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Metamaterial structures provide innovative ways to manipulate electromagnetic wave responses to realize new applications. This
paper presents a conformal wideband metamaterial array that achieves as much as 10 : 1 continuous bandwidth. This was done by
using interelement coupling to concurrently achieve significant wave slow-down and cancel the inductance stemming from the
ground plane. The corresponding equivalent circuit of the resulting array is the same as that of classic metamaterial structures. In
this paper, we present a wideband Marchand-type balun with validation measurements demonstrating the metamaterial (MTM)
array’s bandwidth from 280MHz to 2800MHz. Bandwidth reconfiguration of this class of array is then demonstrated achieving a
variety of band-pass or band-rejection responses within its original bandwidth. In contrast with previous bandwidth and frequency
response reconfigurations, our approach does not change the aperture’s or ground plane’s geometry, nor does it introduce external
filtering structures. Instead, the new responses are realized by making simple circuit changes into the balanced feed integrated with
the widebandMTM array. A variety of circuit changes can be employed using MEMS switches or variable lumped loads within the
feed and 5 example band-pass and band-rejection responses are presented. These demonstrate the potential of the MTM array’s
reconfiguration to address a variety of responses.

1. Introduction

Engineered materials, also referred to as metamaterials
(MTMs) [1], have been of strong interest to the electromag-
netics and optics communities. The last decade has provided
a large body of papers on realizing metamaterials to exploit
their novel phenomena for all sorts of applications from
antennas to radio frequency (RF) filters, frequency selective
surfaces, novel optical devices, and terahertz. The special
October 2011 IEEE Proceedings issue [1–6] provides a large
cross section of the theory and applications of metamaterials
as well as their use in achieving miniaturization, wave slow-
down, ultrathin ground planes, bandwidth control, cloaking,
and other special phenomena using optical nanocircuits and
other MTM techniques.

Typically, metamaterial and other miniaturization tech-
niques [7] result in narrow bandwidths.This is also true when
more traditional techniques such asmeandering/shaping and
lumped loading [8–10] are used. Miniaturizations based on
metamaterials using combinations of periodic arrangements

of dielectrics, magnetic materials, conductors, or lumped
circuit elements also suffer from narrow bandwidth [11–18].
Bandwidth reconfiguration is addressed using tunable leaky
wave antennas in [19–23]. However, these approaches employ
varactors or external field biasing with ferrite substrates
resulting in narrow instantaneous bandwidths.

A popular approach to achieve bandwidth or frequency
reconfiguration is that of using switches to alter the geome-
try/current flow of the antenna itself [24, 25]. This approach
relies on many different technologies including RF-MEMS
[26–32], pin diodes [33, 34], varactors [35–37], and optical
switches [38, 39]. The use of frequency selective surfaces for
reconfiguration and/or enhancing antenna bandwidth has
also been pursued [40]. Recently, microfluidic liquid metals
and plasma have been used to reconfigure MTMs for tunable
sensors and resonators [41–44] implying a strong potential
for their application to antennas.

While there is a large body of reconfigurable antennas
(including MTM antennas), their instantaneous bandwidth
continues to be small. Specifically, during the past decade
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most efforts on reconfiguration focused on extending the
antenna bandwidth or in shifting the aperture’s frequency
response using switches or piezoelectric materials. By con-
trast, herewith we propose a reconfiguration approach that
begins with a wideband metamaterial aperture [45, 46].
Because of this, the bandwidth, defined by (1) (where 𝜔max
and 𝜔min are the max and min frequency of operation resp.)

𝐵 =

(𝜔max − 𝜔min)

√𝜔max𝜔min
, (1)

for each reconfiguration is limited only by that of the original
aperture. An essential aspect of this aperture [46] is its
conformal nature, simplicity (planar array of dipoles or
bowtie elements), relatively small thickness, and wideband
Marchand balun. It is referred to as the tightly coupled dipole
array (TCDA) [47–49] and when integrated with a wideband
balun, we will note it as the TCDA-IB array [49–51].

It is important to note that the TCDA array and its
feed variations, even though conformal in nature, have been
shown to deliver instantaneous bandwidth that is comparable
and even greater than the nonconformal Vivaldi arrays [52,
53]. A version of the Vivaldi arrays such as the BAVA [54]
does have much improved performance and achieved an
impressive 10 : 1 bandwidth with a 𝜆hi/2 thick profile at
broadside. However, this decade bandwidth comes at the
expense of matching as the array is scanned (VSWR = 2.75
at broadside, and VSWR < 4 at 𝜃 = 45∘scan). Another
recent BAVA design [52] delivers 1.8–8GHz at broadside
(1.875–7.5GHz at 45∘ scan) with 4.44 : 1 and 4 : 1 bandwidths,
respectively, when VSWR < 2.

