245 research outputs found

    Scalable High-Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning

    Get PDF
    Feature selection is a critical step in deformable image registration. In particular, selecting the most discriminative features that accurately and concisely describe complex morphological patterns in image patches improves correspondence detection, which in turn improves image registration accuracy. Furthermore, since more and more imaging modalities are being invented to better identify morphological changes in medical imaging data,, the development of deformable image registration method that scales well to new image modalities or new image applications with little to no human intervention would have a significant impact on the medical image analysis community. To address these concerns, a learning-based image registration framework is proposed that uses deep learning to discover compact and highly discriminative features upon observed imaging data. Specifically, the proposed feature selection method uses a convolutional stacked auto-encoder to identify intrinsic deep feature representations in image patches. Since deep learning is an unsupervised learning method, no ground truth label knowledge is required. This makes the proposed feature selection method more flexible to new imaging modalities since feature representations can be directly learned from the observed imaging data in a very short amount of time. Using the LONI and ADNI imaging datasets, image registration performance was compared to two existing state-of-the-art deformable image registration methods that use handcrafted features. To demonstrate the scalability of the proposed image registration framework image registration experiments were conducted on 7.0-tesla brain MR images. In all experiments, the results showed the new image registration framework consistently demonstrated more accurate registration results when compared to state-of-the-art

    Surface Registration for Pharyngeal Radiation Treatment Planning

    Get PDF
    Endoscopy is an in-body examination procedure that enables direct visualization of tumor spread on tissue surfaces. In the context of radiation treatment planning for throat cancer, there have been attempts to fuse this endoscopic information into the planning CT space for better tumor localization. One way to achieve this CT/Endoscope fusion is to first reconstruct a full 3D surface model from the endoscopic video and then register that surface into the CT space. These two steps both require an algorithm that can accurately register two or more surfaces. In this dissertation, I present a surface registration method I have developed, called Thin Shell Demons (TSD), for achieving the two goals mentioned above. There are two key aspects in TSD: geometry and mechanics. First, I develop a novel surface geometric feature descriptor based on multi-scale curvatures that can accurately capture local shape information. I show that the descriptor can be effectively used in TSD and other surface registration frameworks, such as spectral graph matching. Second, I adopt a physical thin shell model in TSD to produce realistic surface deformation in the registration process. I also extend this physical model for orthotropic thin shells and propose a probabilistic framework to learn orthotropic stiffness parameters from a group of known deformations. The anisotropic stiffness learning opens up a new perspective to shape analysis and allows more accurate surface deformation and registration in the TSD framework. Finally, I show that TSD can also be extended into a novel groupwise registration framework. The advantages of Thin Shell Demons allow us to build a complete 3D model of the throat, called an endoscopogram, from a group of single-frame-based reconstructions. It also allows us to register an endoscopogram to a CT segmentation surface, thereby allowing information transfer for treatment planning.Doctor of Philosoph

    Reconstructing Geometry from Its Latent Structures

    Get PDF
    Our world is full of objects with complex shapes and structures. Through extensive experience humans quickly develop an intuition about how objects are shaped, and what their material properties are simply by analyzing their appearance. We engage this intuitive understanding of geometry in nearly everything we do.It is not surprising then, that a careful treatment of geometry stands to give machines a powerful advantage in the many tasks of visual perception. To that end, this thesis focuses on geometry recovery in a wide range of real-world problems. First, we describe a new approach to image registration. We observe that the structure of the imaged subject becomes embedded in the image intensities. By minimizing the change in shape of these intensity structures we ensure a physically realizable deformation. We then describe a method for reassembling fragmented, thin-shelled objects from range-images of their fragments using only the geometric and photometric structure embedded in the boundary of each fragment. Third, we describe a method for recovering and representing the shape of a geometric texture (such as bark, or sandpaper) by studying the characteristic properties of texture---self similarity and scale variability. Finally, we describe two methods for recovering the 3D geometry and reflectance properties of an object from images taken under natural illumination. We note that the structure of the surrounding environment, modulated by the reflectance, becomes embedded in the appearance of the object giving strong clues about the object's shape.Though these domains are quite diverse, an essential premise---that observations of objects contain within them salient clues about the object's structure---enables new and powerful approaches. For each problem we begin by investigating what these clues are.We then derive models and methods to canonically represent these clues and enable their full exploitation. The wide-ranging success of each method shows the importance of our carefully formulated observations about geometry, and the fundamental role geometry plays in visual perception.Ph.D., Computer Science -- Drexel University, 201

