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Abstract 

Image-guided surgery (IGS) has been a major area of interest in recent decades that continues to 

transform surgical interventions and enable safer, less invasive procedures. In the preoperative contexts, 

diagnostic imaging, including computed tomography (CT) and magnetic resonance (MR) imaging, offers a 

basis for surgical planning (e.g., definition of target, adjacent anatomy, and the surgical path or trajectory 

to the target). At the intraoperative stage, such preoperative images and the associated planning information 

are registered to intraoperative coordinates via a navigation system to enable visualization of (tracked) 

instrumentation relative to preoperative images. A major limitation to such an approach is that motions 

during surgery, either rigid motions of bones manipulated during orthopaedic surgery or brain soft-tissue 

deformation in neurosurgery, are not captured, diminishing the accuracy of navigation systems.  

This dissertation seeks to use intraoperative images (e.g., x-ray fluoroscopy and cone-beam CT) to 

provide more up-to-date anatomical context that properly reflects the state of the patient during 

interventions to improve the performance of IGS. Advanced motion models for inter-modality image 

registration are developed to improve the accuracy of both preoperative planning and intraoperative 

guidance for applications in orthopaedic pelvic trauma surgery and minimally invasive intracranial 

neurosurgery. Image registration algorithms are developed with increasing complexity of motion that can 

be accommodated (single-body rigid, multi-body rigid, and deformable) and increasing complexity of 

registration models (statistical models, physics-based models, and deep learning-based models).  

For orthopaedic pelvic trauma surgery, the dissertation includes work encompassing: (i) a series of 

statistical models to model shape and pose variations of one or more pelvic bones and an atlas of trajectory 

annotations; (ii) frameworks for automatic segmentation via registration of the statistical models to 

preoperative CT and planning of fixation trajectories and dislocation / fracture reduction; and (iii) 3D-2D 

guidance using intraoperative fluoroscopy. For intracranial neurosurgery, the dissertation includes three 

inter-modality deformable registrations using physic-based Demons and deep learning models for CT-

guided and CBCT-guided procedures. 
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Chapter 1. 

Introduction 

1.1 Medical Imaging Technologies for Image-Guided Interventions 

Medical imaging technology revolutionized diagnostic medicine in the 21st century, and the 

application of such technologies to improve the accuracy and precision of image-guided interventions 

(including image-guided surgery, IGS) has been a major area of interest in recent decades. Image guidance 

has emerged as a technology that continues to transform surgical interventions and enable safer, less 

invasive procedures with improved treatment outcome, reduced comorbidity, and faster recovery. In both 

preoperative and intraoperative contexts, IGS utilizes a broad range of medical imaging modalities, 

including x-ray fluoroscopy, computed tomography (CT), cone-beam computed tomography (CBCT), 

magnetic resonance (MR) imaging (MR), ultrasound, and even nuclear / molecular imaging. Such images 

convey knowledge of the location of the target anatomy, adjacent vital structures, as well as surgical 

instrumentation. A major component of IGS is therefore to register (i.e., to geometrically correlate, resolve, 

and align) multi-modality images that convey different aspects of the patient and procedure. Major imaging 

modalities for IGS are briefly summarized below: 

Radiography / Fluoroscopy measures the transmission of X-rays passing through anatomy, where 

the level of attenuation is dependent on the density and composition of tissues (viz., the attenuation 

coefficient) as well as the energy of the x-ray beam. An x-ray radiographic  image depicts a two-dimensional 

(2D) projection of anatomy along the path of the X-rays. Closely related is x-ray fluoroscopy, which refers 

to continuous capture of x-ray images, thereby depicting the movement of anatomy or an implanted device. 

In orthopaedic surgery, for example, the placement of instruments is often guided with the benefit of direct, 

real-time visualization in fluoroscopy. An important caveat and constraint in the use of radiography / 

fluoroscopy is radiation dose, since ionizing radiation (including X-rays) interacting in the body carries risk 

of a variety of radiobiologic effects (e.g., skin erythema or cancer). 
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Computed Tomography (CT) involves acquisition of a sequence of x-ray projection images, 

typically by rotating a narrow x-ray beam around the patient. A 3D volumetric image of the anatomy is 

obtained by reconstructing the projection data using methods such as filtered back projection. CT offers a 

high degree of contrast of bones and a fair degree of soft-tissue contrast (e.g., fat, muscle, blood, etc.). 

Multi-detector CT (MDCT) and helical MDCT are prevalent in diagnostic imaging, offering fast image 

acquisition and nearly isotropic, sub-millimeter spatial resolution. As mentioned above, the use of ionizing 

radiation carries with it the caveat and constraint of radiation dose. 

Cone-Beam CT (CBCT) is a variation of MDCT involving a large-area detector for capture of 2D 

projection data to capture a 3D volumetric image within a single rotation. Some advantages for 

intraoperative imaging (compared to MDCT) include lower cost, smaller footprint, 2D fluoroscopy 

capability, a simplified patient support (without the need to translate the patient to form a 3D image), and 

increased flexibility in the intraoperative room. On the other hand, CBCT typically exhibits lower image 

quality than CT due primarily to increased image noise, x-ray scatter, and other image artifacts.   

Magnetic Resonance (MR) Imaging involves placement of the patient within a strong magnetic 

field and measuring the response of nuclei with a magnetic moment (primarily hydrogen atom protons) to 

radiofrequency (RF) pulses. Gradient magnetic fields are applied to localize individual slices, and the RF 

emission from magnetic moments as they return to equilibrium is used to analyze the spatially intensity. 

Numerous pulse sequences can be applied to elicit different attributes of magnetic responses and tissue 

properties (e.g., proton density and relaxation time). Generally, MR imaging demonstrates high contrast in 

soft tissues and lower contrast in bones and is particularly useful in brain imaging. 

Ultrasound (US) uses an electromechanical transducer to transmit acoustic waves to the body and 

detect the returned echoes. The contrast in an US image is determined by the reflectivity of tissue interfaces. 

US is portable, provides real-time imaging, and is routinely used in abdominal imaging. Challenges of US 

include limited field of view (FOV), image quality requiring a strong degree of training / familiarity with 

the depiction of anatomy, challenges in imaging of bones or lung, and a high degree of operator variability. 
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Positron Emission Tomography (PET) involves the introduction of a radioactive tracer (e.g., F18) 

bound to a metabolically active molecular agent (e.g., glucose). Preferential uptake or retention of the agent 

in tissues corresponds with increased activity measured at that location. In PET, the tracer is a positron 

emitter, which results in the emission of 511 keV photons recorded by a detector ring. PET is especially 

useful in imaging physiological function—e.g., abnormal metabolism associated with cancer.   

Optical Imaging involves the use of light of different frequencies that are reflected, transmitted, 

or emitted from tissue. A very broad diversity of optical imaging systems can be found in numerous fields 

of diagnostic and interventional medicine, including microscopes and endoscopes, and can provide 

visualization of soft tissue abnormalities or even physiological change (e.g., blood oxygen saturation). 

Optical imaging can be somewhat limited in FOV and the ability to image deep tissues. 

1.2 Current State and Challenges of Image-Guided Interventions 

Imaging in association with IGS can be considered coarsely in three stages: preoperative planning; 

intraoperative guidance; and postoperative assessment. In the preoperative stage, diagnostic imaging is 

obtained to verify possible pathologies and perform surgical planning [1]. The rigor of planning varies 

widely in IGS, but in best practice involves the definition of target structures, adjacent anatomy, and the 

path or trajectory by which the target will be accessed. Multiple imaging modalities may be used to provide 

complementary information about patient anatomy and disease. At the intraoperative stage, such 

preoperative images (and the associated planning information) are registered to intraoperative coordinates 

(sometimes referred to as the “world” coordinate system) via a tracking system to enable visualization of 

(tracked) instrumentation relative to preoperative images. Moreover (and central to this dissertation), 

preoperative images can be registered to 2D or 3D images acquired intraoperatively, allowing visualization 

of planning data and instrumentation within a more up-to-date, geometrically accurate anatomical context 

that properly reflects the state of the patient at the time of intervention. Postoperative assessment can be 
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optionally performed to compare the surgical product in postoperative diagnostic imaging with the 

preoperative plans. 

1.2.1 Neurosurgery 

IGS is prevalent in cranial neurosurgery, owing to the development of stereotactic systems [2] that 

have been applied in a wide spectrum of interventions, including tumor biopsy [3], cyst resection [4], 

hydrocephalus treatment [5], and deep brain stimulation [6, 7]. A typical procedure starts with placement 

of a stereotactic frame on the patient’s cranium, which provides a set of trackers to localize the head in 

preoperative imaging (typically MRI). Using a navigation system that tracks the frame location, the spatial 

relationship between preoperative and intraoperative information can be established via rigid registration. 

A variety of tracker technologies are available in navigation systems, and the two most common are optical 

and electromagnetic systems. Optical tracking employs passive (reflective) or active (optically emitting) 

markers detectable by a stereoscopic camera. Such optical tracking systems provide a large field of  view 

and high accuracy (< 2 mm) [8] but can suffers from line-of-sight constraints. Electromagnetic tracking 

systems absolve the line-of-sight constraint by using an electromagnetic field generator in proximity to the 

patient and embedding small electrical coils to interventional devices that generate a current in relation to 

their position in the field. A well-known drawback is the susceptibility of such systems to interference from 

large metal objects, which can distort the electromagnetic field and degrade tracking accuracy [9]. 

While navigation systems are an indispensable part of modern neurosurgical interventions, they 

carry additional cost and complications to clinical workflow. For example, optical tracking systems require 

somewhat bulky marker attachments and line-of-sight constraints during surgery. Both types of tracking 

system require calibration of the markers to the tracking devices and the patient, and workflow can be 

severely disrupted if the calibrations are compromised (e.g., perturbation of the markers). In addition, soft-

tissue deformation can be a potentially large source of error that cannot be resolved by a conventional 

navigation system based on rigid registration. For example, brain deformations can occur either deep in the 
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brain due to cerebrospinal fluid (CSF) loss (up to 10 mm [10]) or even larger toward brain surface due to 

brain shift induced by craniotomy. 

Recent developments in intraoperative imaging include the introduction of MRI, MDCT, and 

CBCT in the operating room to provide up-to-date visualization of the anatomy. MRI and MDCT systems 

require a dedicated setup, specialized equipment, and relatively high cost. CBCT, on the other hand, is 

relatively inexpensive and portable, although image quality is inferior to MRI and MDCT in most respects, 

as mentioned above. To realize the full potential of intraoperative imaging, deformable image registration 

(DIR) methods are needed to align the preoperative images (e.g., MRI) to intraoperative images (e.g., 

MDCT or CBCT) and to propagate the surgical plans accurately to the intraoperative context. Such inter-

modality DIR is a challenging area of research and is the focus of several chapters in this dissertation. 

1.2.2 Orthopaedic Surgery 

Orthopaedic surgery includes procedures such as reduction and fixation of bone dislocation or 

fracture, osteotomy, and arthroplasty [11, 12]. Preoperative CT is commonly acquired to visualize bones 

and surrounding anatomy (e.g., organs, blood vessels, and nerves). Although the sophistication of surgical 

planning varies widely, best practice involves definition / segmentation of bone anatomy, definition of 

target pose for reduction, and delineation of instrument trajectories. Such surgical planning is performed 

either qualitatively or with assistance of manual planning tools [13–15], which can be time-consuming 

relative to rapid workflow in orthopaedic and trauma surgery. 

Compared to conventional open surgery, minimally invasive, percutaneous procedures have 

benefits including shorter operative time, decreased blood loss, and lower infection risk, and thus have 

gained increasing popularity (e.g., 78% of a total of 2095 pelvic orthopaedic surgery were performed 

percutaneously in one longitudinal surgery [16]).  An important aspect of IGS in advancing the state of the 

art in orthopaedic surgery is to couple preoperative images and planning into intraoperative images and 

workflow to enable more accurate guidance compared to direct visualization in fluoroscopy alone. In 

conventional fluoroscopy-guided  procedures, the surgeon exercises a mental map between the preoperative 
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3D images and the 2D intraoperative fluoroscopic projection images – a challenging cognitive task that 

requires a long learning curve, broad variations in expertise, and frequent trial-and-error. Tracking and 

navigation systems can alleviate this task, but the cost and workflow challenges mentioned above have 

posed major barriers to broad adoption in orthopaedic surgery. 

As mentioned above for neurosurgery, intraoperative MRI, MDCT, and – especially – CBCT [17, 

18] offer an important advance beyond fluoroscopy alone, and accurate alignment of preoperative and 

intraoperative scenes is an important area of research – including several chapters of this dissertation. An 

important limitation in current surgical practice is the inability to gain timely and accurate intraoperative 

feedback on the position of bones and interventional devices. Taking fracture reduction as an example, 

multiple bone fragments may be moved (reduced) during the procedure, and it is impractical to attach 

fiducial markers to track all bone fragments, especially in minimally invasive surgery. In this dissertation, 

a 3D-2D (specifically CT-to-fluoroscopy) image registration method is developed to register the 

preoperative 3D images to intraoperative fluoroscopy, which provides information of planning in the 

intraoperative coordinates without use of a navigation system.  Combining image guidance with robotic 

systems is also a promising future direction to overcome the inaccuracy of manually identifying trajectories 

(for fixation) or cutting planes (for osteotomy) and hand-controlling positioning of surgical tools [11]. 

1.2.3 Radiation Therapy 

The aim of radiation therapy is to deliver a prescribed dose to the target (tumor) within constraints 

of dose delivered to surrounding normal tissue, and image guidance has been an integral part of such 

procedures. Diagnostic CT and/or MR are commonly acquired for organ and tumor segmentation and 

treatment planning. During the course of therapy, patient anatomy may change, leading to errors in the 

treatment plans relative to the dose delivered day-by-day (in “fractions” over the course of several weeks). 

To compensate for such errors, “in-room” imaging (primarily CBCT) is acquired during the treatment 

session and compared with the preoperative images. Applying DIR between the “in-room” images and the 

preoperative images allows correction of patient setup differences, refinement of target localization, and 
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updates of the treatment plan [19]. Image-guided radiation therapy (IGRT) has been a test ground for 

various DIR algorithms. However, several differences must be recognized between IGS and IGRT – 

primarily the time associated with intervention and the implications for workflow: DIR in IGRT is 

computed once per treatment session and permits offline adaptation to correct for errors in subsequent daily 

fractions; DIR in IGS must be computed within the course of a single procedure – sometimes requiring near 

real-time performance. The computation efficiency and runtime for DIR in surgery is thus more critical. 

1.3 Image Registration: Basics 

As mentioned in Section 1.1, IGS in the current state of the art is subject to geometric errors 

between images acquired at preoperative and intraoperative stages due to differences in patient positioning 

and surgical manipulation. Image registration offers a solution in each context: for preoperative planning, 

by registering preoperative images to established prior knowledge; and for intraoperative guidance, by 

registering preoperative 3D images and surgical planning data to intraoperative 2D or 3D images. 

An image registration is defined between a moving image and a fixed image via a transformation 

that maps the moving image coordinate frame to the fixed image coordinate frame. Registration is typically 

formulated as an optimization, in which an image similarity metric between the two images is optimized 

with respect to the transformation.  

1.3.1 Transformation Models 

Image registration seeks a transformation that maps corresponding coordinates from a moving 

object to a fixed object, where the object can be a set of points or an image. The space of the permissible 

transformations is determined by the choice of transformation models: affine transformations, parametric 

deformable transformations, and dense, non-parametric, deformable transformations. The transformation 

models can be similarly applied to points and images, in which an image can be treated as a collection of 

points from all pixels (voxels). 
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An affine transformation defines the mapping of an n-dimensional point, 𝑥 ∈ ℝ𝑛 , to another 

domain by 𝑇(𝑥) = 𝐴𝑥 + 𝑡, where 𝐴 denotes an 𝑛 × 𝑛 matrix and 𝑡 denotes an 𝑛 × 1 translation vector. 

When points are represented by the homogenous coordinates, the transformation can be reduced to 𝑇(𝑥) =

𝐴𝑥 for simplicity. The space of affine transformations models up to 12 degrees of freedom (DOF), including 

translation, rotation, scale, shear, and possibly reflection (commonly not solved in registration tasks). For 

example, a rigid transformation is one member of affine transformations that describes the 6 DOF 

translations and rotations of an object. A similarity transformation adds an additional uniform scaling to the 

rigid transformation, resulting in a 7 DOF space. In image registration, affine transformations are commonly 

applied to an entire point cloud or an entire image, globally transforming everything in the same motion. 

Therefore, affine transformations are less capable of modeling local motions, and are often used to model 

rigid structures (e.g., bones) or provide initial alignment prior to DIR. 

In contrast to affine transformations, parametric deformable transformations are capable of 

modeling local motions at a set of sparse, corresponding control points from the moving and fixed image, 

respectively. For a set of control points (𝑥) in the moving image, the transformation (𝜙) is defined by 

𝜙(𝑥) = 𝑥 + 𝑢(𝑥), where 𝑢 denotes displacement vectors. The transformation elsewhere is interpolated 

according to specific parametric functions. Commonly used functions include radial basis functions [20], 

thin-plate splines [21], and cubic B-splines. The Free Form Deformation (FFD) [22] is a very popular 

registration method that uses cubic B-splines as the parametric function. The DOF of a parametric 

deformable transformation is defined by the number of control points, and is generally smaller than dense, 

non-parametric transformations described below. 

Non-parametric, dense transformations are represented by a dense displacement field, 𝑢, at every 

location of the image, thus containing extremely high DOF. Regularizations and/or constraints are often 

applied to govern the transformations under desirable characteristics. Two common constraints are 

diffusion and diffeomorphism. The diffusion constraint, defined as a physic-based diffusion equation, is 

adopted in an optical flow registration that enforces the preservation of image brightness albeit 



9 

 

deformations: the overall image intensity at a region is preserved while points (voxels) are diffused 

according to a displacement field. The Demons method proposed by Thirion et al. [23] is motivated by the 

optical flow registration, imposing diffusion regularization to approximate smooth transformations. 

Diffeomorphism is another constraint that guarantee preservation of topology and structural connectivity 

(no unrealistic tearing, folding, or creation of tissue), an important characteristic for medical image 

registration. A diffeomorphic transformation, 𝜙, is a smooth and invertible transformation that can be 

represented as a flow of time-dependent velocity fields [24]: 

𝜙(𝑥, 𝑡) = 𝜙(𝑥, 0) + ∫ 𝑣(𝜙(𝑥, 𝑡), 𝑡)𝑑𝑡
1

0

, (1.1) 

where the time, 𝑡 ∈ [0,1] and 𝑣 is the velocity field. A smoothness regularization is applied to 𝑣 via linear 

differential operators such as a∇2 + 𝑏Id (a, b constants), and Gaussian smoothing is a common choice of 

regularization due to its simplicity. The large deformation diffeomorphic metric mapping (LDDMM) 

method is a popular diffeomorphic registration approach that iteratively solves the partial differential 

equation in Equation (1.1) and has demonstrated good performance in various applications [24, 25]. 