When considering conformal and/or planar wideband
arrays, a major challenge is the suppression of the common
mode that may appear in the feed structure of these arrays.
This requires a balanced feed that retains its performance
across the entire bandwidth. Various feeding arrangements
were employed in [47, 48, 55, 56] to suppress the mode and
ensure a balanced feed. However, in all these cases, retaining
a low VSWR implied narrower bandwidths that ranged from
2 : 1 up to at most 5 : 1. That is, the actual delivered bandwidth
of wideband arrays depends on several parameters: isolated
array bandwidth, thickness, feed impedance, common mode
suppression,maximumacceptableVSWR, losses, and achiev-
able beam scanning range (𝜃max). With this in mind, Doane
et al. [57, 58] used the following metric to compare wideband
arrays:

𝑃
𝐴
=

𝐵 log (1/ 

Γmax




)

cos (𝜃max)
, lossless arrays, (2)

𝑃
𝐴
=

𝐵 log (1 − 𝜂min)

2 cos (𝜃max)
, lossy arrays. (3)

In this expression, 𝐵 is the bandwidth noted above, Γmax
refers to the max reflection coefficient at the feed within
the aperture band, 𝜂min is the efficiency which accounts
for various losses and includes the term (1 − |Γmax|

2

), and
“log” implies the natural logarithm. As such, the array’s
performance is penalized for larger VSWRs or higher losses.
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Figure 1: Performance factors of selected dual-pol. arrays, alongside
fundamental limit from [56]. Here, 𝑃

𝐴

is a factor proportional to
the antenna’s bandwidth, 𝐵, with penalizations due to mismatches
when measured or computed at the scan angle 𝜃max. Γmax refers to
themaximum reflection coefficient at the feed across the bandwidth.
Note that the symbol “O” refers to broadside performance and
symbol “X” refers to the bandwidth performance at the scanning
angle of the array as indicated in the figure (see [58] for details).
Qualitatively, when the plot symbol is closer to the theoretical
optimal line, the antenna’s performance is also closer to having
optimal performance.

We note that the optimal values for 𝑃
𝐴

at broadside are
[57, 58]

𝑃
𝐴
≤ 𝜋𝜇
0
𝑘
0
ℎ, constant polarization,

𝑃
𝐴
≤ 2𝜋𝜇

0
𝑘
0
ℎ, arbitrary polarization.

(4)

Figure 1 plots 𝑃
𝐴
as a function of thickness, ℎ, for various

wideband arrays, including the MTM TCDA-IB array. It is
seen that variations of the TCDA-IB have larger 𝑃

𝐴
values

for the same thickness (the multilayer/lossy array in Figure 2
refers to the arrays in [49, 59] as they include losses in
the substrate). Specifically, the TCDA-IB delivers 6.3 : 1 at
broadside, 7.2 : 1 at 30∘, and 6.1 : 1 at 60∘ with VSWRs 2.25, 2.9,
and 3.9, respectively. For these TCDA arrays, the superstrate
makes them just about 𝜆hi/2 thick, where 𝜆hi refers to the
wavelength at the highest operational frequency. However,
if reflections from the ground plane are partially absorbed,
much larger bandwidths can be achieved. As an example,
the TCDA arrays in [49–51] achieved 21 : 1 bandwidth with
70% efficiency. Indeed, this is a small loss in gain of only
1.5 dB, but the bandwidth is nearly tripled as compared to
the lossless case. The ISPA consists of interweaved spirals
producing several different polarizations across its UWB and
thus is measured against (3) metric for 𝑃

𝐴
.
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Figure 2: Geometrical configuration of the tightly coupled array
discussed in [48, 49].

Given that recent MTM arrays can achieve large band-
width, these apertures can serve as common front-end
hardware to accommodate a variety of back-end receivers
operating from VHF up to several GHz. Concurrently, there
is strong interest to control the array bandwidth for software
radio applications, specifically, ensuring that the aperture
only operates within the band of interest. As such, it is
advantageous to reconfigure its operation or even reduce
its large bandwidth, if not needed, to minimize background
noise into the receiver. In this paper, we provide a tech-
nique for reducing the bandwidth of wideband arrays by
reconfiguring its balanced feed placed between the array and
ground plane. This is done using switches and LC loads to
control the operation of the Marchand [60, 61] balun as
displayed Figure 2. It is important to note that our approach
departs from traditional methods that shift the bandwidth
by integrating switches on the aperture. In the latter case,
the switches change the aperture geometry or reconnect the
aperture elements to shift the operational bandwidth. Instead,
our approach only reconfigures the balun behind the array
with a goal to limit its bandwidth or possibly forbid reception
over a section of the aperture’s original bandwidth.

