take an unreasonable

amount of time. Thus we could say that an extent of succinctness is necessary for a

formula to be considered natural. In finite cases these immense formulas can essen-

tially be just lists of the models that satisfy the property. The exponential formulas

given for atoms of dependency in Publication II have this flavor as they utilize lists

2

of all propositional valuations in 𝑛 variables. One could argue that if a property is

very easy to convey in natural language, then listing the models is not a very natural

way to express that property.

On the other hand, logics with high complexity can have very succinct formu-

las that are nevertheless difficult to understand. We would consider any property

with more than one necessary fixed point alternation in modal 𝜇-calculus hard to

understand. These kinds of definitions could also be considered unnatural so the

relationship between succinctness and natural expression is not straightforward.

1.2 Formula size games

Succinctness is clearly an important area of research but it is also a challenging one.

In [5] Buchfuhrer and Umans show that already in propositional logic, the problem

of finding the smallest Boolean formula equivalent to a given formula is complete

for the second level of the polynomial hierarchy under Turing reductions. It is

reasonable to expect difficulties with the succinctness of more complex logics. Some

of the foremost methods used to tackle the difficulty of succinctness are formula size

games.

The lineage of formula size games can be traced back to a 1981 paper by Immer-

man [28]. He defined a so called separability game that characterized the number

of quantifiers in formulas. Even though this is not the same as the size of the for-

mula, it is markedly closer to it than the more traditionally considered quantifier

depth. The first full formula size game for propositional logic was defined in 1990

by Razborov in [32]. Both the games of Immerman and Razborov seem to have

gone largely unnoticed by the logic community and in 2003 Adler and Immerman

defined their formula size game in [1] for first-order logic with a transitive closure

operator and for a temporal logic called CTL+. This is the version cited by many

later works as inspiration for their games.

Formula size games are somewhat akin to the Ehrenfeucht-Fraïssé games, or EF-

games, widely used in finite model theory. For more on EF-games see e.g. [7]. Both

games have two players we refer to as S and D. In EF-games these players have the

names Spoiler and Duplicator, reflecting the roles of the players in EF-games. For

formula size games these names seem somewhat inaccurate so we instead use the more

neutral Samson and Delilah and refer to them as he and she, respectively. While EF-

3

games characterize the quantifier depth of first-order formulas required to separate

two structures, formula size games instead characterize the size of formulas required

to separate two sets of structures. The main theorem of any formula size game has

more or less the following form, formulated here as a parameterized version for an

arbitrary logic L.

Theorem 1. Let 𝑘 ∈ N and letA and B be sets of L-models. The following statements

are equivalent.

1. S has a winning strategy for the formula size game FS(𝑘,A,B)

2. There is an L-formula 𝜑 with size at most 𝑘 such thatA � 𝜑 and B � ¬𝜑.

The game starts with the position (𝑘,A,B). As one can see from above the

theorem, the goal of S is to show that A and B can be separated using a formula of

size at most 𝑘 and the goal of D is to refute this. The details of the game vary from

logic to logic but the basic idea stays the same. Each connective, quantifier or other

such operator in the logic has its own move. S builds the alleged separating formula

starting from the outmost operator using the move corresponding to that operator.

The rules of the move are based on the semantics of the operator and the sets A and

B are modified to reflect this. D chooses which parts of the formula are constructed

during the play and which are left vague.

We sketch an example of a disjunction move. S must split the left set A into

two parts A1,A2 ⊆ A with A1 ∪ A2 = A to reflect which models satisfy the

left disjunct and which satisfy the right disjunct. The right set B is duplicated to

both following positions as the negation of a disjunction is a conjunction. S must

also split the parameter 𝑘 between the two positions and spend one of it so that

𝑘1 + 𝑘2 + 1 = 𝑘. It is now the role of D to choose which of the following positions

𝑘1,A1,B or 𝑘2,A2,B she thinks cannot be separated with the remaining value of

𝑘𝑖.

In the game of Adler and Immerman [1] there is no parameter 𝑘. Instead S actually

builds the entire syntax tree of the formula and the size is checked after the game.

This game could be defined as only having a single player as the only role of D is to

play an easily defined optimal strategy. To see this, consider first that since the entire

syntax tree of the formula will be constructed by the end of the game, the choice of

disjunct in the previous example is only a matter of order and thus inconsequential.

There are other moves where D gets to choose a subset of some set of models to

4

include in the following position, but this is also trivialized by the observation that

adding more models can never be detrimental to D. Thus the optimal strategy of D

is to always choose the entire permitted set of models to include in the game.

By contrast, the game of Razborov [32] as well as the games of Hella and Väänä-

nen [21] are both parameterized versions, where a parameter 𝑘 is given beforehand

and this limits the size of the formula S can build. One can think of 𝑘 as a resource

at the disposal of S. In the case of a binary connective such as disjunction, D now

has the important choice of choosing the disjunct the game proceeds from. For most

logics, the game never returns to the unchosen disjunct during the play. So the pa-

rameter 𝑘 both gives D a meaningful role as the second player and shortens the plays

as only part of the formula is constructed during a single play. The optimal choice

of the entire set of models in some moves is not affected by the parameterization,

but in our games we remove the semblance of choice by fixing in the rules that the

entire set is always used.

Most of the applications of formula size games are in the field of modal logics.

Such games have been defined for a multitude of modal logics including epistemic

logic [11], modal logic with contingency operators [6] and multimodal logics with

union, intersection and quantification [25], to name just a few. Recently Balbiani et

al. [2] even defined games of this nature for formulas defining properties of Kripke

frames.

A different interpretation of the idea of formula size games was formulated by

Grohe and Schweikardt [17] as extended syntax trees. This is a method inspired

by the games of Adler and Immerman but with the game aspect removed in favor

of a static object. As the Adler-Immerman game involved always constructing the

entire syntax tree of the separating formula, it is natural to consider this final tree.

In terms of our parameterized games, an extended syntax tree is closest to the entire

winning strategy of S. In practice, an extended syntax tree consists of the syntax tree

of a formula with a left and right set of models appended to each node. Proofs argue

about the form of the tree and models included in the sets to arrive at a conclusion

about the size or existence of the tree. In [17], extended syntax trees were used to

prove that the four-variable fragment of FO is exponentially more succinct than the

three-variable fragment. In addition van der Hoek et. al [26] used this method to

show that two extensions of multimodal logic are both exponentially more succinct

than each other.

5

1.3 Other methods

Formula size games are by no means the only method that has been used to study

succinctness. Many other methods can be found in the literature.

One broad category of methods that can be identified is automata theoretic meth-

ods. Here the actual arguments pertaining to size are done in the context of the

automata that correspond to the logic under study. The results can then be trans-

ferred to the logic using known translations. For an easy example, the folklore result

found in [8] that states the most succinct regular expression, or RE, that defines a

single word is the word itself, can easily be proven using finite automata. For more

involved examples, see the proof of Wilke [37] of the exponential succinctness gap

between the modal logics CTL+ and CTL, or the proof of Etessami et al. [9] of the

exponential succinctness of FO2 over unary-TL.

Another way to approach succinctness is through complexity. An example of this

is given by the work of Stockmeyer [34]. He is mainly concerned with complexity

and shows that the satisfiability of FO over words is of non-elementary complexity.

Etessami et al. note in [9] that from Stockmeyer’s proof one can find FO formulas

with linear size and only models with non-elementary size. Add to this the fact that

all satisfiable formulas of linear temporal logic LTL have a satisfying model at most

exponential in the size of the formula, and one obtains a non-elementary succinctness

gap between FO and LTL.

For a very coarse lower bound for succinctness one can study quantifier depth.

An example of this is found in [17] where Grohe and Schweikardt prove thatMSO is

non-elementarily more succinct than FO and the non-elementary size comes already

from the quantifier depth of the FO formulas. Related to quantifier depth, the star

height of regular expressions is more useful in terms of succinctness. In [18] Gruber

and Holzer show that the number of alphabet symbols in an RE is exponential in its

star height. They use this fact to show exponential lower bounds for an RE defining

the intersection or shuffle of two RE as well as a double exponential lower bound

for defining the complement of an RE.

In addition to the rough categorization we have done here, there are other more

tailor-made methods for specific contexts. An example of this is the upper dimension

of a modal team logic formula 𝜑 by Hella et al. in [22], defined as the number of

maximal teams satisfying 𝜑. They show that upper dimension is well-behaved with

6

respect to formula size and use it to show an exponential gap in succinctness between

extended modal dependence logic and modal team logic with boolean disjunction.

Another example is encoding a specific hard property via regular expressions with

different added operators like Gelade and Neven in [13]. They generalize a theorem

by Ehrenfeucht and Zeiger to obtain a single hard sequence of languages 𝑍𝑛. They

proceed to show that both complement and intersection can be used to define this

sequence in a succinct way, giving rise to double exponential succinctness gaps in

relation to regular expressions without added operations.

1.4 Research objectives

This thesis has two objectives. The first is to define formula size games for different

logics. In particular, we focus on logics for which no formula size games have been

considered before. The games establish new methods for further study of succinct-

ness. The second goal is to study the succinctness of these logics in relation to others

in the same field. What kinds of gaps can be found? In addition to furthering our

understanding of succinctness, this demonstrates how and why formula size games

are used as proof methods.

Publication I focuses on games for modal logics and comparing them to first-

order logic. A particular goal of this research is to define a formula size game for

modal 𝜇-calculus and find applications. Publication II is the first systematic study of

succinctness in the team semantics setting. Instead of comparing propositional team

logic to very different logics we instead ask: how succinctly can the commonly used

atoms of dependency be defined in propositional team logic? We also define the first

formula size game in the team setting. Publication III considers generalized regular

expressions. The goal is to define formula size games for different variants of regu-

lar expressions and use them to study the interesting middle ground of succinctness

between generalized regular expressions and regular expressions. Publication IV fo-

cuses on definitions of single words. In particular, the question is: what is the length

of the longest word definable via a formula of size 𝑛 in FO or MSO?

7

1.5 Structure of the dissertation

This thesis consists of four publications found at the end and a preceding summary.

In Chapter 2 we introduce the logics considered in the thesis and discuss some known

succinctness results for those logics. Section 2.1 briefly introduces and discusses first-

order logic. Section 2.2 concerns basic modal logic and modal 𝜇-calculus. Section

2.3 discusses team semantics and finally Section 2.4 is about regular expressions and

MSO on words. In Chapter 3 we present and discuss the results obtained in the

publications. Section 3.1 presents the results of Publication I concerning modal log-

ics. Section 3.2 discusses Publication II and propositional team logic. Section 3.3

presents the results of Publications III and IV having to do with logics on words.

Chapter 4 concludes the summary with a recap of the results in Section 4.1 and

directions for future research in Section 4.2.

8

2 BACKGROUND

In this chapter we briefly present the logics considered in the publications. We define

the syntax and semantics of each logic and discuss results found in the literature about

the succinctness of these logics.

2.1 First-order logic

First-order logic, or FO, is one of the most influential logics in existence, so we will

not spend much time on it. We only present syntax and semantics to fix notation.

For further reading FO from a finite model theory perspective we direct the reader

to [7]. We only define FO for relational vocabularies as is common in the field of

finite model theory. This makes some proofs simpler and we can always replace

an 𝑛-ary function symbol with an 𝑛 + 1-ary relation symbol with the functionality

required in the formula. Although this does have a potential effect on succinctness,

it is of no consequence to our results in this thesis.

Definition 1. Let 𝜎 be a relational vocabulary and let Var be an infinite set of

variable symbols. The set FO(𝜎) of first-order formulas in the vocabulary 𝜎 is the

smallest set satisfying the following conditions:

• If 𝑥, 𝑦 ∈ Var, then 𝑥 = 𝑦 is a formula.

• If 𝑅 ∈ 𝜎 and 𝑅 is 𝑛-ary and 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋, then 𝑅(𝑥1, . . . , 𝑥𝑛) is a formula.

• If 𝜑 and 𝜓 are formulas and 𝑥 ∈ Var, then 𝜑 ∨ 𝜓, 𝜑 ∧ 𝜓,¬𝜑, ∃𝑥𝜑 and ∀𝑥𝜑 are

formulas.

The semantics of FO involve relational structures as models and assignments of

points in those models to variables. A relational structure is a tuple (𝑀, (𝑅𝑖)𝑖∈𝐼),

where 𝑀 is a set and each 𝑅𝑖 is a relation on 𝑀. When we need to differentiate a

relation in a model from its relation symbol we use the notation 𝑅M for the actual

relation.

9

An occurence of a variable 𝑥 in a formula 𝜑 is bound if it is inside a quantifier ∃𝑥

or ∀𝑥. If an occurrence of 𝑥 is not bound it is free. The variable 𝑥 is free in 𝜑 if it

has a free occurrence. The set of free variables of 𝜑 is denoted Fr(𝜑). An assignment

is a function 𝑠 : 𝑌 → 𝑀, where 𝑌 ⊆ Var. A modified assigment 𝑠[𝑎/𝑥] assigns

𝑠[𝑎/𝑥] (𝑥) = 𝑎 and is otherwise the same as 𝑠.

We define the truth of formulas in relation to relational structures and variable

assignments. We use the symbol � to denote that the model and assignment on the

left side of the symbol satisfy the formula on the right. We use the same symbol for

other logics below.

Definition 2. LetM be a relational 𝜎-structure, let 𝜑 ∈ FO(𝜎) and let 𝑠 : 𝑌 → 𝑀

be an assignment, where Fr(𝜑) ⊆ 𝑌 . The truth relation of FO is defined as follows:

• M, 𝑠 � 𝑥 = 𝑦 iff 𝑠(𝑥) = 𝑠(𝑦).

• M, 𝑠 � 𝑅(𝑥1, . . . , 𝑥𝑛) iff (𝑠(𝑥1), . . . , 𝑠(𝑥𝑛)) ∈ 𝑅
M .

• M, 𝑠 � 𝜓 ∨ 𝜃 iffM, 𝑠 � 𝜓 orM, 𝑠 � 𝜃.

• M, 𝑠 � 𝜓 ∧ 𝜃 iffM, 𝑠 � 𝜓 andM, 𝑠 � 𝜃.

• M, 𝑠 � ¬𝜓 iffM, 𝑠 � 𝜓.

• M, 𝑠 � ∃𝑥𝜓 iff there is 𝑎 ∈ 𝑀 such thatM, 𝑠[𝑎/𝑥] � 𝜓.

• M, 𝑠 � ∀𝑥𝜓 iff for all 𝑎 ∈ 𝑀, it holds thatM, 𝑠[𝑎/𝑥] � 𝜓.

We also use the implication → and equivalence ↔ connectives in our formulas,

but we consider these shorthand in the following way:

𝜑 → 𝜓 := ¬𝜑 ∨ 𝜓 and 𝜑 ↔ 𝜓 := 𝜑 → 𝜓 ∧ 𝜓 → 𝜑.

As widely studied as FO is, it is still hard to find many results on its succinctness.

It could be that there are numerous such results scattered in the literature under

different terminology. We cite some of the more known examples. In [17] Grohe

and Schweikardt study the succinctness of FOwith a bounded number 𝑛 of variables,

denoted FO𝑛, on linear orders. They show that the succinctness gap from FO2 to

FO3 is only polynomial, but FO4 is exponentially more succinct than FO3. They

also show thatMSO is non-elementarily more succinct than FO on linear orders.

The work of Stockmeyer [34], though originally quite focused on complexity,

implies a non-elementary succinctness gap between FO and linear temporal logic.

10

This is pointed out in [9], where Etessami et al. prove that FO2 is exponentially

more succinct than unary-TL.

2.2 Modal logic and modal mu-calculus

Modal logic is a paradigm of logic that is central in many areas of theoretical com-

puter science. There are a plethora of logics classified as modal logics such as tem-

poral and epistemic logics. In this thesis we consider the basic modal logicML, also

known as K, and modal 𝜇-calculus 𝐿𝜇. For further reading on modal logic we direct

the reader to [3]. For more on modal 𝜇-calculus we cite [4].

Definition 3. Let Prop be a set of proposition symbols. The set ML(Prop) of

formulas of basic modal logic for propositions Prop is the smallest set that satisfies

the following conditions:

• The constants � and ⊥ are formulas.

• Every 𝑝 ∈ Prop is a formula.

• If 𝜑 and 𝜓 are formulas, then 𝜑 ∨ 𝜓, 𝜑 ∧ 𝜓,¬𝜑,♦𝜑 and �𝜑 are formulas.

The semantics of modal logic are based on Kripke models. A Kripke model is a

tripleM = (𝑊, 𝑅,𝑉), where𝑊 is a set of points or worlds, 𝑅 is a binary relation on

𝑀 and 𝑉 : Prop → P(𝑊) is a valuation function that assigns to each proposition

the set of points that satisfy the proposition. The semantics of ML are identical to

propositional logic besides the two new symbols ♦ and �. These have to do with
the binary relation 𝑅.

Definition 4. Let M be a Kripke-model and 𝑤 ∈ 𝑊 . The truth relation between

pointed Kripke models and formulas 𝜑 ∈ ML is defined as follows:

• (M, 𝑤) � � and (M, 𝑤) � ⊥.

• (M, 𝑤) � 𝑝 iff 𝑤 ∈ 𝑉 (𝑝) for every 𝑝 ∈ Prop.

• The Boolean connectives are defined in the usual way, e.g.

(M, 𝑤) � 𝜓 ∨ 𝜃 iff (M, 𝑤) � 𝜓 or (M, 𝑤) � 𝜃.

• (M, 𝑤) � ♦𝜓 iff there is 𝑣 ∈ 𝑊 such that (𝑤, 𝑣) ∈ 𝑅 and (M, 𝑣) � 𝜓.

• (M, 𝑤) � �𝜓 iff for all 𝑣 ∈ 𝑊 such that (𝑤, 𝑣) ∈ 𝑅 it holds that (M, 𝑣) � 𝜓.

11

The modal 𝜇-calculus is a more complex extension ofML. The syntax adds new

operators 𝜇𝑋 and 𝜈𝑋 along with new variables 𝑋.

Definition 5. Let Prop be a set of proposition symbols and𝑄 a set of variables. The

set 𝐿𝜇 (Prop) of formulas of modal 𝜇-calculus for propositions Prop is the smallest

set that satisfies the following conditions:

• The constants � and ⊥ are formulas.

• If 𝑝 ∈ Prop, then 𝑝 and ¬𝑝 are formulas.

• Every 𝑋 ∈ 𝑄 is a formula.

• If 𝜑 and 𝜓 are formulas and 𝑋 ∈ 𝑄 is a variable, then 𝜑∨𝜓, 𝜑∧𝜓,♦𝜑,�𝜑, 𝜇𝑋.𝜑
and 𝜈𝑋.𝜑 are formulas.

Note that we assume all formulas are in negation normal form, where negation

only occurs on the level of literals. This is an easy way to ensure that the variables

of the fixed points only occur positively, which is required for the semantics.

The compositional semantics of 𝐿𝜇 are still based on Kripke models but also

involve fixed point operators in connection with the new symbols 𝜇 and 𝜈. It is

convenient to present the semantics in terms of truth sets instead of a truth relation.

The truth set of a formula is the set of points that satisfy the formula. Note that

we leave the model implicit in the notation as it remains constant throughout the

definition of the semantics.

‖𝜑‖𝜌 = {𝑤 ∈ 𝑊 | M, 𝑤 �𝜌 𝜑}.

Let Γ : P(𝑊) → P(𝑊) be a function. A set 𝐴 such that Γ(𝐴) = 𝐴 is called a fixed

point of Γ. The famous Knaster-Tarski theorem states that if Γ is monotone, then

Γ has a least fixed point LFP(Γ) and a greatest fixed point GFP(Γ) with respect to

the subset relation. We associate such a function Γ to each formula 𝜑 and valuation

of variables 𝜌 as follows.

Γ𝜑,𝑋,𝜌 : P(𝑊) → P(𝑊), Γ𝜑,𝜌 (𝐴) = ‖𝜑‖𝜌[𝐴/𝑋] .

Since all formulas are in negation normal form, all variables 𝑋 occur within their

fixed points 𝜇𝑋 or 𝜈𝑋 only positively. This ensures that the function Γ𝜑,𝑋,𝜌 is

always monotone and LFP(Γ) and GFP(Γ) exist. We now define the compositional

semantics of 𝐿𝜇.

12

Definition 6. Let (M, 𝑤) be a pointed Kripke model and let 𝜌 be a valuation of

variables. The truth set ‖𝜑‖𝜌 of a formula 𝜑 ∈ 𝐿𝜇 under the valuation 𝜌 is defined

as follows:

• ‖𝑝‖𝜌 = 𝑉 (𝑝) for all 𝑝 ∈ Prop.

• ‖𝑋 ‖𝜌 = 𝜌(𝑋) for all 𝑋 ∈ 𝑄.

• ‖𝜓 ∨ 𝜃‖𝜌 = ‖𝜓‖𝜌 ∪ ‖𝜃‖𝜌.

• ‖𝜓 ∧ 𝜃‖𝜌 = ‖𝜓‖𝜌 ∩ ‖𝜃‖𝜌.

• ‖♦𝜓‖𝜌 = {𝑤 ∈ 𝑊 | there is 𝑣 ∈ 𝑊 s. t. (𝑤, 𝑣) ∈ 𝑅 and 𝑣 ∈ ‖𝜓‖𝜌}.

• ‖�𝜓‖𝜌 = {𝑤 ∈ 𝑊 | for all 𝑣 ∈ 𝑊 s. t. (𝑤, 𝑣) ∈ 𝑅 it holds that 𝑣 ∈ ‖𝜓‖𝜌}.

• ‖𝜇𝑋.𝜓‖𝜌 = LFP(Γ𝜓,𝑋,𝜌).

• ‖𝜈𝑋.𝜓‖𝜌 = GFP(Γ𝜓,𝑋,𝜌).

The above compositional semantics are widely considered quite unintuitive so we

informally sketch some intuitions about 𝐿𝜇-formulas in terms of game semantics. In

the game semantics the variables 𝑋 are essentially references back to the formula

starting from 𝜇𝑋 or 𝜈𝑋. The difference between 𝜇 and 𝜈 is how this looping affects

the truth of formulas. The least fixed point operator 𝜇𝑋 can be seen as a reacha-

bility operator. In the semantic game the verifier is responsible for the loop of 𝜇𝑋

eventually reaching its destination and not looping anymore. In a dual fashion, 𝜈𝑋

corresponds to a safety condition. It is the responsibility of the falsifier to reach the

point which breaks the safety condition and stops the loop. Straightforward game

semantics based on these interpretations potentially have infinite plays as a safety

condition naively takes an infinite time to verify. However, there is a way to make

plays finite using ordinal clocks as in [19]. Even with these intuitions about reacha-

bility and safety, more complex 𝐿𝜇-formulas with alternation between 𝜇 and 𝜈 can

be very hard to interpret intuitively.

There is quite a volume of research on succinctness in modal logic relative to

other fields. The following overview is not an attempt at a complete listing.

The seminal paper of Adler and Immerman [1] includes a proof of a succinctness

gap of order 𝑛! between modal logics called CTL+ and CTL, sharpening an earlier

exponential gap result by Wilke [37].

In [11] French et al. consider multimodal logic extended with operators epistem-

ically interpreted as ‘somebody knows’, ‘everybody knows’ and public announce-

13

ment. They show that all three of these extensions are exponentially more succinct

than multimodal logic. In [26], van der Hoek et al. extend this by showing that the

extensions with ‘somebody knows’ and ‘everybody knows’ are both exponentially

more succinct than each other. In [25] van der Hoek and Iliev consider more oper-

ators. They prove seven different exponential gaps between multimodal logics with

union, intersection, quantification and/or public announcement operators added.

Recently Balbiani et al. [2] introduced a novel version of formula size games

characterizing the size of formulas that define properties of Kripke frames without

valuations. They use these games to show that the formulas traditionally used to

define frame properties such as transitivity or symmetry are indeed the smallest such

formulas.

For the modal 𝜇-calculus, research on succinctness is more scarce. This perhaps

has to do with the fact that even the correct notion of formula size seems still be a

topic for discussion [29]. In [16] Grohe and Schweikardt show that monadic least

fixed point logic with two variablesMLFP2 is exponentially more succinct on finite

trees than modal 𝜇 calculus with future and past modalities. This is only one of many

succinctness results between monadic query languages on finite trees in the paper.

Another example is found in [10], where Fernández-Duque and Iliev show that the

spatial 𝜇-calculus is exponentially more succinct than equally expressive spatial logic

with the tangled limit operator. They use a combination of formula size games for

the basic modal connectives and some situational translations between the different

logics to accomplish this.

2.3 Team semantics

Team semantics are a construct to discuss notions of dependency in logic. Depen-

dencies can only be found in sets of data and so logics with team semantics define

truth on a set of assignments or models instead of a single such object. These sets

are called teams. Team semantics were originally suggested by Hodges [24] under

the name ‘trump semantics’ as a semantic model for logics such as Hintikka’s inde-

pendence friendly logic [23]. Another seminal work of team semantics is [36] by

Väänänen, where he defines dependence logic as a new logic with team semantics.

Since then, Väänänen and others have defined various logics with team semantics to

discuss different notions of dependency. The new features were often added as atoms

14

to the logic as in the original dependence logic of Väänänen.

For this thesis, the relevant team logics are propositional, first studied by Yang

and Väänänen [38]. Teams in this context are sets of propositional assignments. We

need some notation for the semantics. If 𝑇 is a propositional team, an ordered pair

(𝑆,𝑈) of teams is a split of 𝑇 if 𝑆,𝑈 ⊆ 𝑇 and 𝑆 ∪𝑈 = 𝑇 . We say that a split (𝑆,𝑈)

is strict if additionally 𝑆 ∩𝑈 = ∅. We denote the set of splits of a team 𝑇 by Sp(𝑇)

and the set of strict splits of 𝑇 by SSp(𝑇).

We first define the semantics of all connectives we use and then define full propo-

sitional team logic and the existential fragment in terms of how these connectives are

used.

Definition 7. Let Prop be a set of proposition symbols and let 𝑇 be a Prop-team.

The semantics of propositional team literals and connectives are defined as follows:

• 𝑇 � �.

• 𝑇 � ⊥ iff 𝑇 = ∅.

• 𝑇 � 𝑝 iff for all 𝑠 ∈ 𝑇 , 𝑠(𝑝) = 1.

• 𝑇 � ¬𝑝 iff for all 𝑠 ∈ 𝑇 , 𝑠(𝑝) = 0.

• 𝑇 � ∼𝜓 iff 𝑇 � 𝜓.

• 𝑇 � 𝜓 ∧ 𝜃 iff 𝑇 � 𝜓 and 𝑇 � 𝜃.

• 𝑇 � 𝜓 � 𝜃 iff 𝑇 � 𝜓 or 𝑇 � 𝜃.

• 𝑇 � 𝜓 ∨ 𝜃 iff there is (𝑆,𝑈) ∈ Sp(𝑇) s.t. 𝑆 � 𝜓 and 𝑈 � 𝜃.

• 𝑇 � 𝜓 ∨� 𝜃 iff there is (𝑆,𝑈) ∈ SSp(𝑇) s.t. 𝑆 � 𝜓 and 𝑈 � 𝜃.

• 𝑇 � 𝜓 ⊗ 𝜃 iff for all (𝑆,𝑈) ∈ Sp(𝑇) it holds that 𝑆 � 𝜓 or 𝑈 � 𝜃.

• 𝑇 � 𝜓 ⊗� 𝜃 iff for all (𝑆,𝑈) ∈ SSp(𝑇) it holds that 𝑆 � 𝜓 or 𝑈 � 𝜃.

Using these connectives we define the two variations of propositional team logic

considered in Publication II. Full propositional team logic is the logic with full un-

restricted use of all above connectives. The existential fragment is the logic with full

use of the connectives ∧,�,∨ and ∨� and with the contradictory negation ∼ only

occurring on the level of literals. With this limited use of the contradictory negation

the existential fragment is expressively complete for propositional teams like full

15

propositional team logic, but still lacks the succinctness that full use of contradic-

tory negation provides. Expressive completeness means that any set of propositional

teams can be defined in either fragment.

Team logics can be augmented with many different atoms that express notions of

dependency. We now present the propositional versions of the commonly used atoms

we study in Publication II. Below 𝛼� , 𝛽� and 𝛾� are tuples of proposition symbols.

Definition 8. The semantics of propositional atoms of dependency are defined as

follows:

• Dependence: =(𝛼� ; 𝛽�)

𝑇 � =(𝛼� ; 𝛽�) iff ∀𝑠, 𝑠′ ∈ 𝑇 : 𝑠(𝛼�) = 𝑠′ (𝛼�) ⇒ 𝑠(𝛽�) = 𝑠′ (𝛽�)

• Independence: 𝛼� ⊥ 𝛽�

𝑇 � 𝛼� ⊥ 𝛽� iff ∀𝑠, 𝑠′ ∈ 𝑇 : ∃𝑠′′ ∈ 𝑇 : 𝑠(𝛼�) = 𝑠′′ (𝛼�) and 𝑠′ (𝛽�) = 𝑠′′ (𝛽�)

• Conditional independence: 𝛼� ⊥𝛽� 𝛾�

𝑇 � 𝛼� ⊥𝛽� 𝛾� iff ∀𝑠, 𝑠′ ∈ 𝑇 : if 𝑠(𝛽�) = 𝑠′ (𝛽�), then

∃𝑠′′ ∈ 𝑇 : 𝑠(𝛼� 𝛽�) = 𝑠′′ (𝛼� 𝛽�) and 𝑠′ (𝛾�) = 𝑠′′ (𝛾�)

• Inclusion: 𝛼� ⊆ 𝛽� , where 𝛼� and 𝛽� have equal length

𝑇 � 𝛼� ⊆ 𝛽� iff ∀𝑠 ∈ 𝑇∃𝑠′ ∈ 𝑇 : 𝑠(𝛼�) = 𝑠′ (𝛽�)

• Exclusion: 𝛼� | 𝛽� , where 𝛼� and 𝛽� have equal length

𝑇 � 𝛼� | 𝛽� iff ∀𝑠, 𝑠′ ∈ 𝑇 : 𝑠(𝛼�) ≠ 𝑠′ (𝛽�)

• Anonymity: 𝛼�Υ𝛽�

𝑇 � 𝛼�Υ𝛽� iff ∀𝑠 ∈ 𝑇∃𝑠′ ∈ 𝑇 : 𝑠(𝛼�) = 𝑠′ (𝛼�) and 𝑠(𝛽�) ≠ 𝑠′ (𝛽�)

We give some intuition for the formal definitions above. The dependence atom

16

=(𝛼� ; 𝛽�), originally introduced by Väänänen [36], states that the value of the tuple 𝛽�

functionally depends on the value of the tuple 𝛼� . The independence atom 𝛼� ⊥ 𝛽� ,

introduced by Grädel and Väänänen [15], states that the values of the two tuples are

completely independent, that is the team includes the complete Cartesian product

of the two sets of values. The conditional independence atom 𝛼� ⊥𝛽� 𝛾� states the

same thing for the tuples 𝛼� and 𝛾� but separately within each value of the tuple 𝛽� .

The inclusion atom 𝛼� ⊆ 𝛽� , introduced by Galliani [12], states that the values of the

tuple 𝛼� are included in the values of the tuple 𝛽� in the team. The exclusion atom

𝛼� | 𝛽� , introduced in the same Galliani paper, states that the values of the two tuples

are completely separate. The anonymity atom 𝛼�Υ𝛽� , due to Väänänen [35], states

that no value of the tuple 𝛼� determines functionally the value of the tuple 𝛽� . All of

these atoms were originally introduced in the first-order setting. The propositional

counterparts were first studied by Yang and Väänänen [38], except for the anonymity

atom.

Unlike in other contexts, in the propositional case all atoms of dependency are

trivially definable via other connectives due to the finite number of valuations in 𝑛

propositional variables. Thus a natural question of succinctness arises: what is the

size of these definitions? This question is answered systematically in Publication II.

As team semantics is a relatively new area of study, it is perhaps not surprising

that succinctness has not received much attention. We are not aware of any studies

dedicated to succinctness in the team setting but there are some results scattered

among papers mainly concerned with expressive power.

In [22], Hella et al. study the expressive power of modal dependence logic. They

use the notion of upper dimension to show that extended modal dependence logic is

exponentially more succinct than modal logic with intuitionistic disjunction. In [20],

Hella and Stumpf show that modal inclusion logic is exponentially more succinct

than modal logic with the nonemptiness operator. They use the semantic game of

the latter logic to show that 2𝑛 occurrences of nonemptiness are required to define

an inclusion atom of arity 𝑛.

2.4 Logics on words

Regular languages and defining them are central topics in theoretical computer sci-

ence. Perhaps the most canonical way to define regular languages is via regular ex-

17

pressions, or RE. Regular expressions are not usually considered a logic as such, but

we do not differentiate them as they have all the trappings of a logic. They have

a strict syntax and the language of an RE can be seen as the set of words that sat-

isfy the expression as a formula. We also present generalized regular expressions, or

GRE, where complement is added as an operation. This does not add any expressive

power but is very significant in terms of succinctness. For further reading on regular

languages and RE we refer the reader to [27].

Definition 9. Let Σ be an alphabet. The set GRE(Σ) of generalized regular expres-

sions in the alphabet Σ is the smallest set that satisfies the following conditions:

• The symbols ∅ and 𝜖 are expressions.

• Every 𝑎 ∈ Σ is an expression.

• If 𝑅1 and 𝑅2 are expressions, then 𝑅1 ∪ 𝑅2, 𝑅1𝑅2, 𝑅
∗
1 and ¬𝑅1 are expressions.

The semantics ofGRE operate on words. A set of symbols Σ is called an alphabet

and strings of those symbols are called words. The semantics of GRE are usually

stated in the form of associating sets of words, called languages, with expressions.

We follow this convention here.

Definition 10. Let Σ be an alphabet. The language 𝐿 (𝑅) of a generalized regular

expression 𝑅 of the alphabet Σ is defined as follows:

• 𝐿 (∅) = ∅

• 𝐿 (𝜖) = {𝜖}, where 𝜖 is the empty word

• 𝐿 (𝑎) = {𝑎} for every 𝑎 ∈ Σ

• 𝐿 (𝑅1 ∪ 𝑅2) = 𝐿 (𝑅1) ∪ 𝐿 (𝑅2)

• 𝐿 (𝑅1𝑅2) = 𝐿 (𝑅1)𝐿 (𝑅2) = {𝑤1𝑤2 | 𝑤1 ∈ 𝑅1, 𝑤2 ∈ 𝑅2}

• 𝐿 (𝑅∗
1) = 𝐿 (𝑅1)

∗ = {𝑤1 · · ·𝑤𝑛 | 𝑛 ∈ N, 𝑤𝑖 ∈ 𝐿 (𝑅1) for each 𝑖 ∈ N}

• 𝐿 (¬𝑅1) = Σ∗ \ 𝐿 (𝑅1)

By restricting these definitions, we can easily define regular expressions and RE

over star-free expressions. The set RE(Σ) of regular expressions of the alphabet Σ is

defined as above but omitting the complement ¬. RE over star-free expressions are

GREs, where no Kleene stars occur inside complement operations.

18

While the semantics of RE are defined to work on words as such, other logics

often need to view words as relational structures to accommodate their semantics.

This is the case for the logics we consider here, FO and monadic second-order logic

MSO. In the following definition |𝑤 | denotes the length of the word 𝑤.

Definition 11. Let 𝑤 ∈ Σ∗. The corresponding word model is the relational struc-

ture (𝑀, ≤, (𝑃𝑎)𝑎∈Σ), where 𝑀 = {1, . . . , |𝑤 |}, ≤ is a linear order and each 𝑃𝑎 is

monadic and 𝑛 ∈ 𝑃𝑎 iff the 𝑛-th symbol of 𝑤 is 𝑎.

Monadic second-order logic is a logic in the same vein as FO but with more

freedom in quantification. In addition to quantifying single points like in FO,MSO

can also quantify sets of points. For thisMSO has set variables 𝑃 from the set SVar.

The syntax of MSO is the same as for FO, but with additional atomic formulas

𝑃(𝑥), where 𝑃 ∈ SVar and 𝑥 ∈ Var, and quantifiers ∃𝑃 and ∀𝑃, where 𝑃 ∈ SVar.

The semantics add a separate assignment 𝑡 : 𝑍 → P(𝑀) for set variables, where

𝑍 ⊆ SVar. The set SFr(𝜑) of free set variables of the formula 𝜑 is defined in the

same way as for first-order variables.

Definition 12. LetM be a relational structure and let 𝜑 ∈ MSO(Σ). Let 𝑠 : 𝑌 → 𝑀

be a first-order assignment with Fr(𝜑) ⊆ 𝑌 . Let 𝑡 : 𝑍 → P(𝑀) be a set variable

assignment with SFr(𝜑) ⊆ 𝑍 . The truth relation of MSO is defined as for FO with

the following additions:

• M, 𝑠, 𝑡 � 𝑃(𝑥) iff 𝑠(𝑥) ∈ 𝑡 (𝑃).

• M, 𝑠, 𝑡 � ∃𝑃𝜓 iff there is 𝐴 ⊆ 𝑀 such thatM, 𝑠, 𝑡 [𝐴/𝑃] � 𝜓.

• M, 𝑠, 𝑡 � ∀𝑃𝜓 iff for all 𝐴 ⊆ 𝑀 it holds thatM, 𝑠, 𝑡 [𝐴/𝑃] � 𝜓.

In the context of words,MSO is an important logic. The famous Büchi Theorem

(see e.g. [27]) states that MSO and RE have the same expressive power on words,

that is, MSO also captures regular languages. On the other hand, FO corresponds

to star-free expressions, that is regular expressions with no Kleene stars in them. In

Publication III we introduce a variant on RE motivated by this fact called RE over

star-free expressions. These expressions combine star-free expressions with the full

operations of RE, including stars. One can think of RE over star-free expressions as

RE over FO definable properties. As RE over star-free expressions include RE and

are included inGRE, they still capture regular languages but in terms of succinctness

they present an interesting middle point between RE and GRE.

19

The succinctness gained by adding operators to RE has been studied indepen-

dently and thoroughly by at least two groups of authors. On the one hand Gelade

and Neven [13] and on the other Gruber and Holzer [18] both show exponential and

double exponential gains in succinctness from adding operators such as complement,

intersection, interleaving and more.

It is well known thatMSO is non-elementarily more succinct than RE on words,

but there are also some results on the succinctness ofMSO in other contexts. Grohe

and Schweikardt [16] study the relative succinctness of monadic query languages on

finite trees. They show that in this context MSO is non-elementarily more suc-

cinct than monadic least fixed point logic MLFP, under some complexity theoretic

assumptions. The logic MLFP in turn is non-elementarily more succinct than its

two-variable fragment MLFP2. In [17] the same authors show that MSO is non-

elementarily more succinct than FO on linear orders.

20

3 RESULTS AND DISCUSSION

The contribution of the thesis spans many different logics and is twofold. Firstly the

formula size games defined in Publications I, II and III are of independent interest

as methods to study the succinctness of the logics in question. They can be easily

modified to study more restricted versions of logics or other measures like quantifier

depth. An example of this is given in Publication III by the regular expression size

game as a simple modification of the generalized regular expression game. Secondly

these games and other methods are used in all four publications to obtain various

results regarding succinctness. The following sections present each game and the

results obtained.

3.1 Modal logics

Publication I is concerned with basic modal logic and modal 𝜇-calculus. Parame-

terized formula size games are defined for both logics. The basic modal logic game

is quite simple and the novel part is the resource parameterization. For modal 𝜇-

calculus the formulation of the game itself is new and highly complex.

In addition to the operators of basic modal logic, modal 𝜇-calculus also contains

fixed point operators. This means the formula size game needs to be able to return

to previously visited parts of the partial formula that the game is played on. Thus the

game includes a full history of the formula defined thus far, unlike the modal logic

game where this information can safely be forgotten. In addition, the semantics of

the fixed point operators initially seem to lead to infinite plays of the formula size

game to check conditions such as reachability. We use a method from [19] and use

ordinals to finitize the duration of the game though it still has infinite branching in

strategies.

These games give a method to study the succinctness of basic modal logic and

modal 𝜇-calculus. It must be noted however that in the case of modal 𝜇-calculus, the

21

applications can in practice be limited by the considerable complexity of the game.

In terms of succinctness results, we prove that FO is non-elementarily more suc-

cinct than both basic modal logic and modal 𝜇-calculus.

Theorem 2 (Publication I: Corollary 4.11 and Theorem 6.6). First-order logic is

non-elementarily more succinct than basic modal logic. The same applies for first-order

logic and modal 𝜇-calculus.

We give concrete formulas for FO that define a property based on the cumulative

hierarchy of sets with a polynomial formula. We use the formula size games of modal

logic and modal 𝜇-calculus to show that the same property requires a formula of non-

elementary size to define in both of these logics. We also give a polynomial formula

in two-dimensional modal logicML2 for the same property. EssentiallyML2 is basic

modal logic evaluated on pairs of points (𝑢, 𝑣) with separate relations and diamonds

for the two points. See [31] for more on multi-dimensional modal logics. We obtain

the same gaps forML2 as for FO.

Corollary 1 (Publication I: Corollary 4.14). Two-dimensional modal logic ML2 is

non-elementarily more succinct than basic modal logic. The same applies for ML2 and

modal 𝜇-calculus.

3.2 Propositional team logics

Publication II considers propositional team logics. Unlike in first-order team log-

ics, in the propositional case all of the different atoms of dependency can be defined

using other connectives. This is due to the finitary nature of propositional valua-

tions compared to first-order quantification. The natural question then becomes:

how succinct can these definitions be? We systematically study the succinctness of

defining the most common atoms of dependency. The atoms considered are those

of dependence, independence, inclusion, exclusion and anonymity. We show that

in the existential fragment, where the splitting disjunction only occurs positively,

defining any of these atoms requires a formula of size exponential in the number of

propositions involved.

Theorem 3 (Publication II: Theorems 3.4 and 3.10). In the existential fragment of

propositional team logic, formulas of size exponential in the number of propositions are re-

quired to define parity of cardinality of teams or the dependence, independence, inclusion,

22

exclusion or anonymity atoms.

To prove the exponential lower bounds in the existential fragment, we define a

new formula size game for propositional team logic. In accordance with team seman-

tics, this game is played on sets of teams. The game resembles the formula size game

for ordinary propositional logic in terms of conjunction and Boolean disjunction.

The main difference is in the splitting disjunction. The semantics involve splitting

teams into two subteams. This is of course reflected in the game and especially the

negative side of the splitting disjunction move becomes quite involved.

In Section 3 we use the formula size game to prove exponential lower bounds

in the existential fragment for defining the parity of cardinality of teams, a specific

cardinality of teams and the inclusion, independence and anonymity atoms. For all

of these we employ a measure called density, similar to [21]. Density is defined in

terms of neighbours. Neighbours of a team are otherwise identical teams with one

assignment missing. If a team has many neighbours on the opposite side of the game,

then the density of the position is high and it will require a high amount of resource

from S to win.

The remaining atoms of dependence and exclusion are downward closed and so

the notion of density does not work as all neighbours of a given team on the left

side will also be on the left side. We instead adapt another technique for lower

bounds from [22] called upper dimension. Although the precise definition is a bit

more involved, the upper dimension of a formula is essentially the number of subset-

maximal teams that satisfy the formula. This is related to succinctness via a Lemma

from [22] that links the upper dimension to the number of Boolean disjunctions in

the formula.

On the other hand we show that in full propositional team logic with unrestricted

Boolean negation, the same atoms can be defined with polynomial formulas.

Theorem 4 (Publication II: Theorems 4.9 and 4.10). In full propositional team logic

there are formulas of size polynomial in the number of propositions, that define the par-

ity of cardinality of teams and the dependence, independence, inclusion, exclusion and

anonymity atoms.

In Section 4 we obtain polynomial upper bounds for all considered atoms of de-

pendency in full propositional team logic with unrestricted negation. More precisely,

we define the negations of the atoms polynomially in the existential fragment. Be-

sides the succinctness result between the existential and polynomial fragments, this

23

shows an interesting asymmetry between the common atoms of dependency and

their negations. We also define parity of cardinality of teams polynomially, fully

utilizing the unrestricted negation in the recursive definition of the formula.

3.3 Logics on words

Publications III and IV consider logics on word models. In Publication III the main

focus is regular expressions while Publication IV deals with first-order logic and

monadic second-order logic on words.

In Publication III we define a formula size game for generalized regular expres-

sions, that is ones with complement as an added operation. We utilize two con-

strained variants of this game. The first is the game for regular expressions and the

second is a game that only counts the number of stars in a generalized regular ex-

pression. In addition, we define a new natural middle ground between RE and GRE

called RE over star-free expressions. These are generalized regular expressions that

have no stars inside complements.

We use the regular expression size game and concrete FO formulas to reprove in

a much simpler manner a known result by Stockmeyer [34] that states FO is non-

elementarily more succinct than regular expressions. The original proof features

encodings of Turing machines while our proof is a simple game argument in addition

to some FO formulas.

Star height is a well-known open problem [8] for generalized regular expressions.

From the point of view of succinctness it is then reasonable to instead study the

number of stars in an expression. For regular expressions this measure trivially gives

an infinite hierarchy in expressive power. We use the star counting game to show that

such a hierarchy also exists forRE over star-free expressions. The case of generalized

regular expressions remains open.

Theorem 5 (Publication III: Theorem 5.1). For each 𝑛 ∈ N there is a regular language

𝐿𝑛 such that an RE over star-free expression 𝑅𝑛 with 𝐿 (𝑅𝑛) = 𝐿𝑛 has at least 𝑛 stars.

Publication IV concerns defining single words in FO and MSO. In particular,

we consider the longest word definable in a fragment L of FO or MSO. We call

this length the definability number DN(L) of the fragment L. In particular, we

investigate the fragments FO[𝑛] andMSO[𝑛] with formulas up to size 𝑛.

We also consider two other related numbers. The Löwenheim-Skolem number

24

LS(L) of a fragment L is the smallest number 𝑚 such that every formula in L that

has a model, has a model of length at most 𝑚. Similarly the Hanf number H(L) is

the smallest number 𝑙 such that if a formula of L has a model of length greater than

𝑙, then it has arbitrarily long models.