1.3.2 Similarity Metrics 

Unsupervised image registration maximizes the alignment of two images that is quantified by 

similarity metrics. The choice of the metrics plays a huge role in the accuracy, stability, robustness, and 

computation efficiency of the registration algorithm. While numerous metrics have been proposed, they 

can be broadly categorized as Euclidean distance-based (L2 norm), correlation coefficients-based, gradient-

based, mutual information-based, and feature representation-based. A selection of metrics used in this 

dissertation is discussed below: 

Euclidean distance-based metrics. The Euclidean distance metric assumes the two images 

(moving image, 𝑀 and fixed image, 𝐹) for registration are defined in a common feature space (e.g., intra-

modality images). For example, the sum of squared differences (SSD) metric is computed at every voxel: 
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SSD = ∑|𝐹(𝑥) − 𝑀(𝑥)|2

x

. (1.2) 

The metric is also referred to as mean squared differences (MSD) or mean squared error (MSE) when 

normalized by the number of voxels in the image. The L2 norm-based metrics weight the residual errors 

quadratically and are thus sensitive to noise and artifacts. An alternative metric is the L1 norm (e.g., mean 

absolute error, MAE), which replaces the square in Equation (1.2) by absolute value and linearly weights 

the residual errors. 

Correlation-based metrics. As mentioned above, Euclidean distance-based metrics assume the 

registration images are from the same intensity distribution, and are prone to error when intensity mismatch 

exists. Normalized Cross Correlation (NCC) assumes a linear relationship between the two images and can 

be expressed as: 

𝑁𝐶𝐶(𝐹, 𝑀) =
1

𝑁
∑

∑ (𝐹(𝑥 + 𝑝) − �̅�𝑊)(𝑀(𝑥 + 𝑝) − �̅�𝑊)𝑝∈𝑊

(∑ (𝐹(𝑥 + 𝑝) − �̅�𝑊)2 𝑝∈𝑊 )
1
2(∑ (𝑀(𝑥 + 𝑝) − �̅�𝑊)2 𝑝∈𝑊 )

1
2𝑥

, (1.3) 

where 𝑊 is a spatial window centered around 𝑥, and 𝑝 is the offset from the center of 𝑊. NCC computes 

the cross correlation between two images across a sliding window and is normalized by the local standard 

deviations. NCC tolerates linear mismatch between the two images (e.g., intra-modality images acquired 

under different intensity/lighting conditions or presents of shading artifacts) but is not able to model 

nonlinear relationships between inter-modality images. 

Gradient-based metrics. Image gradients offer an alternative measure of similarity compared to 

intensity-based metrics like MSE or NCC. The gradients emphasize on structures of higher spatial 

frequency (e.g., edges) that may be more important for registration than homogenous regions. A series of 

gradient-based metrics have been developed, including gradient difference (the MSE between gradient 

images), gradient correlation (the NCC between gradient images), and gradient orientation (measuring the 

angular difference between gradient directions). The gradient-based metrics can tolerate some level of 
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nonlinear mismatch, as long as the two images have corresponding anatomical edges. The gradient 

operation, however, may be sensitive to high frequency noises. 

Mutual information-based metrics. Probably the most commonly used metric in inter-modality 

registration is mutual information (MI), which is derived from information theory and quantifies the 

statistical dependence between two images. MI assumes that the images are spatially uncorrelated, and 

measures the marginal and joint probability distributions of the intensities of 𝑀 and 𝐹: 

MI = 𝐻(𝐹) + 𝐻(𝑀) − 𝐻(𝐹,𝑀), (1.4) 

where 𝐻 denotes the entropy computed from intensity distribution histograms. MI attains a high value when 

the images are well aligned (i.e., the entropy of joint distribution, 𝐻(𝐹,𝑀) is minimized). However, MI is 

unbounded, challenging the optimization of the metric. A normalized mutual information (NMI) is designed 

such that NMI =
𝐻(𝐹)+𝐻(𝑀)

𝐻(𝐹,𝑀)
 to bound the metric value below 2. 

While MI-based metrics have been successfully applied to various inter-modality registration tasks 

[26–28], the accuracy diminishes when the image intensities violate the uncorrelation assumption. 

Especially for DIR where image intensities in a local neighborhood tend to depend on each other (e.g., local 

anatomy and non-stationary noise), the estimation of joint distribution is prone to error and degrades the 

registration performance. Additionally, MI is a global metric that does not contain spatial information, 

further confounding DIR. 

Feature representation-based metrics. All the previously mentioned metrics are directly 

computed on the image intensities or the gradients of image intensities. Another category of similarity 

metric transforms the images to a feature representation that may present certain attractive characteristics 

for registration. For example, Ou et al. [29] uses a set of multi-scale and multi-orientation Gabor filters to 

transform image intensity into a set of rich features that reflect the anatomical and geometric context around 

each voxel. Another popular method is modality-independent neighborhood descriptor (MIND) [30], which 

represents each voxel as a patch-based feature vector. MIND is defined by a patch-based intensity difference, 

a local variance (𝜎2), and a spatial search region (𝑅, e.g., the 6 neighboring voxels around a voxel): 
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MIND =
1

n
exp(−

∑ (𝐼(𝑥 + 𝑝 ) − 𝐼(𝑥 + 𝑟 + 𝑝))
2

𝑝∈𝑃

𝜎2(𝑥)
) , 𝑟 ∈ 𝑅, (1.5) 

where 𝑃  is a local patch centered around a voxel 𝑥 , r  is an offset in the search region, and 𝑛  is a 

normalization constant so that the maximum value of MIND is 1. Once the descriptors, a vector of length 

|𝑅| for each voxel, are extracted from two images, the similarity metric between two images is defined by 

the MSE between the descriptors. MIND effectively converts inter-modality images to a common feature 

representation space, allowing easier intra-modality registration. 

1.4 Recent Advances in Image Registration 

Image registration has been a popular field of study in medical image analysis, and there are many 

surveys published in the recent years that cover different aspects of registrations [31–34]. This section is 

not intended to be a comprehensive review of the literature. Instead, major categories of registration that 

are pertinent to applications in IGS will be covered, including point-based registration, 3D-2D registration, 

and 3D image registration. 

1.4.1 Point-based Registration  

Commercial image guidance systems nowadays almost exclusively use rigid registration, in 

particular point-based rigid registration to align a sparse set of point markers between the preoperative 

image and intraoperative scene. A rigid registration is generally defined by a rigid transformation with 6 

DOF or a similarity transformation with 7 DOF. For two corresponding point sets, a Procrustes analysis 

with closed form solution can be used to solve the registration [35].  

For image guidance without fiducial markers, landmark points can be automatically defined based 

on image or surface features—e.g., landmarks extracted using scale-invariant feature transform (SIFT) from 

endoscopy. Automatically defined point may not be in correspondence, and many correspondence-free 

point-based rigid or deformable registration methods have been proposed. Probably the most commonly 

used method is Iterative Closest Point (ICP) [36], which iteratively estimates the rigid transformation and 
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updates point correspondence to refine the solution in a coarse-to-fine manner. In Ref. [37], the two point 

sets are treated as Gaussian Mixture Models (GMM), and the distance between the two GMMs are 

minimized to estimate the rigid transformation. Such an idea was further extended to Coherent Point Drift 

(CPD), where one point set is represented by GMM centroids, and the other point set is fitted to the first by 

moving coherently [38]. CPD, further discussed in Chapter 3, is able to solve both rigid and deformable 

point registration in a probability-based framework. One drawback of the abovementioned methods is that 

they typically require good initialization and are subject to convergence at local minima. 

Deep learning-based point registrations use deep neural networks to improve the robustness of the 

algorithms. PointNet [39] is the first work to apply deep learning to correspondence-free point registration. 

The Deep ICP [40] replaces the iterative point correspondence estimation in ICP by a neural network, and 

demonstrated improved robustness than ICP. Another approach worth mentioning is dynamic graph 

convolutional neural network (DGCNN), which constructs a graph from the points and explicitly models 

the local geometry and inter-point correlations [41]. Deep learning-based point registrations are able to 

robustly handle larger point sets and even automatically construct point sets from medical images, offering 

opportunities for new development in image guidance systems that may not be possible using conventional 

registration methods. 

1.4.2 3D-2D Image Registration 

3D-2D registration establishes correspondence between (typically preoperative) 3D objects to one 

or more (typically intraoperative) 2D images. Several topics in this dissertation focus on systems with 

projective geometry, as illustrated in Figure 1.1. The 3D object can be a CT / CBCT volume or other 

representations extracted from such volumes, and the 2D images are radiographic images, generated 

through x-ray projection. The 3D-2D registration solves a transformation of the 3D object such that the 

virtual projections, in the forms of digitally reconstructed radiographs (DRRs), match with the radiography. 

3D-2D registration can be broadly classified into three categories: feature-based, intensity-based, and direct 

regression-based. 
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Figure 1.1. Illustration of the main concept of 3D-2D registration. A CT volume of the pelvis and an associated X-ray image are 

used as an example to show the generic 3D-2D projection geometry. 

Feature-based 3D-2D registration considers finding the transformation that minimizes the distance 

between 3D features (extracted from the preoperative images or models) and corresponding 2D features. In 

the simplest form, the features can be a set of points, either from fiducial markers [42] or from anatomical 

landmarks. The point-based 3D-2D registration can be solved either analytically as the perspective n point 

(PnP) algorithm [43] or iteratively by minimizing point distance in 2D/3D coordinates [44].  Traditionally, 

identification of anatomical landmarks requires extensive manual interaction. In the deep learning era,  

many works have been proposed to use deep convolutional neural networks (CNN) for automatic landmark 

detection [44–46], significantly easing the feature point detection process for more automated and robust 

3D-2D registration. More complex feature representations include curves [47, 48], surfaces [49–51], or 

statistical models [52–54], which provide denser information for registration. 

In contrast to feature-based 3D-2D registrations that utilize sparse feature representations, 

intensity-based 3D-2D registrations solely rely on the image intensities of the images. Instead of distance 

between corresponding points, image similarity metrics (often in 2D) are used to define the closeness 

between 3D and 2D images. By far the most reported 3D-2D registration method in literature is based on 

simulated X-ray projection images from CT, called digitally reconstructed radiographs (DRR). The 
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transformation of the CT image is iteratively estimated by optimizing a similarity metric between the DRR 

and intraoperative X-ray images. Commonly used metrics include NCC [55], MI [56], and gradient-based 

metrics (e.g., gradient information, gradient correlation, gradient orientation, etc.) [57–61]. Chapter 6 will 

discuss an intensity-based multi-body 3D-2D registration for application in orthopaedic surgical guidance. 

The capture range of the registration is often limited because commonly used 2D similarity metrics 

are not well-suited to represent distances in 3D transformation space. A recent trend of work focuses on 

using neural networks to learn new metrics that better quantify the distance in 3D-2D registratio [62–64]. 

Another drawback of DRR-based 3D-2D registration is the high computation cost associated with iterative 

forward projection of 3D volumes. 

The previous two approaches formulate the registration as an optimization problem, in which the 

optimal transformation is found that reduces a distance or similarity metric. The direct regression-based 

solution, on the other hand, formulates the registration as a regression problem, where the transformation 

parameters are directed predicted. Such methods are often data-driven, using neural networks to learn the 

intrinsic process of the 3D-2D mapping. In Ref. [65–67], small regions of the interest associated with the 

anatomy or device to be registered are first automatically identified in DRR and real X-ray images, and the 

difference of the images goes through a CNN to regress the rigid transformation parameters. The above 

registration is further integrated into a reinforcement learning framework to iteratively refine the 

transformation from regression [68]. 3D-2D deformable registration using regression has also been 

proposed in [69] for lung registration, where the deformation is represented by the principal component 

analysis (PCA) of a low DOF motion model,  and the PCA parameters are directly regressed through a 

CNN. The direct regression-based approach is appealing because it may result in faster computation without 

the need of iteratively generating DRR and optimizing a hand-crafted or learned similarity metric. However, 

it is still unclear how well the methods generalize to images with larger field of view and how 3D 

information can be directly incorporated into the learning process. 
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1.4.3 3D Image Registration 

As mentioned in Section 1.2.1, 3D image registrations align two 3D images by finding either a 

rigid/affine transformation matrix or a deformation field. Classical rigid registration methods iteratively 

optimize an image similarity metric between the two images with respect to the transformation 

parameters—typically, MSE or NCC is used for intra-modality registration and MI is used for inter-

modality registration. One challenge of the rigid registration is that the similarity metric is often non-convex 

over the transformation parameter space, resulting in local minima and degraded robustness of the methods. 

Several deep learning-based solutions have thus been proposed to improve registration robustness in fast 

runtime. In Ref. [70, 71], the authors proposed to use CNN or CNN with a fully connected layer to directly 

regress the transformation parameters, and the networks were trained in a supervised manner with ground 

truth simulated transformations. The supervised regression network is further integrated into a 

reinforcement learning framework to mimic how an expert performs image registration [72]. An 

unsupervised rigid registration method is proposed in Ref. [73], where a CNN network is used to predict 

the transformation parameters, and an image similarity metric is minimized during training to drive the 

CNN to better prediction. 

Classically, deformable registration can be broadly summarized into three categories: parametric 

transformation-based, prior-knowledge-based, physics-based. Recently, deep learning-based registration 

has emerged as a new approach that predicts the deformations in a data-driven manner while incorporating 

some of the key concepts in previous methods. Parametric transformation-based registration models 

parametric transformations discussed in Section 1.2.1. Cubic B-spline coupled with free form deformation 

(FFD) is possibly the most commonly used parametric transformation-based registration and has been 

applied to various deformation tasks [22, 74–76] due to its simplicity and speed in solving large 

deformations. Parametric transformations, however, may not realistically reflect the complex deformations 

of anatomy and can introduce artifacts (non-diffeomorphism) such as ringing and tissue tearing. Many 

extensions to the B-spline FFD have since been proposed, including: adding diffeomorphism via constraints 
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on the B-spline coefficients [76] or explicitly regularization in a LDDMM framework [77]; incorporating  

a direction dependent B-spline decomposition to model sliding motions [78]; and combining it with level 

sets such that the deformation is driven by the anatomical contours (level sets) [79]. In addition, efforts to 

model B-spline deformation using CNN have been made [80, 81]. 

Prior knowledge-based registration methods tend to be applied in scenarios of well-defined 

contexts, driven by anatomy-specific modeling. A popular form of prior knowledge is segmentations of 

anatomy, which informs registration of the anatomical boundaries and characteristics of deformations in 

each region [82, 83]. Additionally, tissue mechanical properties can be informed from the segmentations 

and a biomechanics-driven registration can be performed using finite element models [84–87], which often 

yield well-regularized and robust registration. Another form of knowledge is the statistical priors of 

anatomical shapes (e.g., statistical shape models, SSMs) or deformation patterns [88–90], which has 

demonstrated to be effective in regularizing registration in scenarios with large noise and artifacts. Chapter 

2-5 will cover a series of work to register statistical models to images for segmentation and surgical 

planning. The prior knowledge-based registrations, however, heavily rely on the availability and quality of 

the priors, which may limit them to broader clinical applications. 

The third category of deformable registration is physics-based, incorporating concepts such as 

elasticity, diffusion, and flow of diffeomorphism, and is typically used to estimate non-parametric, dense 

deformations. As mentioned in Section 1.2.1, LDDMM is a well-established technique to model the flow 

of diffeomorphism in terms of time-dependent velocity field, providing estimation of realistic tissue 

deformations that is important for clinical applications [24, 25]. LDDMM methods solve a complex partial 

differential equation (PDE) of the flow in Equation (1.1) and typically involves high computation and 

memory cost. A simplified version of LDDMM is Symmetric Normalization (SyN), which approximates 

the velocity field as a stationary field that does not require PDE solver. More memory efficient [91] and 

computation efficient (via parallel computation) [92] variants have been proposed. A recent line of work 

further reduces the computation cost by using a deep residual network as a PDE solver [93]. Another type 
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of physics-based registration is the Demons method that solves an optical flow or diffusion problem [23].  

Many variants of Demons methods have been proposed, for example diffeomorphic Demons [94], log-

domain Demons [95], MIND Demons for inter-modality registration [96], and extra-dimensional Demons 

to incorporate missing tissue [97]. In Chapter 7, an inter-modality Demons registration using pointwise 

mutual information will also be discussed. 

Major concerns for registration in IGS application are the long computation time and susceptibility 

to local minima during optimization. Recent advances in deep learning registration may improve robustness 

and runtime over conventional methods, making them an important candidate for further development. 

Deep learning-based registrations use neural networks to predict a set of transformation parameters or a full 

deformation field. Instead of iteratively optimizing a cost function at test time, deep learning-based methods 

generally require a single or only a few iterations at test time, shifting the computation time to the training 

phase. While CNNs (in particular, U-Nets [98]) are commonly used as the networks of choice, other forms 

of networks have also been used, including recurrent neural networks for temporal images [99], 

reinforcement learning [100], and transformers [101, 102]. Depending on the type of annotation available 

in training, three types of deep learning-based registration are proposed: 

(i) Supervised learning. In the supervised setting, registration is formulated as a regression problem 

and neural networks are trained to approximate the ground truth deformation parameters. In Ref. [103, 104], 

the training involves minimizing the difference between predicted and ground truth deformation fields. 

Another interesting example is QuickSilver [105], which predicts the momentum term in LDDMM that 

enables fast subsequent computation and maintains diffeomorphism. The supervised learning approach is 

often limited by the accuracy of the conventional registration used to obtain ground truth, or requires 

deformation simulation [106–108]. 

(ii) Unsupervised learning. The unsupervised learning approach more closely mimic conventional 

registrations that minimizes image similarity metrics between images. One popular work is VoxelMorph 

[109], which has been extensively used as a baseline for newly developed methods. In VoxelMorph, a U-
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Net is used to predict a dense deformation field of the entire image domain, and the training loss includes 

a similarity metric (SSD or NCC) and a deformation smoothness regularization. Extensions of the 

VoxelMorph involves a diffeomorphic variant [110], probabilistic registration [110], and symmetric 

inverse-consistency [111, 112]. In comparison to using hand-crafted similarity metrics, some works explore 

“deep metrics” that are learned from images with different levels of misalignment [113, 114]. For inter-

modality registration, some solutions use multimodal similarity metrics (e.g., MI, MIND) [115, 116]. Many 

others utilize image synthesis (e.g., using Generative Adversarial Networks, GANs) to simplify the problem 

to an inter-modality registration [117–120]. Chapter 8 and 9 will also discuss two methods for MR-CT and 

MR-CBCT registration using image synthesis. Besides image synthesis, the GANs are also used directly to 

judge the performance of registration, replacing the similarity metrics [121]. 

(iii) Weakly supervised learning. Weakly supervised learning methods perform optimization on 

image surrogates, such as segmentation maps or landmarks. For example, Ref. [122, 123] demonstrated 

networks trained to maximize the alignment between tissue labels. Alternatively, a shape encoder-decoder 

network is used to extract cardiac shape representations as a basis for registration [124]. Employing the 

overlap of segmentations or landmarks as a driving force to registration can be coupled with most existing 

unsupervised learning methods. With advances in deep learning-based object detection and segmentation, 

such a hybrid approach is attracting increasing research interest in the recent years [109, 125–127]. 

1.5 Dissertation Outline 

1.5.1 Thesis Statement 

Recognizing the potential of image registration to improve the performance of preoperative 

planning and intraoperative guidance of image-guided surgery, the work presented in this dissertation 

pursues the following thesis： 
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Novel forms of inter-modality image registration are developed for applications in orthopaedic 

trauma surgery and neurosurgery under guidance of MR, CT, CBCT, and/or x-ray fluoroscopy. The 

proposed registration methods are quantitatively evaluated in simulation, phantom, cadaver, and clinical 

studies to assess outcome measures such as accuracy, precision, robustness, and computational efficiency. 