Below, we begin with a presentation of the MTMs
operational concept (Section 2). This is followed by the
integrated balun-aperture design of the tightly coupled dipole
array (TCDA-IB) and measured performance (Section 3).
The reconfiguration concepts and performance are presented
in Section 4.

2. Wideband Metamaterial Arrays

Wideband low profile UWB arrays are of interest for many
communication and radar functions. As already noted, a
challenge in designing UWB arrays is that of maintaining low
profiles (small thickness) without reducing bandwidth. It is
well known that the bandwidth of low profile apertures can be
increased by usingmagnetic loading [62] to change the phase
of the ground plane’s reflection coefficient and therefore

introduce constructive addition of the fields directly radiated
from the array with those generated by the ground plane.
Alternatively, loss within the substrate [63] can be introduced
to suppress ground plane reflections. Electromagnetic band
gap (EBG) ground planes [64, 65] can also be introduced to
reduce array thickness, typically at the expense of bandwidth.

In contrast to modifying or suppressing ground plane
reflections, Munk et al. [66] (see also [67]) proposed cance-
lation of the ground plane’s inductance by introducing strong
capacitance between the dipoles. This concept is depicted
in Figure 3, showing an array of closely placed dipoles,
capacitively coupled to each other. The equivalent circuit
of the unit cell for this array configuration is represented
in Figure 3(b) and consists of shunt inductance (𝐿

2
) and

capacitance (𝐶
2
) along with a series capacitance (𝐶

1
) and

inductance (𝐿
1
). A resistor (𝑅) is included to account for

the array’s radiation resistance. We note that the shunt
inductance (𝐿

2
) representing the effect of the ground plane

and the series capacitance (𝐶
1
) representing the interdipole

coupling are the most critical components of the circuit.
To achieve large bandwidths, it is necessary for the capac-
itance 𝐶

1
to cancel the effect of the inductance 𝐿

2
across

a large bandwidth. Specifically, 𝐶
1
must vary as a function

of frequency to cancel the ground plane inductance of the
ground plane 𝑍

1+
= 𝑗2𝑅

𝐴0
tan(2𝜋ℎ/𝜆), where 𝑅

𝐴0
refers

to the characteristic impedance of the medium below the
ground plane. That is, referring to Figure 3(c), 𝑍

1+
must

be approximately equal to the conjugate of 𝑗𝑋
𝐴
. As such,

the input impedance seen by the array ports remains nearly
real across the bandwidth. We remark that the equivalent
circuit shown in Figure 3 is the same as that of metamaterial
structures and is the reason for referring to these arrays as
MTM structures.

Munk [45, 64] chose to realize the capacitive coupling
between the dipoles by placing them close to each other
or by interweaving the adjacent dipoles. This is depicted in
Figure 4 showing that a VSWR bandwidth of 3 : 1 is achieved.
More recently,Munk’s arraywas improved in bandwidth by as
much as 10 : 1 bandwidth or more using overlapping dipoles
as depicted in Figure 5. This array and feed configuration is
discussed in [49, 50].

Summarizing, the TCDA array achieves wide bandwidth
by employing the following features.

(i) Interelement Coupling. Typically, array elements are placed
apart to minimize mutual coupling. However, in MTM
arrays, coupling is not only desired but also enhanced and
adjusted to increase array bandwidth.

(ii) Much Smaller Array Elements. The coupled array concept
is concurrently used for miniaturization. The highest fre-
quency operation occurs when the feed-to-feed element sep-
aration becomes𝜆o/2 sincemultiple lobeswill appear beyond
this frequency. As an example, to achieve 10 : 1 bandwidth,
the feed-to-feed distance between dipole elements must be
𝜆o/20 or less at the lowest operating frequency. That is, the
interleaving or overlapping of dipoles is not only essential to
cancelling the ground plane’s inductance but is also critical to
achieving large bandwidths.
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(iii) Ground Plane (GP) Impedance. In standard arrays, the
GP is used as a reflecting surface with often undesirable
results. However, in MTM arrays the GP impedance (which
is inductive) becomes part of the design and is tuned to
increase array bandwidth. As depicted in Figures 4 and 5,
a simplistic interconnected dipole array exhibits much better
performance at higher frequencies (and over wide band-
width) when placed above a ground plane. The ground plane
height typically becomes ℎ = 𝜆o/7 at the highest operational
frequency and as small as ℎ = 𝜆o/70 at the lowest operational
frequency to achieve a 10 : 1 bandwidth.

