23,841 research outputs found

    Current Mirror With Programmable Floating Gate

    Get PDF
    Systems and methods are discussed for using a floating-gate MOSFET as a programmable reference circuit. One example of the programmable reference circuit is a programmable voltage reference source, while a second example of a programmable reference circuit is a programmable reference current source. The programmable voltage reference source and/or the reference current source may be incorporated into several types of circuits, such as comparator circuits, current-mirror circuits, and converter circuits. Comparator circuits and current-mirror circuits are often incorporated into circuits such as converter circuits. Converter circuits include analog-to-digital converters and digital-to-analog converters.Georgia Tech Research Corporatio

    Analog-to-digital Converter With Programmable Floating Gate

    Get PDF
    Systems and methods are discussed for using a floating-gate MOSFET as a programmable reference circuit. One example of the programmable reference circuit is a programmable voltage reference source, while a second example of a programmable reference circuit is a programmable reference current source. The programmable voltage reference source and/or the reference current source may be incorporated into several types of circuits, such as comparator circuits, current-mirror circuits, and converter circuits. Comparator circuits and current-mirror circuits are often incorporated into circuits such as converter circuits. Converter circuits include analog-to-digital converters and digital-to-analog converters.Georgia Tech Research Corporatio

    가변기능형 아날로그 블록 기반의 현장 프로그램이 가능한 혼성 신호 집적회로의 설계

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 공과대학 전기·컴퓨터공학부, 2017. 8. 김재하.Fast-emerging electronic device applications demand a variety of new mixed-signal ICs to be developed in fast cycle and with low cost. While field-programmable gate arrays (FPGAs) are established solutions for timely and low-cost prototyping of digital systems, their counterpart for mixed-signal circuits is still an active area for research. This thesis presents a design of a field-programmable IC for analog/mixed-signal circuits, which solves many challenges with the previous works by performing analog functions in time domain. In order to realize the field-programmable analog functionality, time-domain configurable analog block (TCAB) is proposed. A single TCAB can be programmed to various analog circuits, including a time-to-digital converter, digitally-controlled oscillator, digitally-controlled delay cell, digital pulse-width modulator, and phase interpolator. In addition, the TCABs convey and process analog information using the frequency, pulse width, delay, or phase of digital pulses or pulse sequences, rather than using analog voltage or current signals for less susceptibility to attenuation and noise. This analog information expressed in the digital pulses makes it easy to implement scalable programmable interconnects among the TCABs. The architecture of field-programmable IC capable of emulating todays diverse mixed-signal systems is also introduced. In addition to the TCABs, the proposed IC also includes arrays of configurable logic blocks (CLBs) and programmable arithmetic logic units (ALUs) for programmable digital functions. By programming the functionality of the TCAB, CLB, and ALU arrays and configuring the interconnects, the chip can implement various mixed-signal systems. A prototype IC fabricated with 65-nm CMOS technology demonstrates the versatile programmability of the proposed TCAB and the IC by being successfully operated as a 1-GHz phase-locked loop with a 12.3-psrms integrated jitter, as a 50-MS/s analog-to-digital converter with a 32.5-dB SNDR, and as a 1.2-to-0.7V DC–DC converter with 95.5 % efficiency.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATIONS 1 1.2 THESIS CONTRIBUTION AND ORGANIZATION 5 CHAPTER 2 TIME-DOMAIN CONFIGURABLE ANALOG BLOCK 7 2.1 OVERVIEW OF THE TCAB 9 2.1.1. RECONFIGURABLE FUNCTIONALITY 9 2.1.2. TIME-DOMAIN SIGNAL PROCESSING 14 2.2 CIRCUIT IMPLEMENTATION OF THE TCAB 17 2.3 VERSATILE PROGRAMMABILITY OF TCAB 24 2.3.1. RELAXATION OSCILLATOR 24 2.3.2. DIGITALLY-CONTROLLED OSCILLATOR 28 2.3.3. DIGITAL PULSE-WIDTH MODULATOR 32 2.3.4. GATED OSCILLATOR 34 2.3.5. DIGITALLY-CONTROLLED DELAY CELL 35 2.3.6. PHASE INTERPOLATOR 37 2.3.7. MULTIPHASE DCO 39 2.3.8. NON-OVERLAPPING PULSE GENERATOR 41 2.4 TCAB ARRAY WITH PROGRAMMABLE INTERCONNECTS 43 2.4.1. TCAB ARRAY COMPOSITION 43 2.4.2. PROGRAMMABLE INTERCONNECTS 44 CHAPTER 3 PROPOSED ARCHITECTURE FOR FIELD-PROGRAMMABLE MIXED-SIGNAL IC 49 CHAPTER 4 CIRCUIT IMPLEMENTATION 54 4.1 CONFIGURABLE LOGIC BLOCK ARRAY 55 4.1.1. CONFIGURABLE LOGIC BLOCK 55 4.1.2. CLB ARRAY 56 4.2 ARITHMETIC LOGIC UNIT ARRAY 58 4.2.1. ARITHMETIC LOGIC UNIT 58 4.2.2. ALU ARRAY 61 4.3 INTERFACING BLOCKS 63 4.3.1. VOLTAGE-TO-TIME CONVERTER 64 4.3.2. PHASE-FREQUENCY DETECTOR 65 4.3.3. COUNTER BLOCK 66 4.3.4. TIME-TO-VOLTAGE CONVERTER 68 4.4 PROGRAM METHOD 70 CHAPTER 5 MIXED-SIGNAL EXAMPLES AND EXPERIMENTAL RESULTS 73 5.1 MEASUREMENT RESULTS OF TCAB 76 5.1.1. DIGITAL PULSE-WIDTH MODULATOR 76 5.1.2. DIGITALLY-CONTROLLED OSCILLATOR 79 5.1.3. GATED OSCILLATOR 81 5.2 DIGITAL PHASE-LOCKED LOOP 83 5.3 ANALOG-TO-DIGITAL CONVERTER 89 5.4 DCDC CONVERTER 94 CHAPTER 6 CONCLUSION 99 BIBLIOGRAPHY 101 초 록 108Docto

