13,041 research outputs found

    On Secure Workflow Decentralisation on the Internet

    Get PDF
    Decentralised workflow management systems are a new research area, where most work to-date has focused on the system's overall architecture. As little attention has been given to the security aspects in such systems, we follow a security driven approach, and consider, from the perspective of available security building blocks, how security can be implemented and what new opportunities are presented when empowering the decentralised environment with modern distributed security protocols. Our research is motivated by a more general question of how to combine the positive enablers that email exchange enjoys, with the general benefits of workflow systems, and more specifically with the benefits that can be introduced in a decentralised environment. This aims to equip email users with a set of tools to manage the semantics of a message exchange, contents, participants and their roles in the exchange in an environment that provides inherent assurances of security and privacy. This work is based on a survey of contemporary distributed security protocols, and considers how these protocols could be used in implementing a distributed workflow management system with decentralised control . We review a set of these protocols, focusing on the required message sequences in reviewing the protocols, and discuss how these security protocols provide the foundations for implementing core control-flow, data, and resource patterns in a distributed workflow environment

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    An Application Of Artificial Immune System In A Wastewater Treatment Plant

    Get PDF
    Guaranteeing the continuity and the quality of services in network plants is a key issue in the research area of asset management. Especially when the plants are located in a wide area where machines are not continuously monitored by the operators. In particular, the pervasive adoption of smart sensors could be able to develop intelligent maintenance system through an elaboration of data coming from the machines: this data could be processed by diagnostics algorithms to warn preventively the fault status of the components or machines monitored. The algorithms’ structure is contained in a multiple system of agents that have different tasks to manage both the single machine and the information exchanged within the whole system. This paper aims to present an application of Artificial Immune System defining, for each plant section, the kind of agents employed and the related sensors that must be adopted to collect the useful data. In order to provide a practical example, the structure of an Artificial Immune System has been implemented in a wastewater treatment plant where the agents are tested with noteworthy results. © 20164928556

    #Blockchain4EU: Blockchain for Industrial Transformations

    Get PDF
    The project #Blockchain4EU is a forward looking exploration of existing, emerging and potential applications based on Blockchain and other DLTs for industrial / non-financial sectors. It combined Science and Technology Studies with a transdisciplinary policy lab toolbox filled with frameworks from Foresight and Horizon Scanning, Behavioural Insights, or Participatory, Critical and Speculative Design. Amid unfolding and uncertain developments of the Blockchain space, our research signals a number of crucial opportunities and challenges around a technology that could record, secure and transfer any digitised transaction or process, and thus potentially affect large parts of current industrial landscapes. This report offers key insights for its implementation and uptake by industry, businesses and SMEs, together with science for policy strategic recommendations.JRC.I.2-Foresight, Behavioural Insights and Design for Polic

    Multi-Agents System Approach to Industry 4.0: Enabling Collaboration Considering a Blockchain

