271 research outputs found

    On scheduling input queued cell switches

    Get PDF
    Output-queued switching, though is able to offer high throughput, guaranteed delay and fairness, lacks scalability owing to the speed up problem. Input-queued switching, on the other hand, is scalable, and is thus becoming an attractive alternative. This dissertation presents three approaches toward resolving the major problem encountered in input-queued switching that has prohibited the provision of quality of service guarantees. First, we proposed a maximum size matching based algorithm, referred to as min-max fair input queueing (MFIQ), which minimizes the additional delay caused by back pressure, and at the same time provides fair service among competing sessions. Like any maximum size matching algorithm, MFIQ performs well for uniform traffic, in which the destinations of the incoming cells are uniformly distributed over all the outputs, but is not stable for non-uniform traffic. Subse-quently, we proposed two maximum weight matching based algorithms, longest normalized queue first (LNQF) and earliest due date first matching (EDDFM), which are stable for both uniform and non-uniform traffic. LNQF provides fairer service than longest queue first (LQF) and better traffic shaping than oldest cell first (OCF), and EDDEM has lower probability of delay overdue than LQF, LNQF, and OCF. Our third approach, referred to as store-sort-and-forward (SSF), is a frame based scheduling algorithm. SSF is proved to be able to achieve strict sense 100% throughput, and provide bounded delay and delay jitter for input-queued switches if the traffic conforms to the (r, T) model

    Scheduling algorithms for high-speed switches

    Get PDF
    The virtual output queued (VOQ) switching architecture was adopted for high speed switch implementation owing to its scalability and high throughput. An ideal VOQ algorithm should provide Quality of Service (QoS) with low complexity. However, none of the existing algorithms can meet these requirements. Several algorithms for VOQ switches are introduced in this dissertation in order to improve upon existing algorithms in terms of implementation or QoS features. Initially, the earliest due date first matching (EDDFM) algorithm, which is stable for both uniform and non-uniform traffic patterns, is proposed. EDDFM has lower probability of cell overdue than other existing maximum weight matching algorithms. Then, the shadow departure time algorithm (SDTA) and iterative SDTA (ISDTA) are introduced. The QoS features of SDTA and ISDTA are better than other existing algorithms with the same computational complexity. Simulations show that the performance of a VOQ switch using ISDTA with a speedup of 1.5 is similar to that of an output queued (OQ) switch in terms of cell delay and throughput. Later, the enhanced Birkhoff-von Neumann decomposition (EBVND) algorithm based on the Birkhoff-von Neumann decomposition (BVND) algorithm, which can provide rate and cell delay guarantees, is introduced. Theoretical analysis shows that the performance of EBVND is better than BVND in terms of throughput and cell delay. Finally, the maximum credit first (MCF), the Enhanced MCF (EMCF), and the iterative MCF (IMCF) algorithms are presented. These new algorithms have the similar performance as BNVD, yet are easier to implement in practice

    Design of a scheduling mechanism for an ATM switch

    Get PDF
    Includes bibliographical references.In this dissenation, the candidate proposes the use of a ratio to multiply the weights used in the matching algorithm to control the delay that individual connections encounter. We demonstrate the improved characteristics of a switch using a ratio presenting results from simulations. The candidate also proposes a novel scheduling mechanism for an input queued ATM switch. In order to evaluate the performance of the scheduling mechanism in terms of throughput and fairness, the use of various metrics, initially proposed in the literature to evaluate output buffered switches are evaluated, adjusted and applied to input scheduling. In particular the Worst-case Fairness Index (WFl) which measures the maximum delay a connection will encounter is derived for use in input queued switches

    On packet switch design

    Get PDF

    Switching techniques for broadband ISDN

    Get PDF
    The properties of switching techniques suitable for use in broadband networks have been investigated. Methods for evaluating the performance of such switches have been reviewed. A notation has been introduced to describe a class of binary self-routing networks. Hence a technique has been developed for determining the nature of the equivalence between two networks drawn from this class. The necessary and sufficient condition for two packets not to collide in a binary self-routing network has been obtained. This has been used to prove the non-blocking property of the Batcher-banyan switch. A condition for a three-stage network with channel grouping and link speed-up to be nonblocking has been obtained, of which previous conditions are special cases. A new three-stage switch architecture has been proposed, based upon a novel cell-level algorithm for path allocation in the intermediate stage of the switch. The algorithm is suited to hardware implementation using parallelism to achieve a very short execution time. An array of processors is required to implement the algorithm The processor has been shown to be of simple design. It must be initialised with a count representing the number of cells requesting a given output module. A fast method has been described for performing the request counting using a non-blocking binary self-routing network. Hardware is also required to forward routing tags from the processors to the appropriate data cells, when they have been allocated a path through the intermediate stage. A method of distributing these routing tags by means of a non-blocking copy network has been presented. The performance of the new path allocation algorithm has been determined by simulation. The rate of cell loss can increase substantially in a three-stage switch when the output modules are non-uniformly loaded. It has been shown that the appropriate use of channel grouping in the intermediate stage of the switch can reduce the effect of non-uniform loading on performance

    Deadline-ordered burst-based parallel scheduling strategy for IP-over-ATM with QoS support.