    Experiential Learning in Computer Engineering using Medium Complexity Logic Design Circuits

    Get PDF
    Abstract- One of the main tracks of research is about Low-cost computing devices in engineering educations. This track face the problem that conventual methods are either too trivial demonstrative educational examples, or too abstracted that it hides away the necessary details students should learn, or too complex industry grade demonstrations. This research targets to utilize lost cost computing devices, and produce medium complexity educational component using analog to digital, digital to analogy circuits integrated with Field Programmable Gate Array (FPGA) devices. A medium level complexity example is illustrated in this paper using Analog to Digital and Digital to Analog converter board attached to FPGA development board. A comparison between conventional methods and proposed methods is also presented showing advantages of FPGA based logic design implementations.A medium level complexity example is illustrated in this paper using Analog to Digital and Digital to Analog converter board attached to FPGA development board. A comparison between conventional methods and proposed methods is also presented showing advantages of FPGA based logic design implementations

    Low Resource FPGA Based Time-to-Digital Converter

    Get PDF
    For the precise measurement of the time difference between the arrival of different signals coming from the different channels, the time-to-digital converter (TDC) implemented in Field Programmable Gate Array (FPGA) is a very useful device. The TDC implemented so far are  basically tapped delay lines which provides a resolution of about 10 ps however such high resolution is necessary for some specific applications. So a low resource TDC implemented in FPGA is preferred which helps to measure the time difference between the signals.Keywords: analog-to-digital converter (ADC), resolution, DPLL, clock generation, jitte

    Challenges in Clock Synchronization for On-Site Coding Digital Beamformer

    Get PDF
    Typical radio frequency (RF) digital beamformers can be highly complex. In addition to a suitable antenna array, they require numerous receiver chains, demodulators, data converter arrays, and digital signal processors. To recover and reconstruct the received signal, synchronization is required since the analog-to-digital converters (ADCs), digital-to-analog converters (DACs), field programmable gate arrays (FPGAS), and local oscillators are all clocked at different frequencies. In this article, we present a clock synchronization topology for a multichannel on-site coding receiver (OSCR) using the FPGA as a master clock to drive all RF blocks. This approach reduces synchronization errors by a factor of 8, when compared to conventional digital beamformer

    A 7.4-Bit ENOB 600 MS/s FPGA-Based Online Calibrated Slope ADC without External Components

    Get PDF
    A slope analog-to-digital converter (ADC) amenable to be fully implemented on a digital field programmable gate array (FPGA) without requiring any external active or passive components is proposed in this paper. The amplitude information, encoded in the transition times of a standard LVDS differential input—driven by the analog input and by the reference slope generated by an FPGA output buffer—is retrieved by an FPGA time-to-digital converter. Along with the ADC, a new online calibration algorithm is developed to mitigate the influence of process, voltage, and temperature variations on its performance. Measurements on an ADC prototype reveal an analog input range from 0.3 V to 1.5 V, a least significant bit (LSB) of 2.6 mV, and an effective number of bits (ENOB) of 7.4-bit at 600 MS/s. The differential nonlinearity (DNL) is in the range between −0.78 and 0.70 LSB, and the integral nonlinearity (INL) is in the range from −0.72 to 0.78 LSB

    OCTAD-S: Digital Fast Fourier Transform Spectrometers by FPGA

    Full text link
    We have developed a digital fast Fourier transform (FFT) spectrometer made of an analog-to-digital converter (ADC) and a field-programmable gate array (FPGA). The base instrument has independent ADC and FPGA modules, which allow us to implement different spectrometers in a relatively easy manner. Two types of spectrometers have been instrumented, one with 4.096 GS/s sampling speed and 2048 frequency channels and the other with 2.048 GS/s sampling speed and 32768 frequency channels. The signal processing in these spectrometers has no dead time and the accumulated spectra are recorded in external media every 8 ms. A direct sampling spectroscopy up to 8 GHz is achieved by a microwave track-and-hold circuit, which can reduce the analog receiver in front of the spectrometer. Highly stable spectroscopy with a wide dynamic range was demonstrated in a series of laboratory experiments and test observations of solar radio bursts.Comment: 20 pages, 7 figures, accepted for publication in Earth, Planets and Spac
    corecore