Note that if DN(L) = 𝑑 for a fragment L, then clearly LS(L) ≥ 𝑑 since the

formula defining the longest word has a model of length 𝑑. SimilarlyH(L) ≥ 𝑑 since

the same formula does not have arbitrarily long models. We obtain the following

upper and lower bounds for these numbers, where twr is the exponential tower

function and log∗ is the iterated logarithm function. Note that log∗ is essentially the

inverse function of twr.

Theorem 6 (Publication IV). There is a constant 𝑐1 ∈ N such that

twr(5
√
𝑛/𝑐1) ≤ DN(FO[𝑛]) ≤ twr(𝑛/2 + log∗((𝑛/2)2 + 𝑛/2) + 1).

There is a constant 𝑐2 ∈ N such that

twr(
√
𝑛/𝑐2) ≤ DN(MSO[𝑛]) ≤ twr(𝑛/2 + log∗((𝑛/2 + 1)2) + 1).

The same bounds hold for the Löwenheim-Skolem and Hanf numbers of these fragments.

The upper bounds are obtained by counting types of words with regards to quan-

tifier depth. We relate quantifier depth to formula size with a crude estimate stating

at most half of a meaningful formula can consist of quantifiers. Finally this relates to

definability number by noting that if a word is long enough, it will have at least two

prefixes that are of the same type and thus interchangeable. This means the word is

not definable.

The lower bounds are obtained via concrete formulas in FO and MSO of sizes

O(𝑛5) and O(𝑛3), respectively. Both formulas define a single word representation

of level 𝑛 of the cumulative hierarchy of sets. The greater succinctness of MSO is

gained by dividing the brackets into sets according to their depth and using a different

method to single out only one such representation.

25

26

4 CONCLUSIONS AND FUTURE OUTLOOK

We conclude with a summary of the results obtained in this thesis and some discus-

sion on possible directions for future research on succinctness.

4.1 Summary of results

In this thesis we presented parameterized formula size games for basic modal logic,

modal 𝜇-calculus, propositional team logic and generalized regular expressions. All

of these games are useful proof methods for the study of succinctness in these logics.

Among them, especially the modal 𝜇-calculus game is highly complex to define and

a contribution in and of itself.

We used these games to prove a variety of results concerning the succinctness of

the corresponding logics. For the modal logics we showed in Publication I that FO

and two-dimensional modal logic are both non-elementarily more succinct thanML

and 𝐿𝜇.

In the propositional team setting we conducted in Publication II a systematic in-

vestigation into the succinctness of defining commonly studied atoms of dependency.

We obtained exponential lower bounds for all atoms and parity in the existential frag-

ment. In the full fragment we gave formulas that polynomially define the atoms and

parity. This is the first systematic study of succinctness we know of in the team

semantics setting.

For regular expressions, we reproved in Publication III a known non-elementary

succinctness gap between FO and RE in a much simpler way. In addition we defined

a new class of generalized regular expressions called RE over star-free expressions

and showed that the number of stars in such an expression gives a full hierarchy in

terms of expressive power for these new expressions.

In Publication IV we investigated the longest words definable by formulas of

bounded size in FO and MSO. We obtained exponential towers of various heights

27

as upper and lower bounds for the length of the longest word called the definability

number. We also considered the related Löwenheim-Skolem and Hanf numbers and

obtained the same bounds for these as well.

4.2 Future directions

We sketch some possible directions for future research. We begin by considering the

questions left open in each of the four publications and then move on to a discussion

of research on succinctness in general.

The study of succinctness in modal logic is generally quite a developed field of

research so in terms of basic modal logic there are not many open problems we can

point out. Instead, the open questions we still have relating to Publication I have to

do with modal 𝜇-calculus.

The main theorem of the formula size game for modal 𝜇-calculus has a clause of

uniformity. Since the game loops back to the same parts of the formula multiple

times, it is possible for S to have a strategy where he chooses a different move de-

pending on when some branch of the formula is chosen by D. Uniformity means

that this is not allowed; S must always choose the same move for a branch of the

formula, no matter when it is reached. We conjecture that this requirement of uni-

formity is not actually needed for the game to function, but we were unable to prove

this in the paper.

The modal 𝜇-calculus game is also very complex, to the point where it becomes

an issue when trying to use the game as a proof method. The proof it is used for in

the paper succeeds essentially because the fixed point operators are not of any use

when defining the property in question. If one were to attempt a succinctness proof

relating to some property that requires alternating fixed points to define, it would

be reasonable to expect great difficulties.

Finally, the modal 𝜇-calculus game characterizes formula size in terms of the size

of the syntax tree of the formula. In contrast to this, researchers of 𝜇-calculus seem

to find the number of subformulas or the size of the Fischer-Ladner closure a more

pertinent measure, see e.g. [29]. It is very reasonable to count each subformula only

once, since the logic already includes references to subformulas in the form of the

variables 𝑋. Since the gap between the size of the syntax tree and the number of

different subformulas is exponential in the worst case, one would need to prove a

28

double exponential gap in terms of syntax tree size in order to obtain an exponential

one for subformula size.

Publication II considered propositional team logics. The paper is to our knowl-

edge the first systematic study of succinctness for team semantics. This naturally

means that the future of this research area is rife with possibilities. In the proposi-

tional setting we saw that all of the common atoms of dependency require exponen-

tial definitions in the existential fragment, but one could also compare them to each

other. Moves for desired atoms could be added to the formula size game to study

for example defining inclusion atoms in the existential fragment with free use of de-

pendence atoms. Outside the propositional setting the atoms of dependency cannot

generally be defined in the base logic without them, but comparisons between logics

with different atoms would still be possible to study.

Publication III studied the succinctness ofRE. We defined a formula size game for

GRE with complement, but only used the restricted variants for RE and RE over

star-free expressions. For RE over star-free expressions we showed that the number

of stars gives a hierarchy of expressive power. The question of whether this happens

for GRE is open even for the case where star height is restricted to one. The general

case where nested stars are allowed is presumably quite difficult since it is close to

the notoriously open star height problem [8]. The formula size game is in theory a

plausible tool to study the star height problem itself, but even though it leads to a

different characterization of the problem, it still remains too difficult for us to solve.

Perhaps a more reasonable first goal would be to find any kind of application for the

full GRE game.

Publication IV considered definitions of single words in FO and MSO. The

bounds we obtained for the definability numbers of the size 𝑛 fragments were the

first attempt and as such quite loose. The upper bound has two different pieces to

improve on. When counting types we count all sets of types as possible models when

in reality a vast number of these sets are unsatisfiable. On the other hand we relate

quantifier depth to formula size by a simple factor of two. We argue that for each

formula of which the majority of symbols are quantifiers there is an equivalent for-

mula with lower quantifier depth. A better factor than two is surely possible but

would require a more sophisticated argument.

We could also consider the definability, Löwenheim-Skolem and Hanf numbers

of the size 𝑛 fragments of other logics on words. At least the two-variable fragment

29

FO2 of first-order logic and temporal logics come to mind.

We move on to a more general discussion of succinctness. The very foundation of

any study of succinctness is the definition of formula size. Definitions such as string

length and syntax tree size are essentially equivalent, but there are other substantially

different alternatives. One such possibility is the number of different subformulas,

called subformula size or DAG-size. It has been argued [29] that at least for modal

𝜇-calculus this would be a more pertinent measure than ordinary formula size. Un-

fortunately the parameterized formula size game seems very difficult to adapt to this

notion of size. The original Adler-Immerman game or extended syntax DAGs could

be used instead, but these lack the dynamic nature of the parameterized game. It

would be very interesting to see what kind of dynamic two-player game could be

defined for subformula size.

The results proven in the field of succinctness often take the form of a single

sequence of properties shown to be more succinctly definable in a logic L1 than an-

other logic L2. Additionally there is sometimes a polynomial translation from L2 to

L1 or perhaps another sequence of properties showing L2 can also be more succinct

than L1. In both of these cases only some kinds of properties can be defined more

succinctly in L1 or L2. It would give a more complete picture of the phenomenon

if one could give some kind of characterization for these properties, especially in the

cases where succinctness results can be shown both ways.

In conclusion, we find succinctness to be an important and interesting research

topic and a natural refinement of expressive power. Formula size games are a useful

if sometimes unwieldy method to study the succinctness of any logic.

30

REFERENCES

[1] Micah Adler and Neil Immerman. “An n! lower bound on formula size”. In:

ACM Trans. Comput. Log. 4.3 (2003), pp. 296–314. DOI: 10.1145/772062.

772064. URL: https://doi.org/10.1145/772062.772064.

[2] Philippe Balbiani et al. “Frame-validity Games and Lower Bounds on the

Complexity of Modal Axioms”. In: Log. J. IGPL 30.1 (2022), pp. 155–185.

DOI: 10.1093/jigpal/jzaa068. URL: https://doi.org/10.1093/jigpal/jzaa068.

[3] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Vol. 53.

Cambridge Tracts in Theoretical Computer Science. Cambridge University

Press, 2001. ISBN: 978-1-10705088-4. DOI: 10.1017/CBO9781107050884.

URL: https://doi.org/10.1017/CBO9781107050884.

[4] Julian C. Bradfield and Colin Stirling. “Modal mu-calculi”. In: Handbook of

Modal Logic. Ed. by Patrick Blackburn, J. F. A. K. van Benthem, and Frank

Wolter. Vol. 3. Studies in logic and practical reasoning. North-Holland, 2007,

pp. 721–756. DOI: 10.1016/s1570-2464(07)80015-2. URL: https://doi.org/

10.1016/s1570-2464(07)80015-2.

[5] David Buchfuhrer and Christopher Umans. “The complexity of Boolean for-

mula minimization”. In: J. Comput. Syst. Sci. 77.1 (2011), pp. 142–153. DOI:

10.1016/j.jcss.2010.06.011. URL: https://doi.org/10.1016/j.jcss.2010.06.

011.

[6] Hans van Ditmarsch et al. “Some Exponential Lower Bounds on Formula-size

in Modal Logic”. In:Advances inModal Logic 10, invited and contributed papers

from the tenth conference on "Advances in Modal Logic," held in Groningen, The

Netherlands, August 5-8, 2014. Ed. by Rajeev Goré, Barteld P. Kooi, and Agi

Kurucz. College Publications, 2014, pp. 139–157. URL: http://www.aiml.

net/volumes/volume10/Ditmarsch-Fan-Hoek-Iliev.pdf.

31

[7] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Perspectives in

Mathematical Logic. Springer, 1995. ISBN: 978-3-540-60149-4.

[8] Keith Ellul et al. “Regular Expressions: New Results and Open Problems”.

In: J. Autom. Lang. Comb. 10.4 (2005), pp. 407–437. DOI: 10.25596/jalc-

2005-407. URL: https://doi.org/10.25596/jalc-2005-407.

[9] Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. “First-Order Logic

with TwoVariables andUnary Temporal Logic”. In: Inf. Comput. 179.2 (2002),

pp. 279–295. DOI: 10.1006/inco.2001.2953. URL: https://doi.org/10.1006/

inco.2001.2953.

[10] David Fernández-Duque and Petar Iliev. “Succinctness in Subsystems of the

Spatial 𝜇-Calculus”. In: FLAP 5.4 (2018), pp. 827–874. URL: https://www.

collegepublications.co.uk/downloads/ifcolog00024.pdf.

[11] Tim French et al. “On the succinctness of some modal logics”. In:Artif. Intell.

197 (2013), pp. 56–85. DOI: 10 .1016/ j . artint . 2013 .02 .003. URL: https :

//doi.org/10.1016/j.artint.2013.02.003.

[12] Pietro Galliani. “Inclusion and exclusion dependencies in team semantics - On

some logics of imperfect information”. In: Ann. Pure Appl. Log. 163.1 (2012),

pp. 68–84. DOI: 10.1016/j.apal.2011.08.005. URL: https://doi.org/10.

1016/j.apal.2011.08.005.

[13] Wouter Gelade and Frank Neven. “Succinctness of the Complement and In-

tersection of Regular Expressions”. In:ACMTrans. Comput. Log. 13.1 (2012),

4:1–4:19. DOI: 10.1145/2071368.2071372. URL: https://doi.org/10.1145/

2071368.2071372.

[14] Goran Gogic et al. “The Comparative Linguistics of Knowledge Represen-

tation”. In: Proceedings of the Fourteenth International Joint Conference on Ar-

tificial Intelligence, IJCAI 95, Montréal Québec, Canada, August 20-25 1995,

2 Volumes. Morgan Kaufmann, 1995, pp. 862–869. URL: http://ijcai.org/

Proceedings/95-1/Papers/111.pdf.

[15] Erich Grädel and Jouko A. Väänänen. “Dependence and Independence”. In:

Stud Logica 101.2 (2013), pp. 399–410. DOI: 10.1007/s11225-013-9479-2.

URL: https://doi.org/10.1007/s11225-013-9479-2.

32

[16] MartinGrohe andNicole Schweikardt. “Comparing the succinctness of monadic

query languages over finite trees”. In: RAIRO Theor. Informatics Appl. 38.4

(2004), pp. 343–373. DOI: 10.1051/ita:2004017. URL: https://doi.org/10.

1051/ita:2004017.

[17] Martin Grohe and Nicole Schweikardt. “The succinctness of first-order logic

on linear orders”. In: Log. Methods Comput. Sci. 1.1 (2005). DOI: 10.2168/

LMCS-1(1:6)2005. URL: https://doi.org/10.2168/LMCS-1(1:6)2005.

[18] Hermann Gruber and Markus Holzer. “Finite Automata, Digraph Connec-

tivity, and Regular Expression Size”. In: Automata, Languages and Program-

ming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July

7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Pro-

gramming & Track C: Security and Cryptography Foundations. Ed. by Luca

Aceto et al. Vol. 5126. Lecture Notes in Computer Science. Springer, 2008,

pp. 39–50. DOI: 10.1007/978-3-540-70583-3_4. URL: https://doi.org/10.

1007/978-3-540-70583-3%5C_4.

[19] Lauri Hella, Antti Kuusisto, and Raine Rönnholm. “BoundedGame-Theoretic

Semantics for Modal Mu-Calculus and Some Variants”. In: Proceedings 11th

International Symposium on Games, Automata, Logics, and Formal Verifica-

tion, GandALF 2020, Brussels, Belgium, September 21-22, 2020. Ed. by Jean-

François Raskin and Davide Bresolin. Vol. 326. EPTCS. 2020, pp. 82–96.

DOI: 10.4204/EPTCS.326.6. URL: https://doi.org/10.4204/EPTCS.326.6.

[20] Lauri Hella and Johanna Stumpf. “The expressive power of modal logic with

inclusion atoms”. In: Proceedings Sixth International Symposium onGames, Au-

tomata, Logics and Formal Verification, GandALF 2015, Genoa, Italy, 21-22nd

September 2015. Ed. by Javier Esparza and Enrico Tronci. Vol. 193. EPTCS.

2015, pp. 129–143. DOI: 10.4204/EPTCS.193.10. URL: https://doi.org/10.

4204/EPTCS.193.10.

[21] Lauri Hella and Jouko Väänänen. “The Size of a Formula as a Measure of

Complexity”. In: Logic Without Borders - Essays on Set Theory, Model Theory,

Philosophical Logic and Philosophy of Mathematics. Ed. by Åsa Hirvonen et al.

Vol. 5. Ontos Mathematical Logic. De Gruyter, 2015, pp. 193–214. DOI: 10.

1515/9781614516873.193. URL: https://doi.org/10.1515/9781614516873.

193.

33

[22] Lauri Hella et al. “The Expressive Power of Modal Dependence Logic”. In:

Advances inModal Logic 10, invited and contributed papers from the tenth confer-

ence on "Advances in Modal Logic," held in Groningen, The Netherlands, August

5-8, 2014. Ed. by Rajeev Goré, Barteld P. Kooi, and Agi Kurucz. College

Publications, 2014, pp. 294–312. URL: http : //www. aiml . net / volumes/

volume10/Hella-Luosto-Sano-Virtema.pdf.

[23] Jaakko Hintikka and Gabriel Sandu. “Informational Independence as a Se-

mantical Phenomenon”. In: Studies in Logic and the Foundations of Mathemat-

ics. Vol. 126. Elsevier, 1989, pp. 571–589. ISBN: 978-0-444-70520-4. (Visited

on 11/02/2015).

[24] Wilfrid Hodges. “Compositional Semantics for a Language of Imperfect In-

formation”. In: Log. J. IGPL 5.4 (1997), pp. 539–563. DOI: 10.1093/jigpal/

5.4.539. URL: https://doi.org/10.1093/jigpal/5.4.539.

[25] Wiebe van der Hoek and Petar Iliev. “On the relative succinctness of modal

logics with union, intersection and quantification”. In: International conference

on Autonomous Agents and Multi-Agent Systems, AAMAS ’14, Paris, France,

May 5-9, 2014. Ed. by Ana L. C. Bazzan et al. IFAAMAS/ACM, 2014,

pp. 341–348. URL: http://dl.acm.org/citation.cfm?id=2615788.

[26] Wiebe van der Hoek, Petar Iliev, and Barteld P. Kooi. “On the Relative Suc-

cinctness of Two Extensions by Definitions of Multimodal Logic”. In:How the

World Computes - Turing Centenary Conference and 8th Conference on Com-

putability in Europe, CiE 2012, Cambridge, UK, June 18-23, 2012. Proceedings.

Ed. by S. Barry Cooper, Anuj Dawar, and Benedikt Löwe. Vol. 7318. Lecture

Notes in Computer Science. Springer, 2012, pp. 323–333. DOI: 10.1007/978-

3-642-30870-3_33. URL: https://doi.org/10.1007/978-3-642-30870-

3%5C_33.

[27] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata

Theory, Languages, and Computation. 3rd. USA: Addison-Wesley Longman

Publishing Co., Inc., 2006. ISBN: 0321455363.

[28] Neil Immerman. “Number of Quantifiers is Better Than Number of Tape

Cells”. In: J. Comput. Syst. Sci. 22.3 (1981), pp. 384–406. DOI: 10.1016/0022-

0000(81)90039-8. URL: https://doi.org/10.1016/0022-0000(81)90039-8.

34

[29] Clemens Kupke, Johannes Marti, and Yde Venema. “Size matters in the modal

𝜇-calculus”. In: CoRR abs/2010.14430 (2020). arXiv: 2010 . 14430. URL:

https://arxiv.org/abs/2010.14430.

[30] Carsten Lutz. “Complexity and succinctness of public announcement logic”.

In: 5th International Joint Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2006), Hakodate, Japan, May 8-12, 2006. Ed. by Hideyuki

Nakashima et al. ACM, 2006, pp. 137–143. DOI: 10.1145/1160633.1160657.

URL: https://doi.org/10.1145/1160633.1160657.

[31] Maarten Marx and Yde Venema. Multi-dimensional modal logic. Vol. 4. Ap-

plied logic series. Kluwer, 1997. ISBN: 978-0-7923-4345-5.

[32] Alexander A. Razborov. “Applications of matrix methods to the theory of

lower bounds in computational complexity”. In: Comb. 10.1 (1990), pp. 81–

93. DOI: 10.1007/BF02122698. URL: https://doi.org/10.1007/BF02122698.

[33] A. Prasad Sistla and Edmund M. Clarke. “The Complexity of Propositional

Linear Temporal Logics”. In: J. ACM 32.3 (1985), pp. 733–749. DOI: 10 .

1145/3828.3837. URL: https://doi.org/10.1145/3828.3837.

[34] L. Stockmeyer. “The complexity of decision problems in automata theory and

logic”. PhD thesis. Massachusetts Institute of Technology, June 1974. URL:

https://dspace.mit.edu/handle/1721.1/15540.

[35] Jouko Väänänen. “An atom’s worth of anonymity”. Dagstuhl Seminar 19031

"Logics for Dependence and Independence". 2019.

[36] JoukoA. Väänänen.Dependence Logic -ANewApproach to Independence Friendly

Logic. Vol. 70. London Mathematical Society student texts. Cambridge Uni-

versity Press, 2007. ISBN: 978-0-521-70015-3. URL: http://www.cambridge.

org/de/knowledge/isbn/item1164246/?site%5C_locale=de%5C_DE.

[37] ThomasWilke. “CTL+ is Exponentially more Succinct than CTL”. In: Foun-

dations of Software Technology and Theoretical Computer Science, 19th Confer-

ence, Chennai, India, December 13-15, 1999, Proceedings. Ed. by C. Pandu

Rangan, Venkatesh Raman, and Ramaswamy Ramanujam. Vol. 1738. Lecture

Notes in Computer Science. Springer, 1999, pp. 110–121. DOI: 10.1007/3-

540-46691-6_9. URL: https://doi.org/10.1007/3-540-46691-6%5C_9.

35

[38] Fan Yang and JoukoVäänänen. “Propositional logics of dependence”. In:Ann.

Pure Appl. Log. 167.7 (2016), pp. 557–589. DOI: 10.1016/j.apal.2016.03.003.

URL: https://doi.org/10.1016/j.apal.2016.03.003.

36

PUBLICATIONS

37

PUBLICATION

I

Formula size games for modal logic and 𝜇-calculus

Lauri Hella and Miikka Vilander

J. Log. Comput. 29.8 (2019), pp. 1311–1344

DOI: 10.1093/logcom/exz025

Publication reprinted with the permission of the copyright holders.

Formula size games for modal logic and
μ-calculus

LAURI T. HELLA, Department of Computing Sciences, Tampere University,
FI-33014, Tampere, Finland.
E-mail: lauri.hella@tuni.fi

MIIKKA S. VILANDER, Department of Computing Sciences, Tampere
University, FI-33014, Tampere, Finland.
E-mail: miikka.vilander@tuni.fi

Abstract
We propose a new version of formula size game for modal logic. The game characterizes the equivalence of pointed Kripke
models up to formulas of given numbers of modal operators and binary connectives. Our game is similar to the well-known
Adler–Immerman game. However, due to a crucial difference in the definition of positions of the game, its winning condition
is simpler, and the second player does not have a trivial optimal strategy. Thus, unlike the Adler–Immerman game, our game
is a genuine two-person game. We illustrate the use of the game by proving a non-elementary succinctness gap between
bisimulation invariant first-order logic FO and (basic) modal logic ML. We also present a version of the game for the modal
μ-calculus Lμ and show that FO is also non-elementarily more succinct than Lμ.

Keywords: Succinctness, formula size game, modal logic, modal μ-calculus, bisimulation invariant first-order logic

1 Introduction

Logical languages are often compared in terms of expressiveness and computational complexity.
The authors of [13] argue that another important semantic aspect of a logical language is the size
of formulas needed for expressing properties of structures. If two logics L and L′ are equivalent in terms
of expressivity, one of them may be able to express interesting properties much more succinctly than
the other. According to the standard terminology, for a given function f on natural numbers, L is said to
be f times more succinct than L′ if there is a sequence (ϕn)n∈N of L-formulas such that for any sequence
(ψn)n∈N of equivalent L′-formulas, the size of ψn is at least f (mn), where mn is the size of ϕn.

The succinctness of various modal and temporal logics has been an active area of research for the
last couple of decades, see e.g. [1, 5, 21–23, 34] for earlier work on the topic and [7, 9, 25, 30, 32, 33]
for recent work. Typical results in the area state an exponential succinctness gap between two equally
expressive logics. Often such a gap is ref lected in the complexity of the logics in question. For example,
Etessami et al. proved in [5] that the two-variable fragment FO2 of first-order logic and unary-TL
(aweakversionoftemporallogic)havethesameexpressivepoweroverω-words,butFO2 isexponentially
more succinct than unary-TL. Furthermore, the complexity of satisfiability for FO2 is NEXPTIME-
complete, while the complexity of unary-TL is in NP [28]. However, being more succinct does not
always imply higher complexity: for example, public announcement logic PAL is exponentially more
succinct than epistemic logic EL, but the complexity of satisfiability is the same for both of them [21].

The most commonly used methods for proving succinctness results are formula size games and
extended syntax trees. It seems that the first formula size game for propositional logic was defined

Vol. 00, No. 0, © The Author(s) 2019. Published by Oxford University Press. All rights reserved.
For permissions, please e-mail: journals.permission@oup.com.

doi:10.1093/logcom/exz025

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

2 Formula size games for modal logic and μ-calculus

by Razborov in [27]1 . Our work was inspired by a game for branching-time temporal logic CTL
by Adler and Immerman in [1]. The method of extended syntax trees was originally formulated by
Grohe and Schweikardt in [14] for first-order logic. Although the work of Karchmer in [19] can
be seen as a precursor of extended syntax trees, the notion was actually inspired by the Adler–
Immerman game, and in a certain sense these two methods are equivalent: an extended syntax tree
can be interpreted as a winning strategy for one of the players of the corresponding formula size
game. Both of these methods have been adapted to a large number of modal languages, including
epistemic logic [8], multimodal logics with union and intersection operators on modalities [31] and
modal logic with contingency operators [32].

The basic idea of the Adler–Immerman game is that one of the players, S (spoiler), tries to show
that two sets of pointed models A and B can be separated by a formula of size n, while the other
player, D (duplicator), aims to show that no formula of size at most n suffices for this. The moves that
S makes in the game ref lect directly the logical operators in a formula that is supposed to separate
the sets A and B. Any pair (σ , δ) of strategies for the players S and D produces a finite game tree
Tσ ,δ , and S wins this play if the size of Tσ ,δ is at most n. The strategy σ is a winning strategy for S
if using it, S wins every play of the game. If this is the case, then there is a formula of size at most n
that separates the sets, and this formula can actually be read from the strategy σ .

A peculiar feature of the Adler–Immerman game is that the second player, duplicator, can be
completely eliminated from it. This is because D has an optimal strategy δmax, which is to always
choose the maximal allowed answer; this strategy guarantees that the size of the tree Tσ ,δ is as large
as possible. Thus, in this sense, the Adler–Immerman game is not a genuine two-person game but
rather a one-person game. Extended syntax trees, on the other hand, do away with the game aspect
entirely.

In the present paper, we propose another type of formula size game for modal logic. Our game
is a natural adaptation of the game first introduced by Razborov in [27] for propositional logic and
later by Hella and Väänänen [17] for propositional logic and first-order logic. The basic setting in
our game is the same as in the Adler–Immerman game: there are two players, S and D, and two sets
of structures that S claims can be separated by a formula of some given size. The crucial difference
is that in our game we define positions to be tuples (k,A,B) instead of just pairs (A,B) of sets of
structures, where k is a parameter referring to the number of modal operators and binary connectives
in a formula. In each move, S has to decrease the parameter k. The game ends when the players reach
a position (k∗,A∗,B∗) such that either there is a literal separating A∗ and B∗, or S cannot make any
moves because k∗ = 0. In the former case, S wins the play; otherwise, D wins.

Thus, in contrast to the Adler–Immerman game, to determine the winner in our game it suffices
to consider a single ‘leaf-node’ (k∗,A∗,B∗) of the game tree. This also means that our game is a real
two-person game: the final position (k∗,A∗,B∗) of a play depends on the moves of D, and there is
no simple optimal strategy for D that could be used for eliminating the role of D in the game.

We believe that our game is more intuitive and thus, in some cases, it may be easier to use than the
Adler–Immerman game. On the other hand, it should be remarked that the two games are essentially
equivalent: the moves corresponding to connectives and modal operators are the same in both games
(when restricting to the sets A and B in a position (k,A,B)). Hence, in principle, it is possible to
translate a winning strategy in one of the games to a corresponding winning strategy in the other.

Additionally, we introduce a formula size game for the modal μ-calculus. This game is obtained
by adapting the formula size game of modal logic to the setting with fixed point operators μ and ν.

1We thank an anonymous referee for pointing out this very pertinent reference.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

Formula size games for modal logic and μ-calculus 3

A new challenge in defining such a game is that if S uses a fixed point ηX (η ∈ {μ, ν}) as the logical
operator in his move and later uses the corresponding variable X , then in the next round, the game
has to return to the subformula that follows ηX . This means that the play may become infinite, and
defining the correct winning condition for infinite plays is complicated. We solve this problem by
adding ordinal clocks to the pointed Kripke models in the sets A and B. The idea is that the ordinals
corresponding to a fixed point variable X decrease each time the game returns to an earlier formula
from a position with label X . This, in conjunction with keeping the sets A and B always finite,
guarantees that every play of the game is finite. The idea of using ordinal clocks is also used in [16]
to define finite semantic games for Lμ.

We illustrate the use of our games by proving two non-elementary succinctness gaps: one between
first-order logic FO and (basic) modal logic ML and the other between FO and the modal μ-
calculus Lμ. More precisely, we define a property of pointed Kripke models, which is closed under
bisimulation, by a first-order formula of linear size, and show that this property cannot be defined by
any ML- or Lμ-formula of size less than the exponential tower of height n−1. Furthermore, we show
that the same property of pointed Kripke models is already definable by a formula of size O(2n) in a
version ML2 of two-dimensional modal logic. Hence, the same non-elementary succinctness result
holds for ML2 over ML.

A similar gap between FO and temporal logic follows from a construction in the PhD thesis [29]
of Stockmeyer. He proved that the satisfiability problem of FO over words is of non-elementary
complexity. Etessami and Wilke [6] observed that from Stockmeyer’s proof it is possible to extract
FO-formulas of size O(n) whose smallest models are words of length non-elementary in n. On the
other hand, it is well known that any satisfiable formula of temporal logic has a model of size O(2n),
where n is the size of the formula. Another result related to ours can be found in [26], where Otto
shows that FO is exponentially more succinct than ML by relating the modal depth of the ML-
formula to the quantifier rank of the FO-formula. In contrast to this, our proof relies entirely on the
number of disjunctions and conjunctions in the ML-formula.

For the modal μ-calculus, the literature regarding succinctness is scarcer. In [15], Grohe and
Schweikardt show several succinctness gaps between monadic second-order logics, many with fixed
points. They use automata-theoretic techniques and cite a non-elementary succinctness gap between
MSO and Lμ as well known2 .

The structure of the paper is as follows. In Section 2, we present the logics used in the paper, fix
some notation and define our notion of formula size. In Section 3, we present the formula size game
for ML and show some basic results for it. Section 4 is dedicated to the non-elementary succinctness
gap between FO and ML and all necessary definitions and lemmas to prove it. In Section 5, we
define the formula size game for Lμ and show basic results. Finally, in Section 6, we show the non-
elementary succinctness of FO over Lμ. Section 7 is the conclusion.

The work on modal logic was previously published in the conference paper [18]. This version
has some minor changes to the modal logic part and the sections on the modal μ-calculus are
completely new.

2 Preliminaries

In this section, we fix some notation, define the syntax and semantics of basic modal logic and the
modal μ-calculus and define our notions of formula size. For a detailed account on the logics used

2We were unable to find a source in the literature for this result but we are reasonably convinced that a non-elementary
gap already between FO and Lμ is a new result.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

4 Formula size games for modal logic and μ-calculus

in the paper, we refer to the textbook [2] of Blackburn et al. for basic modal logic and [3] for the
modal μ-calculus.

Basic modal logic and first-order logic

Let Prop be an infinite set of propositional symbols and let Φ ⊆ Prop. Let M = (W , R, V), where
W is a set, R ⊆ W × W and V : Φ → P(W), and let w ∈ W . The structure (M, w) is called a
pointed Kripke model for Φ.

Let (M, w) be a pointed Kripke model. We use the notation

�(M, w) := {(M, v) | v ∈ W , wRMv}.
If A is a set of pointed Kripke models, we use the notation

�A :=
⋃

(M,w)∈A
�(M, w).

Furthermore, if f is a function f : A → �A such that f (M, w) ∈ �(M, w) for every (M, w) ∈ A,
then we use the notation

♦f A := f (A).

Intuitively, �(M, w) is the set of all successor models of (M, w), �A is the collection of all
successor models of all models (M, w) ∈ A and ♦f A consists of one successor for each model in A,
where the successors are given by the function f . We now define the syntax and semantics of basic
modal logic for pointed models.

Let Φ ⊆ Prop. The set of formulas of ML(Φ) is generated by the following grammar

ϕ := � | ⊥ | p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ♦ϕ | �ϕ,

where p ∈ Φ.
As is apparent from the definition of the syntax, we assume that all ML-formulas are in negation

normal form. This is useful for the formula size game that we introduce in the next section.
The satisfaction relation (M, w) � ϕ between pointed Kripke models (M, w) and ML(Φ)-

formulas ϕ is defined as follows:

(1) (M, w) � � for all (M, w), and (M, w) � ⊥ for all (M, w),
(2) (M, w) � p ⇔ w ∈ V(p), and (M, w) � ¬p ⇔ w /∈ V(p),
(3) (M, w) � (ϕ ∧ ψ) ⇔ (M, w) � ϕ and (M, w) � ψ ,
(4) (M, w) � (ϕ ∨ ψ) ⇔ (M, w) � ϕ or (M, w) � ψ ,
(5) (M, w) � ♦ϕ ⇔ there is (M, v) ∈ �(M, w) such that (M, v) � ϕ,
(6) (M, w) � �ϕ ⇔ for every (M, v) ∈ �(M, w) it holds that (M, v) � ϕ.

Furthermore, if A is a class of pointed Kripke models, then

A � ϕ ⇔ (A, w) � ϕ for every (A, w) ∈ A.

For the sake of convenience, we also use the notation

A � ¬ϕ ⇔ (A, w) � ϕ for every (A, w) ∈ A.

Note that this is only a notational convention as ¬ϕ is not in negation normal form and as such is
generally not a formula in our syntax.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

Formula size games for modal logic and μ-calculus 5

In Section 4, we consider the case Φ = ∅. In this case, the only available literals are the constants
� and ⊥, which are always true or false, respectively.

The syntax and semantics of first-order logic are defined in the standard way. Each ML-formula
ϕ defines a class Mod(ϕ) of pointed Kripke models:

Mod(ϕ) := {(M, w) | (M, w) � ϕ}.
In the same way, any FO-formula ψ(x) in the vocabulary consisting of the accessibility relation
symbol R and unary relation symbols Up for p ∈ Φ defines a class Mod(ψ) of pointed Kripke
models:

Mod(ψ) := {(M, w) | M � ψ[w/x]}.
The formulas ϕ ∈ ML and ψ(x) ∈ FO are equivalent if Mod(ϕ) = Mod(ψ).

For the sake of easier reading, we define here the standard notion of n-bisimulation.

DEFINITION 2.1
Let (M, w) and (M′, w′) be pointed Φ-models. We say that (M, w) and (M′, w′) are n-bisimilar,
(M, w) �n (M′, w′), if there are binary relations Zn ⊆ · · · ⊆ Z0 such that for every 0 ≤ i ≤ n − 1
we have

(1) (M, w)Zn(M′, w′),
(2) if (M, v)Z0(M′, v′), then (M, v) � p ⇔ (M′, v′) � p for each p ∈ Φ,
(3) if (M, v)Zi+1(M′, v′) and (M, u) ∈ �(M, v) then there is (M′, u′) ∈ �(M′, v′) such that

(M, u)Zi(M′, u′),
(4) if (M, v)Zi+1(M′, v′) and (M′, u′) ∈ �(M′, v′) then there is (M, u) ∈ �(M, v) such that

(M, u)Zi(M′, u′).

It is well known that if Φ is finite, two pointed Φ-models are n-bisimilar if and only if they satisfy
the same ML(Φ)-formulas of modal depth at most n.

The well known link between ML and FO is the following theorem.

THEOREM 2.2 (van Benthem characterization theorem).
A first-order formula ψ(x) is equivalent to some formula in ML if and only if Mod(ψ) is closed
under bisimulation.

If a property of pointed Kripke models is closed under n-bisimulation for some n ∈ N, then it
is also closed under bisimulation. Thus, if a property of pointed Kripke models is FO-definable
and closed under n-bisimulation, it is also ML-definable. We will use this version of van Benthem’s
characterization in Section 4.1 to show that a certain property is ML-definable.

Modal μ-calculus

Let Φ ⊆ Prop and let Var be an infinite set of variables. The syntax of the modal μ-calculus Lμ(Φ)

is given by the grammar:

ϕ ::= � | ⊥ | p | ¬p | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | ♦ϕ | �ϕ | X | μX .ϕ | νX .ϕ,

where p ∈ Φ and X ∈ Var. Note that all formulas are again in negation normal form. We additionally
assume for simplicity that variables of different fixed points are distinct.

Truth of formulas of Lμ(Φ) is, like ML, evaluated on pointed Kripke models (M, w), where
M = (W , R, V). Let ϕ ∈ Lμ(Φ) and let ρ : Var → P(W) be a valuation of variables.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

6 Formula size games for modal logic and μ-calculus

We define truth relation (M, w) �ρ ϕ between pointed models and Lμ(Φ)-formulas. Let
‖ϕ‖ρ := {w ∈ W | (M, w) �ρ ϕ} and let Γϕ,ρ : P(W) → P(W) be an operator, which maps W ′ to
‖ϕ‖ρ[W ′/X]. The notation LFP stands for least fixed point of an operator and GFP for greatest fixed
point. Since variables only occur positively in fixed point formulas, Γϕ,ρ is a monotone operator. By
the Knaster–Tarski theorem, the least and greatest fixed points of such a monotone operator always
exist. The recursive definition of �ρ is as follows:

• (M, w) �ρ p ⇔ w ∈ V(p),
• (M, w) �ρ X ⇔ w ∈ ρ(X),
• (M, w) �ρ (ϕ ∨ ψ) ⇔ (M, w) �ρ ϕ or (M, w) �ρ ψ ,
• (M, w) �ρ (ϕ ∧ ψ) ⇔ (M, w) �ρ ϕ and (M, w) �ρ ψ ,
• (M, w) �ρ ♦ϕ ⇔ there is (M, v) ∈ �(M, w) such that (M, v) �ρ ϕ,
• (M, w) �ρ �ϕ ⇔ for every (M, v) ∈ �(M, w) it holds that (M, v) �ρ ϕ,
• (M, w) �ρ μX .ϕ ⇔ w ∈ LFP(Γϕ,ρ),
• (M, w) �ρ νX .ϕ ⇔ w ∈ GFP(Γϕ,ρ).

Formula size

We define notions of formula size for ML, Lμ and FO. Note that many different notions are called
formula size in the literature and our notion is close to the length of the formula as a string rather
than, say, the DAG-size3 of it.

DEFINITION 2.3
The size of a formula ϕ ∈ ML, denoted sz(ϕ), is defined recursively as follows:

(1) If ϕ is a literal, then sz(ϕ) = 1.
(2) If ϕ = ψ ∨ ϑ or ϕ = ψ ∧ ϑ , then sz(ϕ) = sz(ψ) + sz(ϑ) + 1.
(3) If ϕ = ♦ψ or ϕ = �ψ , then sz(ϕ) = sz(ψ) + 1.

DEFINITION 2.4
The size of a formula ϕ ∈ Lμ, denoted sz(ϕ), is defined recursively as follows:

(1) sz(l) = sz(X) = 1, where l is a literal and X is a variable,
(2) sz(ϕ ∨ ψ) = sz(ϕ ∧ ψ) = sz(ϕ) + sz(ψ) + 1,
(3) sz(♦ϕ) = sz(�ϕ) = sz(μX .ϕ) = sz(νX .ϕ) = sz(ϕ) + 1.

The size of a formula is essentially its length as a string. Note, however, that we do not count
negations as we view them as parts of literals. Another aspect worth mentioning is the size of
descriptions of propositional symbols. If we have an infinite set of propositional symbols, the size
of the encoding of each symbol in a fixed size vocabulary necessarily grows logarithmically. Here
we consider all propositional symbols to be of size one.

Similarly, we define formula size for FO to be the number of binary connectives, quantifiers and
literals in the formula. In general, this could lead to an arbitrarily large difference between formula
size and actual string length. For example, if f is a unary function symbol, then atomic formulas of

3The DAG-size of a formula ϕ is the number of nodes of the syntactic structure of ϕ in the form of a directed acyclic
graph. This is the same as the number of subformulas of ϕ.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

Formula size games for modal logic and μ-calculus 7

the form f (x) = x, f (f (x)) = x and so on, all have size 1. In this paper, however, we only consider
formulas with one binary relation so this is not an issue.

DEFINITION 2.5
The size of a formula ϕ ∈ FO, denoted by sz(ϕ), is defined recursively as follows:

(1) If ϕ is a literal, then sz(ϕ) = 1.
(2) If ϕ = ¬ψ , then sz(ϕ) = sz(ψ).
(3) If ϕ = ψ ∨ ϑ or ϕ = ψ ∧ ϑ , then sz(ϕ) = sz(ψ) + sz(ϑ) + 1.
(4) If ϕ = ∃xψ or ϕ = ∀xψ , then sz(ϕ) = sz(ψ) + 1.

To refer to some rather large formula sizes, we need the exponential tower function.

DEFINITION 2.6
We define the function twr : N → N recursively as follows:

twr(0) = 1

twr(n + 1) = 2twr(n).

We will also use in the sequel the binary logarithm function, denoted by log.

Separating classes by formulas

The definitions of the formula size games in Sections 3 and 5 are based on the notion of separating
classes of pointed Kripke models by formulas. Recall that by the notation B � ¬ϕ we mean that for
every model (B, w) ∈ B, we have (B, w) � ϕ. As formulas of ML are also in Lμ, we only define the
following for Lμ and FO.

DEFINITION 2.7
Let A and B be classes of pointed Kripkemodels.

(a) We say that a formula ϕ ∈ Lμ separates A from B if A � ϕ and B � ¬ϕ.
(b) Similarly, a formula ψ(x) ∈ FO separates A from B if for all (M, w) ∈ A, M � ψ[w/x] and

for all (M, w) ∈ B, M � ¬ψ[w/x].

In other words, a formula ϕ ∈ Lμ separates A from B if A ⊆ Mod(ϕ) and B ⊆ Mod(ϕ), where
Mod(ϕ) is the complement of Mod(ϕ).

3 The formula size game for ML

As in the Adler–Immerman game, the basic idea in our formula size game is that there are two
players, S (Samson) and D (Delilah), who play on a pair (A,B) of two sets of pointed Kripke models.
The aim of S is to show that A and B can be separated by a formula with size at most k, while D
tries to refute this. The moves of S ref lect the connectives and modal operators of a formula that is
supposed to separate the sets.

The crucial difference between our game and the Adler–Immerman game is that we define
positions in the game to be tuples (k,A,B) instead of just pairs (A,B). As in the A-I game, D
chooses for connective moves, which branch she would like to see played next. However, our game
never returns to the branch not chosen, so D has a genuine choice to make. The winning condition

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

8 Formula size games for modal logic and μ-calculus

of our game is based on a natural property of single positions instead of the size of the entire
game tree.

We give now the precise definition of our game.

DEFINITION 3.1
Let A0 and B0 be sets of pointed Φ-Kripke models and let k0 ∈ N. The formula size game between
the sets A0 and B0, denoted FSΦ

k0
(A0,B0), has two players, S and D. The number k0 is the resource

parameter of the game. The starting position of the game is (k0,A0,B0). Let the position after n
moves be (k,A,B). If k = 0, D wins the game. If k > 0, S has the following five moves to choose
from the following:

• ∨-move: First, S chooses natural numbers k1 and k2 and sets A1 and A2 such that k1+k2+1 = k
and A1 ∪A2 = A. Then D decides whether the game continues from the position (k1,A1,B) or
the position (k2,A2,B).

• ∧-move: First, S chooses natural numbers k1 and k2 and sets B1 and B2 such that k1+k2+1 = k
and B1 ∪ B2 = B. Then D decides whether the game continues from the position (k1,A,B1) or
the position (k2,A,B2).

• ♦-move: S chooses a function f : A → �A such that f (A, w) ∈ �(A, w) for all (A, w) ∈ A
and the game continues from the position (k − 1,♦f A,�B).

• �-move: S chooses a function g : B → �B such that g(B, w) ∈ �(B, w) for all (B, w) ∈ B and
the game continues from the position (k − 1,�A,♦gB).

• Lit-move: S chooses a literal l ∈ Lit(Φ). If l separates the sets A and B, S wins. Otherwise, D
wins. Note that if l = �, S wins if A �= ∅ and B = ∅, and vice versa for ⊥.

Since D wins if k runs out, the parameter k can be thought of as a resource of S that she spends on
connectives and literals. In addition, if there is a model (M, w) ∈ A (or B) for which �(M, w) = ∅,
then S cannot make a ♦- (or �-)move.

We prove that the formula size game indeed characterizes the separation of two sets of pointed
Kripke models by a formula of a given size.

THEOREM 3.2
Let A and B be sets of pointed Φ-models and let k be natural number. Then the following conditions
are equivalent:

(win)k S has a winning strategy in the game FSΦ
k (A,B).

(sep)k There is a formula ϕ ∈ ML(Φ) such that sz(ϕ) ≤ k and the formula ϕ separates A from B.

PROOF. The proof proceeds by induction on the number k. First, assume k = 1. If S makes any
non-literal move, D wins since k = 0 in the following position. So the only possibility for a winning
strategy is a literal move. There is a winning literal move if and only if there is a literal, which
separates A0 from B0. Thus, (win)1 ⇔ (sep)1.

Suppose then that k > 1 and (win)l ⇔ (sep)l for all l < k. Assume first that (win)k holds.
Consider the following cases according to the first move in the winning strategy of S. For ∨- and
∧-moves, we use the index i to always mean i ∈ {1, 2}.

(a) Assume the first move of the winning strategy is a literal move and ϕ is the literal chosen by
S. Then ϕ separates A and B and sz(ϕ) = 1 so (sep)k trivially holds.

(b) Assume that the first move of the winning strategy of S is a ∨-move choosing numbers
k1, k2 ∈ N such that k1 + k2 + 1 = k, and sets A1,A2 ⊆ A such that A1 ∪A2 = A. Since this

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

Formula size games for modal logic and μ-calculus 9

move is given by a winning strategy, S has a winning strategy for both possible continuations
of the game, (k1,A1,B) and (k2,A2,B). Since ki < k, by induction hypothesis, there is a
formula ψi such that sz(ψi) ≤ ki and ψi separates Ai from B. Thus, Ai � ψi so A � ψ1 ∨ ψ2.
On the other hand, B � ¬ψ1 and B � ¬ψ2 so B � ¬(ψ1∨ψ2). Therefore, the formula ψ1∨ψ2
separates A from B. In addition, sz(ψ1 ∨ ψ2) = sz(ψ1) + sz(ψ2) + 1 ≤ k1 + k2 + 1 = k so
(sep)k holds.

(c) The case in which the first move of the winning strategy of S is a ∧-move is proved in the
same way as the previous one, with the roles of A and B switched, and disjunction replaced
by conjunction.