(iv) Balanced Feeds across the Entire Bandwidth. The printed
Marchand-type balun shown in Figure 5 is essential to
suppressing the common mode whose presence would
generate traveling waves within the substrate. Such waves
would destructively interfere with theMTM’s array radiation,

particularly when the array is scanning towards lower angles.
The printed balun is therefore essential for good scanning
performance and for impedance matching, namely, for tran-
sitioning the coax feed’s 50Ω impedance to the array’s port
impedance across the entire bandwidth. Typically, TCDA
array’s impedance is around 180Ω. For the feed approach
used in Figure 5, a single Wilkinson divider is used to feed
a pair of dipoles with their Marchand baluns. Thus, the unit
cell becomes a pair of dipoles and not the typical single dipole.
This is done to double the impedance of the balun itself for
improvedmatching at the dipole terminals.The details of this
concept are depicted in Figure 6 [50].

(v) Superstrate. The superstrate of the TCDA array (see
Figure 5) plays an important role. It improves theMTM array
bandwidth by reducing the effective size of the array elements
and reduces the array impedance to facilitate matching with
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Figure 5: Illustration of the tightly coupled dipole array (TCDA) integrated with a balun to create the TCDA-IB array. Enhanced coupling
between dipole is achieved using overlapping dipoles at the array’s surface. The Marchand-type balun is depicted to the left and a single feed
is used to feed a pair of dipoles (creating the unit cell) to double the impedance from the Wilkinson divider for improved matching at the
dipole terminals.

the lower feed impedance. It further improves scanning, a
concept that has been well exploited in arrays and creates a
lensing effect to reduce substrate fields that may cause unde-
sirable surface effects. As is usually the case, its permittivity
cannot be too large so as not to negatively affect the array’s
VSWR and bandwidth.

In the next section, we proceed to discuss a specific
TCDA-IB array, providing information on its geometry and
measured performance. This array is designed to operate
from 280MHz to 2800MHz using a ground plane that is only
𝜆o/10 in thickness at 2800GHz and𝜆o/100 thick at the lowest
operational frequency. Subsequently, the balun of this class of
arrays is reconfigured using switches and LC loads to realize
smaller operational bandwidths or even band rejections.

3. Design and Performance of
a 10 : 1 MTM Array

The successful TCDA-IB arrays in [50, 51] provided a
methodology for designing conformal ultra wideband MTM
arrays. In this section, we follow this procedure to design
a lower frequency TCDA-IB array with 10 : 1 bandwidth
operating across 280MHz to 2800MHz. This class of arrays
will be used in the next section for reconfiguration. To
improve the bandwidth and scanning, parameters of the
TCDA-IB array, we pursued a reoptimization of its various
parameters.The size of this redesigned array was 10.36 cm (as
compared to 6.22 cm in [51]) to achieve greater than 0 dB gain
from 280MHz to 2800MHz. Also, the array aperture size was
increased to 54.33 cm × 54.33 cm. The details are depicted
in Figures 7 and 8. After reoptimization of all geometrical

Table 1: Values of the all parameters used for the construction of the
TCDA-IB array depicted in Figures 5–9.

Model parameter Value Model parameter Value
dunitcell 56.6mm dipolelength 7.8mm
height 103.1mm diplewidth 26.7mm
hsuperstrate 33.3mm squarelength 16.7mm
zRCard 51.6mm squarewidth 26.7mm
hPD 60mm dipoleedgegap 1.2mm
extralength 3.3mm subthickness 24mil
dgnd 4.1mm dipolesubthickness 12mil
dshort 8.3mm dipolegap 1.2mm
zshort 45.9mm subedge 10mil
zopen 21.3mm ddipolecon 2.5mm
dopen 2.0mm zdipolecon 2.2mm
dtrace1 7mil dtransition 3.1mm
dtrace2 11mil subthickness 24mil
dtrace3 13.2mil dipolesubthickness 12mil
rvias 8.3mil dipolegap 1.2mm
dvias 13.3mil

parameters, we obtained the dimensions listed in Figure 8
and Table 1.