    A machine learning approach to statistical shape models with applications to medical image analysis

    Get PDF
    Statistical shape models have become an indispensable tool for image analysis. The use of shape models is especially popular in computer vision and medical image analysis, where they were incorporated as a prior into a wide range of different algorithms. In spite of their big success, the study of statistical shape models has not received much attention in recent years. Shape models are often seen as an isolated technique, which merely consists of applying Principal Component Analysis to a set of example data sets. In this thesis we revisit statistical shape models and discuss their construction and applications from the perspective of machine learning and kernel methods. The shapes that belong to an object class are modeled as a Gaussian Process whose parameters are estimated from example data. This formulation puts statistical shape models in a much wider context and makes the powerful inference tools from learning theory applicable to shape modeling. Furthermore, the formulation is continuous and thus helps to avoid discretization issues, which often arise with discrete models. An important step in building statistical shape models is to establish surface correspondence. We discuss an approach which is based on kernel methods. This formulation allows us to integrate the statistical shape model as an additional prior. It thus unifies the methods of registration and shape model fitting. Using Gaussian Process regression we can integrate shape constraints in our model. These constraints can be used to enforce landmark matching in the fitting or correspondence problem. The same technique also leads directly to a new solution for shape reconstruction from partial data. In addition to experiments on synthetic 2D data sets, we show the applicability of our methods on real 3D medical data of the human head. In particular, we build a 3D model of the human skull, and present its applications for the planning of cranio-facial surgeries

    Residual aligner-based network (RAN): motion-separable structure for coarse-to-fine discontinuous deformable registration

    Get PDF
    Deformable image registration, the estimation of the spatial transformation between different images, is an important task in medical imaging. Deep learning techniques have been shown to perform 3D image registration efficiently. However, current registration strategies often only focus on the deformation smoothness, which leads to the ignorance of complicated motion patterns (e.g., separate or sliding motions), especially for the intersection of organs. Thus, the performance when dealing with the discontinuous motions of multiple nearby objects is limited, causing undesired predictive outcomes in clinical usage, such as misidentification and mislocalization of lesions or other abnormalities. Consequently, we proposed a novel registration method to address this issue: a new Motion Separable backbone is exploited to capture the separate motion, with a theoretical analysis of the upper bound of the motions’ discontinuity provided. In addition, a novel Residual Aligner module was used to disentangle and refine the predicted motions across the multiple neighboring objects/organs. We evaluate our method, Residual Aligner-based Network (RAN), on abdominal Computed Tomography (CT) scans and it has shown to achieve one of the most accurate unsupervised inter-subject registration for the 9 organs, with the highest-ranked registration of the veins (Dice Similarity Coefficient (%)/Average surface distance (mm): 62%/4.9mm for the vena cava and 34%/7.9mm for the portal and splenic vein), with a smaller model structure and less computation compared to state-of-the-art methods. Furthermore, when applied to lung CT, the RAN achieves comparable results to the best-ranked networks (94%/3.0mm), also with fewer parameters and less computation

    ADVANCED MOTION MODELS FOR RIGID AND DEFORMABLE REGISTRATION IN IMAGE-GUIDED INTERVENTIONS

    Get PDF
    Image-guided surgery (IGS) has been a major area of interest in recent decades that continues to transform surgical interventions and enable safer, less invasive procedures. In the preoperative contexts, diagnostic imaging, including computed tomography (CT) and magnetic resonance (MR) imaging, offers a basis for surgical planning (e.g., definition of target, adjacent anatomy, and the surgical path or trajectory to the target). At the intraoperative stage, such preoperative images and the associated planning information are registered to intraoperative coordinates via a navigation system to enable visualization of (tracked) instrumentation relative to preoperative images. A major limitation to such an approach is that motions during surgery, either rigid motions of bones manipulated during orthopaedic surgery or brain soft-tissue deformation in neurosurgery, are not captured, diminishing the accuracy of navigation systems. This dissertation seeks to use intraoperative images (e.g., x-ray fluoroscopy and cone-beam CT) to provide more up-to-date anatomical context that properly reflects the state of the patient during interventions to improve the performance of IGS. Advanced motion models for inter-modality image registration are developed to improve the accuracy of both preoperative planning and intraoperative guidance for applications in orthopaedic pelvic trauma surgery and minimally invasive intracranial neurosurgery. Image registration algorithms are developed with increasing complexity of motion that can be accommodated (single-body rigid, multi-body rigid, and deformable) and increasing complexity of registration models (statistical models, physics-based models, and deep learning-based models). For orthopaedic pelvic trauma surgery, the dissertation includes work encompassing: (i) a series of statistical models to model shape and pose variations of one or more pelvic bones and an atlas of trajectory annotations; (ii) frameworks for automatic segmentation via registration of the statistical models to preoperative CT and planning of fixation trajectories and dislocation / fracture reduction; and (iii) 3D-2D guidance using intraoperative fluoroscopy. For intracranial neurosurgery, the dissertation includes three inter-modality deformable registrations using physic-based Demons and deep learning models for CT-guided and CBCT-guided procedures