(d) Assume that the first move of the winning strategy of S is a ♦-move choosing a function
f : A → �A such that f (A, w) ∈ �(A, w) for all (A, w) ∈ A. The game continues from
the position (k − 1,♦f A,�B) and S has a winning strategy from this position. By induction
hypothesis, there is a formula ψ such that sz(ψ) ≤ k − 1 and ψ separates ♦f A from �B.
Now for every (A, w) ∈ A we have f (A, w) ∈ �(A, w) and f (A, w) � ψ . Therefore,
A�♦ψ . On the other hand, �B � ¬ψ so for every (B, w) ∈ B and every (B, v) ∈ �(B, w)

we have (B, v) � ψ . Thus, B � ¬♦ψ . So the formula ♦ψ separates A from B and since
sz(♦ψ)= sz(ψ) + 1 ≤ k, (sep)k holds.

(e) The case in which the first move of the winning strategy of S is a �-move is similar
to the case of the ♦-move. It suffices to switch the classes A and B and replace ♦
with �.

Now assume (sep)k holds, and ϕ is the formula separating A from B. We obtain a winning strategy
of S for the game FSΦ

k (A,B) using ϕ as follows:

(a) If ϕ is a literal, S wins the game by making the corresponding literal move.
(b) Assume that ϕ = ψ1 ∨ ψ2. Let Ai := {(A, w) ∈ A | (A, w) � ψi}. Since A � ϕ, we have

A1 ∪ A2 = A. In addition, since B � ¬ϕ, we have B � ¬ψi. Thus, ψi separates Ai from B.
Since sz(ψ1) + sz(ψ2) + 1 = sz(ϕ) ≤ k, there are k1, k2 ∈ N such that k1 + k2 + 1 = k
and sz(ψi) ≤ ki. By induction hypothesis, S has winning strategies for the games FSΦ

ki
(Ai,B).

Since k ≥ sz(ϕ) ≥ 1, S can start the game FSΦ
k (A,B) with a ∨-move choosing the numbers

k1 and k2 and the sets A1 and A2. Then S wins the game by following the winning strategy
for whichever position D chooses.

(c) Assume that ϕ = ψ1 ∧ ψ2. Let B1 := {(B, w) ∈ B | (B, w) � ψ1} and
B2 := {(B, w)∈B | (B, w) � ψ2}. Since B � ¬ϕ, we have B1 ∪ B2 = B. In
addition, since A � ϕ, we have A � ψ1 and A � ψ2. Thus, ψ1 separates A from B1
while ψ2 separates A from B2. As in the previous case, there are k1, k2 ∈ N such that
k1 + k2 = k, sz(ψ1) ≤ k1 and sz(ψ2) ≤ k2. By induction hypothesis, S has a winning strategy
for the games FSΦ

k (A,B1) and FSΦ
k (A,B2). S wins the game FSΦ

k (A,B) by starting with a
∧-move choosing the numbers k1, and k2 and the sets B1 and B2 and proceeding according to
the winning strategies for the games FSΦ

k (A,B1) and FSΦ
k (A,B2).

(d) Assume that ϕ = ♦ψ . Since A � ϕ, for every (A, w) ∈ A there is (A, vw) ∈ �(A, w) such
that (A, vw) � ψ . We define the function f : A → �A by f (A, w) = (A, vw). Clearly,
♦f A � ψ . On the other hand, B � ¬ϕ so for each (B, w) ∈ B and each (B, v) ∈ �(B, w) we
have (B, v) � ψ . Therefore, �B � ¬ψ and the formula ψ separates ♦f A from �B. Moreover,
sz(ψ) = sz(ϕ) − 1 ≤ k − 1 so by induction hypothesis S has a winning strategy for the
game FSΦ

k−1(♦f A,�B). Since k ≥ sz(ϕ) ≥ 1, S can start the game FSΦ
k (A,B) with a ♦-move

choosing the function f . Then S wins the game by following the winning strategy for the game
FSΦ

k−1(♦f A,�B).

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

10 Formula size games for modal logic and μ-calculus

(e) Assume finally that ϕ = �ψ . Since A � ϕ, as in the previous case, we obtain �A � ψ .
On the other hand, since B � ¬ϕ, for every (B, w) ∈ B there is (B, vw) ∈ �(B, w) such that
(B, vw) � ψ . We define the function g : B → �B by g(B, w) = (B, vw). Clearly, ♦gB � ¬ψ

so the formula ψ separates the sets �A and ♦gB. By induction hypothesis, S has a winning
strategy for the game FSΦ

k−1(�A,♦gB). S wins the game FSΦ
k (A,B) by starting with a �-

move choosing the function g and proceeding according to the winning strategy of the game
FSΦ

k−1(�A,♦gB). �

REMARK 3.3
In this form, the game FSΦ

k (A,B) tracks the size of the separating formula but with slight
modifications it could track different things such as the number or nesting depth of specific
operators. See e.g. the conference paper [18] where the game counts propositional connectives and
modal operators with two separate parameters.

Note that in Theorem 3.2 we allow the set of propositional symbols Φ to be infinite. This is in
contrast with other similar games, such as the bisimulation game and the n-bisimulation game. For
an example of two models, which satisfy the same ML(Φ)-formulas for an infinite Φ, but are not
bisimilar, see [2, Figure 2.5, p. 68].

We prove next that k-bisimilarity implies that D has winning strategy in the formula size game
with resource parameter k. This simple observation is used in the next section, when we apply the
game FSΦ

k for proving a succinctness result for FO over ML.

THEOREM 3.4
Let A and B be sets of pointed models and let k ∈ N. If there are (k − 1)-bisimilar pointed models
(A, w) ∈ A and (B, v) ∈ B, then D has a winning strategy for the game FSΦ

k (A,B).

PROOF. The proof proceeds by induction on the number k ∈ N. If k = 1 and (A, w) ∈ A and
(B, v) ∈ B are 0-bisimilar and thus satisfy the same literals. Thus, there is no literal ϕ ∈ ML that
separates the sets A and B. Thus, any literal move by S leads to D winning. In addition, any non-
literal move leads to a following position with k = 0 so D wins the game FSΦ

1 (A,B).
Assume that k > 1 and (A, w) ∈ A and (B, v) ∈ B are (k − 1)-bisimilar. We consider the cases of

the first move of S in the game FSΦ
k (A,B).

If S makes a literal move, D will win as in the basic step.
If S starts with a ∨-move choosing the numbers k1 and k2 and the sets A1 and A2, then since

A1 ∪ A2 = A, D can choose the next position (ki,Ai,B), in such a way that (A, w) ∈ Ai. Then we
have ki < k so by induction hypothesis D has a winning strategy for the game FSΦ

ki
(Ai,B). The case

of a ∧-move is similar.
If S starts with a ♦-move choosing a function f : A → �A, then since (A, w) and (B, v) are

(k −1)-bisimilar, there is a pointed model (B, v′) ∈ �(B, v) that is (k −2)-bisimilar with the pointed
model f (A, w). By induction hypothesis, D has a winning strategy in FSΦ

k−1(♦f A,�B). The case of
a �-move is similar. �

4 Succinctness of FO over ML

In this section, we illustrate the use of the formula size game FSΦ
k by proving a non-elementary

succinctness gap between bisimulation invariant first-order logic and modal logic. We also show that
this gap is already present between a limited two-dimensional modal logic ML2 and basic modal
logic.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

Formula size games for modal logic and μ-calculus 11

A similar gap between FO and linear temporal logic LTL has already been established in the
literature. In his PhD thesis [29], Stockmeyer proved that the satisfiability problem of FO over
words is of non-elementary complexity. He reduced the problem of nonemptiness of star-free
regular expressions to this satisfiability problem. Etessami and Wilke pointed out in [5] that careful
examination of Stockmeyer’s proof yields FO sentences with size O(n) such that the minimal words
satisfying these sentences have length non-elementary in n3. Since all satisfiable formulas of LTL
have a satisfying model at most exponential in the size of the formula, a non-elementary succinctness
gap between FO and LTL is obtained.

4.1 A property of pointed models

For the remainder of this section, we consider only the case where the set Φ of propositional symbols
is empty. This makes all points in Kripke models propositionally equivalent so the only formulas
available for the win condition of S in the game FSΦ

k are ⊥ and �. Thus, S can only win with a
literal move from position (k,A,B) if either A = ∅ and B �= ∅, or A �= ∅ and B = ∅.

We will use the following two classes in our application of the formula size game FSΦ
k :

• An is the class of all pointed models (A, w) such that for all (A, u), (A, v) ∈ �(A, w), the
models (A, u) and (A, v) are n-bisimilar.

• Bn is the complement of An.

LEMMA 4.1
For each n ∈ N, there is a formula ϕn(x) ∈ FO that separates the classes An and Bn such that the size
of ϕn(x) is linear with respect to n, i.e. sz(ϕn) = O(n).

PROOF. We first define formulas ψn(x, y) ∈ FO such that (M, u) �n (M, v) if and only if
M � ψn[u/x, v/y]. We only use four variables. To make our reuse of variables explicit, we define
formulas ψn(x, y) and ψ ′

n(s, t) via mutual recursion as follows:

ψ1(x, y) :=∃sR(x, s) ↔ ∃tR(y, t)

ψ ′
1(s, t) :=∃xR(s, x) ↔ ∃yR(t, y)

ψn+1(x, y) :=∀s∃t
((

R(x, s) → R(y, t)
) ∧ (

R(y, s) → R(x, t)
)

∧ (
R(x, s) ∨ R(y, s) → ψ ′

n(s, t)
))

ψ ′
n+1(s, t) :=∀x∃y

((
R(s, x) → R(t, y)

) ∧ (
R(s, y) → R(t, x)

)

∧ (
R(s, x) ∨ R(s, y) → ψn(x, y)

))

Clearly, the formulas ψn(x, y) express n-bisimilarity as intended. When we interpret the equiv-
alence and implications as shorthand in the standard way, we get the sizes sz(ψ1) = 11 and
sz(ψn+1)= sz(ψn) + 14. Thus, sz(ψn) = 14n − 3.

Now we can define the formulas ϕn:

ϕn(x) := ∀y∀z(R(x, y) ∧ R(x, z) → ψn(y, z)).

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

12 Formula size games for modal logic and μ-calculus

FIGURE 1 The model F3 and its generated submodels.

Clearly, for every (A, w) ∈ An we have A � ϕn[w/x] and for every (B, v) ∈ Bn
we have B �¬ϕn[w/x] so the formula ϕn separates the classes An and Bn. Furthermore,
sz(ϕn)=sz(ψn)+ 6 = 14n + 3 so the size of ϕn is linear with respect to n. �
LEMMA 4.2
For each n ∈ N, the formula ϕn is (n + 1)-bisimulation invariant.

PROOF. Let (A, w) and (B, v) be (n + 1)-bisimilar pointed models. Assume that A � ϕn[w/x].
If (B, v1), (B, v2) ∈ �(B, v), by (n + 1)-bisimilarity there are (A, w1), (A, w2) ∈ �(A, w)

such that (A, w1) �n (B, v1) and (A, w2) �n (B, v2). Since A � ϕn[w/x], we have
(B, v1) �n (A, w1) �n (A, w2) �n (B, v2) so B � ψn[v1/x, v2/y]. Thus, we see that B � ϕn[v/x]. �

It follows now from van Benthem’s characterization theorem that each ϕn is equivalent to some
ML-formula. Thus, we get the following corollary.

COROLLARY 4.3
For each n ∈ N, there is a formula ϑn ∈ ML that separates the classes An and Bn.

4.2 Set theoretic construction of pointed models

We have shown that the classes An and Bn can be separated both in ML and in FO. Furthermore
the size of the FO-formula is linear with respect to n. It only remains to ask: what is the size of the
smallest ML-formula that separates the classes An and Bn? To answer this, we will need suitable
subsets of An and Bn to play the formula size game on.

DEFINITION 4.4
Let n ∈ N. The finite levels of the cumulative hierarchy are defined recursively as follows:

V0 = ∅
Vn+1 = P(Vn)

For every n ∈ N, Vn is a transitive set, i.e. for every a ∈ Vn and every b ∈ a it holds that
b ∈ Vn. Thus, it is reasonable to define a model Fn = (Vn, Rn), where for all a, b ∈ Vn it holds that
(a, b) ∈ Rn ⇔ b ∈ a.

For every point a ∈ Vn, we denote by (Ma, a) the pointed model, where Ma is the submodel of
Fn generated by the point a.

LEMMA 4.5
Let n ∈ N and a, b ∈ Vn+1. If a �= b, then (Ma, a) ��n (Mb, b).

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

Formula size games for modal logic and μ-calculus 13

FIGURE 2 The pointed model
�
A.

PROOF. We prove the claim by induction on n. The basic step n = 0 is trivial since V1 only has one
element. For the induction step, assume that a, b ∈ Vn+1 and a �= b. Assume further for contradiction
that (Ma, a) �n (Mb, b). Since a �= b, by symmetry we can assume that there is x ∈ a such that
x /∈ b. By n-bisimilarity there is y ∈ b such that (Mx, x) and (My, y) are (n − 1)-bisimilar. Since
x ∈ a ∈ Vn+1 and y ∈ b ∈ Vn+1, we have x, y ∈ Vn. By induction hypothesis, we obtain x = y. This
is a contradiction, since x /∈ b and y ∈ b. �

If A is a set of pointed models, the pointed model
�
A is formed by taking all the pointed models

of A and connecting a new root to their distinguished points as illustrated in Figure 2. To make
sure that (

�
A, v) is bisimilar with (A, v) for any (A, v) ∈ A, we require that the models in A are

compatible in possible intersections. The precise definition is the following.
Let A be a set of pointed models. For all (A, v), (A′, v′) ∈ A, let D(A,A′) = dom(A) ∩ dom(A′)

and assume that RA ∩ (D(A,A′) × D(A,A′)) = RA′ ∩ (D(A,A′) × D(A,A′)). Let w /∈ dom(A)

for all (A, v) ∈ A. We use the notation
�
A := (M, w), where

dom(M) = {w} ∪
⋃

{dom(A) | (A, v) ∈ A}, and

RM = {(w, v) | (A, v) ∈ A} ∪
⋃

{RA | (A, v) ∈ A}.
For each n ∈ N, we define the following sets of pointed models:

Cn := {�{(Ma, a)} | a ∈ Vn+1}
Dn := {�{(Ma, a), (Mb, b)} | a, b ∈ Vn+1, a �= b}.

In other words, the pointed models in Cn have a single successor from level n+1 of the cumulative
hierarchy, whereas the pointed models in Dn have two different successors from the same set.
Therefore, clearly Cn ⊆ An and by Lemma 4.5 also Dn ⊆ Bn. In the next subsection, we will
use these sets in the formula size game.

It is well known that the cardinality of Vn is the exponential tower of n − 1. Thus, the cardinality
of Cn is twr(n).

LEMMA 4.6
If n ∈ N, we have |Cn| = |Vn+1| = twr(n).

4.3 Graph colourings and winning strategies in FSΦ
k

Our aim is to prove that any ML-formula ϑn separating the sets Cn and Dn is of size at least twr(n−1).
To do this, we make use of a surprising connection between the chromatic numbers of certain graphs

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

14 Formula size games for modal logic and μ-calculus

related to pairs of the form (V,E), where V ⊆ Cn and E ⊆ Dn, and existence of a winning strategy
for D in the game FSΦ

k (V,E).
Let n ∈ N, ∅ �= V ⊆ Cn and E ⊆ Dn. Then G(V,E) denotes the graph (V , E), where

V = �V and

E = {((M, w), (M′, w′)) ∈ V × V | �{(M, w), (M′, w′)} ∈ E}.

That is, since models on the left all have exactly one successor, and ones on the right have exactly
two successors from the same basic set, we can take the graph where these successors are nodes and
the pairs on the right define the edges. Note that a pair on the right only produces an edge if both
elements of the pair are present on the left.

DEFINITION 4.7
Let G = (V , E) be a graph and let C be a set. A function χ : V → C is a colouring of the graph G
if for all u, v ∈ V it holds that if (u, v) ∈ E, then χ(u) �= χ(v). If the set C has k elements, then χ is
called a k-colouring of G.

The chromatic number of G, denoted by χ(G), is the smallest number k ∈ N for which there is a
k-colouring of G.

When playing the formula size game FSΦ
k (V,E), connective moves correspond with dividing

either the vertex set or the edge set of the graph G(V,E) into two parts, forming two new graphs. In
the next lemma, we get simple arithmetic estimates for the behaviour of chromatic numbers in such
divisions. In the case of a vertex set split, if the two new graphs are coloured with separate colours,
combining these colourings yields a colouring of the whole graph. For an edge split, the full graph
is coloured with pairs of colours given by the two new colourings. If two vertices are adjacent in the
full graph, at least one of the new colourings will colour them with a different colour and the pairs
of colours will be different.

LEMMA 4.8
Let G = (V , E) be a graph.

1. Let V1, V2 ⊆ V be nonempty such that V1 ∪ V2 = V and let G1 = (V1, E ∩ (V1 × V1)) and
G2 = (V2, E ∩ (V2 × V2)). Then we have χ(G) ≤ χ(G1) + χ(G2).

2. Let E1, E2 ⊆ E such that E1 ∪ E2 = E and let G1 = (V , E1) and G2 = (V , E2). Then
χ(G)≤χ(G1)χ(G2).

PROOF.

1. Let V1, V2, G1 and G2 be as in the claim and let k1 = χ(G1) and k2 = χ(G2). Let
χ1 :V1 →{1, . . . , k1} be a k1-colouring of the graph G1 and let χ2 :V2 → {k1+1, . . . , k1+k2} be
a k2-colouring of the graph G2. Then it is straightforward to show that χ = χ1∪(χ2 � (V2\V1))

is a k1 + k2-colouring of the graph G, whence χ(G) ≤ k1 + k2 = χ(G1) + χ(G2).
2. Let χ1 : V → {1, . . . , k1} and χ2 : V → {1, . . . , k2} be colourings of the graphs G1 and G2,

respectively. Then it is easy to verify that the map χ : V → {1, . . . , k1} × {1, . . . , k2}
defined by χ(v) = (χ1(v), χ2(v)) is a colouring of G. Thus, we obtain
χ(G) ≤ |{1, . . . , k1} × {1, . . . , k2}| = χ(G1)χ(G2). �

For the condition, D maintains to win the game, we use the logarithm of the chromatic number
of G(V,E) as it behaves nicely with both kinds of splittings. Note that to achieve non-elementary

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

Formula size games for modal logic and μ-calculus 15

formula size, it suffices to consider the number of binary connectives required before any modal
moves can be made.

LEMMA 4.9
Assume ∅ �= V ⊆ Cn and E ⊆ Dn for some n ∈ N and let k ∈ N. If k ≤ log(χ(G(V,E))), then D
has a winning strategy in the game FSΦ

k (V,E).

PROOF. Let n, k ∈ N and assume that ∅ �= V ⊆ Cn, E ⊆ Dn and k ≤ log(χ(G(V,E))). We prove the
claim by induction on k.

If k = 0, then D wins the game.
If k = 1, any non-literal move of S leads to D winning. Since V,E �= ∅ and all models are

propositionally equivalent, D will also win if S makes a literal move.
Assume then that k > 1. If S starts the game with a literal move, then D wins as described above.
Assume that S begins the game with a ♦- or �-move. Since χ(G(V,E)) ≥ 2, there are

pointed models (M, w), (M′, w′) ∈ V such that ((M, w), (M′, w′)) ∈ E. Thus,
�{(M, w)},�{(M′, w′)} ∈V and

�{(M, w), (M′, w′)} ∈ E. In the following position (k − 1,V′,E′) it holds
that (M, w)∈V′ ∩ E′ or (M′, w′) ∈ V′ ∩ E′. Thus, the same pointed model is present on both sides
of the game and by Theorem 3.4, D has a winning strategy for the game FSΦ

k−1(V
′,E′).

Assume that S begins the game with a ∨-move choosing the numbers k1, k2 ∈ N and the sets
V1,V2 ⊆ V. Consider the graphs G(V,E) = (V , E) and G(Vi,E) = (Vi, Ei). Since V1 ∪ V2 = V,
we have V1 ∪ V2 = V . In addition, by the definition of the graphs G(V,E) and G(Vi,E) we see that
Ei = E ∩ (Vi × Vi). Thus by Lemma 4.8, we obtain χ(G(V,E)) ≤ χ(G(V1,E)) + χ(G(V2,E)). It
must hold that k1 ≤ log(χ(G(V1,E))) or k2 ≤ log(χ(G(V2,E))), since otherwise we would have

k ≤ log(χ(G(V,E))) ≤ log(χ(G(V1,E)) + χ(G(V2,E)))

≤ log(χ(G(V1,E))) + log(χ(G(V2,E))) + 1 < k1 + k2 + 1 = k.

Thus, D can choose the next position of the game, (ki,Vi,E), in such a way that ki ≤ log(χ(G(Vi,E))).
By induction hypothesis, D has a winning strategy in the game FSΦ

ki
(Vi,E).

Assume then that S begins the game with a ∧-move choosing the numbers k1, k2 ∈ N and
the sets E1,E2 ⊆ E. Consider now the graphs G(V,E) = (V , E) and G(V,Ei) = (Vi, Ei).
Clearly V1 = V2 = V and since E1 ∪ E2 = E, we have E1 ∪ E2 = E. Thus by Lemma 4.8,
we obtain χ(G(V,E)) ≤ χ(G(V,E1))χ(G(V,E2)). It must hold that k1 ≤ log(χ(G(V,E1))) or
k2 ≤ log(χ(G(V,E2))), since otherwise we would have

k ≤ log(χ(G(V,E))) ≤ log(χ(G(V,E1))χ(G(V,E2)))

= log(χ(G(V,E1))) + log(χ(G(V,E2))) < k1 + k2 + 1 = k.

Thus, D can again choose the next position of the game, (ki,V,Ei), in such a way that
ki ≤ log(χ(G(V,Ei))). By induction hypothesis, D has a winning strategy in the game
FSΦ

ki
(V,Ei). �

THEOREM 4.10
Let n ∈ N. If a formula ϑn ∈ ML separates An from Bn, then sz(ϑn) > twr(n − 1).

PROOF. Assume that a formula ϑn ∈ ML separates An from Bn. As observed in the end of Subsection
4.2, it holds that Cn ⊆ An and Dn ⊆ Bn. Therefore, ϑn also separates the sets Cn and Dn.

Assume for contradiction that sz(ϑn) ≤ twr(n − 1). By Theorem 3.2, S has a winning strategy in
the game FSΦ

k (Cn,Dn) for k = sz(ϑn).
On the other hand, by Lemma 4.6, we have |Cn| = twr(n) and the set Dn consists of all the pointed

models
�{(M, w), (M′, w′)}, where

�{(M, w)}, �{(M′, w′)} ∈ Cn, (M, w) �= (M′, w′). Thus, the

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

16 Formula size games for modal logic and μ-calculus

graph G(Cn,Dn) is isomorphic with the complete graph Ktwr(n). Therefore, we obtain

χ(G(Cn,Dn)) = χ(Ktwr(n)) = twr(n).

By the assumption, k ≤ twr(n − 1) = log(twr(n)) = log(χ(G(Cn,Dn))), so by Lemma 4.9, D also
has a winning strategy in the game FSΦ

k (Cn,Dn), which is a contradiction. �
We now have everything we need for proving the non-elementary succinctness of FO over ML. By

Lemma 4.1, for each n ∈ N there is a formula ϕn(x) ∈ FO such that ϕn separates the classes An and
Bn with s(ϕ) = O(n). On the other hand by Corollary 4.3, there is an equivalent formula ϑn ∈ ML,
but by Theorem 4.10 the size of ϑn must be at least twr(n − 1). So the property of all successors of
a pointed model being n-bisimilar with each other can be expressed in FO with a formula of linear
size, but in ML expressing it requires a formula of non-elementary size.

COROLLARY 4.11
Bisimulation invariant FO is non-elementarily more succinct than ML.

REMARK 4.12
It is well known that the DAG-size of any formula ϕ is greater than or equal to the logarithm of the
size of ϕ. Thus, if ϑn is a formula as in Theorem 4.10, the DAG-size of ϑn must be at least twr(n−2).
Consequently the result of Corollary 4.11 also holds for DAG-size.

4.4 Succinctness of two-dimensional modal logic

Our proof for the non-elementary succinctness gap between bisimulation invariant FO and ML is
based on the fact that n-bisimilarity of two points u, v ∈ W of a Kripke model M = (W , R) is
definable by a linear FO-formula ψn(x, y) (see the proof of Lemma 4.1). We will now show that the
property (M, u) �n (M, v) is succinctly expressible also in two-dimensional modal logic.

The idea in two-dimensional modal logic is that the truth of formulas is evaluated on pairs (u, v) of
points of Kripke models instead of single points. We refer to the book [24] of Marx and Venema and
the series of papers [10–12] of Gabbay and Shehtman for a detailed exposition on two-dimensional
and multi-dimensional modal logics. For our purposes, it suffices to consider the logic Gabbay and
Shehtman call K2. For consistency of notation in this paper, we call the logic ML2 and introduce it
only semantically.

A Kripke model T for ML2 consists of a set W of points, two binary accessibility relations R1
and R2, and a valuation V : Φ → P(W 2). Correspondingly, ML2 has two modal operators ♦1,♦2
and their duals �1,�2. The connectives ∨, ∧ and ¬ are defined in the standard way. The rest of the
semantics is defined as follows:

• (T , (u, v)) � p ⇔ (u, v) ∈ V(p) for p ∈ Φ,
• (T , (u, v)) � ♦1ϕ ⇔ there is u′ ∈ W such that uR1u′ and (T , (u′, v)) � ϕ,
• (T , (u, v)) � ♦2ϕ ⇔ there is v′ ∈ W such that vR2v′ and (T , (u, v′)) � ϕ,
• (T , (u, v)) � �1ϕ ⇔ for all u′ ∈ W , if uR1u′, then (T , (u′, v)) � ϕ,
• (T , (u, v)) � �2ϕ ⇔ for all v′ ∈ W , if vR2v′, then (T , (u, v′)) � ϕ.

Any pointed Kripke model (M, w) = ((W , R, V), w) can be interpreted as the two-dimensional
pointed model (M2, (w, w)), where M2 = (W , R, R, V). This gives us a meaningful way of defining
properties of pointed models (M, w) by formulas of ML2. In particular, we say that a formula
ϕ ∈ ML2 separates two classes A and B of pointed models if for all (M, w) ∈ A, (M2, (w, w)) � ϕ

and for all (M, w) ∈ B, (M2, (w, w)) � ϕ.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

Formula size games for modal logic and μ-calculus 17

The size sz(ϕ) of a formula ϕ ∈ ML2 is defined in the same way as for formulas of ML, see
Definition 2.3. In other words, sz(ϕ) is the total number of modal operators, binary connectives and
literals occurring in ϕ.

Observe now that two pointed models (M, u) and (M, v) with no propositional symbols are
1-bisimilar if and only if (M2, (u, v)) � ρ1, where ρ1 := ♦1� ↔ ♦2�. Furthermore if ρn ∈ ML2
defines the class of all two-dimensional pointed models (M2, (u, v)) such that (M, u) �n (M, v),
then ρn+1 := �1♦2ρn ∧�2♦1ρn defines the class of all (M2, (u, v)) such that (M, u) �n+1 (M, v).

LEMMA 4.13
For each n ∈ N, there is a formula ζn ∈ ML2 that separates the classes An and Bn such that the size
of ζn is exponential with respect to n, i.e. sz(ζn) = O(2n).

PROOF. Let ζn be the formula �1�2ρn. Then (M2, (w, w)) � ζn if and only if (M, u) and (M, v)
are n-bisimilar for all (M, u), (M, v) ∈ �(M, w), whence ζn separates An from its complement Bn.
An easy calculation shows that the size of ζn is 2n+4 − 3. �

By Theorem 4.3, for each n ∈ N there is a formula ϑn ∈ ML that is equivalent with ζn. On the
other hand, by Theorem 4.10 the size of ϑn is at least twr(n−1). Thus, we obtain the non-elementary
succinctness gap already between ML2 and ML.

COROLLARY 4.14
The two-dimensional modal logic ML2 is non-elementarily more succinct than ML.

5 The formula size game for Lμ

To define a formula size game similar to the one of ML for Lμ, we will need some additional notation
and concepts, since Lμ is significantly more complex than ML.

Let (V , E) be a tree and let s, t ∈ V . We say that s is above t if there is an E-path from s to t. We
say that s is below t if t is above s. A triple (V , E, B) is a tree with back edges if (V , E) is a tree and s
is below t for every (s, t) ∈ B.

We define for each formula ϕ ∈ Lμ its syntax tree with back edges, Tϕ = (Vϕ , Eϕ , Bϕ , labϕ) as
follows. The set Vϕ consists of occurrences of subformulas of ϕ and the relation Eϕ is the subformula
relation between those occurrences. Additionally, labϕ labels each vertex with its type (connective,
modal operator, fixed point, literal or variable). Finally, the relation Bϕ contains a back edge from
each vertex labelled with a variable to the successor of the fixed point binding that variable.

A partial function f : M ⇀ N is a function f ′ : M ′ → N for some M ′ ⊆ M . For a partial function
f : M ⇀ N , we denote by

f [b1/a1, . . . , bm/am, −/am+1, . . . , −/am+n] :=
(f \ {(ai, b) | i ∈ {1, . . . , m + n}, b ∈ N}) ∪ {(ai, bi) | i ∈ {1, . . . , m}},

the partial function obtained from f by setting values for a1, . . . am ∈ M to b1, . . . , bm ∈ N ,
respectively, and the values for am+1, . . . am+n ∈ M as undefined.

We add some features to pointed Kripke models for the game. A clocked model is a tuple
(A, w, c, a), where (A, w) is a pointed Kripke model, c : Var ⇀ κ and a ∈ {new, old}. Here κ

is a fixed cardinal larger than the size of the domain of A. The partial function c associates to each
fixed point a clock to show how many times the model can return to that fixed point. As clocked
models traverse a graph in the game, we use the identifier old to keep track of where they have been

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

18 Formula size games for modal logic and μ-calculus

previously. We suppress the age identifier a from the notation in cases where the distinction between
new and old models does not matter.

For simplicity, we use the symbols w and c extensively and they should be read as ‘the
distinguished point and clocks of the model currently discussed’ throughout the rest of the paper.

Let A = (A, w, c, a) be a clocked model and A a set of clocked models. We redefine the following
notations from the ML case for clocked models:

• �A = �(A, w, c, a) := {(A, w′, c, a) | wRAw′},
• �A := ⋃

A∈A
�A.

• Let f : A → �A be a function such that f (A) ∈ �A for every A ∈ A. Then ♦f A := f (A).

As for the ML-game, the �-notation denotes the set of all successors of a single clocked model
or a set of clocked models. The clocks and age identifier are inherited. The set ♦f A contains one
successor for each clocked model in A, given by the function f .

Now let A be a set of clocked models, A0 a set of pointed models and a ∈ {new, old}. We use the
following new notations:

• PM(A) := {(M, w) | (M, w, c, a) ∈ A},
• CM(A0) := {(M, w, ∅, new) | (M, w) ∈ A0},
• Aa := {(A, w, c, b) ∈ A | b = a},
• a(A) := {(A, w, c, a) | (A, w, c, b) ∈ A for some b ∈ {new, old}}.

The set PM(A) contains the underlying pointed models of all clocked models in A and the set
CM(A0) is the set of clocked models with underlying pointed models from A0 and empty clock
functions. For an age identifier a, the set Aa gives all clocked models in A with that identifier and
the set a(A) gives all the models in A with the age identifier changed to a.

We define for Lμ the standard approximant formulas that evaluate a fixed point only up to a bound.
These approximants are formulas of infinitary Lμ, where infinite conjunctions and disjunctions are
allowed.

DEFINITION 5.1
Let α be an ordinal and ψ(X) a formula of infinitary Lμ. Then the approximant formulas μαX .ψ(X)

and ναX .ψ(X) are defined by recursion as follows:

• μ0X .ψ(X) = ⊥ and ν0X .ψ(X) = �,
• μα+1X .ψ(X) = ψ(μαX .ψ(X)) and να+1X .ψ(X) = ψ(ναX .ψ(X)),
• μλX .ψ(X) = ∨

0<α<λ

μαX .ψ(X) and νλX .ψ(X) = ∧
0<α<λ

ναX .ψ(X) for a limit ordinal λ.

This definition differs from the usual one (see e.g. [20]) in that we leave out the ⊥ disjunct and
� conjunct in the limit ordinal cases, and more importantly, we do not necessarily approximate all
fixed points so the resulting formula is not necessarily in infinitary ML but instead in infinitary Lμ.
During the game, we approximate several fixed points at once, starting from a specific point in the
formula. We define our own approximate formulas to ref lect this.

DEFINITION 5.2
Let ϕ ∈ Lμ. Let Tϕ = (Vϕ , Eϕ , Bϕ , labϕ) be the syntax tree with back edges of ϕ and let s ∈ Vϕ .
Let r1, . . . , rn be the fixed point nodes above s in Tϕ in order with r1 being the outermost and rn the

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

Formula size games for modal logic and μ-calculus 19

innermost, and let labϕ(ri) = ηiXi for each i ∈ {1, . . . , n}. Let c : Var ⇀ κ be a partial function with
dom(c) = {X1, . . . , Xn}.

The (c, s)-approximant of ϕ, ϕc
s , is defined recursively as follows:

• if lab(s) = l ∈ Lit, then ϕc
s = l,

• if lab(s) = ∇ ∈ {∨, ∧} and s1, s2 are the successors of s, then ϕc
s = ϕc

s1
∇ϕc

s2
,

• if lab(s) = Δ ∈ {♦,�} and s1 is the successor of s, then ϕc
s = Δϕc

s1
,

• if lab(s) = ηX , where η ∈ {μ, ν} and X ∈ Var, and s1 is the successor of s, then ϕc
s = ηX .ϕc

s1
,

• if lab(s) = X ∈ Var \ dom(c), then ϕc
s = X .

• Let lab(s) = Xi and let u be the Bϕ-successor of s.
• If c(Xi) = 0, then if lab(ri) = μXi, ϕc

s = ⊥ and if lab(ri) = νXi, ϕc
s = �.

• If c(Xi) = α + 1 for some ordinal α, let cα = c[α/Xi, −/Xi+1, . . . , −/Xn]. Now ϕc
s = ϕcα

u .
• If c(Xi) is a limit ordinal, let cα = c[α/Xi, −/Xi+1, . . . , −/Xn] for every α < c(Xi). Now

ϕc
s =

∨
α<c(Xi)

ϕcα
u if lab(ri) = μXi and ϕc

s =
∧

α<c(Xi)

ϕcα
u if lab(ri) = νXi.

The formulas ϕc
s can contain infinite conjunctions and disjunctions but if all clocks are finite, then

ϕc
s is an Lμ-formula. For instance, if all models considered are finite, then finite clocks suffice. The

following lemma formalizes the relationship of our approximant with the usual one.

LEMMA 5.3
Let ϕ ∈ Lμ and let s be a vertex in the syntax tree of ϕ with lab(s) = ηX , where η ∈ {μ, ν}. Let s1
be the successor of s and let c : Var ⇀ κ be a partial function with X /∈ dom(c). Let cα = c[α/X].
Now

ϕcα
s1

= ηα+1X .ϕc
s1

(X).

PROOF. Since ηα+1X .ϕc
s1

(X) = ϕc
s1

(ηαX .ϕc
s1

(X)), where the parentheses notation refers to
substituting free occurrences of X with a formula, we may rewrite the claim in the form
ϕcα

s1
= ϕc

s1
(ηαX .ϕc

s1
(X)). We show this by transfinite induction on α.

• If α = 0, then it is easy to see that ϕcα
s1

= ϕc
s1

(ξ) = ϕc
s1

(η0X .ϕc
s1

), where ξ = ⊥ if η = μ and
ξ = � if η = ν.

• Let α = β + 1. By induction hypothesis, ϕ
cβ
s1 = ϕc

s1
(ηβX .ϕc

s1
(X)) = ηαX .ϕc

s1
(X). We

show by induction on the definition of ϕ
cα
t , where t is below s in the syntax tree of ϕ, that

ϕ
cα
t = ϕc

t (η
αX .ϕc

s1
(X)). We first note that as s1 is the successor of the fixed point node s, the

fixed point of X is the innermost one in dom(cα).

– If lab(t) = l ∈ Lit, then ϕ
cα
t = l = ϕc

t (η
αX .ϕc

s1
(X)).

– If lab(t) = Y ∈ Var \ dom(cα), then ϕ
cα
t = Y = ϕc

t (η
αX .ϕc

s1
(X)).

– Let lab(t) = Y ∈ dom(cα) \ {X } and let u be the B-successor of t. Now for some c′,
ϕ

cα
t = ϕc′

u . Since the fixed point of X is inside that of Y , ϕc′
u contains no free occurrences

of X . Thus, ϕc′
u = ϕc

t (η
αX .ϕc

s1
(X)).

– If lab(t) = X , then ϕ
cα
t = ϕ

cβ
s1 . Because ηX is the innermost approximated fixed point,

no clocks need to be reset. Since ϕc
t = X and by the induction hypothesis on α,

ϕ
cα
t = ϕ

cβ
s1 = ηαX .ϕc

s1
(X) = ϕc

t (η
αX .ϕc

s1
(X)).

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

20 Formula size games for modal logic and μ-calculus

– If lab(t) = ∇ ∈ {∨, ∧} and t1 and t2 are the successors of t, then by induction hypothesis,
ϕ

cα
t1 = ϕc

t1(η
αX .ϕc

s1
(X)) and ϕ

cα
t2 = ϕc

t2(η
αX .ϕc

s1
(X)). Now

ϕ
cα
t = ϕ

cα
t1 ∇ϕ

cα
t2 = ϕc

t1(η
α .Xϕc

s1
(X))∇ϕc

t2(η
αX .ϕc

s1
(X))

= (ϕc
t1∇ϕc

t2)(η
αX .ϕc

s1
(X)) = ϕc

t (η
αX .ϕc

s1
(X)).

– If lab(t) = Δ ∈ {♦,�} and t1 is the successor of t, then by induction hypothesis we have
ϕ

cα
t1 = ϕc

t1(η
αX .ϕc

s1
(X)). Thus,

ϕ
cα
t = Δϕ

cα
t1 = Δϕc

t1(η
αX .ϕc

s1
(X)) = (Δϕc

t1)(η
αX .ϕc

s1
(X)) = ϕc

t (η
αX .ϕc

s1
(X)).

– If lab(t) = η1Y , where η1 ∈ {μ, ν} and Y ∈ Var, and t1 is the successor of t, then by
induction hypothesis ϕ

cα
t1 = ϕc

t1(η
αX .ϕc

s1
(X)). Thus,

ϕ
cα
t = η1Y .ϕcα

t1 = η1Y .ϕc
t1(η

αX .ϕc
s1

(X)) = (η1Y .ϕc
t1)(η

αX .ϕc
s1

(X)) = ϕc
t (η

αX .ϕc
s1

(X)).

• Now let α be a limit ordinal. By induction hypothesis, ϕ
cβ
s1 = ϕc

s1
(ηβX .ϕc

s1
(X)) for all β < α.

The induction on ϕ
cα
t is handled in the same way as in the previous case with the exception of

the X -case.

– If lab(t) = X , then ϕ
cα
t = ∇

β<α
ϕ

cβ
s1 , where ∇ = ∨

if η = μ and ∇ = ∧
if η = ν. By the

induction hypothesis on α, ϕ
cβ
s1 = ϕc

s1
(ηβX .ϕc

s1
(X)) for all β < α so

ϕ
cα
t = ∇

β<α
ϕc

s1
(ηβX .ϕc

s1
(X)) = ∇

β<α
ηβ+1X .ϕc

s1
(X) = ∇

0<β<α
ηβX .ϕc

s1
(X)

= ηαX .ϕc
s1

(X) = ϕc
t (η

αX .ϕc
s1

(X)).

�

The definition of the Lμ-game

Let Φ be a fixed finite set of propositional symbols. The formula size game for Lμ(Φ),
μ-FSΦ

k (A0,B0), has two players, S (Samson) and D (Delilah). The game has, as parameters, two sets
of pointed Φ-models, A0 and B0, and a natural number k. S wants to show that the sets A0 and B0
can be separated with a Lμ(Φ)-formula of size at most k. D on the other hand wants to show this is
not possible. During the game, S constructs step by step the syntax tree of a formula that, he claims,
separates the sets. The number k is a resource that is spent when S adds vertices to the syntax tree. If
the resource k ever runs out, S loses the game. S has to simultaneously show how the models in A0
make the formula true and how the models in B0 make it false. Each model traverses the incomplete
syntax tree in a fashion similar to semantic games. The role of D is to keep S honest by deciding
which branch of the tree she wants to see next.

The modal μ-calculus has the special feature of fixed point formulas. In terms of models
traversing the syntax tree of a formula, the truth of a least fixed point μX comes down to the model
having to eventually stop returning to that fixed point. Thus, when entering such a fixed point, S
must set a clock for each model that shows how many more times he will return the model to that
fixed point. On the other hand, to show a μX -formula is false in a model, the model would have
to keep returning to the fixed point forever. Here it is the responsibility of D to declare how many
returns are enough for her to be satisfied that the formula is indeed false. We now present the quite
complex formalization of the game.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

Formula size games for modal logic and μ-calculus 21

Let A0 and B0 be sets of pointed models and let k0 ∈ N. Let V∗ be a predefined infinite set of
vertices. The formula size game μ-FSΦ

k0
(A0,B0) for the modal μ-calculus has two players, S and

D. The positions of the game are of the form P = (V , E, B, lab, res, left, right, v). Here V ⊆ V∗ and
(V , E, B) is a tree with back edges. The partial function

lab : V ⇀ {∧, ∨,♦,�} ∪ Var ∪ {μX , νX | X ∈ Var} ∪ Lit(Φ)

assigns a label to some vertices of the tree. The function res : V → N assigns to each vertex the
remaining resource, i.e. an upper bound for the size of the subformula starting from the vertex. The
function left : V → P(A∗

0) assigns to each v ∈ V its left set of clocked models left(v). Here A∗
0

contains all the clocked models obtainable from models of A0 by altering the distinguished point,
clocks and age identifier. Similarly, right : V → P(B∗

0) assigns the right set right(v). The clock
function of each model is of the form c : Var ⇀ κ , where κ is a fixed cardinal larger than the size of
the domain of any model in A0 ∪ B0. Finally, the vertex v ∈ V is the current vertex of the position.
We will always assume that the position P has components with these names and P′ always consists
of the same components with primes.

The starting position of the game is

({v0}, ∅, ∅, ∅, {(v0, k0)}, {(v0, CM(A0))}, {(v0, CM(B0))}, v0).

The first move is always D choosing finite subsets A ⊆ CM(A0) and B ⊆ CM(B0). The following
position is

({v0}, ∅, ∅, ∅, {(v0, k0)}, {(v0,A)}, {(v0,B)}, v0).

Throughout the whole game, D wins if at any position P, res(v) = 0. D also wins if S is unable
to make the choices required by a move. Assume the game is in position P and let left(v) = A,
right(v) = B and res(v) = k > 0. We define two cases by whether v already has a label or not. In
each case, we denote the following position by P′.

v /∈ dom(lab): S has a choice of eight different moves. Note that in this case A = Anew and
B = Bnew.

• ∨-move: S chooses sets A1,A2 ⊆ A s.t. A1 ∪ A2 = A, and numbers 0 < k1, k2 ≤ k
s.t. k1 + k2 + 1 = k. Then D chooses a number i ∈ {1, 2}. Let V ′ = V ∪ {v1, v2},
E′ = E ∪ {(v, v1), (v, v2)}, B′ = B, lab′ = lab[∨/v], left′ = left[A1/v1,A2/v2, old(A)/v],
right′ = right[B/v1,B/v2, old(B)/v], res′ = res[k1/v1, k2/v2] and v′ = vi, where v1 and v2
are new vertices.

• ∧-move: Same as the ∨-move with the roles of A and B switched.
• ♦-move: S chooses a function f : A → �A such that f (A) ∈ �A for each A ∈ A. Then

D chooses finite subsets A′ ⊆ ♦f A and B′ ⊆ �B. Let V ′ = V ∪ {v′}, E′ = E ∪ {(v, v′)},
B′ = B, lab′ = lab[♦/v], left′ = left[A′/v′, old(A)/v], right′ = right[B′/v′, old(B)/v] and
res′ = res[k − 1/v′], where v′ is a new vertex.

• �-move: Same as the ♦-move with the roles of A and B switched.
• μX -move: S chooses a variable X ∈ Var and for every A = (AA, wA, cA) ∈ A an ordinal αA.

Then D chooses for every B = (BB, wB, cB) ∈ B an ordinal αB. Let c′
A = cA[αA/X] and let

A′ = {(AA, wA, c′
A) | A ∈ A}. Let c′

B = cB[αB/X] and let B′ = {(BB, wB, c′
B) | B ∈ B}.

Let V ′ = V ∪ {v′}, E′ = E ∪ {(v, v′)}, B′ = B, lab′ = lab[μX/v], left′ = left[A′/v′, old(A)/v],
right′ = right[B′/v′, old(B)/v] and res′ = res[k − 1/v′].

• νX -move: Same as the μ-move with the roles of A and B switched.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

22 Formula size games for modal logic and μ-calculus

• X -move: S chooses X ∈ Var. Let u ∈ V be the closest vertex above v with lab(u) ∈ {μX , νX }.
If no such vertex exists, D wins the game. Otherwise, if Anew = Bnew = ∅, S wins the game.

• Let v′ be the successor vertex of u. Let V ′ = V , E′ = E, B′ = B ∪ {(v, v′)}, lab′ = lab[X/v] and
res′ = res.

• Assume that lab(u) = μX . If c(X) = 0 for some (A, w, c) ∈ A, D wins the game. Otherwise,
for every A = (AA, wA, cA, new) ∈ A, S chooses αA < cA(X).

• Let B+ = {(B, w, c, new) ∈ B | c(X) �= 0}. For every B = (BB, wB, cB, new) ∈ B+, D
chooses αB < cB(X).