The overall TCDA-IB structure was constructed using a
total of sixteen printed circuit boards (PCBs) placed vertically
below the aperture as depicted in Figure 5. Out of these
PCBs, 8 constituted the feed baluns (see Figure 7). The other
8 were associated with the printed dipoles. As illustrated
in Figure 10, the whole structure is then enclosed in a
frame with a Styrofoam molding (if needed) to support the
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𝐸
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𝐻
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impedance is reduced by a factor of two. Combining the halves in
parallel reduces the impedance by another factor of two (power
divider from 50Ω to 100Ω). (a) Square 377Ω unit cell and (b) two
188Ω “half ” unit cells from [48].

aperture. Photos at different stages of the assembly process
for constructing the TCDA-IB are provided in Figure 10. As
shown in these photos, the PCBs for the feeds are placed
vertically with respect to the array plane. These feeding
boards are then held in place by a set of metal rods placed just
under the ground plane.The gaps between the feeding boards
are then filled with Styrofoam to make the structure stable
and easy to handle. It is important to note that the Styrofoam
does not impact the array’s performance as its permittivity
is comparable to air. The dipole PCBs are placed on top and
parallel to the ground plane. It is important to note that the
dipole PCB boards include strategically placed slots within
the bowtie dipoles for anchoring the balun feed ends (see
parameter ddipolecon in Figure 9). A low loss polyethylene
superstrate 3.33 cm thick and having a relative dielectric
constant of 𝜀

𝑟
= 2 : 25, with a loss tangent of tan 𝛿 = 0.0007

13.69
10.36

Figure 7: Detail of the 8 PCB boards balun feeds with the
Winkinson divider below the ground plane. All dimensions are in
cm.

54.33

54.33

Figure 8: Dipole arrangement of the TCDA-IB array in Figure 6
forming the top of the 8 × 8 unit cell array (16 × 16 bowtie dipoles).
All dimensions are in cm.

was placed on top of the array PCB [68] for improving
efficiency and scanning. If needed, a resistive sheet can be
placed between the dipole array and the ground plane to
improve bandwidth at the expense of aperture efficiency. For
the case discussed in [49], the aperture efficiency is greater
than 70%. It should be noted that the efficiency with the R-
card included is no worse than 70% and reaches its lowest
value when the ground plane thickness is around 𝜆/2.

Measurements were conducted by exciting each array
port separately while the other 63 ports were terminated in
50Ω. The UEAEP method [69] was then used to synthesize
the gain and patterns at different scan angles. The cross pol
was also calculated using Ludwig’s 3rd definition [70]. We
remark that 2 identical versions of the TCDA-IB array were
constructed and measured. These are referred to as Antenna
1 and Antenna 2 in the gain data given in Figure 11. As
demonstrated, the measured 8 × 8 array measurements are
in complete agreement with calculations, delivering >0 dB
realized gain across a 10 : 1 bandwidth. It is important to note
that the VSWR bandwidth can be defined to show greater
bandwidths. For our design, the simulated VSWR is depicted
in Figure 12 showing a VSWR < 2.5 from 200MHz to about
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Figure 9: Parameter definitions for the TCDA-IB array are shown in Figure 5. This figure provides a listing of the various geometrical
parameters that define the integrated balun. Values for the shown parameters are given in Table 1.

Figure 10: Fabrication stages of the TCDA-IB array depicted in Figures 5–9. The lower right figure refers to the measurement setup in the
Ohio State’s compact range.The feeding antenna during measurements is a linearly polarized horn as the array itself is also linearly polarized.
Note that the array was measured in the presence of a metallic ground plane of 360 cm × 240 cm in size.
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2400MHz. This implied a 12 : 1 bandwidth for the infinite
array. Because of the array’s optimization, this bandwidth is a
bit greater than that given in [51] which reaches a bandwidth
of 9.2 : 1 with a VSWR < 3. Of course, the finite 8 × 8 array will
have a larger VSWRdue to truncation effects of the periphery
elements. Indeed, simulations of the 8 × 8 array shown in
Figure 12 demonstrate the larger VSWR.

The beam scanning performance of the fabricated TCDA-
IB array in Figure 10 was measured at 600MHz, 1200MHz,
1800MHz, and 2400MHz. Figures 13 and 14 show the
scanned patterns at 0, ±15, ±30, and ±45 degrees for these
frequencies. Specifically, Figure 13 shows the E-plane (polar-
ization parallel to the dipoles) patterns and Figure 14 refers

to the H-plane patterns. It is indeed impressive to observe
the nearly perfect agreement between the measured and
simulated scan patterns. Moreover, the cross-polarization
levels are 20–30 dB below the copolarization curves.