    Bayesian Deep Learning for Cardiac Motion Modelling and Analysis

    Get PDF
    Cardiovascular diseases (CVDs) remain a primary cause of mortality globally, with an estimated 17.9 million deaths in 2019, accounting for 32% of all global fatalities. In recent decades, non-invasive imaging, particularly Magnetic Resonance Imaging (MRI), has become pivotal in diagnosing CVDs, offering high-resolution, multidimensional, and sequential cardiac data. However, the interpretation of cardiac MRI data is challenging, due to the complexities of cardiac motion and anatomical variations. Traditional manual methods are time-consuming and subject to variability. Deep learning (DL) methods, notably generative models, have recently advanced medical image analysis, offering state-of-the-art solutions for segmentation, registration, and motion modelling. This thesis encapsulates the development and validation of deep-learning frameworks in the field of cardiac motion modelling and analysis from sequential cardiac MRI scans. At its core, it introduces a probabilistic generative model for cardiac motion modelling, underpinned by temporal coherence, capable of synthesising new CMR sequences. Three models are derived from this foundational probabilistic model, each contributing to different aspects. Firstly, through the innovative application of gradient surgery techniques, we address the dual objectives of attaining high registration accuracy and ensuring the diffeomorphic characteristics of the predicted motion fields. Subsequently, we introduce the joint operation of ventricular segmentation and motion modelling. The proposed method combines anatomical precision with the dynamic temporal flow to enhance both the accuracy of motion modelling and the stability of sequential segmentation. Furthermore, we introduce a conditional motion transfer framework that leverages variational models for the generation of cardiac motion, enabling anomaly detection and the augmentation of data, particularly for pathologies that are less commonly represented in datasets. This capability to transfer and transform cardiac motion across healthy and pathological domains is set to revolutionize how clinicians and researchers understand and interpret cardiac function and anomalies. Collectively, these advancements present novelty and application potentials in cardiac image processing. The methodologies proposed herein have the potential to transform routine clinical diagnostics and interventions, allowing for more nuanced and detailed cardiac assessments. The probabilistic nature of these models promises to deliver not only more detailed insights into cardiac health but also to foster the development of personalised medicine approaches in cardiology

    Deformable Medical Image Registration: A Survey

    Get PDF
    Deformable image registration is a fundamental task in medical image processing. Among its most important applications, one may cite: i) multi-modality fusion, where information acquired by different imaging devices or protocols is fused to facilitate diagnosis and treatment planning; ii) longitudinal studies, where temporal structural or anatomical changes are investigated; and iii) population modeling and statistical atlases used to study normal anatomical variability. In this technical report, we attempt to give an overview of deformable registration methods, putting emphasis on the most recent advances in the domain. Additional emphasis has been given to techniques applied to medical images. In order to study image registration methods in depth, their main components are identified and studied independently. The most recent techniques are presented in a systematic fashion. The contribution of this technical report is to provide an extensive account of registration techniques in a systematic manner.Le recalage déformable d'images est une des tâches les plus fondamentales dans l'imagerie médicale. Parmi ses applications les plus importantes, on compte: i) la fusion d' information provenant des différents types de modalités a n de faciliter le diagnostic et la planification du traitement; ii) les études longitudinales, oú des changements structurels ou anatomiques sont étudiées en fonction du temps; et iii) la modélisation de la variabilité anatomique normale d'une population et les atlas statistiques. Dans ce rapport de recherche, nous essayons de donner un aperçu des différentes méthodes du recalage déformables, en mettant l'accent sur les avancées les plus récentes du domaine. Nous avons particulièrement insisté sur les techniques appliquées aux images médicales. A n d'étudier les méthodes du recalage d'images, leurs composants principales sont d'abord identifiés puis étudiées de manière indépendante, les techniques les plus récentes étant classifiées en suivant un schéma logique déterminé. La contribution de ce rapport de recherche est de fournir un compte rendu détaillé des techniques de recalage d'une manière systématique
    corecore