• Let Y1, . . . , Yn be the variables for which there is a node ti on the path from u to v with
lab(ti) ∈ {μYi, νYi}. Let c′

A = cA[αA/X , −/Y1, . . . , −/Yn] and let
A′ = {(AA, wA, c′

A, new) | A ∈ A}. Similarly, let c′
B = cB[αB/X , −/Y1, . . . , −/Yn] and

B′ = {(BB, wB, c′
B, new) | B ∈ B+}. Let left′ = left[A′ ∪ left(v′)/v′, old(A)/v] and

right′ = right[B′ ∪ left(v′)/v′, old(B)/v].
• The case lab(u) = νX is the same with the roles of A and B switched.
• Lit-move: S chooses a Φ-literal l. Let lab′ = lab[l/v] and let Δ′ = Δ for every other component

Δ. In the following position P′, if l separates A and B, then S wins the game. Otherwise, D wins.

v ∈ dom(lab): In this case, S must perform the move dictated by lab(v) without creating any new
vertices. These moves are essentially performed only on new models. We again denote the following
position by P′ and in each case we have ∇′ = ∇ for ∇ ∈ {V , E, B, lab, res}.

• If lab(v) = ∨, then let v1 and v2 be the successors of v. S chooses sets A1,A2 ⊆ Anew s.t.
A1 ∪ A2 = Anew. Then D chooses a number i ∈ {1, 2}. Let left′ = left[A1 ∪ left(v1)/v1,A2 ∪
left(v2)/v2, old(A)/v], right′ = right[B∪ right(v1)/v1,B∪ right(v2)/v2, old(B)/v] and v′ = vi.

• The case lab(v) = ∧ is the same as ∨ with the roles of A and B switched.
• If lab(v) = ♦, then let v′ be the successor of v. S chooses a function f : Anew → �Anew such

that f (A) ∈ �A for each A ∈ Anew. Then D chooses finite A′ ⊆ ♦f Anew and B′ ⊆ �Bnew.
Let left′ = left[A′ ∪ left(v′)/v1, old(A)/v] and right′ = right[B′ ∪ right(v′)/v1, old(B)/v].

• The case lab(v) = � is the same as ♦ with the roles of A and B switched.
• If lab(v) = μX for some X ∈ Var, then let v′ be the successor of v. S chooses for every

A=(AA, wA, cA) ∈ Anew an ordinal αA. Then D chooses for every B=(BB, wB, cB)∈Bnew
an ordinal αB. Let c′

A = cA[αA/X] and let A′ = {(AA, wA, c′
A) | A∈Anew}. Let

c′
B = cB[αB/X] and let B′ = {(BB, wB, c′

B) | B ∈ Bnew}. Let left′ = left[A′ ∪ left(v′)/v′,
old(A)/v] and right′ = right[B′ ∪ right(v′)/v′, old(B)/v].

• If lab(v) = X ∈ Var, then let v′ be the B-successor of v. The rest is very similar to the unlabelled
X -move; the only differences are that the move is again essentially only performed on new
models and the condition for an immediate win for S is Anew = Bnew = ∅.

Note that just like in the ML-game, the ♦-move cannot be performed if �A = ∅ for some A ∈ A,
and dually for the �-move.

EXAMPLE 5.4
Figure 3 depicts the syntax tree with back edges of the Lμ-formula ϕ := νX .μY .(♦X ∧ p)∨♦Y and
two models, A and B, where the black points satisfy p and the white points do not. Consider a game
μ-FSΦ

9 (A0,B0) with (A, a1) ∈ A0 and (B, b1) ∈ B0. We follow along as S plays a strategy based on
the formula ϕ.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

Formula size games for modal logic and μ-calculus 23

Figure 3 The formula and two models for Example 5.4.

We begin from the unlabelled vertex s0. First, S makes a νX -move, labelling the vertex with νX
and creating a new vertex, s1. S sets the clock of (B, b1) to cB(X) = 1. Then D chooses cA(X) but
since it is quite irrelevant for this example, we will not keep track of it.

Next, S makes a μY -move at s1. Now S must set the clock of A and he chooses cA(Y) = 2. D
chooses cB(Y), which is again irrelevant for this example.

The clocks of S are always reachability clocks. The formula ϕ as a whole says that there is always
a path to a point with p. Since S is claiming (B, b1) does not satisfy ϕ, the clock cB(X) = 1 means
that S claims he will inevitably reach a point, where p cannot be reached, in just one step. As for
cA(Y) = 2, S claims he can reach p in two steps in the model (A, a1). From Figure 3, we can see
that both of these claims are true.

The next move of S is a ∨-move at s2. S decides to put (A, a1, cA) to the side of s4, as he has not
yet reached p. The clocked model (B, b1, cB) is copied to both s3 and s4. D decides that the game
will continue from the node s4. After the ♦-move at s4, the models are (A, a2, cA) and (B, b2, cB).

Now S makes his first Y -move at s5. He lowers the clock of A to cA(Y) = 1. D also lowers her
clock for B. The game returns to s2. As S still has not reached p in A, he again puts A on the side of s4
in the following ∨-move. D again decides to continue from s4 and the ♦- and Y -moves are repeated.
We end up at s2 with the models (A, a3, cA) and (B, b2, cB) with the clock of A being cA(Y) = 0.

Now S has reached p in A so he is ready to put the model on the s3-side of the ∨-move. D
decides to choose the s3-side this time. Note that the set right(s3) now has three different versions
of the model B from the previous ∨-moves. We will only consider the models B1 = (B, b1, cB) and
B2 = (B, b2, cB) as the third one only differs from B2 with respect to a clock of D.

At s3, S makes a ∧-move. S decides to put B1 to the s6-side and B2 to the s7-side. The model
(A, a3, cA) is copied to both s6 and s7. Now D sees that (A, a3) � p and (B, b2) � p so she chooses
to continue from s6 so as to not lose the game to a Lit-move.

The ♦-move at s6 again moves the models one step forward, resulting in (A, a1, cA) and
(B, b2, cB). Finally, at s8, S makes an X -move. S lowers the clock of B to cB(X) = 0. For A,
this lowers the clock of D, but more importantly, removes the clock cA(Y) = 0 entirely. This means

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

24 Formula size games for modal logic and μ-calculus

that when S makes the next μY -move dictated by the label of s1, he can again set the clock at 2 and
repeat the above process as many times as he wants. Meanwhile, each return to s1 lowers the clock
of D so eventually the model A will be removed from the game. The model B on the other hand can
be dropped off at s7. It would seem that S is on the right track to win this play.

An important feature of our game is that, even though it contains infinite branching, every single
play of the game is still finite.

LEMMA 5.5
Every play of the game μ-FSΦ

k (A,B) is finite.

PROOF. A play could be infinite only if at least one variable is reached infinitely many times.
Of these variables, let X be the one with the outmost fixed point. Every time X is reached, if
left(v)new = right(v)new = ∅, S wins and otherwise, the clock of at least one model is lowered.
There are only finitely many models at any given position, since D always chooses finite subsets
of models after modal moves. Since clocks are inherited by successor models in modal moves and
ordinals are well founded, eventually either a clock of S will reach 0 and D will win or X will be
reached with empty sets of models and S wins. �

For the essential theorem about how the game works, we assume that the strategy of S is uniform.
This essentially means that S has a formula in mind and he follows the structure of that formula
when constructing the syntax tree during the game.

DEFINITION 5.6
Let ϕ ∈ Lμ and let Tϕ = (Vϕ , Eϕ , Bϕ , labϕ) be the syntax tree with back edges of ϕ. Let
P = (V , E, B, lab, res, left, right, v) be a position in a game μ-FSΦ

k (A,B).
A function g : V → Vϕ is a position embedding if it satisfies the following conditions:

1. g(v0) is the root of Tϕ , where v0 is the vertex of the starting position,
2. g is an embedding of (V , E) to (Vϕ , Eϕ),
3. g � dom(lab) is an embedding of (V , B, lab) to (Vϕ , Bϕ , labϕ),
4. for each u ∈ V , sz(ϕg(u)) ≤ res(u).

Let δ be a strategy of S. We say that δ follows ϕ from position P (via the function g) if there is a
position embedding g : V → Vϕ such that for each position P′ reachable from P via the strategy δ,
the function g can be extended to a position embedding g′ : V ′ → Vϕ .

Finally, δ is uniform if δ follows a formula ϕ ∈ Lμ from the starting position.

We are now ready to prove that the game indeed works as we intended. In the following, if there
is a vertex with label μX we shall call X a μ-variable, and if there is one labelled νX , we call X a
ν-variable. Note that we assume all fixed points have separate variables.

THEOREM 5.7
Let A0 and B0 be sets of pointed models and let k ∈ N. Then the following conditions are equivalent:

1. S has a uniform winning strategy in the game μ-FSΦ
k (A0,B0).

2. There is a sentence ϕ ∈ Lμ(Φ) s.t. ϕ separates A0 and B0 and sz(ϕ) ≤ k.

PROOF. (2) ⇒ (1). Let ϕ ∈ Lμ(Φ) be a sentence such that ϕ separates A0 and B0 and s(ϕ) ≤ k. Let
Tϕ = (Vϕ , Eϕ , Bϕ , labϕ) be the syntax tree with back edges of ϕ. The strategy of S is to follow the
structure of Tϕ when forming (V , E, B, lab), to use the resource k accordingly and to choose maximal
appropriate sets of models when necessary.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

Formula size games for modal logic and μ-calculus 25

If P = (V , E, B, lab, res, left, right, v) is a position, let A = left(v), B = right(v) and k = res(v).
We define the strategy more precisely and simultaneously prove by induction that the strategy is
uniform and the following condition holds for every position P of the game:

(A, w) � ϕc
g(v) for every (A, w, c) ∈ Anew and

(B, w) � ϕc
g(v) for every (B, w, c) ∈ Bnew,

∗

where g is a position embedding showing the uniformity of the strategy.
In the starting position, we set g(v0) as the root of Tϕ . We note that sz(ϕg(v0)) = sz(ϕ) ≤ k by

assumption. Since there are no clocks yet, ϕc
g(v0)

= ϕ for every clocked model and since the sentence
ϕ separates the sets A0 and B0, (∗) holds no matter which subsets A ⊆ CM(A0) and B ⊆ CM(B0)

D chooses.
We now divide the proof into cases based on whether v already has a label or not. We choose the

move for S according to the label of g(v). We only treat one of each pair of dual cases.
v /∈ dom(lab) :

• labϕ(g(v)) = l ∈ Lit(Φ): Then by induction hypothesis l separates the sets A and B so S wins
by making the corresponding Lit-move.

• labϕ(g(v)) = ∨: By induction hypothesis, (∗) holds for this position so for every
(A, w, c) ∈ A, (A, w) � ϕc

g(v). Now ϕc
g(v) = ϕc

s1
∨ ϕc

s2
, where s1, s2 ∈ Vϕ are the succes-

sors of g(v), so (A, w)�ϕc
s1

∨ ϕc
s2

. Let A1 = {(A, w, c) ∈ A | (A, w) � ϕc
s1

} and
A2 ={(A, w, c)∈A | (A, w) � ϕc

s2
}. On the other side, for every (B, w, c) ∈ B, (B, w) � ϕc

s1
∨ϕc

s2
so (B, w) � ϕc

s1
and (B, w) � ϕc

s2
. We set g′ = g[v1/s1, v2/s2], where v1, v2 are the new

vertices in V . Now (∗) holds in both of the possible following positions. Let k1 = sz(ϕs1) and
k2 = k − k1 − 1. Since sz(ϕg(v)) ≤ k, sz(ϕs2) = sz(ϕg(v)) − sz(ϕs1) − 1 ≤ k − k1 − 1 = k2.

• labϕ(g(v)) = ♦: By induction hypothesis, for every (A, w, c) ∈ A, (A, w) � ϕc
g(v). Since

ϕc
g(v) = ♦ϕc

s1
, where s1 is the successor of g(v), (A, w) � ♦ϕc

s1
. Thus, there is (A, w′, c) ∈ �A

s.t. (A, w′) � ϕc
s1

. Let f : A → �A be a function mapping every (A, w, c) to such a (A, w′, c).
Now (A, w′) � ϕc

s1
for every (A, w′, c) ∈ ♦f A. On the other side, for every (B, w, c) ∈ B, since

(B, w) � ♦ϕc
s1

, for every (B, w′, c) ∈ �(B, w, c) we get (B, w′) � ϕc
s1

. Thus, (B, w′) � ϕc
s1

for
every (B, w′, c) ∈ �B so (∗) holds in the next position no matter which subsets A′ ⊆ ♦f A and
B′ ⊆ �B D chooses. For uniformity, we set g′ = g[v′/s1], where v′ is the new vertices. Now
sz(ϕs1) = sz(ϕg(v)) − 1 ≤ k − 1.

• Let labϕ(g(v)) = μX : By induction hypothesis, for every A = (A, w, c) ∈ A, (A, w) � ϕc
g(v).

Since ϕc
g(v) = μX .ϕc

s1
(X), where s1 is the successor of g(v), (A, w) � μX .ϕc

s1
(X). Thus, there is

an ordinal α such that (A, w) � μα+1X .ϕc
s1

(X). S chooses αA = α as the new clock. By Lemma
5.3, (A, w) � ϕcα

s1
. On the other side, by induction hypothesis, for every B = (B, w, c) ∈ B,

(B, w) � μX .ϕc
s1

(X) so for every ordinal α, (B, w) � μα+1X .ϕc
s1

(X). Thus, no matter which

ordinal β D chooses, we get (B, w) � μβ+1X .ϕc
s1

(X) and by Lemma 5.3, (B, w) � ϕ
cβ
s1 . There-

fore, (∗) holds in the following position. Uniformity is proved in the same way as in the ♦-case.
• labϕ(g(v)) = X , where X ∈ Var: Let u be the B-successor of g(v).
• Assume that X is a μ-variable. Now by induction hypothesis, for every A = (A, w, c) ∈ A,

(A, w) � ϕc
g(v). There are three cases according to c(X).

1. If c(X) = 0, we get a contradiction since then ϕc
g(v) = ⊥.

2. If c(X) = α + 1 for some α, then S chooses α as the new clock for X in (A, w, c). Now
ϕc

g(v) = ϕcα
u so (A, w) � ϕcα

u .

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

26 Formula size games for modal logic and μ-calculus

3. If c(X) is a limit ordinal, then

ϕc
g(v) =

∨
α<c(X)

ϕcα
u so (A, w) �

∨
α<c(X)

ϕcα
u .

S chooses the new clock α such that (A, w) � ϕcα
u holds.

• On the other side, by induction hypothesis, for every B = (B, w, c) ∈ B, (B, w) � ϕc
g(v). We

again have three cases.

1. If c(X) = 0, B will be removed from the game and can be disregarded.
2. Let c(X) = α + 1. Now ϕc

g(v) = ϕcα
u so (B, w) � ϕcα

u . By Lemma 5.3,

(B, w)�μα+1X .ϕc′
u (X), where c′ = cα[−/X]. Let β ≤ α be the choice of D for the

new clock. Now by monotonicity, (B, w) � μβ+1X .ϕc′
u (X). We use Lemma 5.3 again and

obtain (B, w) � ϕ
cβ
u .

3. Finally, let c(X) be a limit ordinal. Now

ϕc
g(v) =

∨
α<c(X)

ϕcα
u so (B, w) �

∨
α<c(X)

ϕcα
u .

Thus, (B, w) � ϕcα
u for any α < c(X) D chooses.

• Uniformity is trivial here since no new vertices were created.
• The case where X is a ν-variable is the same with the roles of A and B switched.

v ∈ dom(lab) : The moves are essentially the same as in the unlabelled case. The main differences
are that the type of the move is already determined by lab(v), and the resource splittings are already
fixed. In disjunction and conjunction moves, new models can be left to wait in the branch not chosen
by D as the following position. We will consider only this special case of waiting new models here.

lab(v) = ∨: S chooses the sets A1 and A2 of new models as in the unlabelled case. There may
however be some new models present in v1 or v2. If so, these models are there because of previous
∨-moves, for the first of which v had no label. By induction hypothesis and the unlabelled case,
(∗) held for both of the possible following positions and therefore (A, w) � ϕc

si
for every model

(A, w, c) in the corresponding left model set. Inductively, we see that (A, w) � ϕc
si

for every
(A, w, c) ∈ left(vi). The same argument shows that (B, w) � ϕc

si
for every (B, w, c) ∈ right(vi).

Thus, (∗) holds for the sets Ai ∪ left(vi) and B∪ right(vi) in both of the possible following positions
of position P.

(1) ⇒ (2). Let δ be a uniform winning strategy for S. Let ϕ ∈ Lμ(Φ) be the formula δ follows.
We denote the position embedding showing the uniformity of δ in each position by g. By Lemma
5.5, every play of the game is finite so the game tree induced by the strategy δ is well founded. We
prove by well founded induction on the game positions reachable with δ that the same condition (∗)
as above holds in every position of the game.

(A, w) � ϕc
g(v) for every (A, w, c) ∈ Anew and

(B, w) � ϕc
g(v) for every (B, w, c) ∈ Bnew,

∗

In a position P reachable with δ, let left(v) = A, right(v) = B and res(v) = k. We again consider
the unlabelled and labelled case separately and only treat one of each pair of dual moves.
v /∈ dom(lab) :

• lab(g(v)) ∈ Lit(Φ): Since δ follows ϕ, the next move according to δ is a Lit move choosing that
literal. Since δ is a winning strategy, that literal separates the sets A and B and (∗) holds.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

Formula size games for modal logic and μ-calculus 27

• lab(g(v)) = ∨: Let s1 and s2 be the successors of g(v). Let A1, A2, k1 and k2 be the selections of
S according to δ. By induction hypothesis, (∗) holds in both possible following positions so for
every (A, w, c) ∈ Ai, (A, w) � ϕc

si
for i ∈ {1, 2}. Since A = A1 ∪ A2, for every (A, w, c) ∈ A,

(A, w) � ϕc
s1

∨ ϕc
s2

. In addition, ϕc
s1

∨ ϕc
s2

= ϕc
g(v) so (A, w) � ϕc

g(v). Let (B, w, c) ∈ B. By
(∗) in the following positions, (B, w) � ϕc

s1
and (B, w) � ϕc

s2
so (B, w) � ϕc

s1
∨ ϕc

s2
. Since

ϕc
s1

∨ ϕc
s2

= ϕc
g(v), (B, w) � ϕc

g(v). Thus, (∗) holds in P.
• lab(g(v)) = ♦: Let s1 be the successor of g(v). Let f : A → �A be the function chosen

by S according to δ. Let (A, w, c) ∈ A. By induction hypothesis, (∗) holds in the following
position no matter which subsets of ♦f A and �B D chooses so for f (A, w, c) = (A, w′, c) ∈
♦f A, (A, w′) � ϕc

s1
. Since w′ is a successor of w, now (A, w) � ♦ϕc

s1
. In addition,

♦ϕc
s1

= ϕc
g(v) so (A, w) � ϕc

g(v). Let (B, w, c) ∈ B. By induction hypothesis, (∗) holds
for all possible following positions so for every (B, w′, c) ∈ �B, (B, w′) � ϕc

s1
. Therefore,

(B, w) � ♦ϕc
s1

and so (B, w)�ϕc
g(v). Thus, (∗) holds in P.

• lab(g(v)) = μX : Let s1 be the successor of g(v). Let A = (A, w, c) ∈ A and let
αA = α be the choice of S according to δ. By induction hypothesis, (∗) holds in the following
position so (A, w) � ϕcα

s1
. By Lemma 5.3, (A, w) � μα+1X .ϕc

s1
. Thus, (A, w) � μX .ϕc

s1
.

Since μX .ϕc
s1

= ϕc
g(v), (A, w) � ϕc

g(v). On the other side, by induction hypothesis, for every
B = (B, w, c) ∈ B and for any choice α of D for the new clock, (B, w) � ϕcα

s1
. Thus by

Lemma 5.3, (B, w) � μα+1X .ϕc
s1

(X) for every α < κ . Since κ > card(B), this means that
(B, w) � μX .ϕc

s1
and so (B, w) � ϕc

g(v). Thus, (∗) holds in P.
• lab(g(v)) = X : If Anew = Bnew = ∅, S wins and (∗) trivially holds. Let u be the B-successor

of g(v). Assume that X is a μ-variable and let (A, w, c) ∈ A. We have three cases according to
the ordinal c(X).

1. If c(X) = 0, D wins the game, which is a contradiction, since δ is a winning strategy
for S.

2. Assume that c(X) = α + 1. Let β ≤ α be the choice of S for the new clock according
to δ. By induction hypothesis, (∗) holds in the following position so (A, w) � ϕ

cβ
u .

By Lemma 5.3, (A, w) � μβ+1X .ϕc′
u , where c′ = cβ [−/X]. Thus by monotonicity,

(A, w)�μα+1X .ϕc′
u . By Lemma 5.3 again, (A, w) � ϕcα

u and so (A, w) � ϕc
g(v).

3. Now assume c(X) is a limit ordinal and let α < c(X) be the choice of S according to δ.
Now by induction hypothesis (A, w) � ϕcα

u . Thus,

(A, w) �
∨

α<c(X)

ϕcα
u

so (A, w) � ϕc
g(v).

• For every (B, w, c) ∈ B, regardless of the choice of D for the new clock, (∗) holds in the
following position. We again have three cases.

1. If c(X) = 0, then since (B, w) � ⊥, we get (B, w) � ϕc
g(v).

2. If c(X) = α + 1, then α is a choice available to D so (B, w) � ϕcα
u . Thus, (B, w) � ϕc

g(v).
3. If c(X) is a limit ordinal, every α < c(X) is a choice available to D so (B, w) � ϕcα

u for
every α < c(X). Thus,

(B, w) �
∨

α<c(X)

ϕcα
u .

Therefore, (B, w) � ϕc
g(v) so (∗) holds in P.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

28 Formula size games for modal logic and μ-calculus

v ∈ dom(lab) : All the moves in this case are proved the same way as in the unlabelled case. Note that
since (∗) refers only to new models, it trivially holds for terminal positions where Anew = Bnew = ∅
for an X -move.

For the very first move of the game, where D chooses finite subsets of the original sets of clocked
models CM(A0) and CM(B0), by induction hypothesis (∗) holds in the following position no matter
which subsets D chooses. Therefore, all models in A0 and B0 also satisfy the condition (∗). Since
there are no clocks in the starting position, this means that ϕ separates the sets A0 and B0. By the
uniformity of δ, sz(ϕ) = sz(ϕg(v0)) ≤ res(v0) = k. �

Note that condition (∗) does not depend on old models and so we do not refer to them in
this proof. We add old models to the game to make the proof of Lemma 6.3 in the next section
easier.

Unlike other similar theorems, Theorem 5.7 has the added requirement of uniformity for the
strategy of S. We conjecture that the theorem would still hold even without this condition but proving
this has turned out to be difficult. Note, however, that to prove undefinability results for Lμ(Φ), one
need only define a winning strategy for D, and so the uniformity of strategies for S need not be
considered. Note further that if a property of Φ-models is not definable in Lμ(Φ), then clearly it is
not definable in Lμ.

6 Succinctness of FO over Lμ

We move on to the definitions and lemmas needed to show that FO is non-elementarily more succinct
than Lμ. We need a lemma similar to Lemma 3.4 that gives D a winning strategy if bisimilar models
are produced on both sides of a vertex. In the case of the Lμ-game, the clocks of the clocked models
must also be taken into account. We define a sufficient condition for clocked models to be useful for
D in the game and call them relevant models.

DEFINITION 6.1
The depth of a pointed finite tree model (M, w), d(M, w), is the length of a maximal path of
transitions in the model starting from w.

DEFINITION 6.2
In a position P of a game μ-FSΦ

k (A,B), let u be a vertex and let M = (M, w, c, a) be a clocked
finite tree model in left(u) ∪ right(u). We say the model M is relevant, if for every X ∈ dom(c), the
clock of D is equal to or greater than the depth of the model, i.e.

• if M ∈ left(u), for every ν-variable X ∈ dom(c), c(X) ≥ d(M, w),
• if M ∈ right(u), for every μ-variable X ∈ dom(c), c(X) ≥ d(M, w).

We also say the model M is strictly relevant if the above condition holds for strict inequality >

instead of ≥.

We prove the analogue of Lemma 3.4 for relevant clocked models.

LEMMA 6.3
Let P be a position of a game μ-FSΦ

k (A,B). If there are strictly relevant clocked models
(A, wA, cA, new) ∈ left(v) and (B, wB, cB, new) ∈ right(v) such that (A, wA) and (B, wB) are
bisimilar finite tree models, then D has a winning strategy from position P.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

Formula size games for modal logic and μ-calculus 29

PROOF. We show that D can maintain a slightly modified condition where we only require the models
to be relevant and allow one of the two models to be old. For ∨- and ∧-moves D need only choose
the side for which the two models are both present. For modal moves, we see by bisimilarity that no
matter which successor S chooses, a bisimilar model will be present on the opposite side. Moreover,
the depth of the models is decreased and the clocks are inherited so the condition is maintained. For
new fixed points, D need only set her clock to be equal to the depth of the models. On a literal move,
D will win since the bisimilar models cannot be separated by a literal.

For X -moves, let u be the vertex the game returns to. If this is the first time since position P
the game returns to u, D will lower the clock and since the models are strictly relevant, D can now
decrease the clock to the same value as the depth. If on the other hand there has been a previous
return to u, then there are two cases. If there has been a modal move in between this and the previous
return, then the depth has decreased and D will decrease the clock to the same value. If there have
been no modal moves, the pointed models have not changed and since we allow one of the models to
be old, D will now consider the old version of her model, with a clock larger by one, instead of the
new one. Consider the position P′ right after D switches a new model for an old one in this fashion.
Assume by symmetry that this model is B on the right side. Consider the path from the current
vertex u, to the vertex s where the X -move was made. If there are no vertices with label ∨ on this
path, then D can just follow this path to s until the clock cA(X) runs out and D wins. Assume there
are some vertices with label ∨ on the path. For each of those vertices, the child that is not on the path
from u to s has a new version of B in the right set. This is because the model B has passed through
the disjunction before the X -move and models on the right side are always copied on both sides of a
disjunction. If S splits the left model A away from the path to s, then D will consider the new copy of
B from then on. If A stays on the path from u to s indefinitely, D wins when the clock cA(X) runs
out.

If D uses this strategy, eventually S will either make a literal move and lose, or a clock of S for
one of the bisimilar models will eventually run out. In either case, D wins. �

We want to use the same graph-based invariant for the proof as we did for the ML-case. The only
question that remains is, which models should determine the graph of the current vertex v? In other
words, which models is S claiming to be able to separate in each position of the game? Certainly the
models in left(v) and right(v) should be included, but they will not suffice, since other models can
already be below v and thus involved with the subformula beginning from v. We define a way for D
to collect all the models in the tree below a vertex s to see which models are, in a sense, ‘currently
in s’. We define the collected sets separately for the left and the right side. Recall that PM(A) is the
set of underlying pointed models of clocked models in A.

DEFINITION 6.4
Let P be a position such that lab(v) is not a literal and no vertices have label ♦ or �. For each vertex
s ∈ V , we define the left collection of s in P, denoted by L(s), recursively starting from the leaves of
(V , E, B):

• if s is an unlabelled leaf, then L(s) = PM(left(s)),
• if lab(s) is a μ-variable, then L(s) = ∅,
• if lab(s) is a ν-variable, then L(s) = PM(left(s)),
• if lab(s) = ηX and the successor is s1, then L(s) = PM(left(s)new) ∪ L(s1),
• if lab(s) = ∨ and the successors are s1, s2, then L(s) = PM(left(s)new) ∪ L(s1) ∪ L(s2)

• if lab(s) = ∧ and the successors are s1, s2, then L(s) = PM(left(s)new) ∪ (L(s1) ∩ L(s2)).

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

30 Formula size games for modal logic and μ-calculus

The right collection of s in P, R(s), is defined symmetrically with left and right, as well as μ and
ν, switched at every point of the definition.

Note that since v does not have a literal label, a leaf of (V , E, B) can only be either an
unlabelled vertex or a vertex with a variable label. This is because any vertex labelled with an
operator will have at least one successor and the game ends in the next position after any literal
move.

In the following, we will associate superscripted sets like L′(s) with the position P′ with the same
superscript just like we have done so far with the components of the position.

LEMMA 6.5
Let P◦ be a position in a game μ-FSΦ

k (A,B), where the current vertex u = v◦ is a successor of a
fixed point vertex and no modal moves are made. Let P′ be a position after P◦ such that no X -move
has returned to a vertex above u since P◦. Then L◦(u) ⊆ L′(u) and R◦(u) ⊆ R′(u).

PROOF. The proof proceeds by induction. We assume that for position P, L◦(u) ⊆ L(u) and
R◦(u)⊆R(u) and we show that the inclusion also holds for the next position P′.

If S makes a ηX -move, the new models in left(v) are moved to left′(v′) but they still remain in L′(v)
so L′(u) = L(u). Note that clocks of the models do change but L′(v) only looks at the underlying
pointed models. For the same reasons, R′(u) = R(u).

For ∨-moves, the models in left(v) are split among the successors v1 and v2 so they are still in
L′(v) in position P′. The models in right(v) are copied to both v1 and v2 so they are still in R′(v).
Thus, L′(u) = L(u) and R′(u) = R(u). The case of ∧-moves is symmetric with the two sides
switched everywhere.

If S makes an X -move, it can either be a return to u or to a vertex s below u. Assume that the
return is made to u and that X is a μ-variable. Now the models in left(v) are moved to left′(u) so any
that were already in L(u) stay there and more may be added so L(u) ⊆ L′(u). The models in right(v)
cease to be relevant in right′(u) but they remain as old models in right′(v) and are still counted for
R′(v) in P′ as they were in P so R′(u) = R(u). The case of a ν is symmetric with the two sides
switched.

Finally assume that an X -move is made returning to a vertex s below u. Assume again that X is
a μ-variable. The models in left(v) are moved to left′(s) so L(s) ⊆ L′(s). Everything not below s
remains unchanged so L(u) ⊆ L′(u). The models in right(v) cease to be relevant in right′(s) but they
remain as old models in right′(v) and are still counted for R′(s) and therefore also for R′(u) just like
in P. Thus, R′(u) = R(u). The case of a ν is again symmetric. �

We finally have all of the required notation and lemmas to show that the non-elementary
succinctness gap is present also between FO and the modal μ-calculus.

THEOREM 6.6
First-order logic is non-elementarily more succinct than the modal μ-calculus.

PROOF. We prove an analogous result to Lemma 4.9 for the Lμ game. We use the notation G(V,E)

for the same graph as in Subsection 4.3. The precise statement we prove is as follows:
Let n ∈ N and let k0 ∈ N. If k0 < log(χ(G(Cn,Dn))), then D has a winning strategy in the game

μ-FSΦ
k0

(Cn,Dn).

In this proof, we only consider relevant models. Many positions in the game μ-FSΦ
k0

(Cn,Dn) have
also non-relevant models but they are not needed for the strategy of D we describe here and can
safely be ignored. We will assume all models are relevant and occasionally comment on why models
remain or cease to be relevant after some moves of the game.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

Formula size games for modal logic and μ-calculus 31

We show by induction that D has a strategy to maintain the following condition in any position
P = (V , E, B, lab, res, left, right, v):

res(v) < log(χ(G(L(v),R(v))) (∗)

At the start of the game, (∗) holds by assumption. Since the sets Cn and Dn are already finite, D
can keep the full sets for the first move of the game.

We first show that if S ever makes a modal move while (∗) holds, D gets a winning strategy
for the game. We assume v /∈ dom(lab) since the first modal move in a game must always be
made in an unlabelled vertex. In this case there are no other vertices below v so L(v) = left(v)
and R(v) = right(v). We assume res(v) > 1 so that S can make a modal move and not lose
immediately due to the resource running out. From (∗), we obtain χ(G(left(v), right(v))) > 2
so there are relevant clocked models (

�
(M1, w1), c1, new), (

�
(M2, w2), c2, new) ∈ left(v) and

(
�{(M1, w1), (M2, w2)}, c3, new) ∈ right(v). Now if S makes a ♦- or �-move, then in the follow-

ing position P′ there is i ∈ {1, 2} s.t. (Mi, wi, ci, new) ∈ left(v′) and (Mi, wi, c3, new)∈ right(v′).
As these two share the same underlying pointed model they are bisimilar and moreover, since the
depth has decreased by at least 1 from the previous position, the models are strictly relevant. By
Lemma 6.3, D now has a winning strategy from position P′.

If S makes a ∨-move, let v1 and v2 be the successors of v. In the following position, whichever it
may be, we have L(v) = L(v1)∪L(v2) and R(v) = R(v1)∩R(v2). Let Gs = G(L(s),R(s)) = (Vs, Es)

for s ∈ {v, v1, v2}. We obtain Vv = Vv1 ∪ Vv2 and Ev ∩ (Vvi × Vvi) ⊆ Evi for i ∈ {1, 2}.
By Lemma 4.8,

χ(Gv) ≤ χ(Vv1 , Ev ∩ (Vv1 × Vv1)) + χ(Vv2 , Ev ∩ (Vv2 × Vv2)) ≤ χ(Gv1) + χ(Gv2).

Thus (just like in the proof of Theorem 4.9), we obtain res(vi) < log(χ(Gvi) for some i ∈ {1, 2} so
(∗) holds in the following position after D chooses this i.

If S makes a ∧-move, let v1 and v2 be the successors of v. In the following position, we have
L(v) = L(v1) ∩ L(v2) and R(v) = R(v1) ∪ R(v2). We use the notation Gs = (Vs, Es) from the
previous case and obtain Vv = Vv1 ∩ Vv2 and Ev = (Ev1 ∩ (Vv × Vv)) ∪ (Ev2 ∩ (Vv × Vv)). By
Lemma 4.8,

χ(Gv) ≤ χ(Vv, Ev1 ∩ (Vv × Vv))χ(Vv, Ev2 ∩ (Vv × Vv)) ≤ χ(Gv1)χ(Gv2).

Thus, we again obtain res(vi) < log(χ(Gvi) for some i ∈ {1, 2} so (∗) holds in the following position
after D chooses this i.

If S makes a ηX -move, where η ∈ {μ, ν}, then D sets her clock for each model at the same value
as the depth of the model. All relevant models remain relevant and (∗) is maintained.

If S makes an X -move, by (∗), S does not immediately win the game. Assume that u is the vertex
returned to and P◦ is the previous position when u was the current vertex. Let P′ be the position after
this X -move. By Lemma 6.5, we obtain L◦(u) ⊆ L′(u) and R◦(u) ⊆ R′(u). By induction hypothesis,
(∗) held in P◦ and clearly res′(u) = res◦(u), so (∗) still holds in P′.

If S makes a Lit-move, by (∗), left(v) �= ∅ and right(v) �= ∅. Since all the models are
propositionally equivalent, D wins the game.

By Theorem 5.7, we obtain that there is no sentence ϕ ∈ Lμ(∅) that separates Cn from Dn with
sz(ϕ) ≤ log(χ(G(Cn,Dn))) = twr(n − 1). Thus, FO is non-elementarily more succinct than Lμ. �

REMARK 6.7
Just like in the case of ML, we remark that the result of Theorem 6.6 also holds for DAG-size.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

32 Formula size games for modal logic and μ-calculus

This is again because the difference between the size of an Lμ formula in our sense and the DAG-
size of the same formula is at most exponential.

7 Conclusion

We have defined formula size games for basic modal logic and the modal μ-calculus. The games
utilize resource parameters to achieve a truly two-player game. In the case of modal logic, the players
only construct one branch of the game tree. This is in contrast with the original Adler–Immerman
game, where the players form the whole tree in a single play. For the modal μ-calculus, the recursive
nature of fixed point operators necessitates returning to previously visited nodes. However, the game
still traverses only one possible path through the game tree in a single play and some branches
can remain unvisited for the entire play. The μ-calculus game has infinite branching but the use of
decreasing ordinal clocks, as in [16], makes each play of the game finite.

We used the games to show that the property ‘all successor models are n-bisimilar with each other’
cannot be defined in basic modal logic or the modal μ-calculus with a formula of size less than the
exponential tower of height n − 1. On the other hand, this property can be defined in FO with a
formula of size linear in n. This means that FO is non-elementarily more succinct than both ML and
Lμ. We also show that the same property can be defined in two-dimensional modal logic ML2 with a
formula of size exponential in n. Thus, the non-elementary succinctness gap is also present between
ML2 and both ML and Lμ

We find the ML-game to be a useful tool for proving lower bounds on the size of ML-formulas.
Depending on the desired result, the game can also be modified to count a more specific parameter
instead of formula size, such as the number or nesting depth of a specific operator.

The μ-calculus game is also functional for proving lower bounds but with some caveats. The main
theorem stating the usefulness of the game, Theorem 5.7, requires uniform strategies for S. This
means that we assume S has a single formula in mind and always plays according to that formula.
It may be that this restriction could be removed but we have been unable to prove this. However,
to show succinctness results we only need one direction of the equivalence so the issue is usually
not relevant in practice. The greater concern is whether the game can be successfully used to prove
succinctness results for μ-calculus in more complicated contexts. Here we only generalize a result
already obtained with the ML game and we have so far failed to produce any other results with
the Lμ game due to its sheer complexity. A question related to this difficulty would be whether the
game could be simplified significantly while still preserving its functionality. It would be especially
interesting to apply the game to open problems related to μ-calculus and succinctness, such as
whether there is a polynomial transformation from Lμ to the guarded fragment or from vectorial
form to regular Lμ [4].

Acknowledgements

We are grateful to Martin Lück for coming up with a linear size formula ψn(x, y) to replace our
previous one that was of exponential size.

References

[1] M. Adler and N. Immerman. An n! lower bound on formula size. ACM Transactions on
Computational Logic, 4, 296–314, 2003.

[2] P. Blackburn, M. de Rijke and Y. V. Venema. Modal Logic. Cambridge University Press,
New York, NY, USA, 2001.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

Formula size games for modal logic and μ-calculus 33

[3] J. Bradfield and C. Stirling. Chapter 12—modal mu-calculi. In Handbook of Modal Logic, P.
Blackburn, J. V. Benthem, and F. Wolter, eds, Studies in Logic and Practical Reasoning, vol. 3,
pp. 721–756. Elsevier, 2007.

[4] F. Bruse, O. Friedmann and M. Lange. On guarded transformation in the modal mu-calculus.
Logic Journal of the IGPL, 23, 194–216, 2015.

[5] K. Etessami, M. Y. Vardi and T. Wilke. First-order logic with two variables and unary temporal
logic. Information and Computation, 179, 279–295, 2002.

[6] K. Etessami and T. Wilke. An until hierarchy and other applications of an Ehrenfeucht-Fraïssé
game for temporal logic. Information and Computation, 160, 88–108, 2000.

[7] D. Fernández-Duque and P. Iliev. Succinctness in subsystems of the spatial mu-calculus.
Journal of Applied Logics - IfCoLoG Journal of Logics and their Applications, College
Publications, 5(4), 827–873, 2018.

[8] T. French, W. van der Hoek, P. Iliev and B. P. Kooi. Succinctness of epistemic languages. In
IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence,
Barcelona, Catalonia, Spain, July 16–22, 2011, pp. 881–886, 2011.

[9] T. French, W. van der Hoek, P. Iliev and B. P. Kooi. On the succinctness of some modal logics.
Artificial Intelligence, 197, 56–85, 2013.

[10] D. Gabbay and V. Shehtman. Products of modal logics, part 1. Logic Journal of the IGPL, 6,
73–146, 1998.

[11] D. Gabbay and V. Shehtman. Products of modal logics. Part 2: relativised quantifiers in classical
logic. Logic Journal of the IGPL, 8, 165–210, 2000.

[12] D. Gabbay and V. Shehtman.. Products of modal logics. Part 3: products of modal and temporal
logics. Studia Logica, 72, 157–183, 2002.

[13] G. Gogic, H. Kautz, C. Papadimitriou and B. Selman. The comparative linguistics of
knowledge representation. In Proceedings of the 14th International Joint Conference on
Artificial Intelligence—Volume 1, IJCAI’95, pp. 862–869. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1995.

[14] M. Grohe and N. Schweikardt. The succinctness of first-order logic on linear orders. Logical
Methods in Computer Science, 1, 2005.

[15] M. Grohe and N. Schweikardt. Comparing the succinctness of monadic query lan-
guages over finite trees. RAIRO Theoretical Informatics and Applications, 38, 343–373,
2004.

[16] L. Hella, A. Kuusisto and R. Rönnholm. Bounded game-theoretic semantics for modal mu-
calculus. ArXiv e-prints, 2017.

[17] L. Hella and J. Väänänen. The size of a formula as a measure of complexity. In Logic
Without Borders—Essays on Set Theory, Model Theory, Philosophical Logic and Philosophy
of Mathematics, pp. 193–214. De Gruyter, 2015.

[18] L. Hella and M. Vilander. The succinctness of first-order logic over modal logic via a formula
size game. In Advances in Modal Logic 11, Budapest, Hungary, August 30–September 2, 2016,
pp. 401–419, 2016.

[19] M. Karchmer. On proving lower bounds for circuit size. In Proceedings of the Eighth Annual
Structure in Complexity Theory Conference, IEEE, pp. 112–118, 1993.

[20] G. Lenzi. The modal mu-calculus: a survey. Task Q, 9, 293–316, 2005.
[21] C. Lutz.. Complexity and succinctness of public announcement logic. In 5th International Joint

Conference on Autonomous Agents and Multiagent Systems (AAMAS 2006), Hakodate, Japan,
May 8–12, 2006, pp. 137–143, 2006.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

34 Formula size games for modal logic and μ-calculus

[22] C. Lutz, U. Sattler and F. Wolter. Modal logic and the two-variable fragment. In Computer
Science Logic, Paris, France, September 10–13, 2001, pp. 247–261, 2001.

[23] N. Markey. Temporal logic with past is exponentially more succinct, concurrency column.
Bulletin of the European Association for Theoretical Computer Science, 79, 122–128, 2003.

[24] M. Marx and Y. Venema. Multi-dimensional Modal Logic. Applied Logic Series, vol. 4. Kluwer
Academic Publishers, Dordrecht, 1997.

[25] J. C. McCabe-Dansted, T. French, S. Pinchinat and M. Reynolds. Expressiveness and succinct-
ness of a logic of robustness. Journal of Applied Non-Classical Logics, 25, 193–228, 2015.

[26] M. Otto.. Bisimulation invariance and finite models. In Logic Colloquium’02, Z. Chatzidakis,
P. Koepke and W. Pohlers, eds, Lecture Notes in Logic, pp. 276–298. Cambridge University
Press, 2006.

[27] A. A. Razborov. Applications of matrix methods to the theory of lower bounds in computational
complexity. Combinatorica, 10, 81–93, 1990.

[28] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics. Journal
of the ACM , 32, 733–749, 1985.

[29] L. J. Stockmeyer. The Complexity of Decision Problems in Automata Theory and Logic. PhD
Thesis, Massachusetts Institute of Technology, 1974.

[30] W. van der Hoek and P. Iliev. On the relative succinctness of modal logics with union,
intersection and quantification. In International conference on Autonomous Agents and Multi-
Agent Systems, AAMAS’14, Paris, France, May 5–9, 2014, pp. 341–348, 2014.

[31] W. van der Hoek, P. Iliev and B. P. Kooi. On the relative succinctness of two extensions by
definitions of multimodal logic. In How the World Computes—Turing Centenary Conference
and 8th Conference on Computability in Europe, CiE 2012, Cambridge, UK, June 18–23, 2012,
Springer-Verlag Berlin Heidelberg, pp. 323–333, 2012.

[32] H. van Ditmarsch, J. Fan, W. van der Hoek and P. Iliev. Some exponential lower bounds on
formula-size in modal logic. In Advances in Modal Logic 10, Groningen, The Netherlands,
August 5–8, 2014, College Publications, pp. 139–157, 2014.

[33] H. van Ditmarsch and P. Iliev. The succinctness of the cover modality. Journal of Applied
Non-Classical Logics, 25, 373–405, 2015.

[34] T. Wilke. CTL+ is exponentially more succinct than CTL. In Foundations of Software
Technology and Theoretical Computer Science, 19th Conference, Chennai, India, December
13–15, 1999, Springer-Verlag Berlin Heidelberg, pp. 110–121, 1999.

Received 00 Month 20xx

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz025/5675042 by Tam

pere U
niversity Library, m

iikka.vilander@
tuni.fi on 17 D

ecem
ber 2019

PUBLICATION

II

On the Succinctness of Atoms of Dependency

Martin Lück and Miikka Vilander

Log. Methods Comput. Sci. 15.3 (2019)

DOI: 10.23638/LMCS-15(3:17)2019

Publication reprinted with the permission of the copyright holders.

Logical Methods in Computer Science

Volume 15, Issue 3, 2019, pp. 17:1–17:28

https://lmcs.episciences.org/

Submitted Mar. 07, 2019

Published Aug. 20, 2019

ON THE SUCCINCTNESS OF ATOMS OF DEPENDENCY

MARTIN LÜCK a AND MIIKKA VILANDER b

a Leibniz University Hannover
e-mail address: lueck@thi.uni-hannover.de

b Tampere University
e-mail address: miikka.vilander@tuni.fi

Abstract. Propositional team logic is the propositional analog to first-order team logic.
Non-classical atoms of dependence, independence, inclusion, exclusion and anonymity can
be expressed in it, but for all atoms except dependence only exponential translations are
known. In this paper, we systematically compare their succinctness in the existential
fragment, where the splitting disjunction only occurs positively, and in full propositional
team logic with unrestricted negation. By introducing a variant of the Ehrenfeucht–Fräıssé
game called formula size game into team logic, we obtain exponential lower bounds in
the existential fragment for all atoms. In the full fragment, we present polynomial upper
bounds also for all atoms.

1. Introduction

As a novel extension of classical logic, team semantics provides a framework for reasoning
about whole collections of entities at once, as well as their relation with each other. Such
a collection of entities is called a team. Originally, team semantics was introduced by
Hodges [Hod97] to provide a compositional approach to logic of incomplete information,
such as Hintikka’s and Sandu’s independence-friendly logic (IF-logic) [HS89].

In his seminal work, Väänänen [Vä07] introduced dependence logic which extends
first-order logic by so-called dependence atoms, atomic formulas =(x1, . . . , xn; y) that in-
tuitively express that the value of y depends only on the values of x1, . . . , xn. While in
IF-logic dependencies between variables are expressed with annotated quantifiers such as
∃y/{x1, . . . , xn}, in team semantics these can be expressed without changing the quantifiers.
Accordingly, dependence logic formulas are evaluated on sets of first-order assignments
(called teams). Besides the dependence atom, a multitude of other notions of interdependen-
cies between variables were studied, such as the independence of variables [GV13], written
x1 · · ·xn ⊥ y1 · · · ym, the inclusion x1 · · ·xn ⊆ y1 · · · yn [Gal12], exclusion x1 · · ·xn | y1 · · · yn,
and anonymity x1 . . . xnΥy1 . . . yn [Vä19], also known as non-dependence [Rö18]. We gener-
ally refer to these expressions as atoms of dependency. In its original formulation, dependence
logic does not have a Boolean negation but only a so called dual negation ¬. For this nega-
tion, basic laws such as the law of the excluded middle—that either α or ¬α holds in

2012 ACM CCS: Theory of computation → Complexity theory and logic;
Key words and phrases: team semantics, succinctness, dependence atom.