1.5.2 Outline 

Two major themes are advanced throughout the dissertation: 

(i) the complexity of motion modeled by registration, ranging from single-body rigid motion (e.g., 

a single bone, such as the pelvis or cranium) to multi-body rigid motion (e.g., bone dislocations or fractures) 

and to fully deformable motion (e.g., soft-tissue motion in the brain); and 

(ii) the sophistication of registration models brought to bear in resolving such motion, ranging from 

abstract statistical models to physics-based models to data-driven deep learning models. 

Motivated by the need for improved accuracy and precision in image-guided surgery, the methods 

were developed and tested in applications for orthopaedic surgery and intracranial neurosurgery. The 

dissertation chapters following the two themes are summarized below and in Table 1.1, and first-authorship 

journal articles associated with each work are also listed. 

 

 

 

 

 

Thesis Statement: Advanced motion models for inter-modality image registration, including 

statistical modeling, physics-based models, and data-driven deep learning approaches, can improve 

the accuracy of preoperative planning and intraoperative guidance in image-guided interventions. 
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Table 1.1 Summary of the chapters following progressed complexity of registration models and motions modeled by the 

algorithms. 

Computational Model Motion Model Application Work 

Statistical Models Single-Body Rigid Orthopaedic Surgery Chapter 3 

Statistical Models Multi-Body Rigid Orthopaedic Surgery Chapters 4-5 

Physics-Based Models Multi-Body Rigid Orthopaedic Surgery Chapter 6 

Physics-Based Models Deformable Neurosurgery Chapter 7 

Deep Learning-Based 

Models 
Deformable Neurosurgery Chapters 8-9 

Chapter 1 establishes the significance and clinical motivation for advancing the state of the art in image-

guided surgery, focusing on applications of orthopaedic surgery and neurosurgery. Fundamentals 

of image registration, including transformations and similarity metrics, as well as literature review 

of common registration methods, will also be discussed.  

Chapter 2 reviews the basics of statistical models, including mathematical derivation and algorithms for 

statistical shape models (SSM), statistical pose models (SPM), and statistical shape and pose 

models (SSPM). The statistical models are used in Chapters 3-5 as a form of prior knowledge of 

anatomy for applications of preoperative planning in orthopaedic surgery. 

Chapter 3 develops a method for preoperative planning of K-wire and screw trajectories for minimally 

displaced (simple) pelvic fracture fixation. The method first constructs a pelvic atlas, including 

bone segmentations, SSMs of each bone, and annotations of 10 common trajectories. Through an 

SSM-to-image registration, pelvic bones are automatically segmented, and trajectory annotations 

from the atlas are transformed into the preoperative  CT coordinates as a form of trajectory planning. 

Han, R., Uneri, A., De Silva, T., Ketcha, M., Goerres, J., Vogt, S., Kleinszig, G., Osgood, G., 

Siewerdsen, J. H. "Atlas-based automatic planning and 3D–2D fluoroscopic guidance in pelvic 

trauma surgery". Physics in Medicine & Biology, vol 64(9):095022, 2019.  
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Chapter 4 reports a multi-body rigid registration algorithm that aligns intact pelvic bones to an SPM for 

pose estimation of dislocation reduction for preoperative planning of pelvic dislocation reduction 

surgery. The SSM-to-image registration from Chapter 3 is first applied to segment the three pelvic 

bones, which are then aligned to an SPM in an inference problem to predict the target pose of the 

dislocated bone(s). An additional refinement is also proposed to avoid collisions as the joint is 

reduced. 

Han, R., Uneri, A., Vijayan, R., Sheth, N., Wu, P., Vagdargi, P., Vogt, S., Kleinszig, G., Osgood, 

G. M., Siewerdsen, J. H. "Multi-Body 3D-2D Registration for Image-Guided Reduction of Pelvic 

Dislocation in Orthopaedic Trauma Surgery". Physics in Medicine & Biology vol 65(13):135009, 

2020. 

Chapter 5 extends the multi-body registration algorithm in Chapter 4 from modeling intact bones to 

modeling fractured bones, in a framework incorporating SSPM for planning of fracture reductions 

in orthopaedic surgery. The framework involves a semi-automatic segmentation of fracture bones 

and registration of bone fragments to an SSPM that adapts its shape and poses according to patient 

anatomy. The registration solves for a set of rigid transformations (target reduction pose) of the 

bone fragments such that the bones are aligned to the desired healthy locations. 

Han, R., Uneri, A., Vijayan, R., Wu, P., Vagdargi,, P., Sheth, N., Vogt, S., Kleinszig, G., 

Osgood, G. M., Siewerdsen, J. H., “A Multi-Body Image Registration Framework for Pelvic 

Fracture Reduction Planning and Guidance in Orthopaedic Trauma Surgery.” Medical Image 

Analysis, vol 68, 2021. 

Chapter 6 integrates the preoperative planning methods from Chapter 3-5 into a system for 3D-2D 

guidance of orthopaedic trauma surgery. A multi-body 3D-2D registration is developed to align 

preoperative 3D images or bone segmentations to intraoperative fluoroscopy routinely acquired 

during surgery. The 3D-2D registration not only provides an image-based tracking of multiple 

bones during surgery, but also allows a mapping of preoperative plans to the intraoperative 

coordinates to provide surgical guidance. Chapter 6 includes the work of the three journal articles 

from Chapter 3-5. 
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Chapter 7 shifts the scope of methodology and clinical application to intracranial soft-tissue deformation 

in neurosurgery. An inter-modality, deformable registration algorithm is proposed for registration 

of T1/T2-weighted MR and CT images for the brain. The physics-based registration optimizes 

pointwise mutual information metric in a Demons framework (under the assumption of optical 

flow), and is combined with momentum-based acceleration for fast computation.  

Han, R., De Silva, T., Ketcha, M., Uneri, A., Siewerdsen, J. H. "A momentum-based diffeomorphic 

demons framework for deformable MR-CT image registration". Physics in Medicine & Biology, 

vol 63(21): 215006, 2018. 

Chapter 8 develops a deep learning-based, MR-CT deformable registration algorithm for neurosurgical 

applications that further improves accuracy and runtime from conventional physics-based 

registration methods. The method uses a probabilistic CycleGAN for MR-CT image synthesis and 

a dual-channel registration to predict the deformation field in both MR and CT channels. The image 

synthesis aleatoric uncertainties are jointly estimated in the synthesis and are used as spatially 

weightings to balance the contributions of the MR and CT channel registration. In addition to a 

conventional sequential training, an end-to-end training strategy is investigated that jointly 

optimizes the image synthesis and registration tasks to improve the registration performance. 

Han, R., Jones, C. K., Lee, J., Wu, P., Vagdargi, P., Uneri, A., Helm, P. A., Luciano, M., Anderson, 

W. S., Siewerdsen, J. H. "Deformable MR-CT image registration using an unsupervised, dual-

channel network for neurosurgical guidance". Medical Image Analysis, vol 75:102292, 2022. 

Chapter 9 extends the deep learning-based MR-CT registration from Chapter 8 to a more challenging MR-

CBCT registration for CBCT-guided neurosurgery. A joint synthesis and registration network (JSR) 

is proposed that synthesizes both MR and CBCT to an intermediate CT domain, where a multi-

resolution registration is computed. The joint learning promotes the network to learn pertinent 

latent information of image synthesis and registration to improve the overall registration 

performance. 

Han, R., Jones, C. K., Lee, J., Zhang, X., Wu, P., Vagdargi, P., Uneri, A., Helm, P. A., Luciano, 

M., Anderson, W. S., & Siewerdsen, J. H. " Joint Synthesis and Registration Network for 
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Deformable MR-CBCT Image Registration for Neurosurgical Guidance ". Physics in Medicine & 

Biology (under review). 

A series of image registration algorithms with increasing registration model and transformation 

complexity are developed in subsequent chapters to address challenges in image-guided orthopaedic 

surgery and/or neurosurgery. The methods aim to improve the accuracy and computational efficiency of 

both the preoperative planning and intraoperative guidance stages of such surgical procedures with the aim 

of ultimately improving surgical outcomes
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Chapter 2.  

Statistical Modeling of Anatomy 

2.1 Introduction 

To represent the variations in shape observed in specific anatomical structures, mathematical 

models have been developed to reduce the dimensionality of medical imaging data and remove noise and 

surrounding anatomical background not pertinent to the structures of interest. For instance, Yuille et al. 

[128] used parametric geometric shapes to model human faces. Such parametric models, however, cannot 

generalize well to other anatomy and are limited to fairly simple shapes. The Active Contour (or “Snakes) 

approach [129, 130] models the boundary of anatomy as an energy-minimizing curve with an internal 

energy to regularize smoothness and an external energy to move toward image features. The Active Contour 

method is useful in describing objects with a fairly simple, smoothly varying shape (e.g., cells and the heart), 

but may be limited in modeling complex anatomy. Recognizing that human anatomy naturally varies in 

size, shape, and relative orientations (or poses), statistical models can be used to model the range of 

variations, assuming the pattern to follow a certain statistical distribution (e.g., Gaussian distribution) [88]. 

Statistical shape models (SSMs) are a popular approach to statistical modeling of the geometric 

shapes of a collection of semantically similar anatomy using the average shape and the variation of the 

shape of a 3D structure. The SSM approach has been used extensively for image segmentation [88, 131–

133], longitudinal analysis of disease progression [134], and planning of reconstructive surgery [135]. For 

anatomy composed of multiple components (“multi-body”), such as articulated joints, an articulated SSM 

was developed by concatenating multiple SSMs with rotational constraints around a joint center of motion 

[136, 137]. For anatomical structures not connected by free-moving joints (e.g., brain, abdominal organs, 

and pelvic bones), a statistical pose model (SPM) has been proposed to model the transformations of a 

system of anatomy across a population or of the same subject across time. For instance, SPMs have been 

used to analyze brain deformation over time as a result of neuro-degenerative disease progression [138].  
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This chapter provides a background overview of the mathematical theory of statistical modeling, 

including SSM, SPM, and statistical shape and pose model (SSPM). Applications of such statistical models 

to image registration and image-guided surgery will be further discussed in subsequent chapters. The overall 

workflow of statistical model construction is summarized in Figure 2.1. Given a 3D image volume, the 

anatomy of interest is first segmented, and the segmentation contour is processed into a 3D point cloud. 

Point correspondence of the point clouds is then obtained, such that the same points across contours of 

different subjects are in the same anatomical location. Point correspondence can be obtained via manual 

annotation of anatomical landmarks or automatic registration. The correspondent point clouds from 

multiple subjects are then combined to compute the statistical model. This chapter assumes the starting 

point of construction of a statistical model to be correspondent point clouds, which is necessary for 

computation of many statistics. Methods for establishing point correspondence (usually via segmentation 

of the surface of the anatomical structure) will be discussed in Chapter 3. 

 
Figure 2.2. Flowchart depiction for the process of building statistical models of anatomical shape: 3D image volumes of multiple 

subjects; anatomical segmentation; correspondent point cloud generation; and computation of the statistical model. 

2.2 Statistical Shape Model 

The segmentation contour of an anatomical structure can be represented by a point cloud consisting 

of 𝑛𝑝  3D points. The shape (𝑥) can be represented by the concatenation of the Cartesian coordinates 

(x(i), 𝑦(𝑖), 𝑧(𝑖)) of each point: 
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x = ((x(1), 𝑦(1), 𝑧(1)), (𝑥(2), 𝑦(2), 𝑧(2)),… , (𝑥(𝑛𝑝), 𝑦(𝑛𝑝), 𝑧(𝑛𝑝))) , (2.1) 

where x ∈ ℝ3×𝑛𝑝. To build an SSM, a set of shapes from 𝑁subjects is required, giving {x𝑛: 𝑛 ∈ [1, 𝑁]}. As 

mentioned in Section 2.1, point correspondence is assumed across the set of shapes, such that point 𝑖 of the 

𝑛𝑡ℎ shape x𝑛
(𝑖)

 corresponds to the same anatomical location. 

The shapes obtained from image segmentations vary in location and orientation depending on the 

image acquisition and do not relate to the statistical variations of interest in the anatomy. Such variations 

(translations and rotations) in the 6 degrees of freedom (DOF) associated with each shape must first be 

factored out using point registration before statistical analysis. Taking a random shape, x𝑖, as the reference, 

all other shapes (x𝑗, 𝑗 ≠ 𝑖) can be aligned to the reference via a Procrustes analysis. The Procrustes analysis 

minimizes the Euclidean difference between the two shapes: 

ℒ = ‖x𝑖 − 𝑅(x𝑗 − 𝒕)‖
2
, (2.2) 

where 𝑅 is the 3 × 3 rotation matrix and 𝒕 is the 1 × 3 translation vector. Equation (2.2) has a closed form 

solution at the zero derivative, with: 

𝒕 =
1

𝑛𝑝
∑ (𝑥𝑖

(𝑘)
− 𝑥𝑗

(𝑘)
)

𝑛𝑝

𝑘=1
, (2.3𝑎) 

𝑅 = 𝑉𝑈𝑇 , (2.3𝑏) 

𝑈,𝐷, 𝑉𝑇 = SVD((𝐱𝑗 − 𝒕)𝐱𝑖
𝑇) , (2.3𝑐) 

where 𝑈,𝐷, 𝑉𝑇 are the singular value decomposition of the inner product of two shapes (with translation 

removed). Using the above Procrustes analysis, all other shapes, 𝐱𝑗, can be aligned to the reference shape 

as x̂𝑗 , resulting in a set of aligned shapes {x̂𝑛: 𝑛 ∈ [1, 𝑁]}  that is used as the training data for SSM 

computation. To remove the randomness of choosing one shape as the reference mean shape, a generalized 

Procrustes analysis (GPA) can be computed that iteratively refines the reference as shown in Algorithm 2.1. 
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Algorithm 2.1. Generalized Procrustes analysis (GPA) for mean shape calculation 

Randomly choose one shape as the reference, 𝐱𝑟𝑒𝑓 

for iteration=1:n: 

        Perform pairwise Procrustes of all shapes to 𝐱𝑟𝑒𝑓 

Compute the mean shape (�̅�) by averaging the corresponding point across the 

set of aligned shapes 

Align �̅� to 𝐱𝑟𝑒𝑓 using Procrustes and set it as the new 𝐱𝑟𝑒𝑓 

After aligning all the shapes to a common reference frame, the dimensionality of the training data 

is reduced, and the major modes of shape variation of the anatomy are identified. Principal component 

analysis (PCA) is often used for the task, which finds a set of orthonormal directions with maximal 

covariance. The shapes in the matrix form ℝ3×𝑛𝑝 are reshaped into vectors, 𝒙 ∈ ℝ3𝑛𝑝×1. The mean shape 

(�̅�) and the covariance matrix (𝑆) of the aligned set are defined as: 

�̅� =
1

𝑁
∑ �̂�𝑛

𝑁

𝑛=1
, (2.4𝑎) 

𝑆 =
1

𝑁 − 1
∑ (�̂�𝑛 − �̅�)𝑇(�̂�𝑛 − �̅�)

𝑁

𝑛=1
, (2.4𝑏) 

where 𝑆 is a 3𝑛𝑝 × 3𝑛𝑝 matrix.  

Assuming 𝑛𝑝 ≫ 𝑁 , an eigenvalue decomposition on 𝑆  yields 𝑁  principal modes of variations 

(eigenvector (𝑝𝑛) and eigenvalue (𝜆𝑛) pairs, 𝑛 ∈ [1, 𝑁]). From PCA, any valid shape can be represented by 

the mean shape and a linear combination of the principal modes: 

𝐱 = �̅� + ∑ 𝑝𝑛𝑣𝑛

𝑁

𝑛=1
, (2.5) 

where 𝑣𝑛 is a coefficient weight of the corresponding principal mode, 𝑝𝑛. In practice, only the first few 

major principal modes are used, and the remaining modes are removed (e.g., taking the 𝑀 modes with 

accumulated variance above a threshold) to reduce noise and improve generalizability of the representation.  

By concatenating the major principal modes into a matrix, 𝑃𝑆𝑆𝑀 ∈ 𝑅𝑁𝑝×𝑀, Equation (2.5) can be 

rewritten in a matrix form: 
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𝐱 = �̅� + 𝑃𝑆𝑆𝑀𝐯𝐒𝐒𝐌, (2.6) 

where 𝐯𝐒𝐒𝐌 is a 𝑀 × 1 vector containing the coefficients of the corresponding principal mode. Equation 

(2.6) is the SSM equation, and 𝐯𝐒𝐒𝐌 is called the shape parameters. Changing the shape parameters (within 

a valid range, commonly spanning [−3𝜆𝑚, 3𝜆𝑚]) generates different shapes of the anatomy. 

2.3 Statistical Pose Model 

The SSM in Section 2.2 treats the entire anatomical structure as a single body and models the shape 

variation alone. For more complex anatomy containing multiple structures, the inter-structure relative 

orientations also vary. The SPM has thus been proposed to model the relative poses (or the respective 

similarity transformations between structures within the anatomical system). While the SSM is computed 

using PCA of point coordinates of anatomical shapes in the Euclidean space, the similarity transformations 

are not linear in the Euclidean space, and PCA cannot be directly computed. Principal Geodesic Analysis 

(PGA) was proposed in [139] as a generalization of PCA to a non-Euclidean, non-linear set of manifolds. 

Bossa and Olmos [140] adapted PGA to similarity transformations for the construction of SPM. To better 

understand the SPM algorithm, the following section covers the concept of Lie groups (to which similarity 

transformations belong), PGA, and the SPM algorithm. The summary in following sections was adapted 

from [139–142]. 