    Get PDF
    Siu Chun.Thesis (M.Phil.)--Chinese University of Hong Kong, 2001.Includes bibliographical references (leaves 66-68).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Thesis Overview --- p.3Chapter 2 --- Background and Related work --- p.4Chapter 2.1 --- Emergence of IP-over-ATM --- p.4Chapter 2.2 --- ATM architecture --- p.5Chapter 2.3 --- Scheduling issues in output-queued switch --- p.6Chapter 2.4 --- Scheduling issues in input-queued switch --- p.18Chapter 3 --- The Deadline-ordered Burst-based Parallel Scheduling Strategy --- p.23Chapter 3.1 --- Introduction --- p.23Chapter 3.2 --- Switch and queueing model --- p.24Chapter 3.2.1 --- Switch model --- p.24Chapter 3.2.2 --- Queueing model --- p.25Chapter 3.3 --- The DBPS Strategy --- p.26Chapter 3.3.1 --- Motivation --- p.26Chapter 3.3.2 --- Strategy --- p.31Chapter 3.4 --- The Deadline-ordered Burst-based Parallel Iterative Matching --- p.33Chapter 3.4.1 --- Algorithm --- p.34Chapter 3.4.2 --- An example of DBPIM --- p.35Chapter 3.5 --- Simulation results --- p.33Chapter 3.6 --- Discussions --- p.46Chapter 3.7 --- Future work --- p.47Chapter 4 --- The Quasi-static DBPIM Algorithm --- p.50Chapter 4.1 --- Introduction --- p.50Chapter 4.2 --- Quasi-static path scheduling principle --- p.51Chapter 4.3 --- Quasi-static DBPIM algorithm --- p.56Chapter 4.4 --- An example of Quasi-static DBPIM --- p.59Chapter 5 --- Conclusion --- p.63Bibliography --- p.6

    Joint buffer management and scheduling for input queued switches

    Get PDF
    Input queued (IQ) switches are highly scalable and they have been the focus of many studies from academia and industry. Many scheduling algorithms have been proposed for IQ switches. However, they do not consider the buffer space requirement inside an IQ switch that may render the scheduling algorithms inefficient in practical applications. In this dissertation, the Queue Length Proportional (QLP) algorithm is proposed for IQ switches. QLP considers both the buffer management and the scheduling mechanism to obtain the optimal allocation region for both bandwidth and buffer space according to real traffic load. In addition, this dissertation introduces the Queue Proportional Fairness (QPF) criterion, which employs the cell loss ratio as the fairness metric. The research in this dissertation will show that the utilization of network resources will be improved significantly with QPF. Furthermore, to support diverse Quality of Service (QoS) requirements of heterogeneous and bursty traffic, the Weighted Minmax algorithm (WMinmax) is proposed to efficiently and dynamically allocate network resources. Lastly, to support traffic with multiple priorities and also to handle the decouple problem in practice, this dissertation introduces the multiple dimension scheduling algorithm which aims to find the optimal scheduling region in the multiple Euclidean space

    A Slotted Ring Test Bed for the Study of ATM Network Congestion Management

    Get PDF
    This thesis addresses issues raised by the proposed Broadband Integrated Services Digital Network which will provide a flexible combination of integrated services traffic through its cell-based Asynchronbus Transport Mode (ATM). The introduction of a cell-based, connection-oriented, transport mode brings with it new technical challenges for network management. The routing of cells, their service at switching centres, and problems of cell congestion not encountered in the existing network, are some of the key issues. The thesis describes the development of a hardware slotted ring testbed for the investigation of congestion management in an ATM network. The testbed is designed to incorporate a modified form of the ORWELL protocol to control media access. The media access protocol is analysed to give a model for maximum throughput and reset interval under various traffic distributions. The results from the models are compared with measurements carried out on the testbed, where cell arrival statistics are also varied. It is shown that the maximum throughput of the testbed is dependent on both traffic distribution and cell arrival statistics. The testbed is used for investigations in a heterogeneous traffic environment where two classes of traffic with different cell arrival statistics and quality of service requirements are defined. The effect of prioritisation, media access protocol, traffic intensity, and traffic source statistics were investigated by determining an Admissible Load Region (ALR) for a network station. Conclusions drawn from this work suggest that there are many problems associated with the reliable definition of an ALR because of the number of variable parameters which could shift the ALR boundary. A suggested direction for further work is to explore bandwidth reservation and the concept of equivalent capacity of a connection, and how this can be linked to source control parameters

    A formalism for describing and simulating systems with interacting components.

    Get PDF
    This thesis addresses the problem of descriptive complexity presented by systems involving a high number of interacting components. It investigates the evaluation measure of performability and its application to such systems. A new description and simulation language, ICE and it's application to performability modelling is presented. ICE (Interacting ComponEnts) is based upon an earlier description language which was first proposed for defining reliability problems. ICE is declarative in style and has a limited number of keywords. The ethos in the development of the language has been to provide an intuitive formalism with a powerful descriptive space. The full syntax of the language is presented with discussion as to its philosophy. The implementation of a discrete event simulator using an ICE interface is described, with use being made of examples to illustrate the functionality of the code and the semantics of the language. Random numbers are used to provide the required stochastic behaviour within the simulator. The behaviour of an industry standard generator within the simulator and different methods of number allocation are shown. A new generator is proposed that is a development of a fast hardware shift register generator and is demonstrated to possess good statistical properties and operational speed. For the purpose of providing a rigorous description of the language and clarification of its semantics, a computational model is developed using the formalism of extended coloured Petri nets. This model also gives an indication of the language's descriptive power relative to that of a recognised and well developed technique. Some recognised temporal and structural problems of system event modelling are identified. and ICE solutions given. The growing research area of ATM communication networks is introduced and a sophisticated top down model of an ATM switch presented. This model is simulated and interesting results are given. A generic ICE framework for performability modelling is developed and demonstrated. This is considered as a positive contribution to the general field of performability research

    Contention resolution in optical packet-switched cross-connects

    Get PDF
    corecore