LOGICAL METHODS� IN COMPUTER SCIENCE DOI:10.23638/LMCS-15(3:17)2019
c© Martin Lück and Miikka Vilander
CC© Creative Commons

17:2 Martin Lück and Miikka Vilander Vol. 15:3

any given interpretation—fail. By adding a Boolean negation operator, often written ∼,
Väänänen [Vä07] introduced team logic as a strictly more powerful extension of dependence
logic.

In the last decade, research on logics with team semantics outside of the first-order setting
has thrived as well. A plethora of related systems has been introduced, most prominently
for modal logic [Vä08], propositional logic [Yan14, YV16], and temporal logic [KMV15,
KMVZ18]. Analogously to first-order team logics, variants with a Boolean negation were
studied extensively [YV17, Mül14, KMSV15]. The atoms of dependency in these logics
feature a fundamental difference to their first-order counterparts: First-order dependencies
range over individuals of the universe, whereas propositional dependency atoms only range
over truth values, of which there are only finitely many. Based on this fact, unlike in
first-order logic, they can be finitely defined in terms of other logical connectives.

Gogic et al. [GKPS95] argue that in addition to the computational complexity of a logic
and which properties it can express, it is also important to consider how succinctly the logic
can express those properties. The succinctness of especially modal and temporal logics has
been an active area of research for the last couple of decades; see e.g. [Wil99, LSW01, EVW02,
AI03, Mar03] for earlier work on the topic and [FvdHIK11, FvdHIK13, vDFvdHI14, vdHI14]
for recent work. A typical result states that a logic L1 is exponentially more succinct than
another logic L2. This means that there is a sequence of properties (Pn)n∈N such that Pn

is definable by L1-formulas (ϕn)n∈N, but every family (ψn)n∈N of L2-formulas that defines
(Pn)n∈N is exponentially larger than (ϕn)n∈N.

In team semantics, the question of succinctness has received only little attention so far.
In their paper, Hella et al. [HLSV14] are primarily concerned with the expressive power of
modal dependence logic, but they also show that defining the dependence atom in modal
logic with Boolean disjunction requires a formula of exponential size. Similarly, Kontinen et
al. [KMSV17] investigate many aspects of modal independence logic and among them show
that modal independence logic is exponentially more succinct than basic modal logic. Our
paper is, to our knowledge, the first systematic look at succinctness for team semantics.

The most commonly used systematic methods for proving succinctness results are formula
size games and extended syntax trees. Formula size games are a variant of Ehrenfeucht-
Fräıssé games made to correspond to the size of formulas instead of the usual depth of some
operator. They were first introduced by Adler and Immerman [AI03] for branching-time
temporal logic CTL. The method of extended syntax trees was originally formulated by
Grohe and Schweikardt [GS05] for first-order logic. The notion of extended syntax tree was
actually inspired by the Adler-Immerman game, and in a certain sense these two methods are
equivalent: an extended syntax tree can be interpreted as a winning strategy for one of the
players of the corresponding formula size game. Both of these methods have been adapted to
many languages, especially in the modal setting, see e.g. [FvdHIK11, vdHIK12, vDFvdHI14].

The formula size game we define in this paper is an adaptation of the games defined
by Hella and Väänänen for propositional and first-order logic [HV15] and later by Hella
and Vilander for basic modal logic [HV16]. The new games of Hella and Väänänen are
variations of the original Adler-Immerman game with a key difference. In the original game,
the syntax tree of the formula in question is constructed in its entirety and consequently
the second player has an easy optimal strategy. Thus the original game is in some sense a
single player game. The new variant uses a predefined resource that bounds the size of the
constructed formula and only one branch of the syntax tree is constructed in one play. The
second player’s decisions now truly matter as she gets to decide which branch that is.

Vol. 15:3 ON THE SUCCINCTNESS OF ATOMS OF DEPENDENCY 17:3

Property Connectives in Σ Result

Dependence ∼=(·; ·) ∧,�, ∗ poly
=(·; ·) ∧,�, ∗ exp
=(·; ·) ∧,∼, ∗ poly

Independence ∼⊥c ∧,�,∨ poly
⊥ ∧,�, ∗ exp
⊥c ∧,∼, ∗ poly

Inclusion ∼⊆ ∧,�,∨ poly
⊆ ∧,�, ∗ exp
⊆ ∧,∼, ∗ poly

Exclusion ∼| ∧,�, ∗ poly
| ∧,�, ∗ exp
| ∧,∼, ∗ poly

Anonymity ∼Υ ∧,�,∨ poly
Υ ∧,�, ∗ exp
Υ ∧,∼, ∗ poly

Parity ∼� ∧,�, ∗ exp
� ∧,�, ∗ exp
� ∧,∼, ∨̇ poly

Table 1. The succinctness of team properties in propositional team logic. “∗”
means that the entry holds if ∨, ∨̇, or both are available. The bounds are sharp
in the following sense: “poly” means that there is a polynomial translation to
PL(Σ). “exp” means that there is an exponential translation to PL(Σ), but no
sub-exponential translation.

Contribution. In this paper we consider the succinctness of atoms of dependency. So far, it
is known that these atoms can be expressed by exponentially large formulas (see Table 2),
with only the dependence atom having a known polynomial size formula [HKVV18].

In Section 2 we define propositional team logic and the fragments we consider, and
recall some useful known results. In Section 3 we obtain exponential lower bounds in the
existential fragment of propositional team logic, where the splitting disjunction ∨ may only
occur positively. Our lower bounds imply succinctness results between logics with no atoms
of dependency, and ones expanded with a single such atom. The lower bounds also show
that the known translations to the existential fragment (see Table 2) are asymptotically
optimal.

Most of the lower bounds are obtained via the new formula size game for propositional
team logic, including a lower bound for the parity of the cardinality of teams. The lower
bounds for dependence and exclusion atoms are obtained via the notion of upper dimension,
adapted from [HLSV14].

In Section 4 we polynomially define the negations of the considered atoms of dependency
in the existential fragment. From this, as a corollary we obtain polynomial upper bounds
for full propositional team logic. Moreover, we define parity polynomially in the full logic,
even though both even and odd parities have exponential lower bounds in the existential
fragment. See Table 1 for an overview of all results. For each property, the three rows

17:4 Martin Lück and Miikka Vilander Vol. 15:3

correspond to defining the Boolean negation of the property with no free use of the Boolean
negation operator ∼, defining the property itself in the same setting, and finally defining
the property with free use of Boolean negation. The required formula is classified to be
either polynomial or exponential with respect to the size of the corresponding atom. We
always have the Boolean disjunction � available and either the lax disjunction ∨ or the
strict disjunction ∨̇ or both.

Finally, we consider algorithmic applications of our results and show that the complexities
of satisfiability, validity and model checking for propositional and modal team logic remain
the same after extension by some atoms of dependency.

2. Preliminaries

Definition 2.1 (Teams). A domain Φ is a finite set of atomic propositions. A Φ-assignment
is a function s : Φ → {0, 1}. A Φ-team T is a (possibly empty) set of Φ-functions, T ⊆ Φ →
{0, 1}. The set of all Φ-teams is denoted by Tms(Φ).

Definition 2.2 (Splits). Let T be a team. We say that an ordered pair (T1, T2) of teams is
a split of T , if T1, T2 ⊆ T and T1∪T2 = T . We say that a split (T1, T2) is strict if T1∩T2 = ∅.
Otherwise it is lax. We denote the set of splits of T by Sp(T), and the set of strict splits of
T by SSp(T).

Definition 2.3 (PL(Σ,Φ)-formulas). Let Σ be a set of connectives ◦ each with a designated
arity ar(◦) ≥ 0. A Φ-literal is a string of the form �, ⊥, ∼�, ∼⊥, p, ¬p, ∼p, or ∼¬p,
where p ∈ Φ. The set of PL(Σ,Φ)-formulas is then the smallest set containing all Φ-literals
and closed under connectives in Σ, i.e., if ϕ1, . . . , ϕn ∈ PL(Σ,Φ) and ar(◦) = n, then
◦(ϕ1, . . . , ϕn) ∈ PL(Σ,Φ).

Note that when we consider a logic with free usage of Boolean negation in front of
arbitrary formulas, we include ∼ in the set Σ. Otherwise, we always allow the Boolean
negation ∼ to occur in literals. In our setting the usual empty team property of every formula
being true on the empty team, fails. We motivate this choice below after Proposition 2.13.

Let Prop(ϕ) ⊆ Φ denote the set of propositional variables that occur in the formula ϕ.
We will omit the domain Φ if it is clear from the context or makes no difference, and write
only PL(Σ). We consider the following connectives:

T � � always,

T � ⊥ ⇔ T = ∅
T � p ⇔ ∀s ∈ T : s(p) = 1,

T � ¬p ⇔ ∀s ∈ T : s(p) = 0,

T � ∼ψ ⇔ T � ψ,

T � ψ ∧ θ ⇔ T � ψ and T � θ,

T � ψ � θ ⇔ T � ψ or T � θ,

T � ψ ∨ θ ⇔ ∃(S,U) ∈ Sp(T) : S � ψ and U � θ,

T � ψ ∨̇ θ ⇔ ∃(S,U) ∈ SSp(T) : S � ψ and U � θ,

T � ψ � θ ⇔ ∀(S,U) ∈ Sp(T) : S � ψ or U � θ,

T � ψ �̇ θ ⇔ ∀(S,U) ∈ SSp(T) : S � ψ or U � θ,

Vol. 15:3 ON THE SUCCINCTNESS OF ATOMS OF DEPENDENCY 17:5

Note that, as usually in the context of team logic, we have two different negations: a
dual negation ¬ and a contradictory negation ∼. For example, we have the equivalences
¬(p∨ q) ≡ ¬p∧¬q and ∼(p∨ q) ≡ ∼p�∼q, but ¬p∧¬q �≡ ∼p�∼q. Also note that in team
logic we have four different logical constants, namely � = ¬⊥ (always true), ∼� (always
false), ⊥ = ¬� (true in the empty team) and ∼⊥ (true in non-empty teams).

We say ϕ entails ψ, in symbols ϕ � ψ, if T � ϕ implies T � ψ for all domains
Φ ⊇ Prop(ϕ) ∪ Prop(ψ) and Φ-teams T . If ϕ � ψ and ψ � ϕ, then we write ϕ ≡ ψ and say
that ϕ and ψ are equivalent.

Definition 2.4. A PL({∧,∨})-formula that contains no ∼ is a purely propositional formula.

We will consistently use the letters α, β, γ, . . . for purely propositional formulas, whereas
ϕ, ψ, θ, . . . will denote arbitrary formulas.

We define the shorthands ne := ∼⊥, which defines non-emptiness of teams, and
Eα := � ∨ (ne ∧ α), which expresses that at least one assignment in the team satisfies the
purely propositional formula α.

Many formulas of team logic enjoy useful closure properties:

Definition 2.5. Let ϕ be a PL(Σ,Φ)-formula.

• ϕ is union closed if, for any set of Φ-teams T such that ∀T ∈ T : T � ϕ we have
⋃

T � ϕ.
• ϕ is downward closed if, for any Φ-teams T1, T2, if T2 � ϕ and T1 ⊆ T2, we have T1 � ϕ.
• ϕ is upward closed if, for any Φ-teams T1, T2, if T2 � ϕ and T1 ⊇ T2, we have T1 � ϕ.
• ϕ has the empty team property if ∅ � ϕ.
• ϕ is flat if, for any Φ-team T , T � ϕ if and only if {s} � ϕ for all s ∈ T .

A formula is flat if and only if it is union closed, downward closed, and has the empty team
property.

Proposition 2.6. Let ϕ, ψ ∈ PL(Σ) such that at least one of ϕ and ψ is downward closed.
Then ϕ ∨ ψ ≡ ϕ ∨̇ ψ.

Proof. Obviously, ϕ ∨̇ ψ entails ϕ ∨ ψ. Conversely, if T � ϕ ∨ ψ via some split (T1, T2) of
T , then either T1 \ T2 will still satisfy ϕ or T2 \ T1 will satisfy ψ. So either (T1 \ T2, T2) or
(T1, T2 \ T1) is a strict split of T witnessing ϕ ∨̇ ψ.

Proposition 2.7. Every ∼-free PL({∧,∨, ∨̇})-formula is flat. In particular, every purely
propositional formula is flat.

Proof. An easy inductive proof.

An important property of propositional (and other) logics is locality, which means that
formulas depend only on the assignment to variables that actually occur in the formula.
This property can be generalized to team semantics.

Definition 2.8. If T is a Ψ-team and Φ ⊆ Ψ, the projection of T onto Φ, denoted T �Φ, is
defined as the Φ-team { s�Φ | s ∈ T }, where s�Φ is the the restriction of the function s to
the domain Φ.

Definition 2.9. A formula ϕ ∈ PL(Σ,Φ) is local if, for any domain Ψ ⊇ Φ and Ψ-team T ,
it holds T � ϕ if and only if T �Φ � ϕ.

Proposition 2.10 [YV17]. Every PL({∧,∼,∨})-formula is local.

17:6 Martin Lück and Miikka Vilander Vol. 15:3

Note that locality quickly fails if we admit strict splitting ∨̇ (cf. [YV17]). The formula
ψ := ∼p ∨̇ ∼p ∨̇ ∼p is an easy counter-example to the locality of PL({∨̇}). No team with
domain {p} does satisfy ψ, since it needs at least three assignments in the team, but for
example the maximal {p, q}-team satisfies ψ.

Definition 2.11 (Satisfiability). A formula ϕ is Φ-satisfiable if T � ϕ for at least one
Φ-team T .

The domain is crucial here: The previous example formula ψ is {p, q}-satisfiable, but
not {p}-satisfiable.

Often the empty team is excluded in the definition of satisfiability, especially in logics
with the empty team property where otherwise every formula would be satisfiable. This is
not necessary here as these definitions are interchangeable; ϕ is satisfiable in a non-empty
team iff ϕ ∧ ne is satisfiable, and ϕ is satisfiable iff �∨ ϕ is satisfiable in a non-empty team.

Usually, for propositional team logic, � and �̇ are omitted since they are definable as
ϕ � ψ ≡ ∼(∼ϕ ∨ ∼ψ), and ϕ �̇ ψ ≡ ∼(∼ϕ ∨̇ ∼ψ). If they are removed entirely, then the
splitting disjunction may occur only positively, that is, splits of team may only be quantified
existentially. This fragment plays an important role in the paper.

Definition 2.12. The existential fragment is PL({∧,�,∨, ∨̇}).
It is well known that team logic is inherently second-order in nature: First-order

dependence logic is actually equivalent to existential second-order logic [Vä07], and equivalent
to full second-order logic if arbitrary negation is added [KN09]. In the same vein, propositional
team logic is equivalent to second-order logic over {0, 1}, and to existential second-order
logic if ∼ is restricted [HKLV16]. In all these results, the splitting disjunction ∨ simulates set
quantification. From this perspective, we call the fragment with only positive ∨ “existential”.

Note that, unlike in the first-order setting, for propositional logics the difference between
existential and full logic emerges only in succinctness, not in expressive power. Indeed Yang
and Väänänen [YV17] showed that already the existential fragment is expressively complete:

Proposition 2.13. For every set P of Φ-teams there is a formula ϕ in the existential
fragment such that T ∈ P ⇔ T � ϕ for all Φ-teams T . In particular, for every Σ and
formula ψ ∈ PL(Σ,Φ) there is a formula ϕ of the existential fragment such that ψ ≡ ϕ.

Essentially this is the reason we keep Boolean negation in literals. While expressively
complete, the fragment lacks the succinctness of full propositional team logic with free use
of Boolean negation. For this reason, we find the existential fragment to be a suitable logic
to compare in terms of succinctness to full propositional team logic.

We proceed with the definition of the size of a formula. The literature contains many
different accounts of what should be considered formula size. We take as our basic concept
the length of the formula as a string. Since in team semantics the domain is often fixed and
finite, we consider each proposition symbol to be only one symbol in the string. In Section 3
we define another measure of formula size called width because it is more convenient for the
formula size game. Since we only use width for lower bounds and length is always greater
than width, we refer to length in the theorems for the lower bounds.

Definition 2.14. The length of a formula ϕ ∈ PL(Σ), denoted by |ϕ|, is the length of ϕ as
a string, counting proposition symbols as one symbol.

If α is a purely propositional formula and not an atomic proposition, then technically
¬α is not a formula; then by ¬α we refer to the formula that is obtained from α by pushing

Vol. 15:3 ON THE SUCCINCTNESS OF ATOMS OF DEPENDENCY 17:7

¬ inwards using classical laws, i.e., ¬(β ∧ γ) := (¬β ∨ ¬γ) and ¬(β ∨ γ) := (¬β ∧ ¬γ). For
tuples �α = (α1, . . . , αn) and �β = (β1, . . . , βn) of purely propositional formulas, we write

�α ↔ �β for the formula
∧n

i=1((αi ∧ βi) ∨ (¬αi ∧ ¬βi)) and �α � �β for ¬(�α ↔ �β). Note that

since the formula �α ↔ �β is purely propositional, we may use the dual negation ¬ here.
By slight abuse of notation, we will write s(α) even if α is not an atomic proposition,

and mean

s(α) =

{
1 if {s} � α,

0 else.

Finally, s(�α) is short for the vector (s(α1), . . . , s(αn)) ∈ {0, 1}n.
We consider the following atoms of dependency, where �α, �β, �γ are (possibly empty)

tuples of formulas:

Dependence: =(�α; �β):

T � =(�α; �β) ⇔ ∀s, s′ ∈ T : s(�α) = s′(�α) ⇒ s(�β) = s′(�β)

Independence: �α ⊥ �β:

T � �α ⊥ �β ⇔ ∀s, s′ ∈ T : ∃s′′ ∈ T : s(�α) = s′′(�α) and s′(�β) = s′′(�β)

Conditional independence: �α ⊥�β
�γ:

T � �α ⊥�β
�γ ⇔ ∀s, s′ ∈ T : if s(�β) = s′(�β) then

∃s′′ ∈ T : s(�α�β) = s′′(�α�β) and s′(�γ) = s′′(�γ)

Inclusion: �α ⊆ �β, where �α and �β have equal length:

T � �α ⊆ �β ⇔ ∀s ∈ T ∃s′ ∈ T : s(�α) = s′(�β)

Exclusion: �α | �β, where �α and �β have equal length:

T � �α | �β ⇔ ∀s ∈ T ∀s′ ∈ T : s(�α) �= s′(�β)

Anonymity: �αΥ�β:

T � �αΥ�β ⇔ ∀s ∈ T ∃s′ ∈ T : s(�α) = s′(�α) and s(�β) �= s′(�β)

Originally, the dependence and independence atoms were introduced in the first-order setting
by Väänänen [Vä07] and Grädel and Väänänen [GV13]. Inclusion and exclusion were
considered by Galliani [Gal12]. The anonymity atom is due to Väänänen [Vä19]. The
propositional counterparts we study here, except for the anonymity atom, were first studied
by Yang [Yan14].

Proposition 2.15. Let Σ = {∧,�,∨} or Σ = {∧,�, ∨̇}. The atoms of dependence, condi-
tional independence, inclusion, exclusion and anonymity are expressible by PL(Σ)-formulas

of size 2O(n).

Proof. See Table 2 for PL({∧,�,∨})-formulas defining each atom. We prove the case of the
inclusion atom and leave the rest to the reader.

Let ϕ be the defining formula of Table 2 for the inclusion atom and let �α = (α1, . . . , αn)

and �β = (β1, . . . , βn) be tuples of purely propositional formulas. Assume T � �α ⊆ �β and let
�c ∈ {�,⊥}n. If there is an assignment t ∈ T such that t(�α) = t(�c), then by the inclusion

17:8 Martin Lück and Miikka Vilander Vol. 15:3

=(�α; �β) ≡
∨

�c∈{�,⊥}n
((�α ↔ �c) ∧

m∧
i=1

(βi � ¬βi))

�α ⊥�γ
�β ≡

∨
�c∈{�,⊥}k

((�γ ↔ �c) ∧ (�α ⊥ �β))

�α ⊥ �β ≡

∧
�c∈{�,⊥}n
�c ′∈{�,⊥}m

(�α � �c) � (�β � �c ′) � E
(
(�α ↔ �c) ∧ (�β ↔ �c ′)

)

�α ⊆ �β ≡
∧

�c∈{�,⊥}n
(�α � �c) � E(�β ↔ �c)

�α | �β ≡
∧

�c∈{�,⊥}n
(�α � �c) � (�β � �c)

�αΥ�β ≡
∨

�c∈{�,⊥}n

(
�α ↔ �c ∧

m�
i=1

(Eβi ∧ E¬βi)
)

Table 2. Exponential translations of atoms in the existential fragment, where

�α = (α1, . . . , αn), �β = (β1, . . . , βm) (with n = m for ⊆ and |) and �γ = (γ1, . . . , γk).

atom there is another assignment t′ ∈ T such that t(�c) = t′(�c) = t′(�β). Thus E(�β = �c) holds.
If there is no such assignment t, then T � �α �= �c holds. For every �c the Boolean disjunction

(�α �= �c) � E(�β = �c) holds, so T � ϕ.

Conversely, assume T � ϕ. Let t ∈ T be an assignment. Let t(�α) = �b ∈ {0, 1}n, and
let �s ∈ {�,⊥}n such that t(�s) = �b. Now clearly �α �= �s does not hold so E(�β = �s) holds.

Consequently, there is an assignment t′ ∈ T such that s′(β) = �b = s(�α), so T satisfies the
inclusion atom.

For PL({∧,�, ∨̇}), it is easy to check that replacing each occurrence of ∨ with ∨̇ leads
to an equivalent formula.

3. Exponential lower bounds for team properties

Though the length of a formula is the most immediate measure of formula size, it is not the
most practical one in terms of defining a formula size game. For a measure better suited to
the game we have chosen the number of literals in a formula, which we call width. As the
name suggests, width corresponds to the number of leaves in the syntax tree of the formula.

Definition 3.1. The width of a formula ϕ ∈ PL(Σ), denoted by wd(ϕ), is defined recursively
as follows:

• wd(l) = 1 for a literal l,
• wd(ψ ◦ θ) = wd(ψ) + wd(θ), where ◦ ∈ Σ is binary,
• wd(◦ψ) = wd(ψ), where ◦ ∈ Σ is unary.

For the actual upper and lower bounds we prove, the difference between length and width is
inconsequential. The number of binary connectives, and therefore parentheses, depends on

Vol. 15:3 ON THE SUCCINCTNESS OF ATOMS OF DEPENDENCY 17:9

the number of literals and the number of negations of either kind for a minimal formula is
bounded by the number of literals. Note that for the game we also assume formulas to be in
negation normal form, but this doesn’t affect the width of formulas.

3.1. A formula size game for team semantics. Let A0 and B0 be sets of Φ-teams and
let k0 be a natural number. Let Σ ⊆ {�,∧,∨,�, ∨̇, �̇} be a set of connectives. Note that if
the strong negation ∼ is freely available in the fragment under consideration, then either
none or both of each pair of dual operators must be included in Σ.

The formula size game FSΣk0(A0,B0) for PL(Σ) has two players, S (Samson) and D
(Delilah). Positions of the game are of the form (k,A,B), where A and B are sets of teams
and k is a natural number.

The goal of S is to construct a formula ϕ that separates A from B, which means that
T � ϕ for every team T ∈ A, denoted A � ϕ and T � ϕ for every team T ∈ B, denoted
B � ∼ϕ. Note that B � ∼ϕ is different from B � ϕ since the first states that no team in B
satisfies ϕ and the second only that not all teams in B satisfy ϕ.

The starting position is (k0,A0,B0). If k0 = 0, D wins the game. In a position (k,A,B)
with k ≥ 1, S must make one of |Σ|+ 1 moves to continue the game. The available moves
are the ones given by Σ and the literal move. The moves work as follows:

• �-move: S chooses subsets A1,A2 ⊆ A such that A1 ∪ A2 = A and natural numbers
k1, k2 > 0 such that k1 + k2 = k. Then D chooses i ∈ {1, 2}. The game continues from
the position (ki,Ai,B).

• ∧-move: Same as the �-move with the roles of A and B switched.
• ∨-move: For every team A ∈ A, S chooses a split (A1, A2). Let Ai = {Ai | A ∈ A}
for i ∈ {1, 2}. For every team B ∈ B, S chooses a function fB : Sp(B) → {1, 2}. Let
Bi = {Bi | fB(B1, B2) = i, (B1, B2) ∈ Sp(B), B ∈ B} for i ∈ {1, 2}. Finally, S chooses
natural numbers k1, k2 > 0 such that k1 + k2 = k. Then D chooses a number i ∈ {1, 2}.
The game continues from the position (ki,Ai,Bi).

• �-move: Same as the ∨-move with the roles of A and B switched.
• ∨̇-move: Same as the ∨-move except all splits (A1, A2) and (B1, B2) considered are strict.
• �̇-move: Same as the ∨̇-move with the roles of A and B switched.
• Literal move: S chooses a Φ-literal l. If l separates A from B, S wins. Otherwise, D wins.

While the definition of the ∨-move is quite technical, the intuition is well grounded in
the semantics of the connective ∨. Let us assume S has a formula in mind with ∨ as the
outermost connective. On the A-side S simply splits each team A into two teams, A1 and
A2, such that A1 satisfies the left disjunct and A2 satisfies the right one. The B-side is more
involved. S claims that no team in B satisfies the disjunction so for each team B and each
split of that team, (B1, B2), he must choose which Bi does not satisfy the corresponding
disjunct. These choices are gathered in the function fB for each team. Finally B1 gathers
all of the teams S has claimed to not satisfy the first disjunct, and the same for B2 and the
second disjunct.

The number k can be considered a resource for S in the following sense. Since for all the
connective moves k1, k2 > 0, the number k decreases in each move, and if k = 1, only the
literal move is available. Thus, in a finite number of moves, S expends his resource k and
must eventually make a literal move which will end the game and one of the players will win.

We first prove that winning strategies for the formula size game FSΣk0(A0,B0) correspond
to PL(Σ)-formulas of size at most k0 that separate A0 from B0.

17:10 Martin Lück and Miikka Vilander Vol. 15:3

Theorem 3.2. Let A0 and B0 be sets of teams and let k0 ∈ N. Then the following conditions
are equivalent:

(1)k0 S has a winning strategy for the game FSΣk0(A0,B0).
(2)k0 There is a formula ϕ ∈ PL(Σ) with wd(ϕ) ≤ k0 which separates A0 from B0.

Proof. We prove the equivalence of (1)k0 and (2)k0 by induction on k0.
Let k0 = 1. The only type of move available for S is the literal move, so S if has a

winning strategy, then there is a literal that separates A0 from B0. Conversely, the only
formulas with size at most 1 are literals so if such a formula exists, then S wins by choosing
that formula for a literal move.

Let k0 > 1 and assume that the equivalence of (1)k and (2)k holds for all natural
numbers k < k0 and all sets of teams A and B.

(1)k0 ⇒ (2)k0 : Let δ be a winning strategy of S for the game FSΣk0(A0,B0). We divide
the proof into cases according to the first move of δ. We handle all operators possibly in Σ
except for dual cases.

• Literal move: Since S is playing according to the winning strategy δ, the literal l chosen
by S separates A0 from B0. In addition, wd(l) = 1 ≤ k0.

• �-move: Let (k1,A1,B0) and (k2,A2,B0) be the successor positions chosen by S according
to δ. Since δ is a winning strategy, S has a winning strategy for both games FSΣki(Ai,B0).
By induction hypothesis, there are formulas ψi with wd(ψi) ≤ ki that separate Ai from B0.
Let ϕ = ψ1 � ψ2. We have A0 = A1 ∪ A2 so A0 � ϕ. On the other side we have B0 � ∼ψ1

and B0 � ∼ψ2 so B � ∼ϕ. Finally wd(ϕ) = wd(ψ1) + wd(ψ2) ≤ k1 + k2 = k0.
• ∨-move: Let (k1,A1,B1) and (k2,A2,B2) be the successor positions chosen by S according
to δ. Again by induction hypothesis there are formulas ψi with wd(ψi) ≤ ki which
separate Ai from Bi. Let ϕ = ψ1 ∨ ψ2. For each A ∈ A0 S chose a split (A1, A2). Now
A1 � ψ1 and A2 � ψ2 so A � ϕ. On the other side, for each B ∈ B0, S chose a function
fB : Sp(B) → {1, 2}. For each (B1, B2) ∈ Sp(B), if fB(B1, B2) = i, then Bi � ψi. Thus
B � ϕ. The width of ϕ is as in the previous case.

• ∨̇-move: Same as the ∨-move except all splits considered are strict.

(2)k0 ⇒ (1)k0 : Let ϕ ∈ PL(Σ) with wd(ϕ) ≤ k0 which separates A0 from B0. We give

the first move of the winning strategy of S for the game FSΣk0(A0,B0). Then the following

position (k,A,B) is a valid starting position for a game FSΣk (A,B). We can obtain a winning
strategy for S in this new game using the induction hypothesis. We finally obtain the full
winning strategy for S by combining the first move described below to the strategy given
by the induction hypothesis. We divide the proof into cases according to the outermost
connective of ϕ. We again handle only one of each pair of dual cases.

• ϕ is a literal: We know that ϕ separates A0 from B0 so S wins by making a literal move
choosing ϕ.

• ϕ = ψ1 � ψ2: S chooses Ai = {A ∈ A0 | A � ψi} for i ∈ {1, 2}, k1 = wd(ψ1) and
k2 = k− k1. Since ϕ separates A0 from B0, we have A0 � ϕ so A1 ∪A2 = A. On the other
side, B0 � ∼ϕ so B � ψ1 and B � ψ2 for every B ∈ B0. Now, no matter which number
i ∈ {1, 2} D chooses, in the following position (ki,Ai,B0), the formula ψi will separate Ai

from B0. In addition, k1 ≤ wd(ψ1) and k2 = k0 − k1 ≤ wd(ϕ) − wd(ψ1) = wd(ψ2). By
induction hypothesis S has a winning strategy for both games FSΣki(Ai,B0).

• ϕ = ψ1 ∨ ψ2: Again we have A0 � ϕ so for every A ∈ A0, there is a split (A1, A2) such
that A1 � ψ1 and A2 � ψ2. S chooses such a split for every A ∈ A0. On the other side,

Vol. 15:3 ON THE SUCCINCTNESS OF ATOMS OF DEPENDENCY 17:11

B0 � ∼ϕ so for every B ∈ B0 and every split (B1, B2) we have B1 � ψ1 or B2 � ψ2. For
each B ∈ B0, S chooses fB so that if fB(B1, B2) = i, then Bi � ψi. Now, no matter
which number i ∈ {1, 2} D chooses, in the following position (ki,Ai,Bi), the formula ψi

will separate Ai from Bi. S deals with the resource k0 just like in the previous case. By
induction hypothesis S has a winning strategy for both games FSΣki(Ai,Bi).

• ϕ = ψ1 ∨̇ ψ2: Same as the ∨-case except all splits considered are strict.

Before we move on to the lower bounds, we prove a very standard lemma for formula size
games stating that if at any time the same team ends up on both sides of the game, D wins.

Lemma 3.3. If in a position P = (k,A,B) there is a team T ∈ A ∩ B, D has a winning
strategy from position P .

Proof. As long as there is T ∈ A ∩ B, if S makes a literal move, D wins. We show that D
can maintain this condition. We again omit the cases of dual operators.

• �-move: S chooses sets A1,A2 ⊆ A. Since A1∪A2 = A, we have T ∈ Ai for some i ∈ {1, 2}.
Then D chooses the following position (ki,Ai,B) and we have T ∈ Ai ∩ B.

• ∨-move: Let (T1, T2) be the split S chooses for T on the left side. On the right side S
must choose i = fT (T1, T2) ∈ {1, 2}. Then D chooses the following position (ki,Ai,Bi)
and we have Ti ∈ Ai ∩ Bi.

• ∨̇-move: Same as the ∨-move except the split must be strict.

Since S must eventually make a literal move, D wins the game.

3.2. Lower bounds via the formula size game. In this section we use the formula size
game to show lower bounds for the lengths of formulas defining atoms of dependency in the
positive fragment of propositional team logic. We first state all of the bounds as a theorem
and prove them in the rest of the section.

For natural numbers k and m, [k]m is the remainder of k modulo m.

Theorem 3.4. Let Σ = {�,∧,∨, ∨̇}, n,m ≥ 1, and Φn = {p1, . . . , pn}.
(1) If m ≤ 2n and k < m, then a PL(Σ)-formula, that defines the property |T | ≡ k (mod m)

of Φn-teams T , has length at least 2n − [2n − k]m. In particular, a formula that defines
even parity has length at least 2n.

(2) A PL(Σ)-formula that defines cardinality k ≤ 2n of Φn-teams has length at least k.
(3) A PL(Σ)-formula that defines p1 · · · pn ⊆ q1 · · · qn has length at least 2n.
(4) A PL(Σ)-formula that defines p1 · · · pn ⊥ q1 · · · qm has length at least 2n+m.
(5) A PL(Σ)-formula that defines p1 · · · pnΥq has length at least 2n+1.

Note that for Υ we only consider a single argument on the right-hand side. While this is an
exponential lower bound (in n), a tight bound in both n and m (cf. Table 2) is still open.

Our approach to proving these bounds is similar to that of Hella and Väänänen in [HV15].
They used a formula size game for propositional logic to show that defining the parity of the
number of ones in a propositional assignment of length n requires a formula of length n2.
We focus on teams that differ only by one assignment and define a measure named density
as in [HV15], although our definition is slightly different.

Definition 3.5. Let T be a team. A team T ′ is a neighbour of T , if T ′ = T \ {s} for some
assignment s ∈ T .

17:12 Martin Lück and Miikka Vilander Vol. 15:3

Let A be a set of teams. The number of neighbours of T in the set A is denoted by N(T,A),

N(T,A) := |{A ∈ A | A is a neighbour of T}|.
The density of the pair (A,B) is

D(A,B) := max{N(A,B) | A ∈ A}.
We shall use density as an invariant for the formula size game. Essentially we will show that
a certain number of the resource k must be expended before a literal move can be made.
First we show that S cannot make a successful literal move when density is too high.

Lemma 3.6. If D(A,B) > 1, then no literal separates A from B.

Proof. If D(A,B) > 1, at least one team A ∈ A has two neighbours B1, B2 ∈ B. Now any
positive literal l (with respect to ∼) true in A is also true in B1 and B2 since they are
subteams of A. On the other hand, since B1 and B2 are different neighbours of A, we have
B1 ∪B2 = A. For a negative literal ∼l, assume that B1 � ∼l and B2 � ∼l. This means that
B1 � l and B2 � l, so by union closure, A � l and consequently A � ∼l.

We proceed to show that density behaves well with respect to the moves of the game.

Lemma 3.7. Let (k,A,B) be a position in a game FSΣk0(A0,B0).

(1) If S makes a �-move, and the possible following positions are (k1,A1,B) and (k2,A2,B),
then D(A1,B) +D(A2,B) ≥ D(A,B).

(2) If S makes a ∧-move, and the possible following positions are (k1,A,B1) and (k2,A,B2),
then D(A,B1) +D(A,B2) ≥ D(A,B).

(3) If S makes a ∨-move or ∨̇-move, and the possible following positions are (k1,A1,B1)
and (k2,A2,B2), then D(A1,B1) + D(A2,B2) ≥ D(A,B) or D has a winning strategy
from one of the following positions.

Proof. Let A be one of the teams in A with most neighbours in B.

(1) Since A1 ∪ A2 = A, we may assume by symmetry that A ∈ A1. Since all the same
neighbours of A are still in B, we get D(A1,B) +D(A2,B) ≥ D(A1,B) ≥ D(A,B).

(2) Since B1 ∪ B2 = B, the neighbours of A are split between B1 and B2 so
D(A,B1) +D(A,B2) ≥ N(A,B1) +N(A,B2) ≥ N(A,B) = D(A,B).

(3) Let (A1, A2) be the (strict) split of A chosen by S. Suppose B = A \ {a} is a neighbour
of A in B. Then (B1, B2) := (A1 \ {a}, A2 \ {a}) is a split of B, and is strict if (A1, A2)
is strict. Let fB : (S)Sp(B) → {1, 2} be the function chosen by S for the team B and
i := fB(B1, B2). If a /∈ Ai, then Ai = Bi ∈ Ai ∩ Bi and by Lemma 3.3, D has a winning
strategy from the position (ki,Ai,Bi). Consequently, we proceed with the case where
a ∈ Ai for all A,B as above. Then Bi = Ai \ {a} is a neighbour of Ai in Bi, i.e., on
the opposite side in the position (ki,Ai,Bi). We see that for each neighbour B of A,
we obtain a neighbour of A1 in B1, or one of A2 in B2. Furthermore, if B = A \ {a}
and B′ = A \ {a′} are distinct neighbours of A, then Ai \ {a} and Ai \ {a′} are distinct
neighbours of Ai. For this reason, D(A1,B1) +D(A2,B2) ≥ D(A,B).

For the rest of this section, we study a fragment PL(Σ) with operators from Σ = {�,∧,∨, ∨̇}.
All results are lower bounds for this fragment and are naturally preserved by any fragment
PL(Σ′) with Σ′ ⊆ Σ.

We gather the above lemmas as the following theorem stating the usefulness of density.

Theorem 3.8. If k0 < D(A0,B0), then D has a winning strategy in the game FSΣk0(A0,B0).

Vol. 15:3 ON THE SUCCINCTNESS OF ATOMS OF DEPENDENCY 17:13

Proof. We define a strategy δ for D and show that if D plays according to δ, the condition
k < D(A,B) is maintained in all positions (k,A,B).

Let (k,A,B) be a position of the game FSΣk0(A0,B0). By induction hypothesis, k <
D(A,B).

• If S makes a �-move, then by the first item of Lemma 3.7, D(A1,B)+D(A2,B) ≥ D(A,B).
Assume for contradiction that ki ≥ D(Ai,B) for i ∈ {1, 2}. Then

k = k1 + k2 ≥ D(A1,B) +D(A2,B) ≥ D(A,B) > k,

which is a contradiction. Therefore ki < D(Ai,B) for some i ∈ {1, 2} and D chooses that
i to continue the game.

• The case of a ∧-move is similar, the second item of Lemma 3.7.
• If S makes a ∨-move, then by the third item of Lemma 3.7, D has a winning strategy
from a following position (ki,Ai,Bi) or D(A1,B1)+D(A2,B2) ≥ D(A,B). In the first case
D chooses the position (ki,Ai,Bi) and follows the strategy given by the lemma. In the
second case D chooses a following position that maintains the condition k < D(A,B) just
like in the �-case above.

• If S makes a literal move, since D(A,B) > k ≥ 1, by Lemma 3.6, D wins the game. Note
that the case k = 0 is not possible since all binary connective moves lead to positions with
positive k, and a literal move always ends the game.

Lemma 3.9. No set A of Φ-teams can be defined with a PL(Σ)-formula of width less than
D(A,Tms(Φ) \ A).
Proof. Let B := Tms(Φ)\A. Now defining A amounts to separating A from B. If k < D(A,B),
then by Theorem 3.8, D has a winning strategy in the game FSΣk0(A,B) and by Theorem 3.2,
A and B cannot be separated by a formula with width k.

With the above lemma, we are now in the position to prove the main theorem of this
section.

Proof of Theorem 3.4. We find in each case a team which satisfies the desired property A
and has the desired number of neighbours which do not. Then D(A,Tms(Φ) \ A) is greater
than or equal to the desired number and the claim follows from Lemma 3.9 along with the
fact that length is always greater than width.

(1) First is the cardinality k (mod m) of Φn-teams. Let k′ = 2n − [2n − k]m. We first note
that k′ ≤ 2n so there is a Φn-team T1 with cardinality k′. Furthermore,

k′ ≡ [2n − 2n + k]m ≡ k (mod m).

Now |T1| ≡ k (mod m) and T1 has k′ neighbours with smaller cardinality.
(2) For a specific cardinality k ≤ 2n, if T2 is any team with cardinality k, then T2 clearly

has k neighbours with a smaller cardinality.
(3) Next is the inclusion atom p1 · · · pn ⊆ q1 · · · qn. If s(p1) · · · s(pn) is a binary representation

of the number i, we denote this by s(�p) = i. For i ∈ {0, . . . , 2n − 1}, let si be the
assignment with si(�p) = i and si(�q) = [i+ 1]2n . Let T3 := {si | i ∈ {0, . . . , 2n − 1}}.
Now �p and �q both get all possible values so T3 � p1 · · · pn ⊆ q1 · · · qn. Furthermore, for
any si ∈ T3, we have T3 \ {si} � p1 · · · pn ⊆ q1 · · · qn since �p gets the value [i+ 1]2n but
�q does not. Thus there are |T3| = 2n neighbours of T3 which do not satisfy the inclusion
atom.

17:14 Martin Lück and Miikka Vilander Vol. 15:3

(4) For the independence atom p1 · · · pn ⊥ q1 · · · qm, let T4 be the full team with domain
{p1, . . . , pn, q1, . . . , qm}. Clearly T4 � p1 · · · pn ⊥ q1 · · · qm and (T4 \ {s}) � p1 · · · pn ⊥
q1 · · · qm for any assignment s ∈ T4. Thus there are |T4| = 2n+m neighbours of T4 which
do not satisfy the independence atom.

(5) Finally, for the anonymity atom p1 · · · pnΥq, let T5 be the full team with domain
{p1, . . . , pn, q}. Clearly T5 � p1 · · · pnΥq and T5 \ {s} � p1 · · · pnΥq for any s ∈ T5. We
now have |T5| = 2n+1 neighbours of T5 which do not satisfy the anonymity atom.

In the above, we did not prove lower bounds for the atoms of dependence and exclusion.
The reason for this is that the invariant we use for the formula size game is density, which
is defined via the neighbourship relation. The remaining two atoms are downward closed,
so a team which satisfies such an atom cannot have any neighbours which do not satisfy
the same atom. For this reason, the above strategy fails for these two atoms. We present a
different approach in the next section.

3.3. Lower bounds via upper dimension. For the lower bounds of dependence and
exclusion atoms we employ the notion of upper dimension, which was successfully used to
prove lower bounds by Hella et al. [HLSV14]. Their paper mainly concerns the expressive
power of modal dependence logic, but at the end it is shown that defining the dependence
atom in modal logic with Boolean disjunction � requires a formula with length at least 2n.
However, the logic they consider again has downward closure. The existential fragment is
not downward closed, so we adapt the technique of Hella et al. accordingly. We first state
the lower bounds as a theorem and then prove it in this section.

Theorem 3.10. Let Σ = {�,∧,∨, ∨̇} and n ≥ 1.

• A PL(Σ)-formula that defines =(p1 · · · pn; q) has length at least 2n.
• A PL(Σ)-formula that defines p1 · · · pn | q1 · · · qn has length at least 2n.

For now, we will assume that Σ = {�,∧,∨}. We will show in the next subsection that this
imposes no restriction on the results, as for every PL({�,∧,∨, ∨̇})-formula that is local
there is an equivalent PL({�,∧,∨})-formula of the same size.

Definition 3.11. Let ϕ ∈ PL(Σ,Φ). A generator of ϕ is a set G(ϕ) of pairs (S,U) such
that S ⊆ U , and for each Φ-team T it holds that T � ϕ precisely if there is (S,U) ∈ G(ϕ)
such that S ⊆ T ⊆ U . The upper dimension Dim(G) of G is the number of distinct upper
bounds in G:

Dim(G) := |{U : (S,U) ∈ G}|.
The upper dimension of ϕ, denoted Dim(ϕ), is the minimal upper dimension of a generator
of ϕ:

Dim(ϕ) := min{Dim(G) | G is a generator of ϕ}.
That we count only the upper bounds U is analogous to Hella et al. [HLSV14], who

considered downward closed formulas and defined generators only in terms of U . Indeed,
with downward closure we could simply set S := ∅ and obtain a definition equivalent to
theirs. For arbitrary formulas ϕ however (even with the empty team property), we could
have (S,U) ∈ G(ϕ), but ∅ � X � S ⊆ U for some X such that X � ϕ. Since the subformulas
defining a downward closed formula are not necessarily downward closed, the inductive
proofs in our results only work if we additionally keep track of the S.

Vol. 15:3 ON THE SUCCINCTNESS OF ATOMS OF DEPENDENCY 17:15

Lemma 3.12. Let ϕ, ψ ∈ PL(Σ,Φ) and Φ = {p1, . . . , pn}. We have the following estimates:

• Dim(l) ≤ 1 for any Φ-literal l,
• Dim(ϕ ∧ ψ) ≤ Dim(ϕ) ·Dim(ψ),
• Dim(ϕ ∨ ψ) ≤ Dim(ϕ) ·Dim(ψ),
• Dim(ϕ � ψ) ≤ Dim(ϕ) + Dim(ψ),

Proof. For the binary connectives, let G(ϕ) and G(ψ) be minimal generators of ϕ and ψ,
respectively.

• Let T be the full Φ-team. Any positive literal l ∈ {p,¬p,�,⊥ | p ∈ Φ} has flatness, so
{(∅, {s ∈ T | {s} � l})} generates l. The negative literals l ∈ {∼p,∼¬p,∼⊥ | p ∈ Φ} are
upward closed, so {({s}, T) | s ∈ T : {s} � l} generates l. Finally, ∼� is unsatisfiable, so
it has the empty generator.

• For the conjunction, it is easy to check that G(∩) := {(S1 ∪ S2, U1 ∩ U2) | (S1, U1) ∈
G(ϕ), (S2, U2) ∈ G(ψ)} is a generator of ϕ ∧ ψ, so

Dim(ϕ ∧ ψ) ≤ Dim(G(∩)) ≤ Dim(G(ϕ)) ·Dim(G(ψ)) = Dim(ϕ) ·Dim(ψ).