2.3.1 Lie Groups 

The Lie group is a continuous, differentiable manifold, which is a space that locally resembles 

Euclidean space, has smooth definition of binary operations (e.g., multiplication and its inverse, division), 

and whose binary operations are defined to be differentiable. While a Lie group (𝐺) may be curved globally, 

its local tangent space is a Euclidean space. If inner products are defined at any space tangent to 𝐺, and the 

inner products vary smoothly from point to point, then such a Lie group is called a Riemannian manifold 

where distance is well defined.  
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Let us define the identity of a 𝐺 to be 𝑒 and the space tangent to 𝐺 at identity to be 𝑔. The length 

of a curve, 𝛾(𝑡) ∈ 𝐺, 𝑡 ∈ ℝ , between two points, 𝛾(𝑎)  and 𝛾(𝑏)  is 𝐿𝑎
𝑏 (𝛾) = ∫ ‖𝛾′(𝑡)‖𝑑𝑡

𝑏

𝑎
, where the 

derivate, 𝛾′(𝑡) ∈ 𝑔 , and the norm of the derivative is the Euclidean inner product. Then the distance 

between two points, 𝑥, 𝑦 ∈ 𝐺, is defined to be the length over the shortest path between the two elements 

(the geodesic): 

𝑑(𝑥, 𝑦) = min
𝛾

𝐿𝑥
𝑦(𝛾) . (2.7) 

For every velocity, 𝐯 ∈ 𝑔, a unique geodesic, 𝛾(𝑡) ∈ 𝐺, exists that starts from the identity, 𝛾(0) =

𝑒 and has initial velocity, 𝛾′(0) = 𝐯. The geodesic can be computed via exponential mapping from the 

tangent space to the Lie group, exp(𝐯) → 𝐺, such that 𝛾(𝑡) = exp(𝑡𝐯). The inverse logarithmic mapping 

from 𝐺 to 𝑔 is also valid: log(𝑥) → 𝑔, with 𝑥 ∈ 𝐺. A more geometric interpretation is that straight lines in 

the tangent space, 𝑔, passing through the origin can be mapped to geodesics in 𝐺  passing through the 

identity, 𝑒. The distance from 𝑒 to any element, 𝑥 ∈ 𝐺, can thus be defined in the tangent space as the 

Euclidean distance between the origin and inverse logarithmic mapping: 

𝑑(𝑒, 𝑥) = ‖log(𝑥)‖. (2.8) 

Similarly, the distance between any two elements 𝑥, 𝑦 ∈ 𝐺 is defined as: 

𝑑(𝑥, 𝑦) = 𝑑(𝑒, 𝑥−1𝑦) = ‖log(𝑥−1𝑦)‖. (2.9) 

2.3.2 Principal Geodesic Analysis (PGA) 

The Lie group distance definition permits the definition of mean and variance, which are both 

necessary for statistical analysis in statistical shape modeling. Analogous to the definition of Euclidean 

mean and variance, the Lie group mean (𝜇) and variance (𝜎2), or the so called Fréchet mean and variance, 

of a set of elements {𝑥𝑖, 𝑖 = [1, 𝑁]} ∈ 𝐺 (referred to as training data) are defined as: 

𝜇 = argmin
𝜇∈𝐺

∑ 𝑑2(𝜇, 𝑥𝑖)
𝑁

𝑖=1
, (2.10𝑎) 

𝜎2 =
1

𝑁
∑ 𝑑2(𝜇, 𝑥𝑖)

𝑁

𝑖=1
. (2.10𝑏) 
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The principal geodesics are then defined as successive geodesics, 𝛾𝑙 ∈ 𝐺, 𝑙 = 1, 2, …, starting from 

the mean, 𝛾𝑙(0) = 𝜇, that are orthogonal to the previous principal geodesics and for which training data 

projected onto them have maximal variance. The projection on a geodesic, 𝛾(𝑡) = 𝜇 exp(𝑡𝐯), is defined as:  

𝑃𝛾𝑥 = argmin
𝑦∈𝛾

𝑑2(𝑥, 𝑦) . (2.11) 

Assuming data are distributed closely about the mean, the projection can be approximated with 

respect to the residual point (with mean removed), �̃� = 𝜇−1𝑥. Equation (2.11) can thus be rewritten as: 

𝑃𝛾𝑥 = argmin
𝑦∈𝛾

‖log(𝑥−1𝑦)‖2 = argmin
�̃�∈𝛾

‖log(�̃�−1�̃�)‖2 ≈ argmin
�̃�∈𝛾

‖log(�̃�) − log(�̃�)‖2 . (2.12) 

Substituting 𝑦 = 𝛾(𝑡) = 𝜇 exp(𝑡𝐯) into Equation (2.12) yields the minimum at 𝑡 = log(�̃�) ∙ 𝐯. The 

projection is thus: 

𝑃𝛾𝑥 = exp((log(�̃�) ∙ 𝐯)𝐯) . (2.13) 

The variance of the geodesic projection is then: 

𝜎𝛾
2 =

1

𝑁
∑ 𝑑2(𝑒, 𝑃𝛾𝑥)

𝑁

𝑖=1
=

1

𝑁
∑ (log(𝜇−1𝑥𝑖) ∙ 𝐯)2

𝑁

𝑖=1
. (2.14) 

Equation (2.14) means that finding the principal geodesics with maximal projected variance is 

equivalent to finding vectors in the tangent space that maximizes Euclidean projected variance. Therefore, 

PGA is equivalent to PCA computed on the logarithmic mapping of the residual data (with mean removed), 

log(𝜇−1𝑥𝑖).  

2.3.3 Statistical Pose Model (SPM) Algorithm 

A similarity transformation is written in homogenous coordinates as: 

𝑇 = [
𝑠𝑅3×3 𝐝

𝟎𝑇 1
] , (2.15) 

where 𝑠 ∈ ℝ+ is a scaling parameter, 𝑅3×3 ∈ SO(3) is an orthogonal rotational matrix, and 𝐝 ∈ ℝ3 is a 3D 

translation vector. The group of matrices following Equation (2.15) forms a Riemannian manifold with 

distance defined in Equation (2.9). Distance in the Riemannian manifold can be converted to its tangent 

space using an exponential and logarithm mapping via the following relationships: 
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exp [

0 0 0 𝑡𝑥
0 0 0 𝑡𝑦
0 0 0 𝑡𝑧
0 0 0 0

] = [

1 0 0 𝑡𝑥
0 1 0 𝑡𝑦
0 0 1 𝑡𝑧
0 0 0 1

] , (2.16𝑎) 

exp [

0 −𝑟𝑧 𝑟𝑦 0

𝑟𝑧 0 −𝑟𝑥 0
−𝑟𝑦 𝑟𝑥 0 0

0 0 0 0

] = [
𝑅 0
𝟎𝑇 1

] , (2.16𝑏) 

exp [
log(s) 𝐼3 0

𝟎𝑇 0
] = [

𝑠𝐼3 0

𝟎𝑇 1
] , (2.16𝑐) 

where (𝑡𝑥 , 𝑡𝑦, 𝑡𝑧) are translation parameters, (𝑟𝑥, 𝑟𝑦, 𝑟𝑧) ∈ SO(3) are rotational parameters belonging to the 

3D rotation group, and 𝐼3  is an identity matrix of dimension 3×3. The exp()  term denotes matrix 

exponentiation. The tangent space of the similarity transformation can then be defined by a set of 7 

parameters: 

𝐛 = [𝑡𝑥 𝑡𝑦 𝑡𝑧 𝑟𝑥 𝑟𝑦 𝑟𝑧  log(𝑠)]
𝑇
. (2.17) 

The 𝐛 vector is an equivalent Euclidean space representation of the similarity transformation. 

Hence, any similarity transformation can be written as an exponential mapping of its orthogonal basis 

decomposition: 

𝑇 = exp(∑[𝐛]𝑖𝐵𝑖

7

𝑖=1

) , (2.18𝑎) 

[𝐵1]1,4 = [𝐵2]2,4 = [𝐵3]3,4 = 1, 

[𝐵4]3,2 = [𝐵5]1,3 = [𝐵6]2,1 = 1, 

[𝐵4]2,3 = [𝐵5]3,1 = [𝐵6]1,2 = −1, 

[𝐵7]1,1 = [𝐵7]2,2 = [𝐵7]3,3 = 1, otherwise 0, (2.18b) 

where [𝐛]𝑖  denotes the 𝑖𝑡ℎ  component of b, and [𝐵]𝑖,𝑗  denotes the 𝑖𝑡ℎ  column and 𝑗𝑡ℎ  row of 𝐵 . The 

orthogonal basis (𝐵) shares the same form as the matrices in the exponential operation in Equation (2.16). 

Given two similarity transformations, 𝑇1 and 𝑇2, the distance, 𝐷, between the two can be computed in a 

manner similar to Equation (2.9): 
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𝐷(𝑇1, 𝑇2) = ‖log(𝑇1
−1𝑇2)‖. (2.19) 

The distance definition forms a basis for mean and variance computation, and PGA on the similarity 

transformations of a single-body structure is equivalent to performing PCA on the 𝐛 vectors. 

For complex, multi-body anatomy (for example, comprising 𝐿 structures), PGA is computed on 𝐿 

similarity transformations across a training dataset of 𝑁 subjects. The training data are first normalized by 

globally aligning the members to a common reference frame using Procrustes analysis. The pose of each 

structure, 𝑥𝑛
(𝑙), 𝑛 ∈ [1,𝑁], 𝑙 ∈ [1, 𝐿], with respect to the mean pose – i.e., the residual pose with mean 

removed – is then: 

𝑇𝑛
(𝑙) = argmin

𝑇
𝐷2 (𝑥𝑛

(𝑙), 𝑇(�̅�(𝑙))) , (2.20) 

where �̅�(𝑙)  is the mean shape of the 𝑙𝑡ℎ  structure and is computed using the algorithm in Table 1. By 

converting the poses into the Euclidean space parameters, 𝐛𝑛
(𝑙)

, concatenating the 𝐿 poses into a pose vector 

∈ ℝ7𝐿×1, and concatenating 𝑁 pose vectors into a matrix ∈ ℝ7𝐿×𝑁, the PGA results in: 

{𝑇(𝑙)} = {exp (∑[�̅� + 𝑃SPM𝐯SPM]
𝑙+𝑖

𝐵𝑖

7

𝑖=1

)} , (2.21) 

where �̅� ∈ ℝ7𝐿 is the mean pose vector, 𝑃SPM ∈ ℝ7𝐿×(𝑁−1) is the principal component matrix, and 𝐯SPM ∈

ℝ𝑁−1 is a weight vector describing the populational pose variation. 

2.4 Statistical Shape and Pose Model 

The shape of a each single-body anatomical structure can be represented by an SSM, and the poses 

of multi-body anatomy can be represented by a SPM. By combining the two statistical models into a single 

model (referred to as a statistical shape and pose model, SSPM), the full shape and pose information of 

complex, multi-body anatomy can be represented. Algorithm 3.2 below summarizes the SSPM algorithm. 
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Algorithm 3.2. SSPM algorithm for multi-body anatomy 

Input: a set of 𝐿-body anatomy shapes {{𝑥𝑛
(𝑙), 𝑙 ∈ [1, 𝐿]} , 𝑛 ∈ [1, 𝑁]}  

Let 𝑥𝑛 denote the multi-body shape from the 𝑛𝑡ℎ subject.  

 

% Build individual SSM 

for 𝑙 = 1 to 𝐿: 

Compute mean shape �̅�(𝑙) using Algorithm 1 

Compute SSM of the 𝑙th shape using Equation (2.4-2.6): 

𝑥(𝑙) = �̅�(𝑙) + 𝑃𝑆𝑆𝑀
(𝑙)

𝑣𝑆𝑆𝑀
(𝑙)

 

 

% Build SPM 

Compute the mean shapes of the entire anatomy �̅� using Algorithm 1 

for 𝑛 =1 to 𝑁: 

Rigidly align 𝑥𝑛 to �̅� using Procrustes: 𝑥𝑛 → 𝑥𝑛 

    for 𝑙 = 1 to 𝐿: 

    Compute the residual pose from �̅�(𝑙) to 𝑥𝑛
(𝑙)

 using Procrustes as 𝑇𝑛
(𝑙)

 

Compute SPM using Equation (2.21) 

{𝑇(𝑙)} = {exp(∑[�̅� + 𝑃SPM𝐯SPM]
𝑙+𝑖

𝐵𝑖

7

𝑖=1

)} 

 

% Build SSPM 

Combine SSM and SPM into a single model: 

𝑥 = {𝑇(𝑙)𝑥(𝑙), 𝑙 ∈ [1, 𝐿]} = {exp (∑[�̅� + 𝑃SPM𝐯SPM]
𝑙+𝑖

𝐵𝑖

7

𝑖=1

)(�̅�(𝑙) + 𝑃𝑆𝑆𝑀
(𝑙)

𝑣𝑆𝑆𝑀
(𝑙)

) , 𝑙 ∈ [1, 𝐿]} (2.22) 

2.5 Discussion and Conclusion 

The overview and basic algorithm described above provides the basis for constructing a SSM, SPM, 

and SSPM to model anatomical variations of shapes and poses. Most commonly, the training data forming 

the basis of such models comprise images and annotations from healthy subjects, and the extent to which 

such models generalize to abnormal anatomy or pathology is a subject of considerable interest – for example, 

in relation to bone models in the context of fracture or brain models in the context of hydrocephalus. Chapter 

3-5 will discuss several applications of using statistical models for surgical planning in orthopaedic trauma 

surgery. For example, by incorporating such compact statistical models as prior knowledge, surgical 

planning can be performed in a more automatic fashion without relying on manual definitions from experts. 

Only the original version of the SSM approach [88] was covered in this chapter. A considerable 

body of work has been proposed to generalize SSMs to more challenging training data and improve the 
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accuracy of the models. For example, the training data may contain outliers (shapes outside the expected 

distribution), possibly due to pathology. Instead of using PCA, robust PCA has been proposed as a means 

to handle such outliers [143]. The shape and pose parameters are constrained (e.g., by ±3𝜆) in a manner 

that is entirely dependent on the eigenvalues and does not guarantee that the resulting shape is realistic. A 

more accurate constraint of the parameters can be obtained by Gaussian mixture models (GMMs), as 

proposed in [144].  

Another category of statistical modeling is to build non-linear SSMs, which allow modeling more 

complex shape variations (e.g., rotations and bending) that is not possible with linear models. Sozou et al. 

used polynomial regression [145] and Twining and Taylor [146] proposed kernel PCA for non-linear 

modeling. Additionally, the classic SSM approach described in this chapter is such that changes in the shape 

parameters globally change the entire shape. To increase model flexibility, methods that divide the SSM 

into several independent parts have been proposed. Cerrolaza et al. [147] proposed a hierarchical SSM 

using the wavelet transform, which decomposes a structure into different models – some relating to global 

shape changes and some relating to local shape changes. Recent advances in deep learning also show 

potential in modeling shape and pose variations with neural networks. For instance, DeepSSM [148] 

incorporates a convolutional neural network (CNN) to extract a low-dimensional shape representation from 

automatically defined, corresponding point clouds from 3D images, without the need of segmentation. A 

deep implicit SSM has also been proposed [149], using an implicit deep representation of shapes for SSM 

(as an alterative to point clouds). 

The statistical models described in this chapter focus on modeling shape and pose variations of 

anatomical contours (surfaces) obtained from segmentations. Another important property of anatomy that 

could be derived from medical imaging is the image texture (e.g., the pattern of image intensity within and 

throughout the anatomy). Statistical appearance models have been developed to model the variations of 

image texture along with the variations of shape [150]. The appearance models provide extra dimensions 

to the statistical models and can potentially improve the robustness of the algorithm in segmentation 
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applications [150, 151]. Combining appearance models with shape and pose models warrants future 

investigation. 

The classic SSM approach described in this chapter provides the basis and proof-of-concept for 

variations and specific clinical applications that are investigated in subsequent chapters. The applications 

are certainly not limited to the use of the basic model, and advances in statistical modeling beyond the 

basics described above remain an active area of research to resolve challenges of computational load, 

handling abnormal shape variations and pathology, and specific clinical use cases.
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Chapter 3.  

Registration of a Single-Body Shape Model to a 3D Image: 

Application to Trajectory Planning in Orthopaedic Surgery 

3.1 Introduction 

Pelvic fractures resulting from trauma present a challenge even to experienced surgeons in accurate 

placement of instrumentation within the complex 3D anatomy of the pelvis. Accordingly, such procedures 

carry a high rate of morbidity to tissues and even mortality (8.3%) [152]. Percutaneous fracture fixation is 

a prevalent means to stabilize minimally displaced fractures, involving the insertion of Kirschner wires (K-

wires) along narrow bone corridors with subsequent placement of cannulated screws. During surgery, a 

mobile C-arm is commonly used to acquire fluoroscopic images incrementally during K-wire and screw 

insertion to visualize the position of surgical devices with respect to bone anatomy. Owing to the challenge 

of cognitive reckoning of 3D pelvic morphology within the 2D fluoroscopic scene, accurate K-wire 

placement carries a considerable learning curve, and even experienced surgeons often resort to trial-and-

error and extended fluoroscopy time (commonly exceeding 120 s total [153]). In this work, we report a 

method to automatically define K-wire / screw trajectories in the pelvis as a form of preoperative planning 

to guide surgeons in fixation surgery. 

Preoperative CT is routinely used to assess pelvic fracture and complex 3D bone morphology in 

proximity to adjacent nerves and vessels. Segmentation of anatomy in preoperative CT can assist 

visualization and planning, and as mentioned in Chapter 2 is a common preliminary step in developing an 

SSM. Threshold-based image segmentation is a reasonable starting point for bone segmentation, but even 

for such high-contrast structures, thresholding methods suffer from image intensity inhomogeneity and 

often exhibit substantial segmentation errors [154]. To constrain the segmentation to realistic anatomical 

shapes, prior knowledge can be incorporated. For example, a widely-studied atlas-based segmentation 
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approach uses an atlas of annotated (segmented) images and deformably registers the atlas members to the 

patient image [155, 156]. By propagating the segmentations via registration, a patient-specific segmentation 

can thereby be obtained – referred to as segmentation-by-registration. Such an approach, however, carries 

a heavy computational burden from multiple deformable image-to-image registrations, limiting its 

application in the time-sensitive workflow of image-guided surgery.  

Another popular approach to incorporate prior knowledge in segmentation is to use an Active Shape 

Model (ASM) [88]. The ASM method uses an SSM to model possible shape distributions and aligns the 

SSM to a patient image by optimizing the SSM shape parameters. Compared to atlas-based segmentation, 

ASM optimizes a more compact model and can be computed with faster runtime. Such an approach has 

been proposed for segmentation of pelvic bones in CT [157, 158]. However, the linearity associated with 

the SSM limits generalizability in application to complex shapes or shapes well outside the training data 

distribution. Twining and Taylor [146] proposed kernel PCA to perform non-linear PCA as the basis for 

SSM and showed that a non-linear ASM can improve segmentation accuracy. Another method is to 

combine the ASM approach with free-form deformation (FFD), which increases the ASM search space to 

more non-linear deformations. For example, Li et al. [159] combined ASM with FFD to segment liver in 

CT images. Seim et al. [133] further incorporated an ASM and a constrained FFD into a graph-cut 

optimization framework for robust segmentation of the liver.  

While the ASM method is used primarily for purposes of segmentation, it can be formulated as a 

registration problem. By aligning the SSM to the patient image, the algorithm estimates a transformation 

from the SSM space to the patient image coordinates, which can be further used to propagate other 

annotations (for example surgical planning data) defined within the SSM to the patient. Segmentation / 

registration via ASM can thereby provide a basis for preoperative planning – for example, as detailed below, 

to plan K-wire trajectories for fracture fixation.  

The shape of the pelvic bone is correlated with the trajectories for screw fixation [160, 161]. 

Depending on the forces exerted during trauma and the pelvic biomechanics, common trajectories for pelvic 
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fracture fixation include: (1) anterior column to iliac crest (referred to as iliac crest)  [160]; (2) posterior 

column [162]; (3) anterior column along the superior pubic ramus (referred to as superior ramus) [163]; (4) 

anterior inferior iliac spine (AIIS) to posterior superior iliac spine (PSIS) (referred to as AIIS to PSIS) [164]; 

and (5) iliosacral screws joining the ilium and sacrum at S1 and S2 (referred to as iliosacral S1 and S2) 

[163]. Figure 3.1 illustrates each of these trajectories within an example CT volumetric rendering. 

 
Figure 3.1. Ten common trajectories overlaied with an example CT volumetric rendering. 

Analogous methods have been proposed for manual or semiautomatic segmentation of vertebrae 

and planning of spinal pedicle screw trajectories [165, 166]. Additionally, Banerjee et al. [167] developed 

a planning algorithm of acetabular screws based on a discrete set of points defined on the acetabulum region. 

Recent work [168] utilized ASM for automatic determination of screw trajectories of the pelvis, helping to 

resolve the bottleneck of manual trajectory planning that can be prohibitive within the rapid workflow of 

trauma surgery. 