It is well known that the worst cross-polarization occurs
while scanning in the diagonal plane (D-plane). Therefore,
our measurements in this plane were carefully completed.
Specifically, time gating was used during measurements to
remove diffractions from the ground plane edges. The mea-
sured patterns are depicted in Figure 15. As in the case of the
co-pol measurements, we again observe distinct lobes while
scanning. Moreover, the cross-polarization levels remain
20 dB below the copolarized gain level.

Having validated this TCDA-IB array design, we next
proceed to introduce methods for reconfiguring the band-
width of this class of arrays. Specifically, we introduce
methods to reduce its bandwidth or to simply reject a defined
set of frequencies across its wide operating bandwidth.

4. Bandwidth Reconfigurable
Metamaterial Array

Bandwidth reconfiguration of the MTM array in Figures
2 and 5 can be accomplished in one of three locations
outlined in Figure 16. Specifically, we can choose to (1)
reconfigure the geometry of the dipoles across the aperture
using switches to control the interelement capacitance, (2)
integrate filters or geometrically reconfigure the Marchand
balun feed depicted more simplistically in Figure 2, and (3)
reconfigure the ground plane’s location, impedance or by
introducing a frequency selective surface (FSS) in place of the
resistive sheet depicted in Figure 5. Indeed, the possibilities
for array bandwidth/impedance reconfiguration are rather
extensive and have yet to be exploited for this class of
arrays. We may actually view the EBG ground planes [64]
and FSS insertions [63] as reconfigurations that belong to
the 3rd category noted above and in Figure 16. However, in
the authors’ opinion, reconfiguration of the aperture or the
ground planes can be challenging to accomplish in practice
and may not offer as much flexibility. Specifically, switches
within the aperture are difficult integrate with the superstrate.
In the case of ground plane reconfigurations, the number
of parameters to control is limited and cumbersome to
implement. By contrast, reconfiguration of the Marchand
balun offers several control parameters. Among them are
the balun’s stripline impedance, short circuit, and open
circuit stublengths and impedances. Below, we consider these
options inmore detail and provide reconfiguration examples.

To better assess the reconfiguration options, it is impor-
tant to first cast the array aperture and its feeding configu-
ration into an equivalent circuit. The steps to doing so are
depicted in Figure 17. Indeed, the transmission line represen-
tation at the top of Figure 17 is precise as it provides circuit
parameters to account for the aperture (dipole elements),
superstrate, substrate, ground plane, and balun. We note that
the balanced feed can be characterized by the microstrip
line impedance, 𝑍

1
, the open stub’s impedance, 𝑍OC, and the

short stub’s impedance, 𝑍SC. The corresponding geometrical
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(a) Radiation pattern of the TCDA-IB array at ±45, ±30, ±15, and 0 deg
from broadside at 2.4GHz
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(b) Radiation pattern of the TCDA-IB array at ±45, ±30, ±15, and 0 deg
from broadside at 1.8 GHz
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(c) Radiation pattern of the TCDA-IB array at ±45, ±30, ±15, and 0 deg
from broadside at 1.2 GHz
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(d) Radiation pattern of the TCDA-IB array at±45,±30,±15, and 0 deg from
broadside at 0.6GHz

Figure 13: E-plane scanning for the TCDA-IB array defined in Figures 5–9. Comparison of measured versus simulated patterns at various
scan angles. The measured cross-polarization levels are also included.

components are noted by the circled numbers 2, 3, and 4 at
the top of Figure 17. We assert that modification and control
of these parameters allow for substantial and full control
of the MTM array’s band-pass and band-rejection features.
However, in modifying the parameters 𝑍OC and 𝑍SC, it is
important to concurrently keep in mind the fundamental
operation of the balun as depicted in Figure 18. Specifically,
the short circuit stub (closed loop in the geometry) ensures
that the common mode is suppressed using a symmetric
geometry.Therefore, modification of𝑍SC can only be realized
by making the loop or the stub shorter. However, both sides
of the loop need to be kept identical to ensure cancellation of
the commonmode. On the other hand,𝑍OC can be modified
in amore arbitrary fashion.The possibilities are rather broad,
and below we demonstrate that modification/control of 𝑍OC
allows for substantial control.