• For the lax disjunction, let G(∪) := {(S1∪S2, U1∪U2) | (S1, U1) ∈ G(ϕ), (S2, U2) ∈ G(ψ)}.
If T � ϕ ∨ ψ via some split (T1, T2), there are (S1, U1) ∈ G(ϕ) and (S2, U2) ∈ G(ψ) such
that Si ⊆ Ti ⊆ Ui for i ∈ {1, 2}. Then S1 ∪ S2 ⊆ T ⊆ U1 ∪ U2.

Conversely, assume (S1, U1) ∈ G(ϕ) and (S2, U2) ∈ G(ψ) such that S1∪S2 ⊆ T ⊆ U1∪U2.
Define Ti := (T ∩Ui)∪Si. Then (T1, T2) is a split of T , and Si ⊆ Ti ⊆ Ui (w.l.o.g. Si ⊆ Ui).
Consequently, T1 � ϕ and T2 � ψ, so T � ϕ ∨ ψ. Thus G(∪) is a generator of ϕ ∨ ψ and

Dim(ϕ ∨ ψ) ≤ Dim(G(∪)) ≤ Dim(G(ϕ)) ·Dim(G(ψ)) = Dim(ϕ) ·Dim(ψ).

• For the Boolean disjunction, clearly G(ϕ) ∪G(ψ) is a generator of ϕ � ψ.

Let occ�(ϕ) denote the number of occurrences of � inside ϕ.

Lemma 3.13 [HLSV14, Proposition 5.9]. Let ϕ ∈ PL(Σ). Then Dim(ϕ) ≤ 2occ�(ϕ).

Proof. By induction on ϕ, using the previous lemma. For literals ϕ = l, Dim(l) ≤ 1 = 2occ�(l).
For ∇ ∈ {∧,∨}, it holds that

Dim(ψ∇θ) ≤ Dim(ψ) ·Dim(θ)

≤ 2occ�(ψ) · 2occ�(θ) = 2occ�(ψ)+occ�(θ) = 2occ�(ϕ)

and for the Boolean disjunction,

Dim(ψ � θ) ≤ Dim(ψ) + Dim(θ) ≤ Dim(ψ) ·Dim(θ) + 1

≤ 2occ�(ψ) · 2occ�(θ) + 1 ≤ 2occ�(ψ)+occ�(θ)+1 = 2occ�(ϕ).

Next, we show that the upper dimension of the dependence atom and the exclusion
atom is at least doubly exponential.

Lemma 3.14. Let n ≥ 1, let p1, . . . , pn, q1, . . . , qn ∈ Φ be pairwise distinct propositions,
�p = (p1, . . . , pn), and �q = (q1, . . . , qn). Then Dim(=(�p; q1)) ≥ 22

n
and Dim(�p | �q) ≥ 22

n − 2.

Proof. We prove a more general result and then apply it to the two atoms. Let ϕ be any
formula and Φ = Prop(ϕ). We show that the size of a generator of ϕ is always at least the
number of maximal Φ-teams of ϕ, where a Φ-team X is maximal if it satisfies ϕ but no
Φ-team Y with Y � X satisfies ϕ. Suppose that ϕ has m distinct maximal teams, but G is
a generator of ϕ with |G| < m. Then there are distinct maximal teams X1, X2 and pairs

17:16 Martin Lück and Miikka Vilander Vol. 15:3

(S1, U), (S2, U) ∈ G such that X1, X2 ⊆ U . Since X1 is maximal and U � ϕ by definition of
generator, we have X1 = U . But by the same argument X2 = U , contradiction.

Next, we show that the atoms have at least 22
n
maximal teams. We start with the

dependence atom. For each f : {0, 1}n → {1, 0}, let
X(f) := {s : Φ → {0, 1} | f(s(�p)) = s(q1)}.

Then X(f) is maximal for =(�p; q1). Since f1 �= f2 implies X(f1) �= X(f2), there are at least
22

n
distinct maximal teams.

For the exclusion atom, we proceed similarly. A function f : {0, 1}n → {1, 0} is non-

constant if f(�b) �= f(�b′) for some�b, �b′ ∈ {0, 1}n. Now, for all non-constant f : {0, 1}n → {1, 0},
let

X(f) := {s : Φ → {0, 1} | f(s(�p)) = 1 and f(s(�q)) = 0}.
Clearly X(f) � �p | �q, as for every s ∈ X(f) we have f(s(�p)) �= f(s(�q)), hence s(�p) �= s(�q).

Next, we show that these are distinct teams, i.e., f1 �= f2 implies X(f1) �= X(f2).

Suppose f1 �= f2, w.l.o.g. there is �b ∈ {0, 1}n such that f1(�b) = 1 and f2(�b) = 0. Consider

the assignment s defined by s(�p) = �b and s(�q) defined in a way such that f1(s(�q)) = 0 (recall
that f1 is non-constant). Then s ∈ X(f1) but s /∈ X(f2). Consequently, there are 22

n − 2
such teams (as there are 22

n − 2 non-constant functions).
It remains to show that these teams are maximal, i.e., X(f) � Y implies Y � �p | �q for

all Φ-teams Y . Suppose s ∈ Y \X(f). Then f(s(�p)) = 0 or f(s(�q)) = 1. By symmetry, we

consider only the first case. As f is non-constant, there exists �b ∈ {0, 1}n with f(�b) = 1.

Now, define an assignment s′ such that s′(�p) = �b and s′(�q) = s(�p). Then f(s′(�p)) = 1 and
f(s′(�q)) = 0, so s′ ∈ X(f) ⊆ Y . Hence s, s′ ∈ Y , but s′(�q) = s(�p), so Y � �p | �q.

We conclude the section with the following exponential lower bounds.

Proof of Theorem 3.10. We consider the exclusion atom, the dependence atom works analo-
gously. Suppose that ϕ ∈ PL(Σ) is equivalent to p1 · · · pn | q1 · · · qn. Then by Lemma 3.14,
Dim(ϕ) ≥ 22

n − 2, as the upper dimension is a purely semantical property. However,

by Lemma 3.13, Dim(ϕ) ≤ 2occ�(ϕ) ≤ 2|ϕ| − 2. With n ≥ 1, the resulting inequality

22
n − 2 ≤ 2|ϕ| − 2 implies |ϕ| ≥ 2n.

3.4. From lax to strict lower bounds. Before, we proved lower bounds for the dependence
and exclusion atom for the for the restricted operator set Σ = {�,∧,∨}, in particular with
only lax disjunction. Next, we incorporate the strict disjunction ∨̇.

The idea is the following: Define the relaxation ϕ∗ of a formula ϕ as the formula where
every occurrence of ∨̇ is replaced by ∨. We will prove that a formula ϕ and its relaxation
are equivalent, provided ϕ is local. This is the case in particular for the dependence and the
exclusion atom, for which all lower bounds with ∨ then also hold with ∨̇. This additional
assumption of locality is needed, since formulas containing ∨̇ can be non-local. For example,
ne ∨̇ ne is not equivalent to its relaxation ne ∨ ne ≡ ne.

The intuition is that if ϕ∗ is satisfiable, then ϕ is also satisfiable if we just make the
domain larger, since the only way ϕ could be false while ϕ∗ is true is that we “run out of
assignments” for ∨̇. But if now ϕ is local, then enlarging the domain should have no effect
so that then we have ϕ ≡ ϕ∗.

Vol. 15:3 ON THE SUCCINCTNESS OF ATOMS OF DEPENDENCY 17:17

We begin with proving the first part formally. If T is a Φ-team and Ψ ⊇ Φ, then the
Ψ-expansion of T is

T [Ψ] := { s : Ψ → {0, 1} | s�Φ ∈ T } .
Intuitively it is obtained from T by duplicating all assignments in T for all possible values
for propositions p ∈ Ψ \ Φ. Observe that T [Ψ]�Φ = T .

Lemma 3.15. Let ϕ ∈ PL({∧,∨, ∨̇}). If a Φ-team T satisfies ϕ∗, then there is a domain
Ψ ⊇ Φ such that T [Ψ] satisfies ϕ.

Proof. The idea is that any lax splitting can be simulated by a strict splitting by duplicating
assignments in the team such that no assignment needs to be used in both halves of the
splitting. We show the following stronger statement by induction on ϕ: If ϕ∗ is satisfied by
a Φ-team T , then there is a domain Ψ ⊇ Φ such that, for all domains Ψ′ ⊇ Ψ and Ψ′-teams
X, it holds that X�Ψ = T [Ψ] implies X � ϕ.

The case where ϕ is a literal or a conjunction is straightforward. So suppose ϕ = ψ1 ∨̇ψ2

or ϕ = ψ1 ∨ ψ2, and assume T � ϕ∗ = ψ∗
1 ∨ ψ∗

2 via a (lax) split (S1, S2) of T , i.e., Si � ψ∗
i .

For i ∈ {1, 2}, there is Ψi ⊇ Φ such that for all Ψ′
i ⊇ Ψi and Ψ′

i-teams Xi it holds that
Xi�Ψi = Si[Ψi] implies Xi � ψi. We pick p ∈ Prop \ (Ψ1 ∪Ψ2), and let Ψ := Ψ1 ∪Ψ2 ∪ {p}.
Now assume X�Ψ = T [Ψ] for some Ψ′-team X, where Ψ′ ⊇ Ψ. We have to show that
X � ψ1 ∨̇ ψ2. This holds via the strict split (Y1 ∪ Z1, Y2 ∪ Z2) of X, where

Y1 := {s ∈ X | s�Φ ∈ S1 ∩ S2 and s(p) = 1}
Y2 := {s ∈ X | s�Φ ∈ S1 ∩ S2 and s(p) = 0}
Z1 := {s ∈ X | s�Φ ∈ S1 \ S2}
Z2 := {s ∈ X | s�Φ ∈ S2 \ S1}

We now prove the second part.

Theorem 3.16. A formula ϕ ∈ PL({�,∧,∨, ∨̇}) is local if and only if it is equivalent to
its relaxation ϕ∗.

Proof. If ϕ is equivalent to ϕ∗, then ϕ is local by Proposition 2.10. For the converse,
let ϕ be local. We have to prove ϕ ≡ ϕ∗. The direction ϕ � ϕ∗ is easy to prove by
induction. For the other direction, ϕ∗ � ϕ, we first transform ϕ and ϕ∗ into a disjunction of
PL({∧,∨, ∨̇})-formulas using the distributive laws

θ1 ◦ (θ2 � θ3) ≡ (θ1 ◦ θ2) � (θ1 ◦ θ3)
(θ1 � θ2) ◦ θ3 ≡ (θ1 ◦ θ3) � (θ2 ◦ θ3)

for ◦ ∈ {∧,∨, ∨̇}. We obtain ϕ ≡ �n
i=1 ψi and ϕ∗ ≡ �n

i=1 ψ
∗
i for suitable ψ1, . . . , ψn ∈

PL({∧,∨, ∨̇}).1
Let now T be a Φ-team such that T � ϕ∗, where Φ ⊇ Prop(ϕ). Then T � ψ∗

i for some i.
By Lemma 3.15, there is a domain Ψ ⊇ Φ such that T [Ψ] � ψi, which implies that T [Ψ] � ϕ.
Since T [Ψ]�Φ = T and ϕ is local, we conclude T � ϕ, as desired.

1Such normal forms with � are standard in team logic (cf. [HLSV14, Theorem 3.5], [KMSV15, Theorem 3.4],
[YV16, Lemma 4.9], [Vir17, Proposition 6.2]).

17:18 Martin Lück and Miikka Vilander Vol. 15:3

4. Polynomial upper bounds for team properties

In this section, we complement the exponential lower bounds presented in Theorem 3.4 by
polynomial upper bounds in the fragment PL({�,∧,∨}). Notably, among these polynomially
definable properties are the negations of all atoms of dependency considered previously. This
exhibits an interesting asymmetry of succinctness between the standard atoms of dependency
and their negations. For the parity of teams there is no such asymmetry and we have
exponential lower bounds for both even and odd cardinality. Nevertheless, in the subsequent
subsection, we will present a polynomial upper bound for parity in a stronger logic than
PL({�,∧,∨, ∨̇}).

4.1. Upper bounds for the atoms of dependency. As with the lower bounds, we
will first state the theorem and prove it with a series of lemmas. The length of a tuple
�ϕ = (ϕ1, . . . , ϕn) of formulas is |�ϕ| :=

∑n
i=1 |ϕi|. The negation of a formula ϕ is ∼ϕ.

Throughout this section, let �α, �β, �γ always denote tuples of purely propositional formulas

�α = (α1, . . . , αn), �β = (β1, . . . , βm), and �γ = (γ1, . . . , γk), where n,m, k ≥ 0.

Theorem 4.1. Let Σ ⊇ {�,∧,∨}.
• The dependence atom =(�α; �β) is equivalent to the negation of a PL(Σ)-formula of length

O(|�α�β|).
• The exclusion atom �α | �β is equivalent to the negation of a PL(Σ)-formula of length

O(n|�α�β|).
• The inclusion atom �α ⊆ �β is equivalent to the negation of a PL(Σ)-formula of length

O(n|�α�β|).
• The conditional independence atom �α ⊥�γ

�β is equivalent to the negation of a PL(Σ)-

formula of length O(n(n+m+ k)|�α�β�γ|).
• The anonymity atom �αΥβ is equivalent to the negation of a PL(Σ)-formula of length
O(n|β|+ |�α|).

Additionally, for the dependence and exclusion atoms, Σ ⊇ {�,∧, ∨̇} yields the same result.
Furthermore, all these formulas are logspace-computable.

Proof. We prove these results in Lemmas 4.2 to 4.7. For the formulas that are equivalent to
the negations of the dependence and exclusion atom, note that every occurrence of ∨ in them
is of the form α ∨ ϕ for purely propositional α. But then α ∨ ϕ ≡ α ∨̇ ϕ by Proposition 2.6.
For this reason, these results hold for Σ ⊇ {�,∧, ∨̇} as well.

Dependence atom. It is well-known that the dependence atom can be efficiently rewritten
by means of other connectives in most flavors of team logic that have unrestricted negation
(see, e.g., [Vä07, KMSV15, HKVV18]). For the sake of completeness, we will also state such
a formula here.

The following formula expresses the negation of the dependence atom =(�α; �β) and has

length O(|�α�β|). Recall the defined abbreviations Eα := � ∨ (ne ∧ α) and (�α ↔ �β) :=∧n
i=1((αi ∧ βi) ∨ (¬αi ∧ ¬βi)), which we will extensively use in this section.

Vol. 15:3 ON THE SUCCINCTNESS OF ATOMS OF DEPENDENCY 17:19

The following formula defines ∼=(�α; �β).

ϕ(�α; �β) := � ∨
(n∧

i=1

(αi � ¬αi) ∧
m�
i=1

(Eβi ∧ E¬βi)
)

Lemma 4.2. ∼=(�α; �β) ≡ ϕ(�α; �β).

Proof. Analogously to [HKVV18, Proposition 2.5].

Next, we require the abbreviation α ↪→ ϕ := ¬α ∨ (α ∧ ϕ), or equivalently, with strict
splitting, α ↪→ ϕ := ¬α ∨̇ (α ∧ ϕ). It was introduced by Galliani [Gal15] and has the
semantics T � α ↪→ ϕ ⇔ Tα � ϕ, where Tα := {s ∈ T | s � α}.

Before we define the next atom, we introduce two helper formulas θ= and θ �=, which we
will explain below.

θ=(�α; �β; γ) :=
n∧

i=1
�

l∈{�,⊥}

(
(γ ∧ (αi ↔ l)) ∨ (¬γ ∧ (βi ↔ l))

)

θ �=(�α; �β; γ) :=
n∨

i=1

(
Eγ ∧�

l∈{�,⊥}

(
(γ ∧ (αi ↔ l)) ∨ (¬γ ∧ (βi � l))

))

These are PL({�,∧,∨})-formulas of length O(n|γ|+ |�α|+ |�β|).
The purpose of θ=(�α, �β, γ) and θ �=(�α, �β, γ) is the following. The definitions of the

various dependency atoms are all based on comparison of pairs of assignments in a team.

For instance, �α | �β holds if s(�α) �= s′(�β) for all s, s′ ∈ T , and so on. Loosely speaking,

θ=(�α, �β, γ) and θ �=(�α, �β, γ) test the values s(�α) and s′(�β) for equality resp. inequality for
pairs (s, s′) ∈ Tγ × T¬γ . The restriction to Tγ × T¬γ is unfortunately necessary in our

implementation of θ= and θ �=, so s and s′ must differ in some formula γ that is known a
priori. While this seems to complicate the matter, we can actually find such γ for all of the
atoms of dependency.

Before we proceed with defining the atoms, we prove the semantics of θ= and θ �=. Another
constraint is that they work only for the subclass of teams T where |{s(�α) | s ∈ Tγ}| = 1,
i.e., all s ∈ Tγ agree on the value s(�α), but this again suffices for our purpose.

Lemma 4.3. Let T be a team such that |{s(�α) | s ∈ Tγ}| = 1. Then the following holds:

T � θ=(�α; �β; γ) ⇔ ∀(s, s′) ∈ Tγ × T¬γ : s(�α) = s′(�β)

T � θ �=(�α; �β; γ) ⇔ ∀(s, s′) ∈ Tγ × T¬γ : s(�α) �= s′(�β)

Proof. As θ= is straightforward, let us consider θ �=.
For “⇒”, by the formula, T can be divided into Y1 ∪ · · · ∪ Yn such that Yi ∩ Tγ �= ∅

and additionally Yi satisfies the respective Boolean disjunction. Now let s ∈ Tγ and
s′ ∈ T¬γ . For some i ≥ 1, s′ ∈ Yi. Furthermore, there is l ∈ {�,⊥} such that Yi �
Eγ ∧ (γ ∧ (αi ↔ l))∨ (¬γ ∧ (βi � l)). As Yi � Eγ, some s	 ∈ Yi ∩ Tγ exists, and we conclude
s(αi) = s	(αi) �= s′(βi).

For “⇐”, we divide T into teams Y1 ∪ · · · ∪ Yn as follows. For every i ∈ {1, . . . , n},
choose l ∈ {�,⊥} such that

Yi := {s ∈ T¬γ | s(βi) �= s′(αi), s
′ ∈ Tγ}.

17:20 Martin Lück and Miikka Vilander Vol. 15:3

Yi is well-defined as s′(αi) is constant for all s
′ ∈ Tγ . This is a split of T , as otherwise some

s ∈ T¬γ is left over with s(βi) = s′(αi) for all i ∈ {1, . . . , n}, contradicting the assumption.
Clearly Yi � Eγ, as Tγ �= ∅ and Tγ ⊆ Yi. It remains to check that setting l := � if ai = 1
(resp. l := ⊥ if ai = 0) renders (γ ∧ (αi ↔ l)) ∨ (¬γ ∧ (βi � l)) true in Yi.

With θ= and θ �= we can now define the remaining atoms. To define the condition
|{s(�α) | s ∈ Tγ}| = 1 in a formula, we use γ ↪→ 1α, where 1α := ∼⊥ ∧

∧n
i=1=(αi). Let us

call an assignment s in Tγ that is unique up to α a pivot.

Exclusion atom. With the exclusion atom, we exemplify how the formula θ= can be used.

A team T violates the exclusion atom �α | �β if either some assignment s satisfies �α ↔ �β, or

otherwise if s(�α) = s′(�β) for distinct s, s′. Assuming we are only in the latter case, however,
s and s′ must disagree on some αi, say, s � αi and s′ � ¬αi, since otherwise we again have

s′(�α) = s(�α) = s′(�β). Taking now γ := αi, we can with ∨ split off everything from Tγ except
the pivot s, retain the team {s} ∪ T¬γ , and search for s′ in T¬γ with θ=.

We apply these ideas in the following formula which expresses ∼(�α | �β) and has length

O(n|�α�β|).

ϕ(�α; �β) := E(�α ↔ �β) �
n�

i=1
γ∈{αi,¬αi}

(
� ∨ ((E¬γ) ∧ (γ ↪→ 1�α) ∧ θ=(�α; �β; γ))

)

Lemma 4.4. ∼�α | �β ≡ ϕ(�α; �β).

Proof. Suppose T � �α | �β, so there are s, s′ ∈ T such that s(�α) = s′(�β). First, if

s(�α) = s′(�α), then T � E(�α ↔ �β) and we are done. Otherwise, s and s′ disagree on
some γ ∈ {αi,¬αi | 1 ≤ i ≤ n} such that s(γ) = 1 and s′(γ) = 0. Then the split
(T \ {s, s′}, {s, s′}) satisfies the Boolean disjunct with index γ, as clearly {s, s′} satisfies

E¬γ, γ ↪→ 1�α, and θ=(�α; �β; γ). For the other direction, assume that T � ϕ(�α; �β). Then

either T � E(�α ↔ �β) and we are done, or there exist γ and some split (S,U) of T such that

U � (E¬γ) ∧ (γ ↪→ 1�α) ∧ θ=(�α; �β; γ). This implies Uγ , U¬γ �= ∅, so s1(�α) = s2(�β) for some
(s1, s2) ∈ Uγ × U¬γ .

Inclusion atom. A team T falsifies the inclusion atom �α ⊆ �β if there exists s	 ∈ T

such that s	(�α) �= s(�β) for all s ∈ T . In particular, some s	 ∈ T must exist such that
s	(αi) �= s	(βi) for some i. Similar as for the exclusion atom, it suffices to compare s	(�α)

and s(�β) only for assignments s such that s(βi) �= s	(βi), as s(βi) = s	(βi) already ensures

s	(�α) �= s(�β). Hence s	 is a pivot for γ := βi, and it suffices to compare pairs from {s	}×T¬γ
with θ �=.

The following formula expresses the negation of the inclusion atom �α ⊆ �β and has

length O(n|�α�β|).

ϕ(�α; �β) :=

n�
i=1

γ∈{βi,¬βi}

(
γ ∨

((
γ ↪→ ((αi � βi) ∧ 1�α)

)
∧ θ �=(�α; �β; γ)

))

Lemma 4.5. ∼�α ⊆ �β ≡ ϕ(�α; �β).

Vol. 15:3 ON THE SUCCINCTNESS OF ATOMS OF DEPENDENCY 17:21

Proof. Let T � �α ⊆ �β. We show that T � ϕ(�α; �β). By definition, there is s	 ∈ T such

that s	(�α) �= s(�β) for all s ∈ T . In particular, s	(αi) �= s	(βi) for some i ∈ {1, . . . , n}. Let
γ ∈ {βi,¬βi} such that s	(γ) = 1, and consider the subteam S := {s	} ∪ T¬γ of T . We show
that the Boolean disjunct with index γ is satisfied by the split (T \ S, S). Clearly, T \ S � γ.

Moreover, Sγ = {s	} � (αi � βi) ∧ 1�α. Finally, S � θ �=(�α; �β; γ) holds since s	(�α) �= s(�β) for
all s ∈ T¬γ by assumption.

Conversely, assume T � ϕ(�α; �β) with 1 ≤ i ≤ n and γ ∈ {βi,¬βi} chosen according to a

satisfying disjunct of ϕ(�α; �β). By the formula, T can be divided into X ∪ S with X � γ,

Sγ � (αi �= βi) ∧ 1�α, and S � θ �=(�α; �β; γ). In particular Sγ = {s	} for some s	. We show

that for all s ∈ T we have s	(�α) �= s(�β), so T � �α ⊆ �β. For all s ∈ T¬γ , this follows since
T¬γ = S¬γ and S � θ �=(�α; �β; γ). For all s ∈ Tγ , this follows since s(βi) = s	(βi) (recall that
γ ∈ {βi,¬βi}) and s	(βi) �= s	(αi).

Independence atom. The independence atom �α ⊥�γ
�β is a bit more complicated: It is

false if there are s	, s◦ ∈ T that agree on �γ, and any s ∈ T disagrees either with s	 on �α�γ or

with s◦ on �β. We separate the team along two “axes”, with δ and ε, have one pivot (s	 or
s◦) for each, and two occurrences of θ �=.

The following formula expresses the negation of the conditional independence atom

�α ⊥�γ
�β and has length O(n(n+m+ k)|�α�β�γ|), where �α = (α1, . . . , αn), �β = (β1, . . . , βm),

and �γ = (γ1, . . . , γk).

ϕ(�α; �β; �γ) :=�
δ∈{αi,¬αi|1≤i≤n}
ε∈{βj ,¬βj |1≤j≤m}

(δ ∨ ε) ∨
([

(¬δ ∧ θ �=(�α�γ; �α�γ; ε)) ∨ (¬ε ∧ θ �=(�β; �β; δ))
]

∧Eδ ∧ Eε ∧ ((δ ∨ ε) ↪→ 1�γ)
)

Lemma 4.6. ∼�α ⊥�γ
�β ≡ ϕ(�α; �β; �γ).

Proof. For the direction from left to right, assume T � �α ⊥�γ
�β. Then there are s	, s◦ ∈ T

such that s	(�γ) = s◦(�γ), but for all s ∈ T it holds either s(�α�γ) �= s	(�α�γ) or s(�β) �= s◦(�β).
In particular, there must be i, j such that s	(αi) �= s◦(αi) and s	(βj) �= s◦(βj). Let
δ ∈ {αi,¬αi} and ε ∈ {βj ,¬βj} such that s	(ε) = s◦(δ) = 1 and s	(δ) = s◦(ε) = 0. In order
to now satisfy the Boolean disjunct with index δ, ε, we define subteams

S := {s	} ∪ {s ∈ T | s(δ) = s(ε) = 0, s(�α�γ) �= s	(�α�γ)}
U := {s◦} ∪ {s ∈ T | s(δ) = s(ε) = 0, s(�β) �= s◦(�β)}

of T . We show that the (in fact strict) split (T \ (S ∪ U), S ∪ U) satisfies the disjunction.
First, T \ (S ∪ U) � δ ∨ ε due to the fact that T \ (S ∪ U) ⊆ Tδ ∪ Tε. Furthermore,
S ∪ U � Eδ ∧ Eε ∧ (δ ∨ ε) ↪→ 1�γ , since (S ∪ U)δ∨ε = {s	, s◦}. For the part in brackets,
consider the (again strict) split (S,U \ S) of S ∪ U . Again, clearly S � ¬δ and U � ¬ε.
Finally, both S � θ �=(�α�γ; �α�γ; ε) and U � θ �=(�β; �β; δ) hold.

For the other direction, assume T � ϕ(�α; �β; �γ) with the Boolean disjunction satisfied
with indices δ ∈ {αi,¬αi | 1 ≤ i ≤ n} and ε ∈ {βj ,¬βj | 1 ≤ j ≤ m}. Then T can be
divided into X ∪ S ∪ U where

• X � δ ∨ ε,
• S � ¬δ ∧ θ �=(�α�γ; �α�γ; ε),

17:22 Martin Lück and Miikka Vilander Vol. 15:3

• U � ¬ε ∧ θ �=(�β; �β; δ) and
• S ∪ U � Eδ ∧ Eε ∧ ((δ ∨ ε) ↪→ 1�γ).

By the final line, assignments s	 ∈ Sε and s◦ ∈ Uδ exist. Now, for the sake of contradiction,

suppose that T � �α ⊥�γ
�β. As Sε ∪ Uδ � 1�γ and hence s	(�γ) = s◦(�γ), due to independence,

another assignment s ∈ T must exist such that s(�α�γ) = s	(�α�γ) and s(�β) = s◦(�β).
However, s /∈ X, since s(�α) = s	(�α) implies s � δ and s(�β) = s◦(�β) implies s � ε.

Consequently, s ∈ S ∪ U . For this reason, either s(�α�γ) �= s	(�α�γ), or s(�β) �= s◦(�β),
contradiction to s(�α�γ) = s	(�α�γ) and s(�β) = s◦(�β).

Anonymity atom. Finally, the following formula expresses the negation of the unary
anonymity atom �αΥβ and has length O(n|β|+ |�α|).

Roughly speaking, the anonymity atom �αΥβ is false if there is s	 ∈ T such that no
s ∈ T with identical �α but different β exists, or in other words, all s ∈ T with different β
are also different in �α. So we can directly let γ := β or γ := ¬β, pick s as pivot, and apply
θ �= to α:

ϕ(�α;β) :=�
γ∈{β,¬β}

(
γ ∨

(
(γ ↪→ 1�α) ∧ θ �=(�α; �α; γ)

))

Lemma 4.7. ∼�αΥβ ≡ ϕ(�α;β).

Proof. Suppose T � �αΥβ. Then there is s	 ∈ T such that s(�α) = s	(�α) implies s(β) = s	(β)
for all s ∈ T . Let γ ∈ {β,¬β} such that s	 � γ, and consider the split (T \S, S) of T defined
by S := {s	} ∪ T¬γ . Then T \ S � γ. Moreover, S � γ ↪→ 1�α and S � θ �=(�α; �α; γ), since
Sγ = {s	} and s(�α) �= s	(�α) for all s ∈ S¬γ .

For the other direction, suppose there is γ ∈ {β,¬β} such that S � γ and U � (γ ↪→
1�α)∧θ �=(�α; �α; γ) for some split (S,U) of T . Then there exists s	 ∈ Uγ such that s	(�α) �= s(�α)
for all s ∈ U¬γ . Clearly, now s	(β) = s(β) for all s ∈ S ∪ Uγ , so ultimately s	(β) = s(β) or
s	(�α) �= s(�α) for all s ∈ T , hence T � �αΥβ.

In the first-order setting, Rönnholm [Rö18, Remark 2.31] demonstrated that the general
anonymity atom can be expressed via the unary anonymity atom and the splitting disjunction.
In the lemma below, we show that this can also be done via strict splitting. This yields a

formula expressing �αΥ�β of length O(n|�β|+m|�α|).
Lemma 4.8. The following formulas are equivalent:

(1) �αΥ�β,
(2)

∨m
i=1 �αΥβi,

(3)
∨̇m

i=1 �αΥβi.

Proof. For (2) ⇒ (1), we follow Rönnholm [Rö18]. Suppose T �
∨m

i=1 �αΥβi via the split of

T into Y1 ∪ · · · ∪ Ym, where Yi � �αΥβi. To see that T � �αΥ�β, let s ∈ T be arbitrary. For
some i, now s ∈ Yi. Consequently, there is s′ ∈ Yi such that s(�α) = s′(�α) but s(βi) �= s′(βi).
But as Yi ⊆ T and s was arbitrary, (1) follows.

The step (3) ⇒ (2) is clear, since every strict split of a team is a split.
It remains to show (1) ⇒ (3). Here, we adapt the proof of Rönnholm [Rö18] for ∨̇.

Suppose that T � �αΥ�β holds. Define subteams Yi of T by

Yi :=
{
s ∈ T | ∃s′ ∈ T : s′(�α) = s(�α) but s(βi) �= s′(βi)

}
,

Vol. 15:3 ON THE SUCCINCTNESS OF ATOMS OF DEPENDENCY 17:23

as in the proof of Rönnholm [Rö18], but additionally define teams Zi := Yi \
⋃

j<i Yj for

1 ≤ i ≤ m, where Y0 := ∅. We show that Z1 ∪ · · · ∪ Zm forms a strict split of T . The sets
Z1, . . . , Zm are pairwise disjoint, as Zi ⊆ Yi but Zj ∩ Yi = ∅ when i < j. Next, let s ∈ T be
arbitrary. Define

I := {i ∈ {1, . . . ,m} | ∃s′ ∈ T : s(�α) = s′(�α) but s(βi) �= s′(βi)}.
By assumption (1), I is non-empty and hence contains a minimal element i. But then
s ∈ Yi \

⋃
j<i Yj = Zi. Consequently, T =

⋃m
i=1 Zi.

Finally, we need to show that Zi � �αΥβi. For this, let now s ∈ Zi be arbitrary. By
definition of Zi, there exists s′ ∈ T with s(�α) = s′(�α) and s(βi) �= s′(βi). It suffices to show
that s′ ∈ Zi = Yi \

⋃
j<i Yj . As s′ ∈ Yi follows from the definition of Yi, assume s′ ∈ Yj for

some j < i. Then by symmetry also s ∈ Yj , contradiction to s ∈ Zi. Hence s′ /∈ Yj for all
j < i, so s′ ∈ Zi.

With the negations of dependency atoms definable in PL({�,∧,∨}), it is an easy
corollary that the atoms themselves are definable when additionally the strong negation ∼
is available. In the next theorem, we prove this, generalize the part on the anonymity atom
Υ, and furthermore expand the results to also work with ∨̇, which we previously considered
only for the downward closed atoms =(·, ·) and | in Theorem 4.1.

Theorem 4.9. Let Σ = {∼,∧,∨} or Σ = {∼,∧, ∨̇}. Let �α = (α1, . . . , αn), �β = (β1, . . . , βm),
and �γ = (γ1, . . . , γk) be tuples of purely propositional formulas.

• The dependence atom =(�α; �β) is equivalent to a PL(Σ)-formula of length O(|�α�β|).
• The exclusion atom �α | �β is equivalent to a PL(Σ)-formula of length O(n|�α�β|).
• The inclusion atom �α ⊆ �β is equivalent to a PL(Σ)-formula of length O(n|�α�β|).
• The conditional independence atom �α ⊥�γ

�β is equivalent to a PL(Σ)-formula of length

O(n(n+m+ k)|�α�β�γ|).
• The anonymity atom �αΥ�β is equivalent to a PL(Σ)-formula of length O(n|�β|+m|�α|).
Furthermore, all these formulas are logspace-computable.

Proof. We essentially take the formulas of Theorem 4.1 (and Lemma 4.8 for the anonymity
atom) and add a Boolean negation in front of them. For Σ = {∼,∧,∨}, the only remaining
thing to do is to rewrite � via ∧ and ∼.

For Σ = {∼,∧, ∨̇}, we must also remove all occurrences of ∨ and use only ∨̇. We see
that this comes down to expressing the subformulas θ= and θ �= in {∼,∧, ∨̇}. In θ=, the lax
splitting ∨ can equivalently be replaced by ∨̇ due to Proposition 2.6, as any occurrence of ∨
has at least one purely propositional argument. The same does not hold for θ �=, but it is
easy to see that θ �=(�α; �β; γ) can be replaced by

γ � ∼(� ∨̇ (Eγ ∧ E¬γ ∧ θ=(�α; �β; γ))).

4.2. Upper bounds for parity. Next, we again consider the parity of the cardinality of
teams, i.e., is there a formula that is true precisely on teams with even cardinality? This
differs from the other considered team properties in that both the property and its negation
have exponential lower bounds in PL({�,∧,∨, ∨̇}) (see Theorem 3.4). Nevertheless, we
show that it is polynomially definable when linearly many negations are nested inside the
formula, which was not necessary for the results of Theorem 4.9.

17:24 Martin Lück and Miikka Vilander Vol. 15:3

Theorem 4.10. Let |Φ| = n. The class of Φ-teams of odd cardinality is defined by a
PL(∧,∼, ∨̇)-formula of length O(n2).

We write =(X), for a finite set X ⊆ Φ of propositions, as abbreviation for
∧

p∈X =(p).

Based on this, the formula 1 := ∼⊥ ∧=(Φ) defines singletons, that is, a Φ-team T satisfies
1 iff |T | = 1. The formula expressing odd cardinality is now recursively defined as follows:

ϕ() := 1

ϕ(p�q) := 1 ∨̇ ∼
([

1 �
(
∼=(p) ∧

(
1 ∨̇=(p)

))]
∨̇ [=(p) ∧ ∼ϕ(�q)]

)
We prove its correctness in the lemma below. The rough idea is that a team is even precisely
if Tp and T¬p are either both even or both odd, regardless of which proposition p is.

Lemma 4.11. Let T ∈ Tms(Φ) and let �q list all propositions in Φ. Then T � ϕ(�q) if and
only if |T | is odd.

Proof. The proof is by induction on |�q|. Since the domain of T exceeds the arguments of the
recursive subformulas ϕ, we prove the following stronger statement. Let �q = (q1, . . . , qm).
Then, for any Φ-team S satisfying =(Φ \ {q1, . . . , qm}), it holds that that S � ϕ(�q) if and
only if |S| is odd. The base case is clear as the only ∅-teams are ∅ and {∅}.

We proceed with the inductive step, and first provide some intuition. The crucial
subformula is

ψ :=
[
1 �

(
∼=(p) ∧

(
1 ∨̇=(p)

))]
∨̇ [=(p) ∧ ∼ϕ(�q)].

We will show below that it is true iff at least one of |Sp| and |S¬p| is odd. Then ∼ψ means
that both |Sp| and |S¬p| are even. This is sufficient for |S| to be even but of course not
necessary. However, the following holds: |S| is odd precisely when we can remove one
assignment S such that afterwards both |Sp| and |S¬p| are even. Hence, oddness is defined
by 1 ∨̇ ∼ψ.

Intuitively, ψ allows to split off an even subteam of either Sp or S¬p by . . . ∨̇ (=(p) ∧
∼ϕ(�q)), reducing either Sp or S¬p, depending on which is odd, to a singleton. Afterwards
the team then satisfies 1 � ∼=(p) ∧

(
1 ∨̇=(p)

)
. We prove this formally, i.e., that S � ψ iff

|Sp| or |S¬p| is odd.
“⇒” Suppose S � ψ via the strict split (U, V) such that V � =(p) ∧ ∼ϕ(�q), and either

U � 1 or U � ∼=(p) ∧ (1 ∨̇=(p)). Note that |V | is even by induction hypothesis. We
distinguish the two possible cases for U .
– U � 1: Then U, V � =(p). Additionally, Both U and U ∪ V have odd size, and one

of them equals Sp or S¬p, depending on whether U and V agree on p or not.
– U � ∼=(p) ∧ (1 ∨̇ =(p)): Due to symmetry, we can assume V � Sp and S¬p � U .

By the formula, U has a strict split (X,Y) such that |X| = 1 and Y � =(p). Let
Z = Sp \ V . Either Z ⊆ X or Z ⊆ Y , as X and Y do not agree on p, but each is
constant in p. If Z ⊆ X, then Z = X and |V ∪X| = |Sp| is odd and we are done.
If Z ⊆ Y , then S¬p ⊆ X, hence S¬p = X and |S¬p| is odd.

“⇐” W.l.o.g. |Sp| is odd. Pick s ∈ Sp arbitrarily and consider the split (S¬p ∪ {s}, Sp \ {s})
of S. For the second component, Sp \ {s} � =(p) ∧ ∼ϕ(�q) by induction hypothesis.
For the first component, either S¬p is empty and S¬p ∪ {s} � 1, or S¬p is non-empty
and S¬p ∪ {s} � ∼=(p) ∧ (1 ∨̇=(p)). In both cases, S � ψ.

Vol. 15:3 ON THE SUCCINCTNESS OF ATOMS OF DEPENDENCY 17:25

We have shown an exponential lower bound for parity in the existential fragment. For
the matching upper bound, the following formulas define parity by mutual recursion:

ϕeven() := ⊥
ϕodd() := ne

ϕeven(p�q) :=
(
(p ∧ ϕodd(�q)) ∨ (¬p ∧ ϕodd(�q))

)
�

(
(p ∧ ϕeven(�q)) ∨ (¬p ∧ ϕeven(�q))

)
ϕodd(p�q) :=

(
(p ∧ ϕodd(�q)) ∨ (¬p ∧ ϕeven(�q))

)
�

(
(p ∧ ϕeven(�q)) ∨ (¬p ∧ ϕodd(�q))

)
Theorem 4.12. Let |Φ| = n. If Σ = {∧,�,∨} or Σ = {∧,�, ∨̇}, then the class of Φ-teams

of odd resp. even cardinality is definable by a PL(Σ)-formula of length 2O(n).

Proof. First of all, observe that the formula (p∧ϕ)∨(¬p∧ϕ′) is equivalent to (p∧ϕ)∨̇(¬p∧ϕ′)
for all ϕ,ϕ′ and propositions p, since any split satisfying the former formula is necessarily
strict. As a consequence, it suffices to consider Σ = {∧,�,∨}.

Let Φ = {p1, . . . , pn}, and T a Φ-team. Let �p = (p1, . . . , pn) list all variables in Φ. We
prove by induction on n that T � ϕeven(�p) iff |T | is even, and T � ϕodd(�p) iff |T | is odd.

First, if Φ = ∅, then either T = ∅ and T � ⊥ = ϕeven(), or T = {∅} and T � ne = ϕodd().
For the inductive step, observe that |T | is even iff |Tp| and |T¬p| have equal parity, and is
odd iff they have different parity, where p ∈ Φ is an arbitrary proposition. Furthermore,
Tp and Tp�(Φ \ {p}) have the same cardinality (the same goes for T¬p). Additionally, Tp

and Tp�(Φ \ {p}) satisfy the same PL(Φ \ {p},Σ)-formulas by Proposition 2.10. Hence the
equivalence immediately follows by induction hypothesis.

4.3. Modal team logic. In this final section, we considermodal team logic MTL, introduced
by Müller [Mül14], which extends both classical modal logic ML and propositional team
logic PL({∧,∼,∨}). Beginning with modal dependence logic by Väänänen [Vä08], several
atoms of dependency have been transferred from the first-order setting also to the modal
setting (cf. [EHM+13, KMSV17, HS15]). Using the results of this paper, we show that
the computational complexity of MTL does not change if it is augmented with any of the
dependency atoms we considered before.

For each k ≥ 0, we define the function expk as exp0(n) := n and expk+1(n) := 2expk(n).
For k ≥ 0, ATIME-ALT(expk, poly) is the class of problems decidable by an alternating

Turing machine (see [CKS81]) with at most p(n) alternations and runtime at most expk(p(n)),
for a polynomial p. Likewise, TOWER(poly) is the class of problems that are decidable by
a deterministic Turing machine in time expp(n)(1) for some polynomial p.

The syntax of MTL is given by the following grammar, where p is an atomic proposition:

ϕ ::= � | ⊥ | p | ¬p | ∼ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ♦ϕ,
Observe that classical modal logic ML is the ∼-free fragment of MTL. Let md(ϕ) denote
the modal depth of ϕ, i.e., the nesting depth of ♦ and � inside ϕ. A Kripke structure over
Φ, where Φ is a set of propositions, is a tuple K = (W,R, V) where (W,R) is a directed
graph and V : Φ → 2W . A team in K is a subset of W . Let RT := {v | (w, v) ∈ R,w ∈ T}
and R−1T := {w | (w, v) ∈ R, v ∈ T}. The set Prop(ϕ) is defined as for propositional logic.

17:26 Martin Lück and Miikka Vilander Vol. 15:3

MTL-formulas ϕ are evaluated as follows on pairs (K,T), where K is a Kripke structure
over some set Φ′ ⊇ Prop(ϕ) of propositions and T is a team in K:

(K,T) � p ⇔ T ⊆ V (p) for p ∈ Φ,

(K,T) � ¬p ⇔ T ∩ V (p) = ∅ for p ∈ Φ,,

(K,T) � ♦ψ ⇔ ∃T ′ ⊆ RT : T ⊆ R−1T ′ and (K,T ′) � ψ

(K,T) � �ψ ⇔ (K,RT) � ψ,

with ∧,∼,� and ⊥ analogously to propositional logic. An MTL-formula ϕ is satisfiable
(valid) if (K,T) � ϕ for some (every) Kripke structure K over Prop(ϕ) and team T in K.
The model checking problem is, given ϕ ∈ MTL and a Kripke structure with team (K,T),
to decide whether (K,T) � ϕ.

The modal atoms of dependence =(�α; �β), independence �α ⊥�β
�γ, inclusion �α ⊆ �β,

exclusion �α | �β, and anonymity �αΥ�β, are defined completely analogous as the propositional

variants (cf. p. 7), but with �α, �β, �γ being tuples of ML-formulas instead of PL-formulas.

Theorem 4.13. For MTL extended by the atoms =(·, ·), ⊥c, ⊆, |, and Υ,

• satisfiability and validity is TOWER(poly)-complete,
• satisfiability and validity for modal depth at most k is ATIME-ALT(expk, poly)-complete,
• model checking is PSPACE-complete,

with respect to logspace-reductions.

Proof. For the logic without any atoms, the complexity was shown by Müller [Mül14] and
Lück [Lü18]. The upper bounds of Theorem 4.1 immediately carry over to MTL, so we can
substitute every such atom by a polynomially long equivalent MTL-formula.

5. Conclusion

In this paper, we classified common atoms of dependency with respect to their succinctness
in various fragments of propositional team logic. We showed that the negations of these
atoms all can be polynomially expressed in the positive fragment of propositional team logic,
while the atoms themselves can only be expressed in this fragment in formulas of exponential
size. This implies polynomial upper bounds for the atoms in full propositional team logic
with unrestricted contradictory negation. For the lower bounds, we adapted formula size
games to the team semantics setting, and refined the approach with the notion of upper
dimension.

In further research, comparing the atoms of dependency in terms of succinctness could be
interesting. For example, do the lower bounds for the inclusion atoms still hold if we consider
the positive fragment together with dependence atoms? Adding moves corresponding to
atoms of dependency to the formula size game would enable looking into the relative
succinctness.

Vol. 15:3 ON THE SUCCINCTNESS OF ATOMS OF DEPENDENCY 17:27

Acknowledgment

The authors want to thank Lauri Hella and Raine Rönnholm for pointing out references
essential for this work, and Juha Kontinen for being the initiating force behind it. We also
thank the anonymous referees for their very detailed comments and suggestions on how to
simplify several proofs. This work was supported in part by a joint grant of the DAAD
(57348395) and the Academy of Finland (308099).

References

[AI03] Micah Adler and Neil Immerman. An n! lower bound on formula size. ACM Trans. Comput.
Log., 4(3):296–314, 2003.

[CKS81] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. J. ACM, 28(1):114–
133, January 1981.

[EHM+13] Johannes Ebbing, Lauri Hella, Arne Meier, Julian-Steffen Müller, Jonni Virtema, and Heribert
Vollmer. Extended modal dependence logic. In WoLLIC, volume 8071 of Lecture Notes in
Computer Science, pages 126–137. Springer, 2013.

[EVW02] Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with two variables
and unary temporal logic. Inf. Comput., 179(2):279–295, 2002.

[FvdHIK11] Tim French, Wiebe van der Hoek, Petar Iliev, and Barteld P. Kooi. Succinctness of epistemic
languages. In IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial
Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages 881–886, 2011.

[FvdHIK13] Tim French, Wiebe van der Hoek, Petar Iliev, and Barteld P. Kooi. On the succinctness of
some modal logics. Artif. Intell., 197:56–85, 2013.

[Gal12] Pietro Galliani. Inclusion and exclusion dependencies in team semantics — On some logics of
imperfect information. Annals of Pure and Applied Logic, 163(1):68–84, January 2012.