In this chapter, we develop and evaluate a method for accurate registration and trajectory planning 

of minimally displaced pelvic fracture, with application in minimally invasive, percutaneous surgery. The 

method may also work in open surgery but could potentially be complicated by retractors and other 

instruments. The approach extends the method of Goerres et al. [168] by: (i) increasing the pelvic atlas of 

20 CT images to 40 images; extending the SSM of the left innominate bone to all three pelvic bones (left / 

right innominate bones and sacrum); including iliosacral S1 and S2 trajectories; and utilizing volumetric 

trajectory “acceptance volume” (cf. line trajectory) that include all acceptable orientations of trajectories 

within safe margins of the bone cortex. The volumetric trajectory provides a more useful planning structure 
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compared to previously described line trajectories [166] and permits reasonable variation of K-wire 

placement within clinically acceptable margins. The atlas, in the form of a single-body SSM, is registered 

to preoperative CT images via ASM and FFD, and the transformation is used to propagate trajectory 

annotations to the patient coordinates to provide patient-specific plans. Two experiments were conducted 

to evaluate the performance of the proposed method for segmentation, registration, and planning: an atlas 

cross-validation experiment (Section 3.3.1) and a cadaver experiment with a minimally displaced pelvic 

fracture in Section 3.3.2. 

The screw trajectory planning algorithm developed in this chapter was integrated with an 

intraoperative guidance system for fracture fixation surgery. Details of the intraoperative guidance system 

are further described in Chapter 6. 
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Siewerdsen, J. H. "Atlas-based automatic planning and 3D–2D fluoroscopic guidance in pelvic trauma 

surgery". Physics in Medicine & Biology, 64(9), 095022 (2019).  

• Han, R., Ramsay, B., Goerres, J., De Silva, T. S., Uneri, A., Ketcha, M. D., Jacobson, M. W., Sheth, 

N., Vogt, S., Kleinszig, G., Osgood, G. M., & Siewerdsen, J. H. "Automatic definition of surgical 

trajectories and acceptance window in pelvic trauma surgery using deformable registration". In SPIE 

Medical Imaging 2018: Image-Guided Procedures, Robotic Interventions, and Modeling (Vol. 10576, 

p. 50) (2018).  
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dissertation. The author’s unique contributions include: implementation of the reported algorithms; 
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The work in this chapter was supported by NIH grant R01-EB-017226 and academic industry 

partnership with Siemens Healthineers (Erlangen Germany). The author would like to acknowledge Ben 

Ramsay for performing manual CT segmentation images in the atlas. 

3.2 Algorithmic Methods 

Figure 3.2 illustrates the process for automatic planning of percutaneous pelvic screws using a 

single-body shape model for image registration. Preoperatively, an atlas of pelvis shapes and reference 

trajectories is registered to the patient CT via ASM and FFD, and patient-specific trajectories are 

automatically determined using the ASM transformation without the need for manual segmentation or 

annotation of the CT. The planning information can be further integrated into an intraoperative guidance 

system (as described in Chapter 6) by registering the preoperative images to intraoperative radiographs. 

 
Figure 3.2. Flowchart for automatic trajectory planning for fixation of minimally displaced pelvic fracture. An atlas in the form of 

SSMs is registered to a patient CT automatically via ASM and FFD. The registration then propagates trajectory annotations of the 

atlas to the patient coordinate to provide automatic planning of trajectories. 

3.2.1 Statistical Model and Planning Atlas Generation 

A pelvis atlas was created from CT images drawn from the Cancer Imaging Archive [169–171]. A 

total of 𝑛 = 40 pelves (20 male and 20 female) were manually segmented by a research assistant trained in 

pelvic anatomy with distinct definition of the left innominate bone, right innominate bone, and sacrum. The 

CT images were processed to volume size of 512x512x500 voxels and voxel size ranging from 

0.63x0.63x1.00 mm3 to 0.98x0.98x1.25 mm3. Atlas segmentations were obtained manually slice by slice 
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using the Medical Imaging Interaction Toolkit (German Cancer Research Center, Heidelberg Germany), 

followed by a smoothing filter to reduce noise in the segmentations. Only the first three levels of the sacrum 

(S1-S3) were considered relevant to iliosacral screw trajectories, and omission of S4 and inferior segments 

avoided the broad morphological variations in the lower sacrum and coccyx. Each segmentation was 

converted to a closed, triangulated surface mesh, 𝑆𝑛, 𝑛 ∈ [1, 𝑁], with 𝑛𝑝 = 5000 equidistant vertices.  

The vertices of the triangulated surface meshes were used as point cloud representations of the 

pelvic shapes. Before computation of SSM, point correspondence was established such that the same point 

across the set of shapes in the atlas corresponds to the same anatomical location. In this work, we used the 

Coherent Point Drift (CPD) [38] algorithm for point-based deformable registration to establish 

correspondence. A surface shape, 𝑆𝑖, was randomly chosen from the atlas as a reference and was deformably 

registered to the remaining 𝑁 − 1 shapes. Through the deformable registration, any shape, 𝑆𝑛 , can be 

represented by the points of 𝑆𝑖 , and point correspondence was established, resulting in a set of shapes 

{𝑥𝑛, 𝑛 ∈ [1, 𝑁]}. 

CPD is a popular point registration algorithm for point clouds without correspondence. The 

algorithm aligns two point clouds as a probability density estimation problem, where one point cloud 

represents centroids of a Gaussian mixture model (GMM), and the other represents data points to be 

matched. Let a point from the first point cloud be 𝑦𝑚 and a point from the second point cloud be 𝑥𝑛, the 

correspondence probability is defined as the posterior probability of the GMM centroid: 

𝑃(𝑚|𝑥𝑛) =
𝑃(𝑚)𝑝(𝑥𝑛|𝑚)

𝑝(𝑥𝑛)
, (3.1) 

where 𝑚 denotes one component of the GMM and 𝑃(𝑚) is an equal membership probability for all GMM 

components. 𝑝(𝑥𝑛|𝑚) is the standard GMM probability density function. The algorithm forces the GMM 

centroids to move coherently as a group to preserve topology and maximizes the GMM posterior probability 

for the given data points. 
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An SSM describing the variations in shape among atlas members was then constructed for each 

pelvic bone individually following the method from Chapter 2 (Section 2.2). Using PCA on the 

correspondent shapes, the SSM can be computed as 𝐱 = �̅� + 𝑃𝑆𝑆𝑀𝐯𝐒𝐒𝐌, where �̅� ∈ ℝ3𝑛𝑝×1 is the mean 

shape, 𝑃𝑆𝑆𝑀 ∈ ℝ3𝑛𝑝×𝑚 is the principal component matrix from the largest 𝑚 eigenvectors, and 𝐯𝐒𝐒𝐌 is the 

shape parameter.  

An important addition to the atlas beyond SSM is the inclusion of acceptable volumetric regions 

for screw placement—10 common trajectories as mentioned in Section 3.1: (left and right) anterior column 

to iliac crest; (left and right) posterior column; (left and right) anterior column to superior pubic ramus; (left 

and right) AIIS to PSIS; and iliosacral trajectories (at levels S1 and S2). Reference trajectories were semi-

automatically defined to include all possible orientations in the target bone corridors. As shown in Figure 

3.3(a), acceptable trajectory entry surfaces (in both antegrade and retrograde manner) were manually 

annotated on the pelvic segmentation mesh to cover each set of possible entry locations. As illustrated in 

Figure 3.3(b), points on the two surfaces were connected with a cylinder of 1.6 mm radius (the radius of a 

standard percutaneous K-wire). If the cylinder was entirely contained in the closed bone surface, the voxels 

of the cylinder were included in the acceptance volume. A hole filling operation was then applied, resulting 

in a roughly cylindrical shaped acceptance volume, denoted 𝐶𝑛. A triangulated mesh representation of the 

trajectory acceptance volume was then created with 500 equidistant vertices, denoted 𝑆𝑐𝑛
, and are shown 

in Figure 3.3(c). 

The atlas – including CT images, pelvic segmentations, shape model, and reference trajectories – 

were made available in the public domain and can be downloaded from: https://istar.jhu.edu/wp-

content/uploads/2019/03/open-source%20atlas.zip. In addition to the inclusion of reference trajectories, the 

atlas adds to the body of previously reported open science atlases [133, 157, 158, 172], uses commonly 

available data formats, does not require other custom software, and represents complete scans covering the 

pelvis from iliac crest to ischium. 
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Figure 3.3. Atlas of volumetric reference trajectories (acceptance volumes) in pelvic trauma surgery. (a) Manually annotated 

trajectory entry regions. (b) Example view of permissible AIIS trajectories (red) connecting two entry surfaces to generate a 

acceptance volume, 𝐶𝑖  (yellow contour). (c) Example reference acceptance volumetric meshes, 𝑆𝑐𝑖
 (blue). The current atlas 

comprised 40 pelves, each with 10 reference trajectories, and was made available in the public domain. 

3.2.2 SSM-to-Image Registration 

An ASM algorithm was implemented to separately register the three SSMs from three pelvic bones 

to CT to obtain a segmentation of pelvis. The registration was parametrized by a rigid transformation 𝑇ASM 

and a weight vector 𝑏𝑆𝑆𝑀: 

𝐲 = 𝑇ASM(�̅� + 𝑃𝐛𝐒𝐒𝐌), (3.2) 

where 𝐲 is the registered shape from ASM. ASM optimization is based on a local search that requires an 

initial estimate of 𝑇ASM, and optimization may diverge without a proper initialization. A straightforward, 

manual solution to the initialization involves user manipulation [157], requiring a user to roughly align the 

position and rotation of the mean shape of the SSM to the patient image. While manual manipulation can 

be accomplished in relatively short time, it requires experienced personnel and may interfere with clinical 

workflow. In this work, a more automatic initialization was implemented using rigid image registration. 

From Section 3.2.1, the transformation from any atlas CT image to the SSM is well defined. By rigid image 

registration from an atlas image to the patient image, the initial estimate, 𝑇𝐴𝑆𝑀, can be determined. 

ASM parameters were solved iteratively by locally estimating the displacement of vertices based 

on image content and globally fitting the surface to the SSM constraints. Similar to [88], a one-dimensional 

profile orthogonal to the shape surface at each vertex was sampled in the gradient magnitude image, and 

the vertex displacement, ∆𝒚𝒑, was determined that moves the vertex to the location of highest gradient 
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magnitude. Following the determination of vertex displacements, Procrustes analysis was applied to rigidly 

align the previous shape estimation to the updated shape: 

�̂�ASM = argmin
𝑇

‖𝑇(𝐲) − (𝒚 + ∆𝐲𝒑)‖
2
. (3.3) 

Using all vertices in 𝑦  for Procrustes analysis can be subject to noise, since some vertex 

displacements may not be optimal in the local search. To improve the robustness, a random sample 

consensus approach as described in [168] was applied, which randomly sampled a subset of vertices (𝑛𝑝 =

100) for Procrustes. The random sampling was applied multiple times, and the 𝑇𝐴𝑆𝑀 that maximized the 

gradient magnitude at the resulting vertices was selected as �̂�ASM in Equation (3.3). The weight vector was 

then updated by projecting the residual displacement ∆𝐲𝒔 = 𝐲 + ∆𝐲𝒑 − 𝑇𝐴𝑆𝑀(𝐲) to the atlas SSM: 

∆𝐯𝐒𝐒𝐌 = 𝑃𝑆𝑆𝑀
−1 �̂�ASM

−1 (∆𝐲𝒔). (3.4) 

The estimate of vertex displacement can be prone to errors arising from adjacent bones (e.g., 

latching to a nearby surface at the femoral head or L5 vertebra), image noise, and image artifacts. The ASM 

framework was therefore applied in a multi-scale hierarchy – starting from coarsely sampled volumes (to 

improve speed and inhibit the surface from latching to nearby structures) and proceeding to progressively 

finer sampling (to improve robustness to noise and adjacent anatomical content) as in [88]. Another variable 

in the multiresolution pyramid was the number of principal components, 𝑚, which was varied to allow the 

ASM to adjust the most significant modes of variation before tuning the minor modes. The multiresolution 

schedule is detailed in Table 3.1 with isotropic downsampling [4x, 2x, 1x], Gaussian smoothing kernel 

width (voxels) [4, 2, 1], and number of principal components [2, 4, 8, 12]. 

Although ASM is robust in surface-to-image registration, the shapes obtained from ASM are 

constrained by the space spanned by principal components of the SSM. If a particular patient’s pelvis shape 

is not well represented in the principal component space, ASM tends to be less accurate and does not 

converge to the correct solution. Therefore, a refinement to the basic ASM method was incorporated in 

which free-form deformation (FFD) was used after ASM to achieve better local convergence. The FFD step 
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iteratively solved for vertex displacements along surface normals in a manner similar to ASM. Instead of 

maximizing the image gradient magnitude, the FFD step maximized a directional image gradient along the 

surface normal of each vertex to avoid latching to nearby structures. Since FFD can suffer from image noise 

and artifacts, a sinc smoothing function with passband at 10% of Nyquist frequency was applied to the 

registered surface after every FFD iteration. The sinc filter helped to evenly distribute and smooth the 

displacements of adjacent vertices for accurate local shape representation. The vector, 𝐲, from SSM-to-

image registration is a ℝ3𝑛𝑝×1  vector and is reshaped to ℝ𝑛𝑝×3 as a point cloud 𝑦 of 𝑛𝑝 points. 

Table 3.1. Multiresolution pyramid schedule for SSM-to-image registration, with decreasing image binning (increasing image 

resolution), decreasing Gaussian kernel width, and increasing number of principal components. A FFD refinement was applied in 

the final step. 

Iteration # 
Image 

Binning 

Gaussian 

Kernel Width 

(voxels) 

# Principal 

Components 

10 4x 4 2 

20 4x 4 4 

30 4x 4 8 

40 4x 4 8 

50 4x 4 12 

60 2x 2 12 

70 2x 2 12 

80 1x 1 12 

85 1x 1 FFD 

3.2.3 Automatic Trajectory Planning 

The registration method discussed in the previous section yields a sparse displacement field from 

the SSM to the patient CT, which can in turn be used to deform the reference trajectory volumetric meshes 

to the patient CT coordinates and thereby produce patient-specific plans of trajectories. There are a variety 

of ways to transform the trajectory atlas to patient coordinates: for pedicle screw placement in spine surgery, 

Knez et al. [165] determined the entry points and poses of screw trajectories from entry surfaces on the 

vertebral body; and Goerres et al. [168] deformed a trans-pedicle reference trajectory from each atlas 

member to the patient registration. For pelvic trauma screw trajectories in this work, we consider a full 

volumetric description of each trajectory in the atlas, thus accounting for morphological differences 
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between the patient pelvis and the atlas (such as narrowing of superior ramus or increased curvature of the 

sacrum). In addition, compared to a single trajectory, the volumetric trajectory atlas includes all safe (i.e., 

non-breaching) trajectory poses. The algorithm of automatic trajectory planning is summarized in Figure 

3.4 using the AIIS to PSIS trajectory as an example. 

The Mean Value Coordinates (MVC) method [173] was used to interpolate the displacement at 

every vertex of the trajectory surface based on mean value transformation between atlas surface x𝑛 and 

registered surface y. By adding the interpolated displacements from MVC, each trajectory surface, 𝑆𝐶𝑛
, was 

mapped to a deformed trajectory surface (�̃�𝐶𝑛
) in the CT image space and voxelized to a binary volume, �̃�𝑛. 

An accumulation map (𝐴𝑐) was computed by taking the normalized sum of the mapped trajectory volumes 

�̃�𝑛, 𝑛 ∈ [1, 𝑁]. The 𝐴𝑐 map provides a confidence measure of screw trajectories, where values closer to 1 

indicate greater consensus of the atlas.  

 
Figure 3.4. Automatic definition of pelvic screw trajectory. Trajectory surfaces 𝑆𝐶𝑛

 from atlas members are mapped to the patient 

�̃�𝐶𝑛
 via the transformation obtained by the SSM-to-image registration using MVC interpolation. The normalized summation of 

voxelizations of the mapped trajectory volumes of all atlas members yields an accumulation map 𝐴𝑐. 

3.3 Experimental Methods 

3.3.1 Atlas Cross-validation 

The trajectory planning method was evaluated in a leave-one-out cross-validation of the atlas. For 

each member of the atlas, the corresponding CT image was used as the patient image, and the remaining 

images were used to construct a new atlas with (𝑁 − 1) members. The SSM-to-image registration accuracy 

was measured by the Euclidean surface distance between the registered surface, 𝐲 , and the manual 
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segmentation surface 𝑆ref. The surface root-mean-square-error (RMSE) between every vertex 𝑣 on 𝐲 to its 

closest vertex on 𝑆ref was computed:  

𝑑𝑟𝑚𝑠(𝑦, 𝑆ref) = √
1

|𝑦|
 ∫ ( min

𝑠∈𝑆ref

|𝑣 − 𝑠|)
2

𝑑𝑣
𝑣∈𝑦

 (3.5) 

where |𝑦| is the number of vertices in the surface 𝑦.  

The automatically determined trajectory volumes were evaluated both in terms of the accuracy of 

the accumulation volume and the conformance of the optimal trajectory within the accumulation volume. 

The accuracy of the accumulation volume was quantified in terms of the positive predictive value (PPV) of 

the accumulation volume above 0.5 (indicating consensus by over half of the atlas) in comparison to 

reference volume 𝐴ref: 

PPVAc
=

(𝐴𝑐 > 0.5) ∩ 𝐴ref

𝐴𝑐 > 0.5
. (3.6) 

An optimal centerline trajectory was determined from 𝐴𝑐 by fitting a straight, rigid cylinder with 

radius of 1.6 mm (common K-wire radius) to the accumulation map between the entry/exit surfaces. A 

measurement of trajectory acceptability was proposed to evaluate how close an instrument (e.g., K-wire or 

screw) following the trajectory plan comes to cortical bone– an important concern in device placement, 

since breach of the cortex could injure adjacent vessels and nerves. Equidistant points, 𝑡(𝑖), 𝑖 ∈ [1, 𝑛𝑡], were 

sampled along the trajectory and the distance from each sample to the cortical bone surface, min
𝑠∈𝑆ref

|𝑡(𝑖) − 𝑠|, 

was calculated. Distance values greater than zero indicate that the trajectory is within the bone corridor, 

and negative values indicate breach of the bone cortex. 

3.3.2 Cadaver Study 

The performance of SSM-to-image registration and accuracy of trajectory planning was further 

evaluated in a study involving placement of four K-wires in a fresh human cadaver. The specimen was 

acquired from the University of Maryland Anatomy Board and used under approved state and institutional 
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protocols. The four K-wire trajectories corresponded to the following pelvic trajectories: anterior column 

to iliac crest (left), superior ramus (left), AIIS to PSIS, and iliosacral (at S1). Due to experimental limitations, 

a CBCT scan (O-arm, Medtronic, Littleton MA) was acquired instead of CT, with the cadaver in prone 

position prior to K-wire placement, providing the basis for SSM-to-image registration and trajectory 

planning. The CBCT image was reconstructed at 0.42x0.42x0.42 mm3 with a volume size of 880x512x568 

voxels. Since only a single cadaver case was evaluated, the result from the cadaver study was combined 

with the result from atlas cross-validation and discussed together in Section 3.4. A second part of the 

cadaver study involved fluoroscopy-guided screw placement to evaluate the guidance system and is 

discussed separately in Chapter 6.  

3.4 Results 

3.4.1 Accuracy of SSM-to-Image Registration 

Leave-one-out cross-validation of SSM-to-image registration among 40 pelves yielded median 

surface distance error of 2.2 mm RMSE (0.3 mm interquartile range [IQR]) following ASM registration. 