    Get PDF
    Dissertação de Mestrado em Engenharia InformáticaThe evolution of existing technologies and the creation of new ones paved the way for a new revolution in the industrial sector. With the introduction of the existing and new technologies in the manufacturing environment, the industry is moving towards the fourth industrial revolution, called Industry 4.0. The fourth industrial revolution introduces many new components like 3D printing, Internet of things, artificial intelligence, and augmented reality. The automation of the traditional manufacturing processes and the use of smart technology are transforming industries in a more interconnected environment, where there is more transparent information and decentralised decisions. The arrival of Industry 4.0 introduces industries to a new environment, where their manufacturing processes are more evolved, more agile, and with more efficiency. The principles of Industry 4.0 rely on the interconnection of machines, devices, sensors, and people to communicate and connect. The transparency of information guaranties that decision makers are provided with clear and correct information to make informed decisions and the decentralisation of decisions will create the ability for machines and systems to make decisions on their own and to perform tasks autonomously. Industry 4.0 is making manufacturing processes more agile and efficient, but due to the fast pace of trends and the shift from the traditional mass production philosophy towards the mass customisation, following the Industry 4.0 guidelines might not be enough. The mass customisation paradigm was created from the desire that customers have in owning custom made products and services, tailor made to their needs. The idea to perform small tweaks in a product to face the needs of a consumer group, keeping the production costs like the ones from the mass production, without losing efficiency in the production. This paradigm poses great challenges to the industries, since they must be able to always have the capability to answer the demands that may arise from the preparation and production of personalised products and services. In the meantime, organisations will try to increasingly mark its position in the market, with competition getting less relevant and with different organisations worrying less with their performance on an individual level and worrying more about their role in a supply chain. The need for an improved collaboration with Industry 4.0 is the motivation for the model proposed in this work. This model, that perceives a set of organisations as entities in a network that want to interact with each other, is divided into two parts, the knowledge representation and the reasoning and interactions. The first part relies on the Blockchain technology to securely store and manage all the organisation transactions and data, guaranteeing the decentralisation of information and the transparency of the transactions. Each organisation has a public and private profile were the data is stored to allow each organisation to evaluate the others and to allow each organisation to be evaluated by the remainder of the organisations present in the network. Furthermore, this part of the model works as a ledger of the transactions made between the organisations, since that every time two organisations negotiate or interact in any way, the interaction is getting recorded. The ledger is public, meaning that every organisation in the network can view the data stored. Nevertheless, an organisation will have the possibility, in some situations, to keep transactions private to the organisations involved. Despite the idea behind the model is to promote transparency and collaboration, in some selected occasions organisations might want to keep transactions private from the other participants to have some form of competitive advantage. The knowledge representation part also wants to provide security and trust to the organisation that their data will be safe and tamper proof. The second part, reasoning and interactions, uses a Multi-Agent System and has the objective to help improve decision-making. Imagining that one organisation needs a service that can be provided by two other organisations, also present in the network, this part of the model is going to work towards helping the organisations choose what is the best choice, given the scenario and data available. This part of the model is also responsible to represent every organisation present in the network and when organisations negotiate or interact, this component is also going to handle the transaction and communicate the data to the first part of the model.A constante evolução de tecnologias atuais e a criação de novas tecnologias criou as condições necessárias para a existência de uma nova revolução industrial. Com a evolução de dispositivos móveis e com a chegada de novas tecnologias e ferramentas que começaram a ser introduzidas em ambiente industrial, como a impressão 3D, internet das coisas, inteligência artificial, realidade aumentada, entre outros, a industria conseguiu começar a explorar novas tecnologias e automatizar os seus processos de fabrico tradicionais, movendo as industrias para a quarta revolução industrial, conhecida por Industria 4.0. A adoção dos princípios da Indústria 4.0 levam as indústrias a evoluir os seus processos e a ter uma maior e melhor capacidade de produção, uma vez que as mesmas se vão tornar mais ágeis e introduzir melhorias nos seus ambientes de produção. Uma dessas melhorias na questão da interoperabilidade, com máquinas, sensores, dispositivos e pessoas a comunicarem entre si. A transparência da informação vai levar a uma melhor interpretação dos dados para efetuar decisões informadas, com os sistemas a recolher cada vez mais dados e informação dos diferentes pontos do processo de manufatura. (...

    PHARE Operational programmes 1994 Update n°6

    Get PDF

    Information Guide: Agencies and Decentralised Bodies of the European Union

    Get PDF
    A guide to information sources on the agencies and decentralised bodies of the European Union, with hyperlinks to further sources of information within European Sources Online and on external websites

    Legal and ethical implications of applications based on agreement technologies: the case of auction-based road intersections

    Full text link
    Agreement Technologies refer to a novel paradigm for the construction of distributed intelligent systems, where autonomous software agents negotiate to reach agreements on behalf of their human users. Smart Cities are a key application domain for Agreement Technologies. While several proofs of concept and prototypes exist, such systems are still far from ready for being deployed in the real-world. In this paper we focus on a novel method for managing elements of smart road infrastructures of the future, namely the case of auction-based road intersections. We show that, even though the key technological elements for such methods are already available, there are multiple non-technical issues that need to be tackled before they can be applied in practice. For this purpose, we analyse legal and ethical implications of auction-based road intersections in the context of international regulations and from the standpoint of the Spanish legislation. From this exercise, we extract a set of required modifications, of both technical and legal nature, which need to be addressed so as to pave the way for the potential real-world deployment of such systems in a future that may not be too far away

    Public sector research and industrial innovation in Norway: a historical perspective

    Get PDF
    This paper analyses the historical role of public research organisations for industrial growth and innovation in Norway – and the changes in this role over time. Public research organisations include research institutes and higher education institutions, and we go back in time to the 19th century. Like many other countries, Norway has a large number research institutes involved in innovation, and these organisations have an equally long history as higher education institutions. Public sector research has co-evolved with the national industrial structure, and institutes and universities have played central roles in developing high technology sectors and activities as well as in modernisations of traditional industries.
    corecore