[Gal15] Pietro Galliani. Upwards closed dependencies in team semantics. Information and Computation,
245:124–135, 2015.

[GKPS95] Goran Gogic, Henry Kautz, Christos Papadimitriou, and Bart Selman. The comparative
linguistics of knowledge representation. In Proceedings of the 14th International Joint Conference
on Artificial Intelligence - Volume 1, IJCAI’95, pages 862–869, San Francisco, CA, USA, 1995.
Morgan Kaufmann Publishers Inc.

[GS05] Martin Grohe and Nicole Schweikardt. The succinctness of first-order logic on linear orders.
Logical Methods in Computer Science, 1(1), 2005.

[GV13] Erich Grädel and Jouko Väänänen. Dependence and independence. Studia Logica, 101(2):399–
410, 2013.

[HKLV16] Miika Hannula, Juha Kontinen, Martin Lück, and Jonni Virtema. On quantified propositional
logics and the exponential time hierarchy. In GandALF, volume 226 of EPTCS, pages 198–212,
2016.

[HKVV18] Miika Hannula, Juha Kontinen, Jonni Virtema, and Heribert Vollmer. Complexity of proposi-
tional logics in team semantic. ACM Trans. Comput. Log., 19(1):2:1–2:14, 2018.

[HLSV14] Lauri Hella, Kerkko Luosto, Katsuhiko Sano, and Jonni Virtema. The expressive power of
modal dependence logic. In Advances in Modal Logic 10, invited and contributed papers from
the tenth conference on “Advances in Modal Logic”, 2014, pages 294–312, 2014.

[Hod97] Wilfrid Hodges. Compositional semantics for a language of imperfect information. Logic Journal
of the IGPL, 5(4):539–563, 1997.

[HS89] Jaakko Hintikka and Gabriel Sandu. Informational Independence as a Semantical Phenomenon.
In Studies in Logic and the Foundations of Mathematics, volume 126, pages 571–589. Elsevier,
1989.

[HS15] Lauri Hella and Johanna Stumpf. The expressive power of modal logic with inclusion atoms.
In GandALF, volume 193 of EPTCS, pages 129–143, 2015.

[HV15] Lauri Hella and Jouko Väänänen. The size of a formula as a measure of complexity. In Logic
Without Borders - Essays on Set Theory, Model Theory, Philosophical Logic and Philosophy of
Mathematics, pages 193–214. De Gruyter, 2015.

17:28 Martin Lück and Miikka Vilander Vol. 15:3

[HV16] Lauri Hella and Miikka Vilander. The succinctness of first-order logic over modal logic via a
formula size game. In Advances in Modal Logic 11, Budapest, Hungary, August 30 - September
2, 2016, pages 401–419, 2016.

[KMSV15] Juha Kontinen, Julian-Steffen Müller, Henning Schnoor, and Heribert Vollmer. A Van Benthem
Theorem for Modal Team Semantics. In CSL, volume 41 of LIPIcs, pages 277–291, 2015.

[KMSV17] Juha Kontinen, Julian-Steffen Müller, Henning Schnoor, and Heribert Vollmer. Modal indepen-
dence logic. J. Log. Comput., 27(5):1333–1352, 2017.

[KMV15] Andreas Krebs, Arne Meier, and Jonni Virtema. A team based variant of CTL. In TIME,
pages 140–149. IEEE Computer Society, 2015.

[KMVZ18] Andreas Krebs, Arne Meier, Jonni Virtema, and Martin Zimmermann. Team semantics for
the specification and verification of hyperproperties. In MFCS, volume 117 of LIPIcs, pages
10:1–10:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[KN09] Juha Kontinen and Ville Nurmi. Team Logic and Second-Order Logic. In Logic, Language,
Information and Computation, volume 5514, pages 230–241. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009.

[LSW01] Carsten Lutz, Ulrike Sattler, and Frank Wolter. Modal logic and the two-variable fragment. In
Computer Science Logic, Paris, France, September 10-13, 2001, pages 247–261, 2001.

[Lü18] Martin Lück. Canonical models and the complexity of modal team logic. In CSL, volume 119
of LIPIcs, pages 30:1–30:23. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[Mar03] Nicolas Markey. Temporal logic with past is exponentially more succinct, concurrency column.
Bulletin of the EATCS, 79:122–128, 2003.

[Mül14] Julian-Steffen Müller. Satisfiability and model checking in team based logics. PhD thesis,
University of Hanover, 2014.

[Rö18] Raine Rönnholm. Arity Fragments of Logics with Team Semantics. PhD thesis, Tampere
University, Tampere University Press, 2018.

[vDFvdHI14] Hans van Ditmarsch, Jie Fan, Wiebe van der Hoek, and Petar Iliev. Some exponential lower
bounds on formula-size in modal logic. In Advances in Modal Logic 10, held in Groningen, The
Netherlands, August 5-8, 2014, pages 139–157, 2014.

[vdHI14] Wiebe van der Hoek and Petar Iliev. On the relative succinctness of modal logics with union,
intersection and quantification. In International conference on Autonomous Agents and Multi-
Agent Systems, AAMAS ’14, Paris, France, May 5-9, 2014, pages 341–348, 2014.

[vdHIK12] Wiebe van der Hoek, Petar Iliev, and Barteld P. Kooi. On the relative succinctness of two
extensions by definitions of multimodal logic. In How the World Computes - Turing Centenary
Conference and 8th Conference on Computability in Europe, CiE 2012, Cambridge, UK, June
18-23, 2012. Proceedings, pages 323–333, 2012.

[Vir17] Jonni Virtema. Complexity of validity for propositional dependence logics. Inf. Comput.,
253:224–236, 2017.

[Vä07] Jouko Väänänen. Dependence logic: A New Approach to Independence Friendly Logic. Num-
ber 70 in London Mathematical Society student texts. Cambridge University Press, Cambridge ;
New York, 2007.

[Vä08] Jouko Väänänen. Modal dependence logic. New perspectives on games and interaction, 4:237–
254, 2008.

[Vä19] Jouko Väänänen. An atom’s worth of anonymity. Dagstuhl Seminar 19031 “Logics for Depen-
dence and Independence”, 2019.

[Wil99] Thomas Wilke. CTL+ is exponentially more succinct than CTL. In Foundations of Software
Technology and Theoretical Computer Science, 19th Conference, Chennai, India, December
13-15, 1999, pages 110–121, 1999.

[Yan14] Fan Yang. On extensions and variants of dependence logic. PhD thesis, University of Helsinki,
2014.

[YV16] Fan Yang and Jouko Väänänen. Propositional logics of dependence. Ann. Pure Appl. Logic,
167(7):557–589, 2016.

[YV17] Fan Yang and Jouko Väänänen. Propositional team logics. Ann. Pure Appl. Logic, 168(7):1406–
1441, 2017.

PUBLICATION

III

Games for Succinctness of Regular Expressions

Miikka Vilander

In: Proceedings 12th International Symposium on Games, Automata, Logics, and Formal

Verification, GandALF 2021, Padua, Italy, 20-22 September 2021. Ed. by Pierre Ganty and

Davide Bresolin. Vol. 346EPTCS. 2021, pp. 258–272

DOI: 10.4204/EPTCS.346.17

Publication reprinted with the permission of the copyright holders.

D. Bresolin and P. Ganty (Eds.): 12th International Symposium
on Games, Automata, Logics, and Formal Verification (GandALF 2021)
EPTCS 346, 2021, pp. 258–272, doi:10.4204/EPTCS.346.17

© M. Vilander
This work is licensed under the
Creative Commons Attribution License.

Games for Succinctness of Regular Expressions

Miikka Vilander
Computing Sciences
Tampere University
Tampere, Finland

miikka.vilander@tuni.fi

We present a version of so called formula size games for regular expressions. These games character-
ize the equivalence of languages up to expressions of a given size. We use the regular expression size
game to give a simple proof of a known non-elementary succinctness gap between first-order logic
and regular expressions. We also use the game to only count the number of stars in an expression
instead of the overall size. For regular expressions this measure trivially gives a hierarchy in terms
of expressive power. We obtain such a hierarchy also for what we call RE over star-free expres-
sions, where star-free expressions, that is ones with complement but no stars, are combined using the
operations of regular expressions.

1 Introduction

Even though regular expressions, abbreviated RE, are a very thoroughly studied topic in computer sci-
ence, little work has been done on their succinctness, or size, until recently. The pioneering paper on
the size of RE seems to be in 1974 by Ehrenfeucht and Zeiger [4]. They define the size of an RE as the
number of occurrences of alphabet symbols in it and show that there is a deterministic finite automata
with n states such that the smallest RE defining the same language has size 2n−1. In 2005, Ellul et al. [5]
noted the lack of work on succinctness and presented several open problems as well as some results of
their own. Some of these open problems were related to the succinctness of RE expanded with operations
such as intersection. These and other similar problems were independently solved by Gelade and Neven
[6, 7] on the one hand and Gruber and Holzer [8, 9] on the other.

Gelade and Neven use a generalization of the result of Ehrenfeucht and Zeiger [4] to obtain double
exponential lower bounds for the size of an RE defining the complement of a single RE or the intersection
of a finite number of RE in a fixed size alphabet [7]. Gelade uses the same technique to also obtain
double exponential lower bounds for the added operations of interleaving and counting [6]. Gruber and
Holzer go even further, obtaining tighter bounds for all of the above in a two-letter alphabet [8, 9]. They
link the size of RE to their star height via a measure on the connectivity of the underlying DFA. The
measure is called cycle rank and was first introduced by Eggan and Büchi [3]. These two groups worked
independently although they were clearly aware of the other group’s work.

Many problems in finite model theory have been solved via the use of games such as the famous
Ehrenfeucht-Fraı̈ssé game that characterizes quantifier rank or depth in first-order logic. A similar game
for RE was presented by Yan [15]. This so called split game characterizes the depth of both catenation
and stars for generalized regular expressions, or GRE, where complement is added as an operation. Cate-
nation depth is sometimes referred to as dot-depth and star depth is more commonly known as star height.
For RE, Hashiguchi famously proved that star height gives a full hierarchy in terms of expressive power
[10]. For GRE, it is notoriously not even known if a language that requires an expression of star height
two exists. Yan offers his game as a possible way to attack the generalized star height problem but is
only able to complete results on infinite ω-words.

M. Vilander 259

In the vein of EF-games, there are also games for succinctness. These are often called formula size
games. They are games of definability just as the EF-game, but instead of quantifier rank they measure the
size of the defining formula. To our knowledge, the earliest example of such a game is for propositional
logic by Razborov [13]. Perhaps more well known is the later game by Adler and Immerman [1] for a
modal logic called CTL. To our knowledge, ours are the first formula size games presented for regular
expressions.

While EF-games are played on two structures, formula size games are instead played on two sets of
structures, A and B. In the context of regular expressions, these sets are languages. Our version of the
games also has a resource parameter k. The first player S is trying to show that there is an expression
R with A ⊆ L(R), B ⊆ Σ∗ \ L(R) and size at most k. S essentially sketches the syntax tree of such a
separating expression as the game goes on, but in a single game only one branch of the tree is visited. It
is the role of the second player D to choose which branch this is, and try to find the error in the strategy of
S. A separating expression of appropriate size exists if and only if S has a winning strategy. In addition
to the size, in this paper we are also interested in the number of stars in an expression. Thus we add a
separate parameter s to the game to track this. The game is very easy to modify in this way to track the
number or depth of whatever operators one is interested in.

We use the RE-version of the game to give a simpler proof for a known non-elementary succinctness
gap between FO and RE. Stockmeyer [14] showed that star-free expressions are non-elementarily more
succinct than RE and together with an elementary translation from FO to star-free by McNaughton and
Papert [12], the result follows. In addition, we consider the number of stars in an expression as a measure
of complexity. For RE a hierarchy in terms of expressive power can be trivially obtained in star height
one. For GRE this presents a difficult problem as the full use of complement ramps up the complexity
of the game significantly. We present RE over star-free expressions as a natural middle ground between
RE and GRE. These include all star-free expressions with complement and their combinations using the
operations of RE. For RE over star-free expressions we use a corresponding version of the game to show
that the number of stars also gives a full hierarchy in terms of expressive power already in star height
one.

The outline of the paper is as follows. In Section 2 we introduce RE, GRE and RE over star-free
expressions. We also discuss our definition of size for these expressions and define some notation for
the rest of the paper. In Section 3 we present the GRE size game and prove that it works as intended.
We also present variations of the game for RE and RE over star-free, and prove some useful lemmas
for later. In Section 4 we use the game for RE to show that defining a large finite language requires a
large RE. We then define a finite language of non-elementary size via a FO-formula of exponential size,
thus reproving the succinctness gap between FO and RE. In Section 5 we show that the number of stars
in an expression gives a hierarchy in terms of expressive power for RE over star-free expressions. We
conclude in Section 6.

2 Preliminaries

We begin by defining some basic notions such as regular expressions and our concept of the size of a
regular expression. For more on regular expressions we refer the reader to [11]. We omit the syntax
and semantics of first-order logic and direct the reader to [2] for a textbook with a finite model theory
approach.

Let Σ be an alphabet. Strings of symbols from the alphabet are called words and sets of words are
called languages. We denote the length of a word w with |w|.

260 Games for Succinctness of Regular Expressions

The regular expressions, or RE, of Σ are defined recursively as follows: /0, ε and every a ∈ Σ are
regular expressions. If R1 and R2 are regular expressions, then also R1 ∪R2, R1R2 and R∗

1 are regular
expressions. The generalized regular expressions, or GRE, of Σ are defined in the same way with the
following addition: if R is a GRE, then ¬R is also a GRE. Sometimes GRE are also defined to include a
separate intersection operation. As the effect on succinctness is negligible, we define intersection as the
shorthand R1 ∩R2 := ¬(¬R1 ∪¬R2) to keep the number of moves in our game smaller.

The language of a regular expression R, denoted by L(R) is defined as follows:

• L(/0) = /0,

• L(ε) = {ε} (the empty word),

• L(a) = {a} for a ∈ Σ,

• L(R1 ∪R2) = L(R1)∪L(R2),

• L(R1R2) = L(R1)L(R2) = {uv | u ∈ L(R1),v ∈ L(R2)} and

• L(R∗
1) = L(R1)

∗ = {w1 · · ·wn | n ∈ N,wi ∈ L(R1) for each i ∈ N}.

For generalized regular expressions, additionally L(¬R1) = Σ∗ \L(R1).
We will also refer to star-free expressions. These are generalized regular expressions with the ∗-rule

removed. A classical result by McNaughton and Papert [12] states that star-free expressions have the
same expressive power over words as first-order logic. Note that this means many languages naturally
expressed by a RE with stars are also expressible by star-free expressions. For example, if Σ = {a,b},
then L((ab)∗) = L(ε ∪ (a¬ /0∩¬ /0b∩¬(¬ /0aa¬ /0)∩¬(¬ /0bb¬ /0))).

Finally we present a middle ground between RE and GRE we call RE over star-free expressions.
These expressions are defined by R in the following grammar (we omit parentheses for simplicity):

R ::= R∪R | RR | R∗ | S

S ::= S∪S | SS | ¬S | /0 | ε | a for every a ∈ Σ

As the name suggests, RE over star-free expressions include all star-free expressions in the sense of GRE
and can combine them using only the operations of RE. Essentially this means that stars cannot occur
inside a complement. Since star-free expressions correspond to FO-definable properties of words, we
feel this is a natural variation of RE to consider in terms of succinctness. It is quite possible someone
else has already presented it but we could not find it in the literature.

There are several ways one could define the size of a regular expression. Gruber and Holzer [8] use
alphabetic width defined as the number of occurrences of symbols from Σ in the expression. Gelade
and Neven [7] on the other hand note that this is not sufficient for GRE since one can construct non-
trivial expressions with no symbols from Σ. Thus they count also operations, ending up with the size of
the syntax tree of the expression. This is also sometimes called reverse polish length [5]. We use the
latter concept here but the game can easily be adapted to alphabetic width or actual string length with
parentheses if desired.

Definition 2.1. The size of a GRE is defined recursively as follows:

• sz(/0) = sz(ε) = sz(a) = 1 for every a ∈ Σ,

• sz(R∗) = sz(¬R) = sz(R)+1 and

• sz(R1 ∪R2) = sz(R1R2) = sz(R1)+ sz(R2)+1.

M. Vilander 261

In the sequel we will deal with some rather large expression sizes. In particular, we will show a
non-elementary succinctness gap between FO and RE. This means that the difference in required size is
not expressible by an elementary function. In practice, it suffices to show that the size of the RE is above
an exponential tower. For this, we define the function twr as follows:

• twr(0) = 1,

• twr(n+1) = 2twr(n).

We also use the shorthand
[n] := {1, . . . ,n}.

Finally we define some concepts and notations for the RE size game. First is the concept of regular
expressions separating languages.

Definition 2.2. Let A,B ⊆ Σ∗. A GRE R separates A from B if A ⊆ L(R) and B ⊆ Σ∗ \L(R).

Note that if A = L(R) and B = Σ∗ \L(R), then R defines the language A, so separation is a sort of
partial version of defining languages with expressions.

To consider catenation and star in the game, we will need notation for the different ways one can
split a word into two or more shorter words.

Let w ∈ Σ∗ and n ∈ N. The set of n-splits of w is the set

Spn(w) = {(w1, . . . ,wn) | w1 . . .wn = w}.

We also use the notation
Sp(w) :=

⋃
n∈N

Spn(w)

for the set of all splits of w.

3 Generalized regular expression size game

In this section we define a game for generalized regular expressions that is the equivalent of so called
formula size games previously developed for different logics. Since we consider both overall size and
number of stars in this paper, we present a game with a separate parameter for stars.

The GRE size game has two players, Samson (S) and Delilah (D). The game has four parameters:
two sets of Σ-words, A0 and B0, and two natural numbers k0 and s0 with k0 ≥ s0. Samson wants to show
that A0 can be separated from B0 using a GRE with size at most k0 and at most s0 stars. Delilah wants to
refute this. The GRE size game with the above parameters is denoted by GRES(k0,s0,A0,B0).

Positions of the game are of the form (k,s,A,B) where A and B are sets of words, k,s ∈ N and k ≥ s.
The starting position is (k0,s0,A0,B0). In a position P = (k,s,A,B), if k = 0, then the game ends and D
wins. Otherwise S has a choice of six moves (note that the empty word ε is covered in the a -move):

• a -move: S chooses a ∈ Σ∪{ε}. If A ⊆ {a} and a /∈ B, the game ends and S wins. Otherwise D
wins.

• /0-move: If A = /0, S wins. Otherwise D wins.

• ∪ -move: S chooses subsets A1,A2 ⊆ A such that A1 ∪A2 = A and natural numbers k1,k2,s1,s2
such that ki ≥ si, k1 + k2 +1 = k and s1 + s2 = s. Then D chooses a number i ∈ {1,2}. The game
continues from the position (ki,si,Ai,B).

262 Games for Succinctness of Regular Expressions

• cat-move: For every w ∈ A, S chooses a 2-split (w1,w2). Let Ai = {wi | w ∈ A}. Then for every
v ∈ B, S chooses a function fv : Sp2(v)→{1,2}. Let Bi = {vi | fv(v1,v2) = i,(v1,v2) ∈ Sp2(v)}. S
chooses numbers k1,k2,s1,s2 such that ki ≥ si, k1 + k2 +1 = k and s1 + s2 = s. Finally D chooses
a number i ∈ {1,2}. The game continues from the position (ki,si,Ai,Bi).

• ∗ -move: If ε ∈ B, D wins. Otherwise, for every w ∈ A\{ε}, S chooses a natural number n(w)> 0
and an n(w)-split (w1, . . . ,wn(w)) with wi �= ε for every i ∈ [n(w)]. Let A′ = {wi | i ∈ [n(w)],w ∈ A}.
Then for every v ∈ B, S chooses a function fv : Sp(v) → N such that fv(v1, . . . ,vn) ∈ [n]. Let
B′ = {vi | fv(v1, . . . ,vn) = i,(v1, . . . ,vn)∈ Sp(v)}. The game continues from the position (k−1,s−
1,A′,B′).

• ¬ -move: The game continues from the position (k−1,s,B,A).

Note that since every move either ends the game or decreases the resource k, the game always ends
in a finite number of moves and one of the players wins.

We now prove the crucial theorem that states the connection of the game to the succinctness of
generalized regular expressions.

Theorem 3.1. Let A,B ⊆ Σ∗ and k,s ∈N with k ≥ s. The following are equivalent:

1. S has a winning strategy in the game GRES(k,s,A,B).

2. There is a generalized regular expression that separates A from B with size at most k and at most
s stars.

Proof. In the following we will always have i ∈ {1,2} without explicit statement. We show the equiva-
lence of 1 and 2 for all A and B by induction on the number k. The case k = 0 is clear.

1 ⇒ 2: Let δ be a winning strategy for S in the game GRES(k,A,B). Since δ is a winning strategy,
we have k > 0. The proof is divided into cases according to the first move of δ :

• a -move: If the first move is an a -move, because δ is a winning strategy, we have A ⊆ {a} = L(a)
and a /∈ B so B ⊆ Σ∗ \L(a). Thus the regular expression a separates A from B.

• /0-move: Now A = /0 so /0 separates A from B.

• ∪ -move: S chooses A1,A2 ⊆ A and k1,k2,s1,s2 according to δ . Since δ is a winning strategy, S has
winning strategies from both of the possible following positions (ki,si,Ai,B). Thus by induction
hypothesis there are GREs R1 and R2 such that Ri separates Ai from B, sz(Ri) ≤ ki and Ri has at
most si stars. Now Ai ⊆ Ri and B ⊆ Σ∗ \L(Ri). Therefore

A0 = A1 ∪A2 ⊆ L(R1)∪L(R2) = L(R1 ∪R2).

and B ⊆ (Σ∗ \L(R1))∩ (Σ∗ \L(R2)) = Σ∗ \L(R1 ∪R2) so R1 ∪R2 separates A from B. In addition,
sz(R1 ∪R2) = sz(R1)+ sz(R2)+1 ≤ k1 + k2 +1 = k and R1 ∪R2 has at most s1 + s2 = s stars.

• cat-move: S makes his choices according to δ . Now S has a winning strategy for both positions
(ki,si,Ai,Bi) so by induction hypothesis there are GREs R1 and R2 such that Ri separates Ai from
Bi, sz(Ri)≤ ki and Ri has at most si stars. Now Ai ⊆ L(Ri). For every w ∈ A there are w1 ∈ A1 and
w2 ∈ A2 such that w1w2 = w so A ⊆ L(R1)L(R2) = L(R1R2). On the other side Bi ⊆ Σ∗ \L(Ri). For
every v ∈ B and every (v1,v2)∈ Sp2(v), either v1 ∈ B1 or v2 ∈ B2. Thus v /∈ L(R1)L(R2) = L(R1R2)
so B ⊆ Σ∗ \L(R1R2). The GRE R1R2 thus separates A from B. The size and number of stars are
handled as in the previous case.

M. Vilander 263

• ∗ -move: S makes his choices according to δ . S has a winning strategy for the following position
(k−1,s−1,A′,B′) so by induction hypothesis there is a GRE R such that R separates A′ from B′,
sz(R)≤ k−1 and R has at most s−1 stars. We have A′ ⊆ L(R). For every w ∈ A there is n(w) ∈N
and an n(w)-split (w1, . . . ,wn(w)) such that w j ∈ A′ for j ∈ [n(w)]. Thus A ⊆ L(R)∗ = L(R∗). On
the other side, B′ ⊆ Σ∗ \L(R). For every v ∈ B and every (v1, . . . ,vn) ∈ Sp(v), there is j ∈ [n] such
that v j ∈ B′. Thus v /∈ L(R)∗ = L(R∗) so B ⊆ Σ\L(R∗). The GRE R∗ thus separates A from B. In
addition, sz(R∗) = sz(R)+1 ≤ k and R∗ has at most s−1+1 = s stars.

• ¬ -move: S has a winning strategy from the following position (k−1,s,B,A) so there is a GRE R
that separates B from A with sz(R)≤ k−1 and at most s stars. Now the GRE ¬R separates A from
B. In addition, sz(¬R) = sz(R)+1 ≤ k and ¬R has at most s stars.

2 ⇒ 1: Let R be a GRE that separates A and B with size at most k and at most s stars. The proof is
divided into cases according to the outermost operator in R:

• R = a ∈ Σ∪{ε}: Since R separates A from B, we have A ⊆ {a} and B ⊆ Σ∗ \{a} so a /∈ B. Thus
S wins by making an a -move.

• R = /0: Now A = /0 so S wins by making a /0-move.

• R = R1 ∪R2: Since R separates A from B, we have A ⊆ L(R) = L(R1)∪L(R2). Let Ai = A∩L(Ri),
let k1 = sz(R1) and let k2 = k−k1−1. Similarly let s1 be the number of stars in R1 and let s2 = s−s1.
Now A1 ∪A2 = A, ki > si, k1 + k2 +1 = k and s1 + s2 = s so these are valid choices for a ∪ -move.
After the ∪ -move, Ai ⊆ L(Ri) and B ⊆ Σ∗ \L(R) = (Σ∗ \L(R1))∩ (Σ∗ \L(R2)) so B ⊆ Σ∗ \L(Ri).
Now Ri separates Ai from B. In addition, sz(R1)= k1, sz(R2)= sz(R)−sz(R1)−1≤ k−k1−1= k2.
Similarly R1 has s1 stars and R2 has at most s− s1 = s2 stars. By induction hypothesis, S has a
winning strategy for the game GRES(ki,si,Ai,B). Together with the first move, this is a winning
strategy for the game GRES(k,s,A,B).

• R = R1R2: Since R separates A from B, we have A ⊆ L(R) = L(R1)L(R2). Thus for every w ∈ A0
there is (w1,w2) ∈ Sp2(w) such that w1 ∈ L(R1) and w2 ∈ L(R2). S makes a cat-move and chooses
such a split for each w ∈ A. On the other side we have B ⊆ Σ∗ \L(R) = Σ∗ \L(R1)L(R2). Thus
for every v ∈ B and every (v1,v2) ∈ Sp2(v), we have v1 /∈ L(R1) or v2 /∈ L(R2). For the function
fv : Sp(v) → N, S chooses i = fv(v1,v2) so that vi /∈ L(Ri). S chooses ki and si as in the previous
case. Finally we have Ai ⊆ L(Ri) and Bi ⊆ Σ∗ \L(Ri) so Ri separates Ai from Bi. The resources
k and s are handled like in the previous case. By induction hypothesis, S has a winning strategy
from the position (ki,si,Ai,Bi).

• R = R∗
1: Since R separates A from B, we have A ⊆ L(R) = L(R1)

∗. Thus for every w ∈ A there
is (w1, . . . ,wn) ∈ Sp(w) such that w j ∈ L(R1) for all j ∈ [n]. S makes a ∗ -move and chooses
such a split for each w ∈ A. On the other side we have B ⊆ Σ∗ \L(R) = Σ∗ \L(R1)

∗. Note that
ε /∈ B so D does not win outright. Now for every v ∈ B and every (v1, . . . ,vn) ∈ Sp(v) we have
v j /∈ L(R1) for some j ∈ [n]. For the function fv : Sp(v) → N, S chooses j = fv(v1, . . . ,vn) so that
v j /∈ L(R1). Finally we have A′ ⊆ L(R1) and B′ ⊆ Σ∗ \L(R1) so R1 separates A′ from B′. In addition,
sz(R1) = sz(R)−1≤ k−1 and R1 has at most s−1 stars. By induction hypothesis, S has a winning
strategy from the position (k−1,s−1,A′,B′).

• R = ¬R1: S makes a ¬ -move. Since R separates A from B, it follows that R1 separates B from A.
In addition, sz(R1) = sz(R)−1 ≤ k−1 and R1 has at most s stars. By induction hypothesis, S has
a winning strategy from the position (k−1,s,B,A).

264 Games for Succinctness of Regular Expressions

We have defined the game for generalized regular expressions but this full game turns out to be very
complex in a combinatorial sense. For the results in this paper we will use simpler games for RE and RE
over star-free.

The RE size game RES(k,A,B) is the game GRES(k,s,A,B) with the ¬ -move and the star parameter
s removed. The proof of Theorem 3.1 with the ¬ -move cases and s removed proves the following
analogue for this game:

Theorem 3.2. Let A,B ⊆ Σ∗, k ∈N. The following are equivalent:

1. S has a winning strategy in the game RES(k,A,B).

2. There is a regular expression that separates A from B with size at most k.

The RE over star-free size game RESFS(k,s,A,B) is the game GRES(k,s,A,B) with the following
modification: after a ¬ -move, the following position is (k,0,B,A) instead of the normal (k,s,B,A). This
corresponds with the syntax of RE over star-free, where stars cannot occur under complement. We omit
the proof of the analogous theorem for this game:

Theorem 3.3. Let A,B ⊆ Σ∗ and k,s ∈N with k ≥ s. The following are equivalent:

1. S has a winning strategy in the game RESFS(k,s,A,B).

2. There is a RE over star-free expression that separates A from B with size at most k and at most s
stars.

As is usual with these sorts of games, we will need a simple lemma stating that if the same word is
present on both sides of the game, D has a winning strategy. We prove the lemma for the GRE game and
note that it can just as easily be proven for the other variations.

Lemma 3.4. In a position P = (k,s,A,B) of a game GRES(k0,s0,A0,B0), if there is w ∈ A∩B, then D
has a winning strategy from position P.

Proof. Under the assumptions, we describe a strategy for D. For any move of S, this strategy either wins
or maintains the condition of having w ∈ A∩B. It is thus a winning strategy. We consider the cases for
each possible move of S.

• a -move: Assume S chooses a ∈ Σ∪{ε}. If A ⊆ {a}, then a = w ∈ B, so D wins.

• /0-move: Since w ∈ A, A �= /0 and D wins.

• ∪ -move: Assume S chooses subsets A1,A2 ⊆ A. Since A1 ∪A2 = A, there is i ∈ {1,2} such that
w ∈ Ai. D chooses this i and in the following position (ki,si,A1,B), we have w ∈ Ai ∩B.

• cat-move: Let (w1,w2) be the split S chooses for w on the A-side and let fw : Sp2(w)→ {1,2} be
the function S chooses for w on the B-side. D chooses the number i := fw(w1,w2). In the following
position (ki,si,Ai,Bi), we have wi ∈ Ai ∩Bi.

• ∗ -move: If w = ε , D wins. Otherwise, let (w1, . . . ,wn) be the split S chooses for w on the A-side
and let fw : Sp(w)→ N be the function S chooses for w on the B-side. Let i := fw(w1, . . . ,wn). In
the following position (k−1,s−1,A′,B′) we have wi ∈ A′ ∩B′.

• ¬ -move: In the following position (k−1,s,B,A), we have w ∈ B∩A.

M. Vilander 265

For the RE over star-free game, we need a further lemma that gives an easy condition to guarantee
that the current sets A and B cannot be separated via a star-free expression. The language we use for the
game has words with long strings of the same symbol in them. We call these a-chains for a ∈ Σ. For
example, the word baabbaaa has two a-chains of lengths 2 and 3 respectively. We use the GRE game
with s = 0 to argue about star-free expressions.

Lemma 3.5. In a position P = (k,0,A,B) of a game GRES(k0,s0,A0,B0), if there are w ∈ A and w′ ∈ B
such that they only differ from each other by lengths of one or more chains of symbols, each of length
more than k in both, then D has a winning strategy from position P.

Proof. We describe a strategy for D. For each move of S, this strategy either wins or maintains the
assumptions of the lemma so it is a winning strategy. We consider each possible move of S:

• a -move: S chooses a ∈ Σ∪ ε . Since w has a chain with length more than k > 0, clearly w �= a so
D wins.

• /0-move: Since w ∈ A, A �= /0 and D wins.

• ∪ -move: S chooses subsets A1,A2 ⊆ A. Since A1 ∪A2 = A, we have w ∈ Ai for some i ∈ {1,2}. D
chooses this i and in the following position (ki,0,Ai,B) we have w ∈ Ai and w′ ∈ B. In addition,
the chains of w and w′ that differ are of length more than k > ki. Thus the assumptions still hold.

• cat-move: Let (w1,w2) be the split S chooses for w ∈ A and let fw′ : Sp2(w′) → {1,2} be the
function S chooses for w′ ∈ B. Let k1,k2 be the numbers chosen by S with k1 +k2+1 = k. Since w
and w′ only differ by the lengths of some chains, for each chain in w we can find the corresponding
chain in w′.
If the split (w1,w2) splits no chains where w and w′ differ, then we consider the split (w′

1,w
′
2) of w′

at the corresponding point and in the following position (ki,0,Ai,Bi), the assumptions hold since
ki < k.
Now assume (w1,w2) splits a chain of length more than k and the length of this chain is different
but still more than k in w′. If the length of the chain in wi is at more than ki for both i, then
we consider a split (w′

1,w
′
2) of w′ where the same holds. Recall such a split can be found since

k1 + k2 +1 = k and the length of the chain is more than k in w′ also. Now the assumptions hold in
the following position.
Otherwise, by symmetry we assume that the length of the chain in w1 is less than or equal to k1.
In this case we consider the split (w′

1,w
′
2) of w′ where the length of the chain in w′

1 is identical
to w1. Now the lengths of the chains in w2 and w′

2 are more than k2 since k1 + k2 + 1 = k. Thus
if the following position is (k2,0,A2,B2), then the assumptions hold. If the following position is
(k1,0,A1,B1), then either there are still other differing chains of length more than k > k1 and the
assumptions hold, or w1 = w′

1 and D has a winning strategy by Lemma 3.4.

• ∗ -move: We assume that the star resource s = 0 in the position P so S cannot make a ∗ -move.

• ¬ -move: In the following position (k−1,0,B,A), the assumptions still hold as they are symmetric
w.r.t. A and B and k−1 < k.

Remark 3.6. The GRE size game can be modified in several ways to obtain different games. The games
for RE and RE over star-free are examples of this. Additional operations can be included by adding
moves. For example the move corresponding to intersection is the union move with the roles of A and

266 Games for Succinctness of Regular Expressions

B switched. One could also have separate resources for different operations or ignore some operations
entirely. It is also possible to modify how the resources work with binary moves to track the nesting
depth of an operation instead of the number.

4 The succinctness gap between FO and RE

To compare the succinctness of FO and RE, we must restrict the models of FO to word models. These
are finite models with a linear order and unary predicates to indicate which letter of the alphabet Σ is in
each spot. Thus properties of words are often defined in a language of the form FO(<,P1, . . . ,Pn).

In his thesis [14] Stockmeyer showed that star-free generalized regular expressions are non-elemen-
tarily more succinct than regular expressions. Since there is an elementary translation from FO to star-
free expressions [12], this implies that FO is non-elementarily more succinct than RE. The proof of
Stockmeyer is quite involved as he encodes computations of Turing machines into star-free expressions.
In this section, we show a simple way to obtain the gap between FO and RE via the RE size game. Our
proof relies on the following proposition which states that to define a large finite language with a RE, the
RE must be quite large as well.

Proposition 4.1. A finite language L cannot be defined via a RE with size less than log |L|.

Proof. Let L be a finite language and k0 < log |L|. We consider the game RES(k0,L,Σ∗ \L). We will
show that after every move of S, D will either gain a winning strategy via Lemma 3.4, or D can maintain
the following two conditions in any position (k,A,B) of the game:

1. k ≤ log(|A|)
2. Σ>N := {w ∈ Σ∗ | |w|> N} ⊆ B for some N ∈ N

In the starting position (k0,L,Σ∗ \L), we have k0 ≤ log(|L|) so condition 1 holds. For condition 2, note
that since L is finite, Σ∗ \L includes every word with length greater than the maximum length of words
in the language L.

Consider a position (k,A,B) of the game RES(k0,L,Σ∗ \L) and assume conditions 1 and 2 hold. S
has five different moves to choose from:

• ∗ -move: Since 0 < k ≤ log(|A|), we have |A| ≥ 2 so there is w∈A with w �= ε . Let (w1,w2, . . . ,wm)
be the split chosen by S for w. By condition 2, there is N ∈ N such that Σ>N ⊆ B. Let v = wN+1

1 .
Now |v| > N so v ∈ B. For the split (w1,w1, . . . ,w1) of v S must choose the piece w1 so in the
following position (k−1,A′,B′), we have w1 ∈A′ ∩B′ and by Lemma 3.4, D has a winning strategy
from this position.

• ∪ -move: Let A1,A2 ⊆ A and k1,k2 < k be the choices of S. If either Ai is empty, D chooses the
other one and both conditions are trivially maintained. Assume both Ai are non-empty. Since
A1 ∪A2 = A, we obtain |A1|+ |A2| ≥ |A|. Now we have ki ≤ log(|Ai|) for some i ∈ {1,2}, since
otherwise

k = k1 + k2 +1 > log(|A1|)+ log(|A2|)+1

= log(|A1||A2|)+1 ≥ log(|A1|+ |A2|)≥ log(|A|)≥ k,

which is a contradiction. D chooses such an i, fulfilling condition 1 in the following position is
(ki,Ai,B). Condition 2 is trivially maintained since B remains unchanged in ∪-moves.

M. Vilander 267

• cat-move: Let the two possible following positions be Pi = (ki,Ai,Bi) for i ∈ {1,2}. We consider
condition 2 first. Let w ∈ Σ>N . Let v ∈ A and let (v1,v2) = v be the split chosen by S for v. Now
u = v1w ∈ Σ>N ⊆ B. For the split (v1,w) of u, if S chooses the piece v1, then v1 ∈ A1 ∩B1 and by
Lemma 3.4, D has a winning strategy from position P1. Thus we assume that S chooses the piece
w and w ∈ B2. In the same way using the word wv2, we get w ∈ B1. Thus, in order to not give D a
winning strategy via Lemma 3.4, S must maintain condition 2 for both positions Pi.
Now let us address condition 1. Since for every w ∈ A there is w1 ∈ A1 and w2 ∈ A2 such that
w1w2 = w, we obtain |A1||A2| ≥ |A|. We again have ki ≤ log(|Ai|) for some i ∈ {1,2}, since
otherwise

k = k1 + k2 +1 > log(|A1|)+ log(|A2|)+1 = log(|A1||A2|)+1 ≥ log(|A|)≥ k,

which is a contradiction. D again fulfills condition 1 by choosing such an i.

• a - or /0-move: Since 0 < k ≤ log(|A|), we have |A| ≥ 2 so A � {a} and A �= /0 and D wins the
game.

The language we use encodes sets of the cumulative hierarchy, defined as follows:

V0 := /0

Vn+1 := P(Vn).

For each set in the cumulative hierarchy, we define a set of natural encodings. The encodings correspond
to the different ways the set could be written down using only set brackets { and }. To differentiate
the encoded words from actual set notation, we will use parentheses (and) instead. The encodings are
defined as follows:

enc(/0) := {()}
enc(X) := {(e1 · · ·en) | ei ∈ enc(xi),x1 < · · ·< xn is a linear order of X}.

A set has several encodings corresponding to different orders of the elements. For example, the set
V2 = { /0,{ /0}} has the encodings (()(())) and ((())()).

Let Σ be the alphabet with (and) and let n ∈N. We consider the following language:

Ln =
⋃

X∈Vn+1

enc(X).

We first define Ln in first-order logic with linear order < and a unary predicate symbol P.
We define some auxiliary formulas. We interpret the predicate P so that the left parentheses satisfy

P and the right parentheses do not. We use the formulas L(x) and R(x) to indicate this. We also define
the formula S(x,y) that says y is the successor of x.

L(x) := P(x),R(x) := ¬P(x),S(x,y) := x < y∧¬∃z(x < z < y)

We will often want to say that the subword from position x1 to x2 encodes an instance of a set X . For
easy readability of these kinds of statements, we adopt a flexible notation, where capital letters are used
as shorthand for pairs of variables, that is to say X := (x1,x2). Whenever possible, we shall use only the
capital letters but in some cases we need the singular variables also.

268 Games for Succinctness of Regular Expressions

We define the formulas seti(X) and X =i Y by mutual recursion. We additionally define formulas
X ∈i Y , but since these only refer to the formula seti, they are not essential in the recursion but rather
shorthand to make the formulas more readable. The formula seti(X) says that X correctly encodes a set
in Vi with no repetition. The formula X ∈i Y assumes Y encodes a set and says that X encodes a set in
Vi and is an element of the set encoded by Y . Finally, the formula X =i Y assumes X and Y both encode
sets in Vi and says that these sets are the same. The definition by mutual recursion is as follows:

set0(X) := L(x1)∧R(x2)∧S(x1,x2)

seti+1(X) := x1 < x2 ∧L(x1)∧R(x2)

∧∀u(x1 < u < x2 →∃v(x1 < v < x2 ∧ (seti(u,v)∨seti(v,u))))

∧∀A∀B((A ∈i X ∧B ∈i X ∧a1 �= b1)→ A �=i B)

X ∈i Y := y1 < x1 < x2 < y2 ∧seti(X)

∧¬∃U(y1 < u1 < x1 ∧ x2 < u2 < y2 ∧seti(U))

X =0 Y :=�
X =i+1 Y := ∀A(A ∈i X →∃B(B ∈i Y ∧A =i B))

∧∀B(B ∈i Y →∃A(A ∈i X ∧A =i B))

We use these auxiliary formulas to define the formula ϕn, which defines the language Ln. The formula
ϕn says that the first and last symbol of the word encode a set in Vn with no repetition.

ϕn :=∃X(∀z(x1 ≤ z∧ z ≤ x2)∧setn(X))

From the form of the formulas we see that sz(ϕn) = O(cn) for some small constant c.1

Now Proposition 4.1 allows us to easily prove a non-elementary succinctness gap between FO and
RE. This gap already follows from the work of Stockmeyer [14]. He found a similar gap between star-
free expressions and RE and an elementary translation from FO to star-free expressions [12] leads to this
result.

Theorem 4.2. FO(<,P) is non-elementarily more succinct than RE on words.

Proof. The language Ln is finite and |Ln| ≥ twr(n). We have shown that Ln can be defined in FO(<,P)
via a formula exponential in n. However, if k < log(twr(n)) = twr(n− 1), by Theorem 4.1, D has a
winning strategy in the game RES(k,L,Σ∗ \L). Thus, by Theorem 3.2, there is no RE that defines L with
size less than twr(n−1).

5 Number of stars in RE over star-free

We shift our attention from the overall size of regular expressions to only the number of stars. Star height
famously gives a hierarchy in terms of expressive power for RE [10] and the corresponding result for
GRE is a notorious open problem. For the number of stars, a full hierarchy can be trivially obtained
already in star height one. On the other hand, for GRE, we have so far been unable to prove results of
this nature due to the added complexity brought to the game with full use of complement. We present

1Numerical calculations performed with Maple seem to indicate sz(ϕn) = O(8n).

M. Vilander 269

an interesting middle ground between RE and GRE we call RE over star-free. For these expressions,
star-free, that is FO-definable, properties are combined using the operations of RE. For RE over star-free
we show that the number of stars gives a hierarchy in terms of expressive power.

The aforementioned trivial hierarchy for RE is obtained via the expression a∗1 ∪ ·· · ∪a∗n but we omit
that proof since we prove the stronger hierarchy for RE over star-free expressions. The language we
use is actually definable with n stars already in RE but we show that even if we allow RE over star-free
expressions, it still requires n stars to define.

Let Σn = {a1, . . . ,an} be a set of n symbols. We consider the following Σn-language:

Ln := L
(⋃

i∈[n]
(a1 ∪ ·· ·∪ai−1 ∪a2

i ∪ai+1 ∪ ·· ·∪an)
∗)

In other words, for each word in w ∈ Ln, there is i ∈ [n] such that every ai-chain in w has even length. We
don’t need the whole language Ln for the game so we use a simple subset instead. For k ∈ N and i ∈ [n],
we define

Ln,k := {�1, . . . , �n}= {a2k+1
1 · · ·a2k

i · · ·a2k+1
n | i ∈ [n]}.

Each �i is a word that consists of a chain of each symbol aj in order. The chain of the specific symbol ai
has even length and all other chains of aj have odd length.

Theorem 5.1. Any RE over star-free expression Rn with L(Rn) = Ln has at least n stars.

Proof. Let n ∈ N and k0 ≥ n. We consider the languages A0 := Ln,k0 and B0 := Σ∗
n \Ln. We will show

that D has a winning strategy for the game RES(k0,n− 1,A0,B0). Since A0 ⊆ Ln and B0 = Σ∗
n \Ln, D

then also has a winning strategy for the game RES(k0,n− 1,Ln,Σ∗
n \Ln). The number k0 is arbitrary so

by Theorem 3.1 the claim follows.
Let (k,s,A,B) be a position in the game RES(k0,n− 1,A0,B0). We will show that D can maintain

the following conditions while a ∗ -move has not been made. We will also see that if a ∗ -move is made
while the conditions hold, D gains a winning strategy. The conditions are:

There is I ⊆ [n] such that

1. |I|> s,

2. for every i ∈ I there is wi ∈ A and ui,vi ∈ Σ∗
n s.t. �i = uiwivi and (ai)

k+1 is a subword of wi,

3. for every r ∈ Σ∗
n if there are i, j ∈ I with uirv j ∈ B0, then r ∈ B.

Intuitively condition 2 says that in the position (k,s,A,B), the set A has some ‘descendants’ wi of the
original words �i in A0. The words ui and vi are the parts that have been removed from �i via cat-moves
to obtain wi. The set I contains the indices that still have descendants in play. Condition 1 states that the
number of such indices is always larger than the star resource s. Finally condition 3 says that the set B
has versions of the original words in B0 with some prefix ui and some suffix v j removed.

In the starting position (k0,n−1,A0,B0) the conditions hold with I = [n] and for every i ∈ I, wi = �i
and ui = vi = ε . We consider each possible move of S and show that in every case either the above
conditions are maintained or D wins eventually by a winning strategy described in a previous lemma.

• ¬ -move: We must first check that while the conditions hold, a ¬ -move from S leads to a win for
D. Let i ∈ I. By condition 2, the word wi has (ai)

k+1 as a subword. Let r be a word obtained from
wi by adding one ai to this ai-chain. Since �i = uiwivi and the ai-chain in �i is even, we know the
chain in uirvi is odd. The chains of all other aj are odd in �i and thus also in uirvi so uirvi ∈ B0. By

270 Games for Succinctness of Regular Expressions

condition 3, we have r ∈ B. If S makes a ¬ -move, his star resource s becomes 0. In the following
position (k−1,0,B,A), we have r ∈ B and wi ∈ A and the two words only differ by the length of a
chain with length more than k−1 so Lemma 3.5 gives D a winning strategy. This means that while
the conditions hold, S can only attempt ∪ -moves, cat-moves and ∗ -moves if he hopes to win.