Figure 3.5(a) plots the surface RMSE following each step in the multiresolution pyramid, showing a 

decrease in surface RMSE at each level. The ASM algorithm plateaued at 12 principal components and full 

resolution at around 70 epochs. The FFD step further reduced surface RMSE to median 1.8 mm (0.2 mm 

IQR), showing a statistically significant reduction compared to ASM registration at the same image 

resolution (student t-test 𝑝 < 0.05). The improvement from FFD suggests that the linear SSM is not able 

to model the full shape variation of the pelvis, at least not in the ASM local search framework. By increasing 

the search space to more non-linear shape variations, the model can be aligned to image gradients that better 

represents the pelvis. 

The same multiresolution pyramid was applied to registration to CBCT images of the cadaver, 

yielding surface RMSE of 2.2 mm (0.9 mm IQR) after ASM registration and 1.6 mm (0.5 mm IQR) after 

FFD. The registration accuracy of the cadaver was on par with the accuracy of the atlas cross-validation, 
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suggesting that the proposed model-to-image registration is relatively insensitive to CT acquisition 

protocols and can be generalized well to unseen data. 

 
Figure 3.5. Accuracy of SSM-to-image registration. (a) Surface RMSE measured as a function of numer of iterations over the 

course of a multiresolution pyramid in image resolution (binning 4x–1×) and number of principal components (2–12). Further 

improvement in registration accuracy was obtained using FFD at the final stage. (b–d) Axial, sagittal, and coronal views of an 

example CT image overlaid with the registered SSM model (yellow). (e) 3D rendering of the pelvis, where the color of each surface 

vertex encodes surface distance error. 

Figure 3.5(b)-(d) illustrates the registration result as a segmentation of the pelvis, with line contour 

overlays on the CT image. A 3D rendering of segmentation error at every vertex on the surface is shown in 

Figure 3.5(e), demonstrating fairly uniform registration (~1 mm surface RMSE) across most regions of the 

pelvis. Larger segmentation error was found in locations of high curvature and shape variations, such as the 

edges of the iliac crest, pubic symphysis, and the AIIS. For purpose of pelvic fracture fixation, however, 

the paths of percutaneous fixation trajectories tend to traverse areas such as the body of the ramus and iliac 

wings, which show error within ~1 mm. Moreover, as shown below, there is a degree of intrinsic robustness 

in the trajectory planning method in that the trajectories (including an effective interpolation by MVC) are 

not strongly perturbed by localized surface registration errors. 

3.4.2 Accuracy of Trajectory Planning 

The accuracy of planned trajectories was evaluated in leave-one-out cross-validation over 40 pelves 

from the atlas. Figure 3.6 shows the distributions in positive predictive value (PPV𝐴𝑐
) for the automatically 
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planned accumulation volume for each of the six trajectory types. The results demonstrate >90% overlap 

between the automatically determined plans and the reference segmentation for most cases. The iliosacral 

trajectories were the most challenging due to high anatomical variation of the sacral vertebrae among the 

atlas and larger surface registration error near the sacral foramina, presenting higher likelihood of cortical 

breach. Still, the iliosacral S1 and S2 trajectories were solved with >80% PPV𝐴𝑐
 for all cases.  

Figure 3.6 plots the distance between centerline trajectories in the automatically planned 

accumulation volume to the bone cortex. Each plot shows three measurements: (i) violin plots (distribution 

shown in gray for 40 cases) of the distance from the centerline to bone cortex as a function of distance along 

the trajectory; (ii) the same as (i) but for the cadaver experiment (shown as black curves); and (iii) lower 

thresholds marked by red horizontal lines at 1.6 mm (typical K-wire radius) and 0 mm (below which the 

trajectory has breached cortical bone). The average distance from trajectory to cortex was 5.4 mm for AIIS 

to PSIS, 5.1 mm for iliac crest, 3.7 mm for superior ramus, 6.5 mm for posterior column, 3.9 mm for 

iliosacral S1, and 4.1 mm for iliosacral S2, indicating an acceptable trajectory planning accuracy for the 

majority of cases. A small number of outliners (1–2 each) was observed for the superior ramus, iliosacral 

S1, and iliosacral S2 trajectories, with an overall breach rate of 1.6%. 



52 

 

 
Figure 3.6. Accuracy of automatic planning. In each case, the boxplot at left shows the distribution in PPV of the computed 

acceptance corridor compared to the reference. Plots in the right of each case show distributions in the distance between the 

centerline trajectory and the bone cortex as a function of distance along the planned trajectory. Solid black lines are for the cadaver 

experiment. Horizontal solid and dashed lines indicate 1.6 mm (K-wire diameter) and 0.0 mm from the cortex boundary below 

which the distance is indicative of breach. The endpoints of each plot represent the entry and endpoint of trajectories at the cortical 

surface. 

Figure 3.7 shows registered acceptance corridors with respect to the pelvis anatomy for an example 

atlas member. The left image in each case shows the 3D rendering of the planned trajectory volume (𝐴𝑐 >

0.5) overlaid on the 3D surface mesh of the pelvis. The automatically determined trajectory volumes 

accurately conformed within most of the pelvic volume without breaching cortex. The right image in Figure 

3.7 shows the posterior-anterior (PA) projection of the CT overlaid with the projection of the planned 

trajectory volume. The projection images were analogous to fluoroscopy images acquired during surgery, 
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in which the trajectory can be challenging to determine. Projection of the trajectory plans provides an 

example form of augmentation for fluoroscopic guidance that will be further discussed in Chapter 6. 

 
Figure 3.7. Automatic planning of 6 example trajectories in pelvic trauma surgery: (a) Iliac Crest, (b) Posterior Column, (c) 

Superior Ramus, (d) AIIS to PSIS, (e) Iliosacral S1, and (f) Iliosacral S2. Images on the left in each case show 3D visualization of 

the pelvis surface mesh after surface-to-image registration with automatically planned 3D accumulation volume (green). Images 

on the right in each case show a PA projection overlaid with projected trajectory plan (green). 

Finally, the runtime of the planning algorithm was investigated in the atlas cross-validation. Table 

3.2 summarizes runtime at each step along the algorithm, from initialization, to SSM-to-image registration, 

to trajectory planning. The bottleneck of the algorithm is the trajectory planning step, due to high 

computation time associated with voxelized trajectory surface meshes (�̃�𝐶𝑛
) to binary volumes (�̃�𝑛) at the 

full image resolution. To alleviate the runtime burden, an alternative implementation computed the 

accumulation map at a lower resolution (e.g., 4x binning) and then upsampled it back to full resolution. 

Such an implementation had little impact to trajectory planning accuracy while significantly reduced 

runtime from 10.10 ± 2.05 min to 1.18 ± 0.15 min. The total runtime of the algorithm was 12.92 ± 2.82 min 

for full resolution planning and 4.00 ± 0.79 min for 4x lower resolution. Since the preoperative planning 
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can be performed before surgery and does not require any manual interaction, the computation time is rather 

negligible, and the proposed algorithm can be easily streamlined into current clinical workflow. 

Table 3.2. Preoperative trajectory planning algorithm runtime evaluated in the atlas cross-validation study. 

Algorithm Stage Runtime (min) 

Initialization 0.54 ± 0.18 

SSM-to-image Registration: ASM 2.03 ± 0.50 

SSM-to-image Registration: FFD 0.25 ± 0.08 

Trajectory Planning  

(Full resolution / 4x lower resolution) 
10.10 ± 2.05 / 1.18 ± 0.15 

Total 12.92 ± 2.82 / 4.00 ± 0.79 

3.5 Discussion and Conclusion  

A system for automatic trajectory planning of percutaneous screw placement in minimally 

displaced fracture fixation surgery was reported. The system involves deformable registration of an SSM 

to a patient’s preoperative CT using ASM and FFD. An atlas – including 40 segmented CT images of the 

pelvis, the corresponding SSM, and expert definition of pertinent K-wire trajectory volumes – was 

constructed to build the SSM and evaluate algorithmic performance. Experiments demonstrated mean 

surface registration accuracy of 1.8 mm in atlas cross-validation and 1.6 mm in a cadaver study. Surgical 

trajectories are then automatically determined in the patient CT by transforming an atlas of trajectory 

acceptance corridors via the same registration. The trajectory planning achieved an overall breach rate of 

1.6% in the atlas cross-validation, with only a few failures in superior ramus and iliosacral screws that were 

presented with challenging bony anatomy. 

The current work is not without limitations. The ASM was susceptible to registration error in areas 

of high curvature, but the surface error tended to be low in areas near the trajectory corridors. Outliers were 

still observed in the study, however, such as surface intersection in cases of an extremely narrow superior 

pubic ramus and surface latching onto neighboring structures (e.g., at the femoral head near the acetabulum 

or lumbar vertebrae near the sacrum endplates). Methods have been proposed to resolve such challenges in 
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ASM, including expanding the 1D search space along surface normal to an omnidirectional space [174], 

adopting a hierarchical statistical shape model for more robust registration [147], and using a more 

advanced graph-cut optimization for vertex location adjustment [133]. Coupling the SSM-to-image 

registration of multiple structures and incorporating collision constraints between structures [175] can also 

alleviate some of the challenges. Extension of the current automatic planning system to these methods 

merits future investigation. Nevertheless, the method for trajectory planning is relatively insensitive to such 

errors, since the interior regions associated with the acceptance corridors (computed by MVC interpolation) 

is relatively robust against localized surface registration error. 

The current atlas contains 6 categories of clinically relevant trajectories (iliac crest, posterior 

column, superior pubic ramus, AIIS to PSIS, and trans-sacral iliosacral S1 and S2)—10 trajectories in 

total—that cover the majority of percutaneous fixation cases. However, other trajectories can be 

encountered depending on particular fractures, such as from the AIIS to the iliac crest for lateral 

compression [160], which could certainly be added to the atlas. Furthermore, this work only considered 

trans-iliac trans-sacral iliosacral screws in S1 and S2 levels, which are plausible in normal sacra. In cases 

of upper sacral dysmorphism that commonly exhibits enlarged sacral foramina and acute alar slope, trans-

sacral iliosacral screws are not advisable [176], and a one-sided screw along an oblique pathway may be 

required. Future investigation could involve differentiating normal from dysmorphic sacra via ASM surface 

registration and automatically planning of oblique trajectories to accommodate such anatomical variations. 

The cross-validation and cadaver study involved high-quality preoperative patient CT and CBCT 

images. Considering application in intraoperative orthopaedic trauma surgery with lower fidelity CBCT 

images (e.g., lower dose images with higher levels of noise, artifact, and limited field of view), further work 

is warranted to investigate the proposed SSM-to-image registration and trajectory planning in the context 

of such 3D images. The accuracy and reliability of the system demonstrated in this work provides important 

quantitation of accuracy and feasibility in support of future clinical pilot studies in orthopaedic surgery. 
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Chapter 4.  

Registration of Multi-Body Shape Models to a 3D Image: 

Application to Dislocation Reduction Planning in Orthopaedic 

Surgery  

4.1 Introduction 

Pelvic dislocation is a severe pelvic injury that involves dislocations of the sacroiliac (SI) joint with 

frequent concurrence of pubic symphysis (PS) disruption [177]. Pelvis dislocation without bone fractures 

consists of 5% to 27% of pelvic trauma, depending on different studies [178, 179] Following diagnosis and 

planning in CT (often in the emergency setting), surgical treatment of pelvic dislocation typically involves 

open or closed reduction and internal fixation under guidance of intraoperative x-ray fluoroscopy. Accurate 

reduction is challenged by the difficulty in reckoning the complex 3D pelvic anatomy from 2D fluoroscopic 

projections, resulting in extended fluoroscopy time and frequent trial-and-error even for experienced trauma 

surgeons. In addition, residual displacement after reduction surgery (>4 mm) is associated with long-term 

complications such as persistent pain, limb length discrepancy, and disability [180, 181]. 

The surgical plan (i.e., determination of the dislocated bone(s) and definition of the target 

orientation) is performed based on preoperative CT - either qualitatively or with the assistance of various 

2D or 3D manual planning tools. For example, segmentation of preoperative CT and virtual 3D image 

manipulation has been proposed as a basis for planning [13–15]; however, manual manipulation is time 

consuming relative to rapid trauma workflow – for example, [13] reporting 174.8 min average planning 

time for a fracture of the tibial plateau. 

Emerging methods for automatic image segmentation and registration provide the potential for 

more streamlined, accurate, and quantitative preoperative planning. Atlas-based techniques have been 

widely reported as a means to relate population-based prior information to patient-specific images. SSMs 
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are commonly used to model anatomical shape variations of a single object in a linear space via PCA, and 

have been incorporated in ASM segmentation [88] and surgical trajectory planning for pelvic fracture 

fixation [168, 182]. An ASM segmentation with constraints on proximity of multiple bone components was 

proposed in [183] for analysis of ankle morphology. To study the shape and pose of multiple objects, [139] 

defined PGA for statistical analysis and segmentation of shapes modeled by a set of connected continuous 

medial manifolds in a nonlinear Lie group space. [140] proposed a SPM representation from PGA of poses 

(similarity transformations) for brain shape analysis. Related methods were further extended in [138] to a 

multi-object scenario to study the shapes and poses of multiple brain structures simultaneously.  

In the work reported below, we incorporate the SSM pelvic segmentation of Ref. [182] and the 

SPM analysis reported in Ref. [140] to obtain a framework for computing the target pose of dislocated 

bones in a multi-body system. The resulting method provides a means for planning of pelvic dislocation 

reduction without the need for laborious manual segmentation. The proposed algorithm for dislocation 

reduction planning was evaluated in simulation, phantom, and clinical studies. The reduction plans can be 

further incorporated into an intraoperative guidance system to guide surgical reduction under fluoroscopy, 

and details of the guidance system is discussed later in Chapter 6. 

4.1.1. Acknowledgements and Unique Contributions 
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M., & Siewerdsen, J. H. "Multi-Body 3D-2D Registration for Image-Guided Reduction of Pelvic 

Dislocation in Orthopaedic Trauma Surgery". Physics in Medicine & Biology (2020). 

• Han, R., Uneri, A., Vijayan, R., Ketcha, M., Sheth, N., Vogt, S., Kleinszig, G., Osgood, G. M., 

Siewerdsen, J. H., “Pelvic Dislocation Reduction Guidance for Orthopaedic Trauma Surgery using 

Atlas-based Registration and Known Component 3D-2D Registration.” AAPM 2019, San Antonio, 

TX. 
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with permission from the publishers for reproduction of content (text and Figures 4.2-4.4 and 4.6) in this 

dissertation. The author’s unique contributions include: implementation of the reported algorithms; 

development and testing; simulation, phantom, and reader studies; and quantitative analysis. 

The work in this chapter was supported by NIH grant R01-EB-017226 and academic industry 

partnership with Siemens Healthineers (Erlangen Germany).  

4.2 Algorithmic Methods 

The proposed approach for preoperative planning of pelvic dislocation surgery is illustrated in 

Figure 4.1, using multi-body registration to compute the target pose among multiple bone components. The 

SSMs of three pelvic bones (sacrum and left / right innominate bones) are registered via ASM to the patient 

CT to obtain multi-body segmentations. An SPM is then fitted to one or more bones that are not dislocated 

for estimation of the target pose of the dislocated bone. The target pose constitutes the preoperative plan 

for reduction of the pelvic dislocation.  

 
Figure 4.1. Flowchart for automatic multi-body planning in reduction of pelvic dislocation. 

4.2.1 Dislocated Bone Segmentation 

The open-source pelvic atlas and SSM developed in Chapter 3 was used to separately segment the 

left/right innominate bone and the sacrum. The SSM of each bone was represented as 𝐱(𝒍) = �̅�(𝑙) +

𝑃𝑆𝑆𝑀
(𝑙)

𝐯𝐒𝐒𝐌
(𝒍)

, 𝑙 ∈ [1,3]. The SSMs were separately registered to the preoperative CT image via the multi-

resolution ASM and FFD algorithm following the method in Chapter 3 Section 3.2. The resulting 

segmentations were represented as point clouds, denoted 𝑥(𝑙), and the segmentations provided a basis for 

planning of poses as described in subsequent sections.  
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4.2.2 SPM Inference for Dislocation Reduction Planning 

The three pelvic bones were treated as a multi-body system for which the relative poses (or the 

respective similarity transformations between bones) could be jointly modeled by SPM from Chapter 2. 

The SPM modeled the variations of the similarity transformations of a multi-body system (belonging to a 

Lie group) with respect to the mean shape using principal geodesic analysis (PGA). The SPM was 

represented by the mean pose (in the logarithmic or tangent space of Lie group), �̅�, the principal component 

matrix, 𝑃SPM , and pose parameter, 𝐯SPM : {𝑇(𝑙)} = {exp (∑ [�̅� + 𝑃SPM𝐯SPM]
𝑙+𝑖

𝐵𝑖
7
𝑖=1 )} , as shown in 

Equation (2.21). 𝐵𝑖 denotes the orthogonal basis of the pose in the logarithmic space of the Lie group and 

is detailed in Equation (2.18). To constrain the SPM within realistic poses, 𝐯SPM is limited between ±3𝛌, 

where 𝜆 is the vector of eigenvalues from PGA.  

Figure 4.2 shows the first four modes of pose variation in the pelvis SPM, with the ±3𝝀 deviation 

of the pose model shown in yellow and green, respectively. The first mode represents the superior-inferior 

shift of the sacrum with respect to the innominate bones; the second mode represents rotational pose change 

in the axial plane, similar to the open-book flexion of the pelvis; the third mode represents rotational pose 

change in the sagittal plane (with the sacrum showing more rotational variation than the innominate bones); 

and the fourth mode represents the rotational change of the innominate bones in the coronal plane with 

respect to the sacrum. 

 
Figure 4.2. Statistical Pose Model (SPM) of the pelvis. (a-d) The first four modes of variation (+3𝝀 in yellow, -3𝝀 in green) in 

pose of the sacrum and innominate bones.  

In the scenario of pelvic dislocation, some pelvic bones would be dislocated due to injury and the 

others would be not affected, and it would be rare that all three bones were dislocated simultaneously. To 
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estimate the target pose of reduction for the dislocated bones, the SPM is fitted to the poses of the 

undislocated bones, and the resulting pose parameter is used to infer the target pose of the dislocated bones. 

For example, assume the left innominate bone is dislocated, with unknown target pose (𝐛𝑋), and the right 

innominate bone and the sacrum are undislocated with observed poses (𝐛𝑂) that can be obtained from the 

preoperative CT segmentation. The unknown target pose (𝐛𝑋 ) can be estimated through an inference 

problem of the posterior model of the SPM [184]: 

�̂� = argmin
𝐯

‖𝐛𝑂 − [�̅�𝑐]𝑂 − [𝑃SPM,c]𝑂𝐯‖
2
, s. t. |𝐯𝑖| ≤ ±3√𝜆𝑖 (4.1𝑎) 

�̅�𝑐 = �̅� + 𝑃SPM([𝑃SPM]𝑂
𝑇 [𝑃SPM]𝑂 + 𝜎2𝐼)−1𝑃SPM

𝑇 (𝐛𝑂 − [�̅�]
𝑂
) (4.1𝑏) 

𝑃SPM,c = 𝜎2𝑃SPM([𝑃SPM]𝑂
𝑇 [𝑃SPM]𝑂 + 𝜎2𝐼)−1𝑃SPM

𝑇 (4.1𝑐) 

𝐛𝑋 = [�̅�𝑐]𝑋 + [𝑃SPM,c]𝑋�̂� (4.1𝑑) 

where [∙]𝑂 and [∙]𝑋 are the indices of the undislocated and target bones, respectively. �̅�𝑐 and 𝑃SPM,c are the 

posterior mean and covariance matrix adjusted based on observed poses, and 𝜎2 models the deviation of 

the model, computed according to [184].  Equation (4.1a) was solved using interior-point constrained 

optimization [185] subject to the constraint that each entry of the SPM weight vector (𝑣𝑖) is within three 

standard deviations of the SPM eigenvalue, 𝜆𝑖 . The target pose of reduction is then computed through 

exponential mapping, 𝑇𝑋 = exp(∑ [𝐛𝑋]𝑖𝐵𝑖
7
𝑖=1 ). Even if all three bones are dislocated, the sacrum can be 

first treated as the undislocated bone to infer the poses the innominate bones, and the overall pose of the 

pelvis can be estimated with respect to the surrounding anatomy (e.g., the lumbar spine). 