As a first step in modifying 𝑍OC we consider the sim-
plified equivalent circuit in Figure 19 implemented on a
substrate using microstrip line traces as depicted in Figures 2
and 5.The goal in designing this wideband balun is to ensure
that 𝑍in is maintained close to the feedline’s characteristic
impedance 𝑍

1
. For the Marchand balun, it is necessary that

𝑍OC and 𝑍SC satisfy the condition 𝑍OC ≪ 𝑍bal ≪ 𝑍SC,
where 𝑍bal is the impedance at the antenna terminals and
must be ideally kept equal to the complex conjugate of𝑍TCDA
across the band of interest. In reconfiguring the MTM array’s
performance our goal is to ensure that 𝑍bal matches 𝑍TCDA
only for the band of interest or is highly mismatched across
the band rejection of interest.

To demonstrate MTM bandwidth reconfiguration, we
proceed to use the equivalent circuit in Figure 19 and opti-
mize its parameters withinAgilent’s AdvancedDesign System
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(a) Radiation pattern of the TCDA-IB array at ±45, ±30, ±15, and
0 deg from broadside at 2.4 GHz
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(b) Radiation pattern of the TCDA-IB array at ±45, ±30, ±15, and 0 deg
from broadside at 1.8 GHz
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(c) Radiation pattern of the TCDA-IB array at ±45, ±30, ±15, and
0 deg from broadside at 1.2 GHz
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(d) Radiation pattern of the TCDA-IB array at ±45, ±30, ±15, and 0 deg
from broadside at 0.6GHz

Figure 14: H-plane scanning for the TCDA-IB array defined in Figures 5–9. Comparison of themeasured versus simulated patterns at various
scan angles. The measured cross-polarization levels are also included.

(ADS). As a first step, we select the parameters as follows:
𝑍Feed = 100Ω, 𝑍0 = 𝑍Sub = 𝑍Sup = 188.5Ω, 𝐿dipole =
2.2 nH, 𝐶coupling = 2.3 pF, ℎsup = 60

∘, ℎsub = 90
∘, character-

istic impedance of 𝑍SC = 312Ω, 𝑙SC = 58
∘ all defined

at 2.5 GHz. Also, we chose 𝑍
1
= 78Ω and 𝑙

1
= 66

∘.
Using these parameters, we next proceeded to only modify
𝑍OC and observe the bandwidth of the MTM array for
various choices. Specifically, as depicted in Figure 20, a load
is inserted at the end of the open stub consisting of a series
inductor (𝐿

1
) and capacitor (𝐶

1
) and a shunt (from the stub

to the ground) inserted inductor (𝐿
2
) and capacitor (𝐶

2
).

For greater flexibility, a switch SW1 can be closed or open to
effectively short out the 𝐿

1
and 𝐶

1
loads.

Table 2 provides 5 different reconfiguration states of the
𝐿
1
, 𝐶
1
, 𝐿
2
, and 𝐶

2
and SW1 parameter choices. The chosen

states include the cases as follows.

State 1: 𝐿
2
= 2.5 nH is the only load turned on using

SW1 and a switch that activates the load.

State 2: 𝐶
2
= 1.75 pF is the only load turned on using

SW1 and a switch that activates the load.
State 3: 𝐿

2
= 2.5 nH and 𝐶

2
= 1.75 pF, both turned on

(but not 𝐿
1
and 𝐶

1
).

State 4: only 𝐿
1
= 1.3 nH and 𝐶

1
= 3 pF are activated.

State 5: completely absent load at the termination of
the open stub (unconfigured).

The last state (State 5) is simply the broadbandMTMarray
as originally designed and shown in Figure 20. The VSWR
responses for the other 4 states are depicted in Figure 21.
We observe that States 1 and 2 correspond to narrow band-
pass bandwidths at the edges of the original unconfigured
VSWR response of the MTM array. State 3 refers to another
band-pass response in themiddle of theMTM’s array original
unconfigured bandwidth. Finally, State 4 shows a band-
rejection response realized with 𝐿

1
= 1.3 nH and 𝐶

1
= 3 pF

at the terminals of the open stub in the balun.
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(a) Radiation pattern of the TCDA-IB array at±45,±30,±15, and 0 deg
from broadside at 2.4 GHz
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(b) Radiation pattern of the TCDA-IB array at ±45, ±30, ±15, and 0 deg
from broadside at 1.8 GHz
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(c) Radiation pattern of the TCDA-IB array at±45,±30,±15, and 0 deg
from broadside at 2.4GHz
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(d) Radiation pattern of the TCDA-IB array at ±45, ±30, ±15, and 0 deg
from broadside at 1.8 GHz

Figure 15:Measured diagonal plane scanning for the TCDA-IB array defined in Figures 5–9. No simulation data is available due to demanding
computational complexity as symmetry cannot be applied to ease the computational burden. The cross-polarization levels are also included.
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Figure 16: Bandwidth reconfiguration concepts: (a) tunable filtering integrated in the aperture (1), feed (balun) (2), or the ground plane (3);
(b) representative bandwidth response due to reconfiguration.
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1-1 correspondence to the actual
balanced feed (balun) to its equivalent
circuit representation
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Figure 17: Equivalent circuit representation of the TCDA-IB array in Figure 5.The top graphic provides a one to one correspondence between
the Marchand balun in Figure 2 and its equivalent transmission line circuit representation.The bottom circuit is a recasting of the equivalent
transmission line circuit into a more typical RF circuit showing the open (𝑍OC) and short circuit (𝑍SC) impedances of the balun itself.