• ∪ -move: Let A1,A2 ⊆ A be the subsets S chooses. For each i ∈ I, wi ∈ A1 or wi ∈ A2. Let I1, I2 ⊆ I
be the sets of indices generated this way. Since |I| > s, we have |I1| > s1 or |I2| > s2. D chooses
the position where this holds. Condition 2 still clearly holds and since B remains unchanged in
this move, so does condition 3.

• cat-move: Let i ∈ I and let (wi,1,wi,2) be the split S chooses for wi. Let k1 + k2 + 1 = k and
s1 + s2 = s be the resource splits of S. Since wi has (ai)

k+1 as a subword, wi,1 has (ai)
k1+1 as a

subword or wi,2 has (ai)
k2+1 as a subword. We divide I into subsets I1, I2 according to this condition.

Since |I| > s, we have |I1| > s1 or |I2| > s2. Assume the former. Now condition 2 is satisfied for
wi,1 by letting ui,1 := ui and vi,1 := wi,2vi. For condition 3, let ui,1rv j,1 ∈ B0 for some r ∈ Σ∗

n and
i, j ∈ I1. Now uirw j,2v j ∈ B0 so by condition 3 in the position before this move, rw j,2 ∈ B. For
the split (r,w j,2) of rw j,2 S must choose r to have a chance, since choosing w j,2 would result in an
identical word on both sides for the position (k2,s2,A2,B2). So either D has a winning strategy by
Lemma 3.4 or r ∈ B1 for every such r and condition 3 holds for the position (k1,s1,A1,B1) and D
chooses this position. The case of |I2|> s2 is handled in the same way.

• ∗ -move: S can only make this move if 1 ≤ s < |I| so we have i, j ∈ I with i < j. We will show
that this is enough to give D a winning strategy if S makes a ∗ -move. Our aim is to show that a
word of the form (w j)

m1(wi)
m2 is in B. We will use condition 3 to show this. Condition 3 requires

a word of the form uirv j to be in B0 and words in B0 have odd chains of all symbols ap. Thus we
begin by finding odd chains of all symbols in our words.
Recall that by condition 2, there are wi ∈ A and ui,vi ∈ Σ∗ such that �i = uiwivi and (ai)

k+1 is a
subword of wi. The same holds for j. Let u ∈ {ui,uj} be the one of the two words with more odd
chains of symbols. If they have the same number of odd chains, we choose, say, the longer word.
Choose v ∈ {vi,v j} the same way. Next, we will show that for each p ∈ [n], at least one of the
words wi, w j, u and v has an odd ap-chain.
Recall that the words in A0 have chains of symbols ap in order and only the ai-chain in a word �i is
even while all the others are odd. Furthermore, �i = uiwivi and wi has (ai)

k+1 as a subword so all
chains in ui are odd except possibly the last. Thus for each odd chain in ui there is also one of the
same symbol in u and the same goes for uj. Similarly for each odd chain in vi or v j there is one in
v.
We now show that for every p ∈ [n] there is an odd chain in at least one of the words wi, w j, u and
v. First, let p < i. If there is an odd ap-chain in wi we are done so let us assume there is not. Now
the ap-chain in wi is even (possibly empty) and since the chain in uiwivi = �i is odd, we know the
one in ui is odd. As noted above, an odd chain in ui means there is also one in u. So in this case
there is an odd ap-chain in wi or u. The case p > i is very similar and we obtain an ap-chain in wi
or v. Finally let p = i. Now p < j so like above we obtain an odd ap-chain in w j or u.
We now have an odd chain of each ap among the words wi, w j, u and v, but we still need to make
sure the specific way we catenate these words does not remove the only odd chains of a symbol by
merging them into an even one. Let f (w) be the index of the first symbol of a word w and l(w) the
index of the last. By condition 2 we have f (wi)≤ i ≤ l(wi). The same goes for f (w j)≤ j ≤ l(w j).
We start with w jwi. By the above we obtain f (wi)≤ i < j ≤ l(w j) so this catenation cannot result

M. Vilander 271

in any merging of odd chains. Next we add u to the left. If l(u) = f (w j) and both chains are odd,
this merges the chains into an even one. Here we consider two cases. First, if w j is just an odd
aj-chain, then for some m1 ∈ {1,2} the aj-chain in the word u(w j)

m1wi is odd. If w j has other
symbols besides aj, then the word u(w j)

2wi has an odd af (wj)-chain at the start of the second w j.
We have thus obtained u(w j)

m1wi with an odd chain of af (wj). We finally add v to the right in a
similar fashion. If l(wi) = f (v) and both chains are odd, we again consider the cases of wi being
just an odd ai-chain or a larger word and we obtain m2 ∈ {1,2} such that u(w j)

m1(wi)
m2v has an

odd chain of al(wi).

As the words wi, w j, u and v have an odd chain of each symbol and we have made sure the
catenations did not lose any, our catenated word u(w j)

m1(wi)
m2v is now in B0. Since u ∈ {ui,uj}

and v ∈ {vi,v j}, by condition 3, (w j)
m1(wi)

m2 ∈ B.

Let us finish by showing how this gives D a winning strategy after the ∗ -move in progress. S must
give splits for wi and w j and every piece of these splits is in the left set of the following position,
A′. S must also choose a piece of every split of (w j)

m1(wi)
m2 to add to the right set, B′. The split

of (w j)
m1(wi)

m2 we are interested in is the one where each subword wi and w j is split according
to the splits given by S for wi and w j. For this split, S must choose one of the pieces already in
A′ to also be in B′. Thus, in the following position (k− 1,s− 1,A′,B′), there is an identical word
on both sides and D has a winning strategy by Lemma 3.4. Thus if S makes a ∗ -move while the
conditions hold, D eventually wins.

6 Conclusion

We have presented a formula size game for GRE, RE and a middle ground between these we call RE over
star-free expressions. We used the RE version to reprove a non-elementary succinctness gap between FO
and RE via a large finite language. For RE over star-free we showed that the number of stars gives a full
hierarchy in terms of expressive power. As the astute reader has noted, we have not used the full GRE
size game in this paper. This is due to the considerable combinatorial complexity of the game. A clear
goal for further research is to find some handle on this complexity at least for some problems. A good
first candidate is to prove that there is a star height one language that requires two stars to define via a
GRE.

As noted in Remark 3.6, the games can be modified to isolate different operations with different
resources or counting the nesting depth of some operations instead of the number. This means that the
games could naturally be used to investigate any problem having to do with bounds on operators such as
the generalized star height problem.

References

[1] M. Adler & N. Immerman (2003): An n! lower bound on formula size. ACM Trans. Comput. Log. 4(3), pp.
296–314, doi:10.1145/772062.772064.

[2] H-D. Ebbinghaus & J. Flum (1995): Finite Model Theory: First Edition. Springer Berlin Heidelberg, Berlin,
Heidelberg, doi:10.1007/978-3-662-03182-7.

[3] L. C. Eggan (1963): Transition graphs and the star-height of regular events. Michigan Math. J. 10(4), pp.
385–397, doi:10.1307/mmj/1028998975.

272 Games for Succinctness of Regular Expressions

[4] A. Ehrenfeucht & P. Zeiger (1974): Complexity Measures for Regular Expressions. In: Proceedings of the
Sixth Annual ACM Symposium on Theory of Computing, STOC ’74, Association for Computing Machinery,
New York, NY, USA, p. 75–79, doi:10.1145/800119.803886.

[5] K. Ellul, B. Krawetz, J. Shallit & M. Wang (2005): Regular Expressions: New Results and Open Problems.
J. Autom. Lang. Comb. 10(4), p. 407–437, doi:10.25596/jalc-2005-407.

[6] W. Gelade (2010): Succinctness of regular expressions with interleaving, intersection and counting. Theor.
Comput. Sci. 411(31-33), pp. 2987–2998, doi:10.1016/j.tcs.2010.04.036.

[7] W. Gelade & F. Neven (2012): Succinctness of the Complement and Intersection of Regular Expressions.
ACM Trans. Comput. Logic 13(1), doi:10.1145/2071368.2071372.

[8] H. Gruber & M. Holzer (2008): Finite Automata, Digraph Connectivity, and Regular Expression Size. In
L. Aceto, I. Damgård, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir & I. Walukiewicz, editors:
Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland,
July 7-11, 2008, Proceedings, Lecture Notes in Computer Science 5126, Springer, pp. 39–50, doi:10.1007/
978-3-540-70583-3_4.

[9] H. Gruber & M. Holzer (2009): Tight Bounds on the Descriptional Complexity of Regular Expressions. In
V. Diekert & D. Nowotka, editors: Developments in Language Theory, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 276–287, doi:10.1007/978-3-642-02737-6_22.

[10] K. Hashiguchi (1988): Algorithms for Determining Relative Star Height and Star Height. Inf. Comput. 78(2),
pp. 124–169, doi:10.1016/0890-5401(88)90033-8.

[11] J. E. Hopcroft, R. Motwani & J. D. Ullman (2006): Introduction to Automata Theory, Languages, and Com-
putation, 3rd edition. Addison-Wesley Longman Publishing Co., Inc., USA.

[12] R. McNaughton & S. A. Papert (1971): Counter-Free Automata (M.I.T. Research Monograph No. 65). The
MIT Press.

[13] A. A. Razborov (1990): Applications of matrix methods to the theory of lower bounds in computational
complexity. Combinatorica 10(1), pp. 81–93, doi:10.1007/BF02122698.

[14] L. Stockmeyer (1974): The complexity of decision problems in automata theory and logic. Ph.D. thesis,
Massachusetts Institute of Technology.

[15] Q. Yan (2007): Classifying regular languages by a split game. Theoretical Computer Science 374(1), pp. 181
– 190, doi:10.1016/j.tcs.2006.12.041.

PUBLICATION

IV

Defining Long Words Succinctly in FO and MSO

Lauri Hella and Miikka Vilander

In: Revolutions and Revelations in Computability - 18th Conference on Computability in

Europe, CiE 2022, Swansea, UK, July 11-15, 2022, Proceedings. Ed. by Ulrich Berger et al.

Vol. 13359Lecture Notes in Computer Science. Springer, 2022, pp. 125–138

DOI: 10.1007/978-3-031-08740-0_11

Publication reprinted with the permission of the copyright holders.

Defining Long Words Succinctly in FO
and MSO

Lauri Hella and Miikka Vilander(B)

Tampere University, 33100 Tampere, Finland

miikka.vilander@tuni.fi

Abstract. We consider the length of the longest word definable in FO
and MSO via a formula of size n. For both logics we obtain as an upper
bound for this number an exponential tower of height linear in n. We
prove this by counting types with respect to a fixed quantifier rank. As
lower bounds we obtain for both FO and MSO an exponential tower of
height in the order of a rational power of n. We show these lower bounds
by giving concrete formulas defining word representations of levels of the
cumulative hierarchy of sets. In addition, we consider the Löwenheim-
Skolem and Hanf numbers of these logics on words and obtain similar
bounds for these as well.

Keywords: Logic on words · Monadic second-order logic ·
Succinctness

1 Introduction

We consider the succinctness of defining words. More precisely, if we allow for-
mulas of size up to n in some logic, we want to know the length of the longest
word definable by such formulas.

This question is not very interesting for all formalisms. An example where this
is the case is given by regular expressions. There is no smaller regular expression
that defines a word than the word itself. This result is spelled out at least in the
survey [3]. However, the situation is completely different for monadic second-order
logic MSO over words with linear order and unary predicates for the letters. Even
though MSO has the same expressive power as regular expressions over words,
it is well-known that MSO is non-elementarily more succinct. This follows from
the results in the PhD thesis [12] of Stockmeyer. In fact, he proved that the prob-
lem whether the language defined by a given star-free generalized regular expres-
sion has non-empty complement is of non-elementary complexity with respect to
the length of the expression. Since star-free generalized expressions can be poly-
nomially translated into first-order logic FO, it follows that already FO is non-
elementarily more succinct than regular expressions. In the article [11], Reinhardt

M. Vilander acknowledges the financial support of the Academy of Finland project
Explaining AI via Logic (XAILOG), project number 345612.

c© The Author(s) 2022
U. Berger et al. (Eds.): CiE 2022, LNCS 13359, pp. 125–138, 2022.
https://doi.org/10.1007/978-3-031-08740-0_11

126 L. Hella and M. Vilander

uses a variation of Stockmeyer’s method for proving similar non-elementary suc-
cinctness gaps between finite automata and the logics MSO and FO.

In this paper our focus is in the definability of words in MSO and FO. As far
as we know, this aspect of succinctness has not been considered previously in the
context of words. We show that these logics can define words of non-elementary
length via formulas of polynomial size.

In order to argue about definability via formulas of bounded size, we define
the size n fragments FO[n] and MSO[n] that include only formulas of size up to n.
We also define similar quantifier rank k fragments FOk and MSOk and use them
to prove our upper bounds. Both of these types of fragments are essentially finite
in the sense that they contain only a finite number of non-equivalent formulas.
We call the length of the longest word definable in a fragment the definability
number of that fragment. Using this concept, our initial question is reframed as
studying the definability numbers of FO[n] and MSO[n].

The definability number of a fragment is closely related to the Löwenheim-
Skolem and Hanf numbers of the fragment. The Löwenheim-Skolem number of
a fragment is the smallest number m such that each satisfiable formula in the
fragment has a model of size at most m. The Hanf number is the smallest number
l such that any formula with a model of size greater than l has arbitrarily large
models. These were originally defined for extensions of first-order logic in the
context of model theory of infinite structures, but they are also meaningful in
the context of finite structures. For a survey on Löwenheim-Skolem and Hanf
numbers both on infinite and finite structures see [1]. For previous research on
finite Löwenheim-Skolem type results see [4] and [5].

Aside from what we have already mentioned, related work includes the article
[9] of Pikhurko and Verbitsky, where they consider the complexity of single finite
structures. They study the minimal quantifier rank in FO of both defining a
single finite structure and separating it from other structures of the same size.
In [8] the same authors and Spencer consider quantifier rank and formula size
required to define single graphs in FO. The survey [10] by Pikhurko and Verbitsky
covers the above work and more on the logical complexity of single graphs in FO.
By logical complexity they mean minimal quantifier rank, number of variables
and length of a defining formula as functions of the size of the graph. They
give an extensive account of these measures and relate them to each other, the
Ehrenfeucht-Fräıssé game and the Weisfeiler-Lehman algorithm. An important
difference between our approach and theirs is that we take formula size as the
parameter and look for the longest definable word, whereas they do the opposite.

Our contributions are upper and lower bounds for the definability,
Löwenheim-Skolem and Hanf numbers of the size n fragments of FO and MSO
on words. The upper bounds in Sect. 3 are obtained by counting types with
respect to the quantifier rank n/2 fragment. The upper bounds for both FO and
MSO are exponential towers of height n/2 + log∗(t) + 1 where t is a polynomial
term. The lower bounds in Sects. 4 and 5 are given by concrete polynomial size
formulas that define words of non-elementary length based on the cumulative
hierarchy of sets. The lower bounds are exponential towers of height 5

√
n/c for

FO and
√

n/c for MSO, respectively.

Defining Long Words Succinctly in FO and MSO 127

An anonymous referee pointed out that lower bounds similar to ours can be
obtained by adapting the method used by Reinhardt in [11], which in turn is
based on the work of Stockmeyer [12]. However, our formulas are based on the
cumulative hierarchy of sets instead of the binary counters used in Stockmeyer
and Reinhardt. Furthermore, we emphasize defining single words and relate the
bounds to Löwenheim-Skolem and Hanf numbers.

Note that our results only apply in the context of words. If finite structures
over arbitrary finite vocabularies are allowed, then there are no computable
upper bounds for the Löwenheim-Skolem or Hanf numbers of the size n fragments
of FO. For the Löwenheim-Skolem number, this follows from Trakhtenbrot’s
theorem1 (see, e.g., [7]), and for the Hanf number, this follows from a result of
Grohe in [4]. Clearly the same applies for the size n fragments of MSO as well.

2 Preliminaries

The logics we consider in this paper are first-order logic FO and monadic second-
order logic MSO and their (typically finite) fragments. The syntax and semantics
of these are standard and well-known. Due to space restrictions we will not
present them here, instead directing the reader to [2] and [7].

In terms of structures we limit our consideration to words of the two letter
alphabet Σ = {l, r}. We have chosen to use letters for readability but intuitively
the l stands for the left brace { and r for the right brace }. We use these later
to encode sets as words. The empty set would be encoded as lr, or {}.

When we say that a word satisfies a logical sentence, we mean the natural
corresponding word model does. A word model is a finite structure with linear
order and unary predicates Pl and Pr for the two symbols. Since we only consider
words over the two letter alphabet Σ, we will tacitly assume that all formulas of
MSO are in the vocabulary {<,Pl, Pr} of the corresponding word models (and
similarly for FO-formulas).

Definition 1. The size sz(ϕ) of a formula ϕ ∈ MSO is defined recursively as
follows:

– sz(ϕ) = 1 for atomic ϕ,
– sz(¬ψ) = sz(ψ) + 1,
– sz(ψ ∧ θ) = sz(ψ ∨ θ) = sz(ψ) + sz(θ) + 1,
– sz(∃xψ) = sz(∀xψ) = sz(∃Uψ) = sz(∀Uψ) = sz(ψ) + 1.

For n ∈ N the size n fragment of MSO, denoted MSO[n], consists of the formulas
of MSO with size at most n. Size as well as size n fragments are defined in the
same way for FO.

Definition 2. The quantifier rank qr(ϕ) of a formula ϕ ∈ MSO is defined recur-
sively as follows:

1 Trakhtenbrot’s theorem states that the finite satisfiability problem of FO is undecid-
able. Hence there cannot exist any computable upper bound for the size of models
that need to be checked to see whether a given formula is satisfiable.

128 L. Hella and M. Vilander

– qr(ϕ) = 0 for atomic ϕ,
– qr(¬ψ) = qr(ψ),
– qr(ψ ∧ θ) = qr(ψ ∨ θ) = max{qr(ψ), qr(θ)},
– qr(∃xψ) = qr(∀xψ) = qr(∃Uψ) = qr(∀Uψ) = qr(ψ) + 1.

For k ∈ N, the quantifier rank k fragment of MSO, denoted MSOk, consists of
the formulas ϕ ∈ MSO with qr(ϕ) ≤ k. The quantifier rank k fragment of FO is
defined in the same way and denoted FOk.

Note that both size n fragments and quantifier rank k fragments are essen-
tially finite in the sense that they contain only finitely many non-equivalent
formulas.

Definition 3. For each (finite) fragment L of MSO or FO, we define the rela-
tion ≡L on Σ-words as

w ≡L v, if w and v agree on all L-sentences.

Clearly ≡L is an equivalence relation. We denote the set of equivalence classes
of ≡L by Σ∗/ ≡L and define a notation for the number of these classes.

Definition 4. For each (finite) fragment L of MSO or FO, we denote the num-
ber of equivalence classes of ≡L by NL, i.e.

NL := |Σ∗/ ≡L |.

Note that each equivalence class of ≡L is uniquely determined by a subset
tpL(w) = {ϕ ∈ L | w |= ϕ} of L sentences, which we call the L-type of w. Thus,
NL is the number of L-types. In the case L = MSOk or L = FOk, we talk about
quantifier rank k types.

Definition 5. We say that a sentence ϕ ∈ MSO defines a word w ∈ Σ+ if
w � ϕ and v � ϕ for all v ∈ Σ+ \ {w}.

For a fragment L of MSO or FO, we denote by Def(L) the set of words
definable in L, i.e.

Def(L) := {w ∈ Σ+ | there is ϕ ∈ L s.t. ϕ defines w}.

In order to discuss words of non-elementary length and make our bounds
precise, we define the exponential tower function twr for the positive reals as
well as the, essentially inverse, iterated logarithm function log∗.

Definition 6. The exponential tower function tower : N → N is defined recur-
sively by setting tower(0) := 1 and tower(n + 1) := 2tower(n). We extend this
definition to a function twr : [0,∞[→ N by setting twr(x) = tower(�x�). The
iterated logarithm function log∗ : [1,∞[→ N is defined by setting log∗(x) as the
smallest m ∈ N that has tower(m) ≥ x.

Defining Long Words Succinctly in FO and MSO 129

2.1 Definability, Löwenheim-Skolem and Hanf Numbers

Löwenheim-Skolem and Hanf numbers were originally introduced for studying
the behaviour of extensions of first-order logic on infinite structures. See the
article [1] of Ebbinghaus for a nice survey on the infinite case. As observed in
[4], with suitable modifications, it is possible to give meaningful definitions for
these numbers also on finite structures. We will now give such definitions for
finite fragments L of FO and MSO, and in addition, we introduce the closely
related definability number of L.

Let ϕ be a sentence in MSO over Σ-words. If it has a model, we denote by
μ(ϕ) the minimal length of a model of ϕ: μ(ϕ) = min{|w| | w ∈ Σ+, w |= ϕ}.
If ϕ has no models, we stipulate μ(ϕ) = 0. Furthermore, we denote by ν(ϕ) the
maximum length of a model of ϕ, assuming the maximum is well-defined. If the
maximum is not defined, i.e., if ϕ has no models or has arbitrarily long models,
we stipulate ν(ϕ) = 0.

Definition 7. Let L be a finite fragment of MSO or FO with Def(L) �= ∅.
(a) The definability number of L is

DN(L) = max{|w| | w ∈ Σ+, w ∈ Def(L)}.
(b) The Löwenheim-Skolem number of L is LS(L) = max{μ(ϕ) | ϕ ∈ L}.
(c) The Hanf number of L is H(L) = max{ν(ϕ) | ϕ ∈ L}.

Thus, DN(L) is the length of the longest L-definable word. Note further that
LS(L) is the smallest number m such that every ϕ ∈ L that has a model, has a
model of length at most m. Similarly H(L) is the smallest number � such that if
ϕ ∈ L has a model of length greater than �, then it has arbitrarily long models.

Since every sentence ϕ of MSO defines a regular language over Σ, and there
is an effective translation from MSO to equivalent finite automata, it is clear
that we can compute the numbers μ(ϕ) and ν(ϕ) from ϕ. Consequently, for any
finite fragment L of MSO, LS(L) and H(L) can be computed from L.

As we mentioned in the Introduction, LS(FO[n]) and H(FO[n]) are not com-
putable from n if we consider arbitrary finite models instead of words. Clearly
the same holds also for the fragments FOk, MSO[n] and MSOk.

It follows immediately from Definition 7 that the definability number of any
finite fragment of MSO is bounded above by its Löwenheim-Skolem number and
its Hanf number:

Proposition 1. If L is a finite fragment of MSO, then DN(L) ≤ LS(L),H(L).

Proof. It suffices to observe that if w ∈ Def(L), then μ(ϕ) = ν(ϕ) = |w|, where
ϕ ∈ L is the sentence that defines w.

Note that all three cases for the relationship between LS(L) and H(L) are
possible. Indeed, if L consists of existential first-order sentences, then any ϕ ∈ L
that has a model, has arbitrarily long models, whence H(L) = 0. Clearly LS(L)
can be arbitrarily large for such an L. On the other hand, if L consists of universal
first-order sentences, then any satisfiable ϕ ∈ L has a model of length 1, whence
LS(L) ≤ 1. If L contains, e.g., the sentence ∀x0 . . . ∀x�

∨
i<j≤� xi = xj for � > 1,

130 L. Hella and M. Vilander

then H(L) ≥ � > LS(L). Finally, combining existential and universal sentences
it is easy to construct a finite fragment L of FO such that LS(L) = H(L).

3 Upper Bounds for the Length of Definable Words

3.1 Definability and Types

It is well-known that equivalence of words up to a quantifier rank is preserved
in catenation:

Theorem 1. Let L ∈ {FOk,MSOk} for some k ∈ N. Assume that v, v′, w, w′ ∈
Σ+ are words such that v ≡L v′ and w ≡L w′. Then vw ≡L v′w′.

Proof. The claim is proved by a straightforward Ehrenfeucht-Fräıssé game argu-
ment (see Proposition 2.1.4 in [2]).

Using Theorem 1, we get the following upper bounds for the numbers μ(ϕ)
and ν(ϕ) in terms of the quantifier rank of ϕ:

Proposition 2. Let L ∈ {FOk,MSOk} for some k ∈ N. If ϕ is a sentence of
L, then μ(ϕ), ν(ϕ) ≤ NL.

Proof. If |w| ≤ NL for all words w ∈ Σ+ such that w |= ϕ, the claim is trivial.
Assume then that w |= ϕ and |w| > NL. Then there are two initial segments u
and u′ of w such that |u| < |u′| and u ≡L u′. Let v and v′ be the corresponding
end segments, i.e., w = uv = u′v′. Then by Theorem 1, uv′ ≡L u′v′ = w, and
similarly u′v ≡L uv = w, whence uv′ |= ϕ and u′v |= ϕ.

Since |uv′| < |w|, we see that w is not the shortest word satisfying ϕ. The
argument applies to any word w with |w| > NL, whence we conclude that
μ(ϕ) ≤ NL. On the other hand |u′v| > |w|, whence w is neither the longest
word satisfying ϕ. Applying this argument repeatedly, we see that ϕ is satisfied
in arbitrarily long words, whence ν(ϕ) = 0 ≤ NL.

From Propositions 1 and 2 we immediately obtain the following upper bound
for the definability numbers of quantifier rank fragments of MSO:

Corollary 1. Let k ∈ N and L ∈ {FOk,MSOk}. Then LS(L),H(L) ≤ NL, and
consequently DN(L) ≤ NL.

This NL upper bound for the definability, Löwenheim-Skolem and Hanf num-
bers shows that the quantifier rank fragments L of FO and MSO behave quite
tamely on words: Clearly every type tpL(w) is definable by a sentence of L,
whence the number of non-equivalent sentences in L is 2NL . Thus, any collection
of representatives of non-equivalent sentences of L necessarily contains sentences
of size close to NL. But in spite of this, it is not possible to define words that
are longer than NL by sentences of L.

This shows that quantifier rank is not a good starting point if we want to
prove interesting succinctness results for definability. Hence we turn our attention
to the size n fragments FO[n] and MSO[n]. Note first that for any n ∈ N, FO[n]
is trivially contained in FOn, and similarly, MSO[n] is contained in MSOn. A
simple argument shows that this can be improved by a factor of 2:

Defining Long Words Succinctly in FO and MSO 131

Lemma 1. For any n ∈ N, FO[2n] ≤ FOn and MSO[2n] ≤ MSOn.

Proof. (Idea) Any sentence ϕ with quantifier rank n is equivalent to one with
smaller quantifier rank unless it contains atomic formulas of the form x < y
mentioning each quantified variable, and more than one of them at least twice.
Counting the quantifiers, the atomic formulas, and the connectives needed, we
see that sz(ϕ) ≥ 2n.

Note that we have not tried to be optimal in the formulation of Lemma 1.
We believe that with a more careful analysis, 2n could be replaced with 3n, and
possibly with an even larger number.

Corollary 2. For any n ∈ N, DN(FO[2n]),LS(FO[2n]),H(FO[2n]) ≤ NFOn and
DN(MSO[2n]),LS(MSO[2n]),H(MSO[2n]) ≤ NMSOn

.

3.2 Number of Types

As we have seen in the previous section, the numbers of FOk-types and MSOk-
types give upper bounds for the corresponding definbability, Löwenheim-Skolem
and Hanf-numbers. It is well known that on finite relational structures, for FOk

this number is bound above by an exponential tower of height k + 1 with a
polynomial, that depends on the vocabulary, on top (see, e.g., [10] for the case
of graphs). It is straightforward to generalize this type of upper bound to MSOk.
On the class of Σ-words, we can prove the following explicit upper bounds. For
the proof of this result, see the Appendix in the pre-print [6].

Theorem 2. For any k ∈ N, NFOk
≤ twr(k + log∗(k2 + k) + 1)

and NMSOk
≤ twr(k + log∗((k + 1)2) + 1).

By Corollary 1, we obtain the same upper bounds for the definability,
Löwenheim-Skolem and Hanf numbers of the quantifier rank fragments.

Corollary 3. For any k ∈ N,
DN(FOk),LS(FOk),H(FOk) ≤ twr(k + log∗(k2 + k) + 1) and
DN(MSOk),LS(MSOk),H(MSOk) ≤ twr(k + log∗((k + 1)2) + 1).

As we discussed after Corollary 1, from the point of view of succinctness it
is more interesting to consider the definability numbers of the size fragments of
FO and MSO than those of the quantifier rank fragments. Using Corollary 2, we
obtain the following upper bounds for FO[n] and MSO[n].

Corollary 4. For any n ∈ N,
DN(FO[n]),LS(FO[n]),H(FO[n]) ≤ twr(n/2 + log∗((n/2)2 + n/2) + 1) and
DN(MSO[n]),LS(MSO[n]),H(MSO[n]) ≤ twr(n/2 + log∗((n/2 + 1)2) + 1).

In the next two sections we will prove lower bounds for the definability num-
bers of FO[n] and MSO[n] by providing explicit polynomial size sentences that
define words that are of exponential tower length.

132 L. Hella and M. Vilander

4 Lower Bounds for FO

In order to obtain a lower bound for DN(FO[n]) we need a relatively small FO-
formula that defines a long word. The long word we define has to do with the
cumulative hierarchy of finite sets.

The finite levels Vi of the cumulative hierarchy are defined by V0 = ∅ and
Vi+1 = P(Vi). We represent finite sets as words using only braces { and } in
a straightforward fashion. For example V0 is encoded as {} and V1 as {{}}.
V2 has two possible encodings: {{}{{}}} and {{{}}{}}. It is well known that
|Vi+1| = twr(i). Thus the encodings of Vi+1 have length at least twr(i). We will
define one such word via an FO-formula of polynomial size with respect to i.

For readability, we define L(x) := Pl(x) and R(x) := Pr(x) that say x is a
left or right brace, respectively. We also define S(x, y) := x < y∧¬∃z(x < z < y)
that says y is the successor of x.

As each set in the encoding can be identified by its outermost braces, the
formula mostly operates on pairs of variables. For readability we adopt the con-
vention x := (x1, x2), and similarly for different letters, to denote these pairs. To
ensure that our formula defines a single encoding of Vi, we also define a linear
order on encoded sets and require that the elements are in that order.

We define our formula recursively in terms of many subformulas. We briefly
list the meanings and approximate sizes of each subformula involved:

– core(x, θ(s, t)): the common core formula used in the formulas seti and oseti
defined below. States that every brace y between x1 and x2 has a pair z
such that the pair satisfies θ. In practice, θ will be another step of a similar
recursion. The variables s and t are used to deal with both cases y < z and
z < y at once, making the formula smaller.

core(x, θ(s, t)) := x1 < x2 ∧ L(x1) ∧R(x2)

∧ ∀y(x1 < y < x2 → ∃z(x1 < z < x2 ∧ y �= z

∧ ∃s∃t((y < z → (s = y ∧ t = z))

∧ (z < y → (s = z ∧ t = y)) ∧ θ(s, t))))

– seti(x): x correctly encodes a set in Vi, possibly with repetition. Size linear
in i.

set0(x) := L(x1) ∧R(x2) ∧ S(x1, x2)

seti+1(x) := core(x, seti(s, t))

– x ∈i y: x is an element of y. Size linear in i. Assumes that x encodes a set in
Vi and y encodes a set in Vi+1. The part with z is used to ensure that x is an
element of y and not for example an element of an element.

x ∈i y := y1 < x1 < x2 < y2 ∧ ¬∃z(seti(z) ∧ y1 < z1 < x1 ∧ x2 < z2 < y2)

– x ∼i y: x and y encode the same set, possibly in a different order. Size O(i2).
Assumes x and y encode sets in Vi. The two implications on the second line

Defining Long Words Succinctly in FO and MSO 133

are used to deal with the symmetry of x and y at once, making the formula
smaller.

x ∼0 y := �
x ∼i+1 y := ∀a(seti(a) → ∃b(seti(b)

∧ (a ∈i x → b ∈i y) ∧ (a ∈i y → b ∈i x) ∧ a ∼i b))

– x ≺i y: the ≺i−1-greatest element of the symmetric difference of x and y is
in y. Size O(i3). Defines a linear order for encoded sets in Vi. The set z is in
y, is not in x and is larger than any a in x.

x ≺0 y := ⊥
x ≺i+1 y := ∃z(seti(z) ∧ z ∈i y ∧ ∀a((seti(a) ∧ a ∈i x)

→(a �i z ∧ (∀b((seti(b) ∧ b ∈i y) → a �i b) → a ≺i z))))

– oseti(x): x correctly encodes a set in Vi with no repetition and with the
elements in the linear order given by the formula x ≺i y. Size O(i4). Ensures
that only a singular word satisfies our formula.

oset0(x) := L(x1) ∧R(x2) ∧ S(x1, x2)

oseti+1(x) := core(x, oseti(s, t)) ∧ ∀a∀b((seti(a) ∧ seti(b)

∧ a ∈i x ∧ b ∈i x ∧ a1 < b1) → a ≺i b)

– addi(x, y, z): States that x = y ∪ {z}. Size O(i2). Assumes x and y encode
sets in Vi and z encodes a set in Vi−1. The first line states that y ⊆ x, the
second line states z ∈ x and the two final lines state x \ {z} ⊆ y.

addi+1(x, y, z) := ∀a((seti(a) ∧ a ∈i y) → ∃b(seti(b) ∧ b ∈i x ∧ a ∼i b))

∧ ∃c(seti(c) ∧ c ∈i x ∧ c ∼i z

∧ ∀d((seti(d) ∧ d ∈i x ∧ d1 �= c1)

→ ∃e(seti(e) ∧ e ∈i y ∧ e ∼i d)))

– Vi(x): x encodes the set Vi. Size O(i5). States that x is an ordered encoding,
∅ ∈ x, Vi−1 ∈ x and for all c ∈ x and d ∈ Vi−1, we have c ∪ {d} ∈ x.

V0(x) := set0(x)

Vi+1(x) := oseti+1(x) ∧ ∃a(V0(a) ∧ S(x1, a1)) ∧ ∃b(Vi(b) ∧ S(b2, x2)

∧ ∀c∀d((seti(c) ∧ c ∈i x ∧ seti−1(d) ∧ d ∈i−1 b)

→ ∃e(seti(e) ∧ e ∈i x ∧ addi(e, c, d))))

– ψi: the entire word is the ordered encoding of the set Vi. Size O(i5).

ψi := ∃x∃y∀z(x ≤ z ∧ z ≤ y ∧ Vi(x, y))

134 L. Hella and M. Vilander

The formula ψi+1 defines a word w that, as an encoding of the set Vi+1, has
length at least twr(i). The size of ψi+1 is O((i+1)5) and thus O(i5). Let c be a
constant such that sz(ψi+1) ≤ c · i5 so w ∈ Def(FO[c · i5]). As we want to relate
the length of w to the size of ψi, we set n = c · i5 and obtain the following result:

Theorem 3. For some constant c ∈ N there are infinitely many n ∈ N satisfying

DN(FO[n]) ≥ twr(5
√

n/c).

Proposition 1 immediately gives the same bound for the Hanf number.

Corollary 5. For some constant c ∈ N there are infinitely many n ∈ N satisfy-
ing

H(FO[n]) ≥ twr(5
√

n/c).

By omitting the subformula oseti+1 from the above we get a formula of size
O(i3) that is no longer satisfied by only one word but still only has large models.
With this formula we obtain a lower bound for the Löwenheim-Skolem number.

Corollary 6. For some c ∈ N there are arbitrarily large n ∈ N satisfying

LS(FO[n]) ≥ twr(3
√

n/c).

5 Lower Bounds for MSO

In this section, we define a similar formula for MSO as we did above for FO.
The formula again defines an encoding of Vi but for MSO our formula is of size
O(i2) compared to the O(i5) of FO. We achieve this by quantifying a partition
of so called levels for the braces and thus the encoded sets and using a different
method to define only a single encoding.

The level of the entire encoded set will be equal to the maximum depth of
braces inside the set. The level of an element of a set will always be one less than
the level of the parent set. This means that there will be instances of the same
set with different levels in our encoding. For example in the encoding {{}{{}}}
the outermost braces are level 2, both of the elements are level 1 and the empty
set in the second element is level 0.

We again define our formula in terms of many subformulas and briefly list
the meaning and size of each subformula:

– seti(x): x encodes a set of level i. Size constant. Here we only require that
there are no braces of the same level between x1 and x2, leaving the rest to
the formula levelsi below.

set0(x) := S(x1, x2) ∧ L(x1) ∧R(x2) ∧D0(x1) ∧D0(x2)

seti(x) := x1 < x2 ∧ L(x1) ∧R(x2) ∧Di(x1) ∧Di(x2)

∧ ∀y(x1 < y < x2 → ¬Di(y))

Defining Long Words Succinctly in FO and MSO 135

– levelsi: The relations Dj define the levels of sets as intended and there are
no odd braces without pairs. Size O(i2). States that every brace has a level,
no brace has two different levels, every set encloses only braces of lower levels
and every brace has a pair of the same level to form a set.

levelsi := ∀x(
i∨

j=0

Dj(x) ∧
∧

j,k∈{0,...,i}
j �=k

¬(Dj(x) ∧Dk(x))

∧ ∀x(
i∧

j=0

(setj(x) → ∀y(x1 < y < x2 →
j−1∨
k=0

Dk(y))))

∧ ∀x1(

i∧
j=0

((L(x1) ∧Dj(x1)) → ∃x2setj(x1, x2))

∧
i∧

j=0

(R(x1) ∧Dj(x1)) → ∃x2setj(x2, x1))

– x ∈ y: x is an element of y. Size constant. Assumes x encodes a set of level i
and y encodes a set of level i− 1.

x ∈ y := y1 < x1 ∧ x2 < y2

– x ∼i y: x and y encode the same set. Size linear in i. Assumes x and y encode
sets of level i. Similar to the FO case.

x ∼0 y := �
x ∼i+1 y := ∀a(seti(a) → ∃b(seti(b)

∧ (a ∈ x → b ∈ y) ∧ (a ∈ y → b ∈ x) ∧ a ∼i b))

– addi(x, y, z): States that x = y∪{z}. Size linear in i. Assumes x and y encode
sets of level i and z encodes a set of level i− 1. Similar to the FO case.

addi+1(x, y, z) := ∀a((seti(a) ∧ a ∈ y) → ∃b(seti(b) ∧ b ∈ x ∧ a ∼i b))

∧ ∃c(seti(c) ∧ c ∈ x ∧ c ∼i z

∧ ∀d((seti(d) ∧ d ∈ x ∧ d1 �= c1)

→ ∃e(seti(e) ∧ e ∈ y ∧ e ∼i d)))

– Vi(x): x encodes the set Vi. Size O(i2). Assumes the level partition is given.
Similar to the FO case with no ordering.

V0(x) := set0(x)

Vi+1(x) := seti+1(x) ∧ ∃a(seti(a) ∧ a ∈ x ∧ S(a1, a2))

∧ ∃b(Vi(b) ∧ b ∈ x ∧ ∀c∀d((seti(c) ∧ c ∈ x ∧ seti−1(d) ∧ d ∈ b)

→ ∃e(seti(e) ∧ e ∈ x ∧ addi(e, c, d))))

136 L. Hella and M. Vilander

– ϕi(x, y): Quantifies the level partition and states the subword from x to y
encodes Vi. Size O(i2).

ϕi(x, y) := ∃D0 . . . ∃Di(levelsi ∧ Vi(x, y)))

We now have a formula ϕi(x, y) that says the subword from x to y encodes
the set Vi. There are still multiple words that satisfy this formula, since different
orders of the sets and even repetition are still allowed. To pick out only one
such word, we use a lexicographic order, where a shorter word always precedes
a longer one.

Let ϕ′
i be the formula obtained from ϕi by replacing each occurrence of L(x)

with P1(x) and R(x) with P2(x). We define the final formula ψi of size O(i2)
that says the entire word model is the least word in the lexicographic order that
satisfies the property of ϕi. We check that no lexicographically smaller word
satisfies ϕi by quantifying the word under consideration on top of the same
word model using the variables P1 and P2 for the two letters. We first ensure
that P1 and P2 partition the model and then use y′ as the cut-off point for the
possibly shorter word we want to quantify. If y′ = y we check the lexicographic
order with z as the first different symbol. Finally we state that the quantified
word does not satisfy ϕi.

ψi := ∃x∃y(∀z(x ≤ z ∧ z ≤ y) ∧ ϕi(x, y)

∧ ∀P1∀P2(∀z((P1(z) ∨ P2(z)) ∧ ¬(P1(z) ∧ P2(z)))

∧ ∀y′((y′ < y ∨ ∃z(∀a(a < z → (L(a) ↔ P1(a) ∧R(a) ↔ P2(a)))

∧ (P1(z) ∧R(z))) → ¬ϕ′
i(x, y

′))))

We have used the lexicographic order here to select only one of the possible
words that satisfy our property. Note that this can be done for any property.
The size of such a formula will depend polynomially on the size of the alphabet,
as well as linearly on the size of the formula defining the property in question.

We obtain the lower bound for the definability number as in the FO case.

Theorem 4. For some constant c ∈ N there are infinitely many n ∈ N satisfying

DN(MSO[n]) ≥ twr(
√

n/c).

We get the same bounds for LS(MSO[n]) and H(MSO[n]) via Proposition 1.

Corollary 7. For some constant c ∈ N there are infinitely many n ∈ N satisfy-
ing

LS(MSO[n]),H(MSO[n]) ≥ twr(
√
n/c).

6 Conclusion

We considered the definability number, the Löwenheim-Skolem number and the
Hanf number on words in the size n fragments of first-order logic and monadic

Defining Long Words Succinctly in FO and MSO 137

second-order logic. We obtained exponential towers of various heights as upper
and lower bounds for each of these numbers.

For FO, we obtained the bounds

twr(5
√

n/c) ≤ DN(FO[n]) ≤ twr(n/2 + log∗((n/2)2 + n/2) + 1)

for some constant c. As corollaries, we obtained the same bounds for LS(FO[n])
and H(FO[n]). In addition, by modifying the formula we used for the lower
bounds, we obtained a slightly better lower bound of twr(3

√
n/c) for LS(FO[n]).

In the case of MSO, the bounds are similarly

twr(
√

n/c) ≤ DN(MSO[n]) ≤ twr(n/2 + log∗((n/2 + 1)2) + 1)

for a different constant c. We again immediately obtained the same bounds for
LS(MSO[n]) and H(MSO[n]).

The gaps between the lower bounds and upper bounds we have proved are
quite big. In absolute terms, they are actually huge, as each upper bound is
non-elementary with respect to the corresponding lower bound. However, it is
more fair to do the comparison in the iterated logarithmic scale, which reduces
the gap to be only polynomial. Nevertheless, a natural task for future research
is to look for tighter lower and upper bounds.

Finally, we remark that the technique for proving an exponential tower upper
bound for the number of types in the quantifier rank fragments of some logic
L is completely generic: it works in the same way irrespective of the type of
quantifiers allowed in L. Thus, it can be applied for example in the case where
L is the extension of FO with some generalized quantifier (or a finite set of
generalized quantifiers). Assuming further that the quantifier rank fragments
L of L satisfy Theorem 1, we can obtain this way an exponential tower upper
bound for the numbers DN(L), LS(L) and H(L). On the other hand, note that if
the quantifier rank fragments L satisfy Theorem 1, then each ≡L is an invariant
equivalence relation, whence L can only define regular languages. Therefore it
seems that our technique for proving upper bounds cannot be used for logics
with expressive power beyond regular languages.

References

1. Ebbinghaus, H.D.: Löwenheim-Skolem theorems. In: Gabbay, D., Thagard, P.,
Woods, J., Jacquette, D. (eds.) Philosophy of Logic, Handbook of the Philoso-
phy of Science. Elsevier Science (2006)

2. Ebbinghaus, H., Flum, J.: Finite model theory. Perspectives in Mathematical Logic,
Springer, Germany (1995)

3. Ellul, K., Krawetz, B., Shallit, J., Wang, M.W.: Regular expressions: new results
and open problems. J. Autom. Lang. Comb. 10(4), 407–437 (2005). https://doi.
org/10.25596/jalc-2005-407

4. Grohe, M.: Some remarks on finite Löwenheim-Skolem theorems. Math. Log. Q.
42, 569–571 (1996). https://doi.org/10.1002/malq.19960420145

138 L. Hella and M. Vilander

5. Grohe, M.: Large finite structures with few Lk-types. Inf. Comput. 179(2), 250–278
(2002). https://doi.org/10.1006/inco.2002.2954

6. Hella, L., Vilander, M.: Defining long words succinctly in FO and MSO (2022).
https://doi.org/10.48550/arxiv.2202.10180, pre-print

7. Libkin, L.: Elements of finite model theory. Texts in Theoretical Computer Science.
An EATCS Series, Springer (2004). https://doi.org/10.1007/978-3-662-07003-1

8. Pikhurko, O., Spencer, J., Verbitsky, O.: Succinct definitions in the first order
theory of graphs. Ann. Pure Appl. Log. 139(1–3), 74–109 (2006). https://doi.org/
10.1016/j.apal.2005.04.003

9. Pikhurko, O., Verbitsky, O.: Descriptive complexity of finite structures: saving the
quantifier rank. J. Symb. Log. 70(2), 419–450 (2005). https://doi.org/10.2178/jsl/
1120224721

10. Pikhurko, O., Verbitsky, O.: Logical complexity of graphs: a survey. In: Grohe, M.,
Makowsky, J.A. (eds.) Model Theoretic Methods in Finite Combinatorics - AMS-
ASL Joint Special Session, Washington, DC, 5–8 January 2009. Contemporary
Mathematics, vol. 558, pp. 129–180. American Mathematical Society (2009)

11. Reinhardt, K.: The complexity of translating logic to finite automata. In: Grädel,
E., Thomas, W., Wilke, T. (eds.) Automata Logics, and Infinite Games. LNCS,
vol. 2500, pp. 231–238. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-36387-4 13

12. Stockmeyer, L.J.: The complexity of decision problems in automata theory and
logic. Ph.D. thesis, Massachusetts Institute of Technology (1974)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

TUNI_Vilander_Miikka_kansi.indd 1 1.9.2022 11:42:21