The average movement between the healthy pelvic bones was quantified by the standard deviation 

of the translational and rotational parameters in the SPM model. In terms of translations, the standard 

deviation ranged from 1.5 mm to 2.6 mm for the innominate bones and up to 5 mm translation in anterior-

posterior / superior-inferior direction for the sacrum. In terms of rotations, the standard deviation ranged 

from 1° to 3° for the innominate bones in all directions and up to 5° for the sacrum in the sagittal plane. 

Empirically, minimal model intersection was observed within ±3𝜆.  
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The SPM solution does not account for local shape variations of the pelvis and could result in 

overlap at the SI and PS joints. A refinement step was therefore incorporated by imposing a collision 

constraint on opposing joint surfaces obtained from segmentations: the surface normals over the joint 

surfaces were computed, and a ray-tracing collision detection [186] was performed between opposing 

surfaces. Transformations resulting in overlap between opposing surfaces were refined locally by the 

smallest 3D translation (𝐷refine) to the dislocated bone along the direction of the surface normal. The final 

target pose of the dislocated bone with respect to the mean pose was the composition of the pose from the 

SPM and the collision constraint refinement: 𝑇target = 𝐷refine𝑇𝑋 . The method without the collision 

refinement is termed SPM, and the method with the collision constraint is termed SPMCC. 

4.3 Experimental Methods 

4.3.1 Comparison of Alternative Pose Estimation Methods 

Two other pose estimation methods were implemented and experimentally tested as a basis of 

comparison to the SPM approach: (1) treating the pelvic SSM as a single, rigid object (cf., L separate rigid 

components); and (2) based on the assumption of pelvic symmetry about a sagittal plane. Both alternative 

methods used point clouds from ASM segmentation. In the first, an SSM of the pelvis was constructed as 

a single object (shapes from three bones were concatenated as a single shape before PCA), such that 𝐱 =

�̅� + 𝑃SSM𝐯SSM. The full pelvis SSM couples the shape and pose variations and hence can be used to estimate 

shape and pose simultaneously. After ASM segmentation of the observed undislocated bones, 𝐱𝑂, the shape 

of the target bone surface, 𝐬, can be estimated: 

�̂� = argmin
𝐯

‖𝐱𝑂 − [�̅�]𝑂 − [𝑃SSM]𝑂𝐯‖2 , (4.2𝑎) 

𝐬 = [�̅�]𝑋 + [𝑃SSM]𝑋�̂�. (4.2𝑏) 

The target pose of the dislocated bone can be computed by Procrustes analysis from the mean shape to the 

target shape. The method is referred to as “single-pelvis SSM,” or SSMsingle for short. 
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In the second method, the target pose of the dislocated innominate bone was estimated as the 

mirrored pose of the undislocated contralateral side reflected about the plane of symmetry defined by the 

sacral midline. The transformation was solved using the rigid-body method of [187] using the point cloud 

of the sacrum segmentation. The method is referred to as “contralateral mirroring,” or CM in short. 

4.3.2 Simulation Study 

Preoperative estimation of the target reduction was evaluated in a simulation study involving a 

leave-one-out cross-validation of the atlas (𝑁 = 40). For each atlas member, the corresponding CT image 

and pelvic bone segmentations were used to simulate pelvic dislocations. A range of dislocations 𝑇𝑑𝑖𝑠𝑙 were 

simulated, including PS dislocation, SI joint dislocation, and combinations of the two following dislocation 

patterns from the case studies in [188, 189], with dislocation magnitude uniformly distributed from 0–20 

mm and 0°–10° [190, 191]. Dislocations that resulted in collision between bones were removed and new 

simulations were generated. A soft tissue inpainting via linear interpolation was implemented to fill in gaps 

from bone dislocations. The remaining 39 members were used to construct the SSM and SPM for 

segmentation and estimation of the target reduction. The segmentation accuracy via SSM-to-image 

registration was quantified in terms of the Dice Coefficient (DSC) and the surface segmentation root mean 

square error (RMSE) between vertices from the segmentation and ground truth manual segmentation (intra-

observer variability of 0.93±0.01 DSC [182]). The accuracy of the target reduction pose was quantified by 

the error between the simulated dislocation and the target pose: εr = 𝑇𝑑𝑖𝑠𝑙
−1 𝑇𝑡𝑎𝑟𝑔𝑒𝑡. The reduction error is a 

rigid transformation that was analyzed in terms of constituent translational and rotational errors. The 

alternative pose estimation methods SSMsingle and CM were also evaluated. 

4.3.3 Phantom Study 

The performance of target reduction was also evaluated in a phantom study using a custom 

Sawbones pelvis phantom (Sawbones, Vashon Island WA) with a radiopaque cortical surface. As shown in 

Figure 4.3(a-b), a passive mechanical arm was attached to the left innominate bone to orient the phantom 
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at different dislocation configurations. Ten metal BBs were affixed to the pelvic surface for evaluation of 

target registration error (TRE). The phantom was submerged in a water-filled container (comparable size 

to a medium human abdomen) to emulate soft-tissue attenuation of the body, giving realistic levels of 

attenuation and x-ray scatter for medium body habitus [192]. With the left innominate bone displaced at 

moderate and severe magnitude (~10 mm and ~15 mm, respectively), two preoperative CT scans were 

acquired (Precision CT, Canon Medical Systems, Tustin CA) and reconstructed at 0.39 × 0.39 × 3 mm³ 

voxel size with a volume size of 1024 × 1024 × 100 voxels, as shown in Figure 4.3(c). SSM-to-image 

registration was first applied to the preoperative CT images to define the three pelvic bone segmentations, 

and target reduction poses were computed using SPMCC.  

 
Figure 4.3 Phantom study of pelvic dislocation. (a-b) The phantom with left innominate bone dislocation controlled using a passive 

mechanical arm. Two types of dislocations were induced: (a) disruption of the PS and (b) disruption of the SI joint and pubic 

symphysis. (c) An axial slice of the preoperative CT showing the SI dislocation.  

4.3.4 Reader Study 

A reader study was conducted by a fellowship-trained orthopaedic surgeon to assess the clinical 

acceptability of target pose estimation from the proposed SPMCC method with respect to healthy pelvis. The 

surgeon was presented with an experimental group of 6 cases that includes 4 from the simulation study and 

2 from the phantom study. The 6 cases were selected such that 2 cases each of “mild” (~5 mm), “moderate” 

(~10 mm) and “severe” (~15 mm) levels of dislocations were included. For each of the experimental case, 

the target reduction pose was computed using SPMCC and a CT image following the target reduction was 

simulated and presented to the surgeon. As a control group, 6 healthy cases without dislocation from the 

simulation study were also presented. The reader study thus included 18 total cases (6 cases of dislocation, 
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6 cases following SPMCC, and 6 healthy control cases) and each case included both a CT image and the 

corresponding 3D bone surface rendering. The cases were randomized, and the surgeon was asked to 

evaluate the severity of dislocation into the same three categories (“mild”, “moderate”, and “severe”). 

4.4 Results 

4.4.1 Simulation Study 

The leave-one-out cross-validation of SSM-to-image registration among the 40 pelves showed 

segmentation surface RMSE of median 1.8 mm (0.2 mm IQR) and overall DSC of median 0.95 (0.09 IQR). 

Large errors were primarily in regions of high curvature of the cortical surface, not necessarily associated 

with the dislocation per se. The accuracy was consistent with results demonstrated in Chapter 3 for 

segmentation of intact pelvis CT images and demonstrated the feasibility of segmentation in CT images of 

dislocated pelves. 

As shown in Figure 4.4, the accuracy of the target reduction pose was evaluated by comparison of 

four methods: the single-pelvis SSM (SSMsingle), contralateral mirroring (CM), the SPM method without 

collision constraint (SPM), and the SPM method with collision constraint (SPMCC). The SSMsingle method 

exhibited translational errors of  median 7.7 mm (3.5 mm IQR) and rotational errors of 5.5° (4.0° IQR) – 

comparable to the scale of dislocations themselves. The SSMsingle method was found to mix shape and pose 

variations into a single PCA, introducing inaccuracy in the statistical model. Interestingly, the CM method 

improved registration only slightly, achieving translational error of  4.6 mm (2.4 mm IQR) and rotational 

error of 4.8° (2.8° IQR), suggesting limits to the assumption of contralateral symmetry (for example, pelvic 

asymmetry associated with the dominant leg). The definition of the mirroing plane was also non-trivial and 

subject to errors if the sacrum segmentation was not accurate. Moreover, the CM method is not applicable 

to cases of bilateral dislocation. No significant direction of error was identified in SSMsingle and CM methods.  

The SPM approach achieved translational error of 3.8 mm (1.7 mm IQR) and rotational error of 

2.2° (1.4° IQR), and the SPMCC method achieved the lowest overall translational error of 2.3 mm (1.4 mm 
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IQR) and rotational error of  2.1° (1.3° IQR). Both of the SPM methods (with or without collision constraint) 

provided more accurate estimation of target reduction pose compared to a conventional single rigid-body 

model (SSMsingle) or the model invoking the assumption of contralateral symmetry (CM) (p<0.05) and 

demonstrated the ability to accurately estimate the target pose for a wide range of dislocation patterns and 

magnitudes, due to the utilization of the statistical variation of populational pose distribution. Further 

examination of SPM and SPMCC showed the latter to yield better performance in translation (p<0.05 using 

paired student t-test) but not in rotation – in particular, in the direction orthogonal to the SI joint and PS 

surfaces that refinement was aplied. With the joint space collision constraint, SPMCC improved target pose 

estimation along the direction normal to the joint space by pushing the target pose away from collision (of 

magnitude of ~1.5 mm) without globally affecting the accuracy of the SPM.  

 
Figure 4.4. Target pose estimation error for four registration methods: using a single pelvis SSM (SSMsingle), contralateral mirror 

(CM), SPM without collision constraint (SPM), and SPM with collision constraint (SPMCC). (a) Translational error and (b) 

rotational error. Boxplots show the median (red horizontal line), IQR (rectangle), and full range superimposed with the distribution 

of (N=40) individual sample points. 

Computation time is another important criterion for planning algorithm. Table 4.1 summarizes 

computation times for each step of the preoperative planning algorithm. The segmentation step was 

parallelized to simultaneously segment three pelvic bones to reduce computation time, resulting in 
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computation time of 2.55±0.86 min (compared to 2.03±0.50 min of segmenting one bone in Table 3.2). The 

overall runtime was 10.33±2.65 min, within preoperative planning workflow of pelvic trauma surgery. 

Table 4.1. Preoperative planning algorithm runtime of SPMCC evaluated in the simulation study. 

Algorithm Stage Runtime (min) 

Initialization 0.54±0.18 

Segmentation via SSM-to-

Image Registration 
2.55±0.86 

SPM Inference 6.32±1.59 

SPMCC Refinement 0.92±0.15 

Total 10.33±2.65 

 

4.4.2 Phantom Study 

Segmentation of MDCT images of the phantom using SSM-to-image registration achieved surface 

RMSE of median 2.5 mm and overall DSC of 0.89. The segmentation is visualized in Figure 4.5 (a-b), with 

segmentation contour overlaid in yellow. The accuracy was slightly worse than that in the simulation study, 

presumably due to differences between the (somewhat unrealistic, idealized) shape of the simple phantom 

compared to that of real human pelves. A lack of heterogeneous interior bone gradients in the phantom may 

also contribute to a decrease in accuracy. Nonetheless, the segmented surfaces were sufficiently accurate 

for pose definition in SPM target pose estimation.  

The accuracy of the target reduction pose, quantified by the transformation error between the pose 

before dislocation and the target plan, was measured on both phantom cases (moderate and severe 

dislocation). A translational error of 1.9 mm and rotational error of 2.0° was obseved on the moderate 

dislocation case, and a translational error of 2.0 mm and rotational error of 1.9° was observed on the severe 

dislocation case. The accuracy of the two cases were very similar because the SPM inference algorithm for 

target pose estimation was independent of the severity of dislocation. Figure 4.5 shows the reduction 

planning of the moderate dislocation case. In both axial slice view (a) and coronal slice view (a), the 

reduction plan in green restored the natural morphology of the SI joint compared to the dislocated left 
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innominate bone. Similarly, the 3D rendering in (c) shows an improvement of reduction from the plan 

(green) with better aligned PS joint, in comparison to the dislocated bone (gray). 

 
Figure 4.5. Result of phantom study of pelvic dislocation. The MDCT of the phantom with left innominate bone moderately 

dislocated (~10 mm dislocation): (a) Axial view, and (b) coronal view. The segmentation contour from ASM and FFD are overlaid 

in yellow, and the pose of the left innominate bone from the reduction plan is highlighted in green. (c) 3D rendering of the pelvic 

bones. Green arrow points to the PS joint that was dislocated in the phantom and aligned from the reduction plan. 

4.4.3 Reader Study 

Qualitative evaluation of the clinical acceptability of target reduction by an orthopaedic surgeon is 

summarized in Table 4.2. In the experimental group, dislocations were reliably detected by the surgeon, 

who judged (2/6) cases as mild, (2/6) as moderate, and (2/6) as severe, increasing in proportion to the 

dislocation magnitude. In the 6 corresponding cases after SPMCC reduction, (5/6) were assessed as healthy 

and (1/6) was rated as mild dislocation; all cases were judged to have improved in comparison to the initial, 

dislocated state. The experimental finding was comparable to the control group (non-dislocated pelves), in 

which (5/6) healthy cases were judged to be healthy, and (1/6) was rated as mild dislocation. The study 

suggests that the method estimates the target reduction pose at a level that is clinically indistinguishable 

(within intra-observer variability) from a natural, healthy pelvis.  

Table 4.2. Evaluation of target reduction (and healthy subjects) by an orthopaedic trauma surgeon. The top row (Experimental / 

Dislocated) shows the surgeon’s assessment of dislocation severity. The second row (Experimental / Reduced) shows the 

surgeon’s assessment after reduction by an amount estimated by the proposed method, which was found to agree with the third 

row (Control), which shows the surgeon’s assessment of dislocation in natural, healthy (non-dislocated) pelves. 

Group Healthy Mild Moderate Severe 

Experimental 
Dislocated 0 2 2 2 

Reduced 5 1 0 0 

Control 5 1 0 0 
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The case that was rated as mild in the experimental reduced group and the case that was rated as 

mild in the control group were further examined in Figure 4.6 (a) and (b) below, respectively. Figure 4.6(a) 

shows the experimental reduced case with a slight mismatch in height between the left and right pubis upon 

the pubic symphysis and a slightly narrow left SI joint. Even in the healthy control case, as shown in Figure 

4.6(b), a slight mismatch of the left and right pubis (the left side slightly higher than the right side) resulted 

in a misclassification by the surgeon. Both cases suggests that a minor misalignment of the joints (<4 mm 

clinical acceptance range) could result in a misclassification of the dislocation level both after the proposed 

SPMCC target reduction estimation and in healthy patients.  

 
Figure 4.6. Reader Study cases. (a) 3D rendering of the case in the experimental reduced group that was rated as mild by the 

surgeon. (b) 3D rendering of the case in the control group that was rated as mild by the surgeon. 

4.5 Discussion and Conclusion  

An algorithm for automatic planning of target pose for pelvic dislocation reduction was reported. 

The method involves automatic segmentation of pelvic bones in preoperative CT using SSM-to-image 

registration, with experiments demonstrating segmentation accuracy of 1.8 mm median surface RMSE in 

the simulation. Estimation of the target reduction pose using the SPMCC method yielded ~2 mm translational 

and ~2° rotational error in the simulation study, which was superior to alternative methods of single body 

SSM and contralateral mirroring. The preoperative segmentation and estimation of target reduction pose 

were computed with a runtime of 10.3 min, which is well within the requirements of preoperative workflow.  

The accuracy of the reduction planning was found to be dependent in part on the accuracy of 

segmentation. As reported in previous work [182], the segmentation via SSM-to-image registration was 
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susceptible to errors (up to ~4 mm surface RMSE) in high curvature regions of the pelvis, which could 

negatively affect downstream target pose estimation. More sophisticated segmentation algorithms, such as 

using hierarchical SSM [147], graph-cut optimization [133], or deep learning methods [193] may improve 

segmentation accuracy and the overall accuracy of registration and target pose estimation. 

The experiments in the current work are not without limitations. In the phantom study, a simple 

SawBones phantom (Vashon Island, USA) was used without soft-tissue structures or bowel gas in the 

projection images. The water tank in which the phantom was submerged, however, did present attenuation 

comparable to medium body habitus, giving an appropriate exposure level and realistic magnitude of image 

noise. Increased error observed in the phantom study was likely due to the somewhat unrealistic 

correspondence of the SawBones phantom to the natural shape and image texture of real human pelves 

(highest density at the radiopaque paints instead of at the subperiosteal layer of cortical bone that is 

distributed more internally). More realistic phantom construction (i.e., emulating soft tissue intensity 

distribution surrounding the pelvis and using more realistic pelvic model such as cadaveric bone) merits 

further investigation.   

Overall, the method for planning of pelvic dislocation reduction demonstrated accurate and robust 

performance in a variety of scenarios in simulation and phantom study. The resulting target pose estimation 

provides an accurate means of preoperative planning and can be further incorporated in an intraoperative 

guidance system that is discussed in Chapter 6. The solution offers the potential for application in 

mainstream trauma surgery, since it is fully automatic and does not require manual interaction besides the 

diagnosis of dislocated and undislocated bones. Future work includes translation and validation of the 

method in a more comprehensive clinical dataset and generalization to other anatomical sites, such as hip 

and shoulder dislocation. 
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Chapter 5.  

Registration of Multi-Body Shape Models to a 3D Image: 

Application to Fracture Reduction Planning in Orthopaedic Surgery  

5.1 Introduction 

Pelvic fracture is a severe trauma injury that comprises up to 20% of blunt trauma (and 3% of all 

bone fractures) and is associated with high morbidity and mortality [177, 194]. Pelvic fracture involves one 

or more bones of the pelvis and may include disruptions of ligamentous structures between these bones (i.e. 

sacroiliac (SI) joints and pubic symphysis (PS)), resulting in pelvic dislocations [195]. High-energy trauma, 

such as motor vehicle accidents and falls from a height, often results in unstable pelvic fractures or fracture 

dislocations that require prompt surgical intervention [196]. In Tile classification, such unstable fractures 

are classified into Type B and Type C depending on vertical stability [197]. In an epidemiological study of 

537 patients [49], unstable fractures requiring surgical intervention consisted of 74.5% of total cases, among 

which 18.3% were bilateral fractures (Type B3 and C3). Additionally, comminuted and multi-fragment 

fractures (more than two bone fragments), consisted of 2% of total cases [198], is a serious type of unstable 

fracture that can lead to significant complications. The accuracy of reduction is critical to the patient health, 

as residual displacement after reduction surgery (>4 mm) is associated with long-term complications such 

as persistent pain, limb length discrepancy, and disability [180, 181]. 