Table 2: MTM array performance for various choices of the load termination of the open stub.

Chosen state SW1 𝐶
1

𝐿
1

𝐶
2

𝐿
2

Configuration Bandwidth (%) Bandwidth (MHz)
1 X X high Pass 9.3 400
2 X X low Pass 58 515
3 X X X bandpass 53 1,300
4 X X band-stop 22∗ 565∗

5 unconfigured UWB 161 3,960
X = activated (on)/closed switch; no marker = deactivated (off)/open switch.
Bandwidth is listed for VSWR < 3; ∗indicates band rejection bandwidth.
𝐶
1
= 3 pF, 𝐿

1
= 1.3 nH, 𝐶

2
= 1.75 pF, and 𝐿

2
= 2.5 nH.

All other MTM array circuit parameters are given in Figure 20.



International Journal of Antennas and Propagation 13

Top
Bottom

Common mode
rejection+ −Balanced Zbal

Z1

ZOC ZSC

Current 

Currents cancel Unbalanced Zfeed

Ground 
plan

vectors

(a) (b) (c)

Figure 18: MTM array microstrip balun functionality depicting balanced currents and common mode rejection.
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Figure 20: MTM array bandwidth reconfiguration by varying the loads at the termination of the open stub. For the VSWR response to the
left stub it is simply left open, implying SW1 is open and𝐶

2

/𝐿
2

are off (unconfigured case).The other parameters:𝑍Feed = 100Ω,𝑍0 = 𝑍Sub =
𝑍Sup = 188.5Ω, 𝐿dipole = 2.2 nH, 𝐶coupling = 2.3 pF, ℎsup = 60

∘

, ℎsub = 90
∘, characteristic impedance of 𝑍OC = 11Ω, 𝑙oc = 87

∘, characteristic
impedance of 𝑍SC = 312Ω, 𝑙SC = 58

∘ with all electrical lengths given at 2.5 GHz.
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Figure 21: VSWR versus frequency for Table 2 reconfiguration states.

The above reconfiguration choices indicate that we
have significant control in generating band-pass and band-
rejection responses starting with the broadband MTM array
in Figures 2 and 5. Moreover, bandwidth reconfiguration is
achieved using simple loads at the terminal of the open stub
of the balun feed behind the MTM array. We can achieve
any response across the original MTM array bandwidth by
simply using varactors to change 𝐶

1
and 𝐶

2
and/or MEMS

switches as reported in [71] or pin diodes to change the
length of the open or shorted stubs in the balun. Also, the
load’s reactive impedance can be realized in practice using
variable length stubs. Both, theMEMS switches and capacitor
banks are known to have low losses. Therefore, their impact
on the overall antenna performance should be quite small.
If varactors are necessary for continuous precise tuning,
care in choosing the optimum low-loss component would
be imperative. Maximum allowable loss would dictate the
highest tuning ratio attainable by the varactor diode.

5. Concluding Remarks

In this paper we reviewed the concept of conformal wideband
metamaterial (MTM) arrays with asmuch as 10 : 1 continuous
bandwidth in the presence of realistic feeds. MTM array
design guidelines and performance validation were provided
via measurements. Array scanning was demonstrated and we
noted that a key aspect of the broadband response was due to
(a) the array’s interelement coupling to cancel the inductance
stemming from the ground plane and (b) the balun feed
that suppressed common modes and achieved impedance
matching across the entire bandwidth.

Equivalent circuit representations of the array were pre-
sented to aid in the design and reconfiguration of the array.
These circuit representations were used to develop simple
bandwidth reconfiguration schemes. Instead of reconfiguring
the geometry of the antenna’s aperture or the ground plane,
we instead resorted to simple changes in the microstrip
lines present in the balanced feed. It was shown that the
addition of simple lumped capacitors or inductors at the stub’s
termination can provide substantial bandwidth control by
simply switching on or off the load inductors or capacitors.
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