Fracture reduction is technically challenging and benefits from some form of preoperative planning. 

Reduction planning—the process of determining fractured bone fragments and the corresponding 

transformations to restore morphology—is conventionally carried out using preoperative CT interpreted 

qualitatively to form a “mental” plan. However, such an approach is not suitable to surgical navigation (e.g., 

3D tracking) and fails to quantitatively assess the union of bone fragments, requiring surgeons to resort to 

trial-and-error to achieve the desired reduction [199]. Computer-assisted manual 3D planning tools help to 
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address such drawbacks by virtual manipulation of 3D bone models and quantification of mal-reduction 

[13, 14]. For complex and comminuted fractures, however, manual 3D planning can be difficult and time-

consuming with respect to the rapid trauma workflow: for example, an average time of 174.8 min was 

reported for manual planning of tibial plateau fracture using a 3D CAD tool [13]. 

Emerging semi-automatic and automatic methods provide the potential for more streamlined and 

quantitative planning. Such methods generally rely on segmentation of fractured bone fragments and 

planning of reduction transformations to restore the morphology of a single bone. Segmentation is either 

performed manually or semi-automatically using thresholding [200], region growing [201, 202] or 

watershed transforms [203]. Many preoperative reduction planning methods have been reported, including 

matching fracture lines with complementary surface characteristics [204, 205] and aligning bone fragments 

to a template mirrored from the healthy contralateral side [206]. However, the former suffers from 

challenging fracture line definitions (typically of low intensity trabecular bones in CT) and the latter 

assumes symmetry between contralateral aspects of the pelvis, which is often not valid (e.g., natural shape 

differences between sides or—worse—bilateral trauma). To address such limitations, SSMs described in 

Chapter 2-4 have also been used as the template for point-based registration between the SSM and bones 

[207, 208]. However, such methods rely on point correspondence between the SSM and bone fragments, a 

challenging task when the points on the fracture line are not included in the SSM. Furthermore, the 

aforementioned methods are limited to reduction of a single bone and do not account for reduction of a 

system of interrelated bones such as the pelvis (i.e., the left and right innominate bone as well as the sacrum). 

SPM proposed in Chapter 4 is used to statistically analyze the poses of multiple objects jointly in a nonlinear 

Lie group space [139, 140]. 

To address the challenges and streamline the preoperative workflow, we propose a multi-body 

registration framework for pelvic reduction planning to address the most general cases of unstable pelvic 

fracture (Tile Type B and C, including comminuted fractures). Beginning with semi-automatic 

segmentation (via continuous max-flow) of fractured bone fragments in CT, a multi-to-one registration 
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solves the reduction plan between bone fragments and an adaptive statistical template that describes multi-

body bone shapes and poses. The contributions of this work are: 

• A novel template, referred to as an adaptive template, is proposed as the reference image for 

reduction planning. The adaptive template combines SSM and SPM to describe shapes and poses of a 

system of bones. The adaptive template extends previous work [207, 208] from description of a single bone 

to a system of bones. 

• A novel multi-to-one registration is designed to register bone fragment segmentations obtained via 

multi-label continuous max-flow to an adaptive template. The registration simultaneously solves for 

reduction planning transformations and the adaptive template shape and pose parameters. The registration 

cost function is optimized using an alternating scheme between fragment alignment, shape adaptation, and 

pose adaptation. 

The proposed multi-body registration framework was validated in a leave-one-out simulation study 

(a total of 120 variations in pelvic fractures) and a clinical study comprising three classes of fracture of 

increasing difficulty and accuracy requirement. This chapter is organized as follows: in Section 5.1.1 and 

Section 5.1.2, we review existing methods for pelvic segmentation and reduction planning; in Section 5.2, 

we describe the details of the proposed framework; experimental methods and results are presented in 

Sections 5.3 and 5.4, respectively; and conclusions and possible future directions are discussed in Section 

5.5. The reduction plans can be further incorporated into an intraoperative guidance system to guide surgical 

reduction under fluoroscopy, and details of the guidance system is discussed later in Chapter 6. 

5.1.1 Related Work: Image Segmentation 

Segmentation of bone fragments in CT is a difficult task due to the arbitrary shape, variable number 

of bone fragments and broad variation of fracture locations, challenging the application of prior knowledge 

(e.g., SSM or supervised deep learning), especially in comminuted fractures. Furthermore, bone fragments 

are not fully surrounded by dense cortical bone, and exposed trabecular bone at the edge of fragments often 
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have comparable intensity to surrounding soft tissue.  Bone fragments can also appear to be connected due 

to limited spatial resolution in the image and/or physical proximity / contact.  

Many segmentation methods have been proposed to address one or more of the aforementioned 

challenges. Region-growing on pre-processed CT images was proposed to segment bone fragments based 

on input “seed points” [209, 210]. The method was further extended to a multi-label method that 

simultaneously solves for multiple fragments [202]. However, manual separation of connected bone 

fragments is often required. In Ref. [201],  a more automatic segmentation pipeline was proposed with 

adaptive thresholding for cortical bones, region growing for cancellous bone, and bone fragment separation 

based on graph-cut and “seed points”. However, the region-growing method relies on careful tuning of 

intensity threshold that can be sensitive to over-segmentation of soft tissue near trabecular bone edges and 

joint space. A probabilistic watershed transform method was proposed to encode priori estimation of the 

bone intensity distribution into the segmentation [203]. In this chapter, we incorporate the advantages of 

multi-label segmentation and a priori intensity information into a multi-label graph-cut based segmentation 

using continuous max-flow and min-cut [211] to simultaneously solve for segmentation and separation of 

multiple bone fragments based on input “seed points”. Compared to other segmentation methods, 

continuous max-flow and min-cut allows incorporation of many cost functions (e.g., distance to seed points 

and incorporation of a prior intensity constraint) into a single formulation and does not require ad-hoc post 

processing (e.g., manual fragment separation). 

5.1.2 Related Work: Reduction Planning 

Reduction planning is the process by which bone fragment segmentations are repositioned to 

approximate the original anatomy. A first category of reduction planning aims to match corresponding 

fracture planes and often involves interactive specification of surface regions used for matching [204, 205]. 

Surface registration is performed to align fracture planes based on proximity and complementary surface 

characteristics. However, segmentation accuracy near the fractures is often low due to poor contrast 
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between trabecular bone and soft tissue, resulting in surface registration errors. In addition, bone fracture 

surfaces may share matches with more than one fragment, increasing the difficulty of registration, 

especially in comminuted fractures [212]. 

A second category of reduction planning uses some model of healthy bone as a template to align 

bone fragments. [206, 213] used the healthy contralateral bone as the template for reduction planning of the 

humerus and femur, respectively. However, using the contralateral side is often not applicable, especially 

in pelvic trauma that involves a high frequency of bilateral trauma. In addition, shape differences between 

symmetrical bones can exist [214]. To compensate for the contralateral asymmetry, feature matching on 

the fracture lines were included to refine the reduction [206, 213, 215]. The fracture line matching technique 

has limited application in comminuted fracture, however, because small fragments are not surgically 

reduced. Such small fragments, often hard to identify and segment, and more prone to segmentation error 

than larger bones, are required to perform fracture line matching. Such complications challenge the method, 

especially when the small fragments are not properly treated, resulting in matching of noncorresponding 

fracture lines. Other authors used a more statistical approach in generating the template of healthy bone. 

[207, 216] constructed an SSM based on an atlas of bone surface meshes and performed point registration 

between bone fragments and the template to solve for the transformations in reduction planning. [208] 

proposed an alternative SSM approach that used volumetric representation of the SSM for single bone 

fracture reduction planning to take advantage of more robust image-domain registration.  

While methods using SSM templates solve the reduction planning problem of a single bone, the 

target pose of the bone with respect to its surrounding anatomy has not been considered. Articulated 

statistical shape model was proposed in the context of segmentation, which jointly models bone shapes of 

pelvis and proximal femur and the rotational motion of the femur around the hip joint with the assumption 

that the pelvis was fixed [137, 217].  Meanwhile, [139] addressed the problem from a different perspective 

by analyzing shapes and poses of multiple brain structures using Principal Geodesic Analysis. The model 

considers poses of not only rotation, but also translation and scaling. [138, 140] further extended the work 
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to SPM that directly models the pose transformations. [218] adapted SPM to the reduction planning of 

pelvic dislocation by inference of reduction transformation for dislocated, non-fractured bones.  

In this work, we build upon dislocation reduction planning in Chapter 4 and single bone fracture 

reduction planning [208] to combine the SSM and SPM into a single model for fracture reduction planning 

in the context of multiple bones. To our knowledge, this is the first work that addresses reduction planning 

in the context of multiple bones and includes descriptions of both shapes and poses of the bones. In contrast 

to point registration, the method in this work is solved in the 3D image domain to avoid defining point 

correspondence and to make use of inter-object operations such as intersection and union for better 

registration regularization.  
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5.2 Algorithmic Methods 

The proposed multi-body registration framework for pelvic fracture reduction is illustrated in 

Figure 5.1, with preoperative segmentation of bone fragments and calculation of the target transformations 

of bone fragments desired for surgical reduction. 3D image representation was used for easier cost function 

evaluation and more robust image-based registration. The segmentation of multiple bone fragments from a 

patient CT image is first conducted via the continuous max-flow and min-cut algorithm. An adaptive 

template is constructed using a statistical shape and pose model (SSPM) described in Chapter 2 to model 

patient-specific bone shapes and poses. Segmentations of bone fragments are registered to the adaptive 

template in a multi-to-one registration to estimate the target transformations for reduction planning. 

 
Figure 5.1. Process flowchart of multi-body registration for preoperative planning of pelvic fracture reduction, addressing not only 

dislocations of SI joint and PS from Chapter 4 but also multi-fragment fractures. The SSPM in the adaptive template describes 

multi-body poses and shapes of the three pelvic bones.  

5.2.1 Fractured Bone Segmentation 

A semi-automatic segmentation method was implemented to segment bone fragments in 

preoperative CT images of fractured pelves, requiring only an input “seed point” for each bone fragment of 

interest. The seed points were manually identified by the user clicking on a voxel within each bone fragment. 

The segmentation is formulated as an 𝑁-label continuous max-flow and min-cut problem [211] such that 

each bone fragment and the background are segmented into different labels, according to the cost function: 

𝐶𝑠𝑒𝑔(𝑥) = min
𝑢

∫ [(1 − ∑𝑢𝑛(𝑥)

𝑛

)𝐷1(𝑥) + ∑ 𝑢𝑛(𝑥)𝐷2𝑛
(𝑥)

𝑁

𝑛=1

+ ∑ 𝑔(𝑥)|𝛻𝑢𝑛(𝑥)|

𝑁

𝑛=1

] 𝑑𝑥
𝑥

, (5.1) 
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s.t. ∑ 𝑢𝑛(𝑥)𝑁
𝑛=1 = 1,  𝑢𝑛(𝑥) ≥ 0 

where 𝑢𝑛, 𝑛 = 1,2, … ,𝑁 is a membership function with value between 0 and 1 that defines whether a voxel 

(𝑥) belongs to the 𝑛𝑡ℎ label. Equation (5.1) contains three terms inside the integral of voxels, related to the 

cost of the foreground, cost of the background, and a regularization, respectively. The foreground cost is 

modeled by 𝐷1, which is higher for voxels with higher CT HU (higher HU means higher likelihood to be 

bone) and is based on a prior intensity distribution: 

𝐷1(𝑥) = Pr(𝑢 = 1|𝑥) , (5.2) 

where Pr (𝑢 = 1|𝑥)  is a probability distribution formulated as a gaussian mixture model with two 

components (intensity distribution of cortical and trabecular bones). The distribution was learned from 

previous CT segmentations (e.g., from the pelvis atlas described in Chapter 3). 

The cost associated with the background voxels is modeled by 𝐷2, defined as a combination of 

probability distribution of the background voxels and the gradient-weighted distance from seed points: 

𝐷2(𝑥) = Pr(𝑢 = 0|𝑥) + 𝛽 ∫ ∇𝐼(𝑥)𝑑𝑥
𝑥

𝑝(𝑙)
, (5.3) 

where ∇𝐼 is the CT image gradient magnitude, 𝑝(𝑙) is the seed point belong to the 𝑙𝑡ℎ bone fragment, and 𝛽 

is a regularization parameter. The 𝐷2 term is higher when a voxel intensity has a higher likelihood of being 

the background or when the path between a voxel and the seed point traverses a high image gradient (hence 

traversing a bone edge). 

The last term in the integrand of Equation (5.1) is a regularization to enforce the smoothness of the 

segmentation by penalizing large segmentation gradients, ∇𝑢(𝑥) . The 𝑔(𝑥)  term controls the spatial 

strength of the regularization and is defined as: 

𝑔(𝑥) = 𝛾(1 + exp(−∇𝐼(𝑥))), (5.2) 

where ∇𝐼 is the CT image gradient and 𝛾 is a hyperparameter scalar. The 𝑔(𝑥) term is lower where the CT 

is present with high gradients (hence bone boundaries) and is higher at homogenous regions (where 

segmentation boundaries should not occur). The 𝑁-label objective function is solved to obtain 𝑁-1 bone 
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fragment segmentations, 𝑆(𝑛), 𝑛 ∈ [1, 𝑁 − 1] , and background. The optimization of Equation (5.1) is 

formulated as a max-flow graph-cut problem (with voxels representing the nodes and cost function as the 

edge weights of a graph). Details of the mathematical derivation can be found in [211] and is beyond the 

scope of the thesis. 

The segmentation requires minimal user interaction, with as few as one seed point defined for each 

bone fragment in the CT image. In cases where two or more bone fragments are connected, additional seed 

points may be placed at the boundaries of the fragments. 

5.2.2 Multi-Body 3D Registration for Fracture Reduction Planning 

5.2.2.1 Adaptive Template using Statistical Shape and Pose Models  

A statistical template of the pelvis is constructed to model multi-body bone shapes and poses using 

SSPM, with shape and pose parameters adaptable to patient-specific anatomy. This “adaptive template” 

serves as a fixed image onto which the segmentations of bone fragments are registered for fracture reduction 

planning. The pelvis atlas described in Chapter 3 was used for the adaptive template construction. The bone 

shapes were modeled in terms of an SSM by incorporating shape variations of each bone via PCA. The 

bone poses were modeled in terms of a SPM by computing the statistical variations of the anatomical poses 

among the system of bones. 

The SSM in Chapter 2-4 is formulated as a point distribution model, which models shape variation 

of a point cloud. In this chapter, a new image-domain SSM is proposed to taken advantage of more robust 

image-domain registration. The SSM construction follows the work of [219, 220], which models the 

distribution of deformation field from each shape to the mean shape. The SSM of each bone was modeled 

separately by first aligning bone segmentations via rigid image registration. From a randomly selected 

segmentation reference, 𝐼𝑟, in the atlas of 𝐴 images, a deformable registration using free-form deformation 

(FFD) was performed to other segmentations in the atlas, 𝐼𝑎,  where 𝑎 ∈ [1, 𝐴], 𝑎 ≠ 𝑟, creating (𝑁 − 1) 

deformation fields, 𝜙(𝑥), of the form [75]: 
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𝜙(𝑥) = ∑ ∑ ∑ 𝐵𝑙(𝑢)𝐵𝑚(𝑣)𝐵𝑛(𝑤)𝑐𝑖+𝑙,𝑗+𝑚,𝑘+𝑛

3

𝑛=0

3

𝑚=0

3

𝑙=0

(5.3) 

where 𝑐 denotes a 3D lattice of control points that parametrizes the deformation field, (𝑖, 𝑗, 𝑘) denotes the 

indices of the control points, and (𝑢, 𝑣, 𝑤) denotes the relative position of voxel 𝑥 in the lattice coordinates. 

The deformation field is a 3D tensor product of the one-dimensional cubic B-splines, 𝐵𝑙 , 𝐵𝑚, 𝐵𝑛.  

The FFD registration between two segmentations was solved using gradient descent minimization 

with a mean-squared-error (MSE) similarity metric, and the segmentations were transformed into signed 

distance fields. 𝜙(𝑥) maps each control point in the reference segmentation to the corresponding point in 

the target segmentation. A statistical analysis of 𝜙(𝑥) using PCA can model the shape variation of the bone 

segmentations, parametrized by the control point vectors, 𝐜: 

𝐜 = �̅� + 𝑃𝑆𝑆𝑀𝐯𝑆𝑆𝑀 (5.4) 

where �̅�  is the average control point vector, 𝑃𝑆𝑆𝑀  is the matrix composed from the SSM principal 

component vectors, and 𝐯𝑆𝑆𝑀 is the model parameter vector. Such a procedure is closely related to the 

standard SSM concept of applying PCA to corresponding point cloud. A major difference is that no explicit 

correspondence is needed since the image grids defining the segmentations are already in correspondence 

after initial rigid registration. For notational simplicity, the function relating the control points vector (𝐜) to 

the deformation field (𝜙) and the deformed image, 𝐼𝑟 ∘ 𝜙(𝑥), is denoted as 𝜓(∙). The standard deviation of 

the control points deformation, quantifying the variability of the SSM, is around 3.3 mm. 

After modeling individual bone shape via SSM, the three pelvic bones (sacrum and left/right 

innominate) were treated as a multi-body system in which the poses were jointly modeled via SPM. As 

discussed in Chapter 2 and Chapter 4, SPM is defined by the statistical variation of the poses (i.e., the 

similarity transformations with respect to the mean) and can be used to infer the pose of a dislocated bone 

based on the other bone poses. Following Equation (2.21), the SPM was represented by {𝑇𝑆𝑃𝑀
(𝑙)

} =

{exp (∑ [�̅� + 𝑃SPM𝐯SPM]
𝑙+𝑖

𝐵𝑖
7
𝑖=1 )}, with the mean pose (in the logarithmic or tangent space of Lie group), 
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�̅�, the principal component matrix, 𝑃SPM, pose parameter, 𝐯SPM, and 𝑙 ∈ [1, 𝐿], 𝐿 = 3. The transformation 

of each pelvic bone, 𝑇𝑆𝑃𝑀
(𝑙)

, is defined as the image transformation between the pelvic bone to the mean bone. 

By combining the SSM and SPM, the overall SSPM adaptive template can be represented as: 

𝐼𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 = ∑𝑇𝑆𝑃𝑀
(𝑙)

(𝜓 (𝑐̅(𝑙) + 𝑃SSM
(𝑙)

𝐯SSM
(𝑙)

))

𝐿

𝑙=1

= ∑exp(∑[�̅� + 𝑃SPM𝐯SPM]
𝑙+𝑖

𝐵𝑖

7

𝑖=1

)(𝜓 (𝑐̅(𝑙) + 𝑃SSM
(𝑙)

𝐯SSM
(𝑙)

))

𝐿

𝑙=1

. (5.5)

 

The SSMs of multiple bones are summed into a single image in Equation (5.5), which is different from 

Equation (2.22) that concatenates point based SSMs. Such an image-domain formulation of the SSPM 

enables direct image-based registration. 

5.2.2.2 Multi-Body 3D Registration for Reduction Planning 

A novel multi-body 3D registration framework was developed for estimating the transformations 

of bone fragments to the desired reduction as a form of surgical planning. The registration addresses a 

multi-to-one problem that simultaneously solves for transformations of multiple bone fragments to align 

with the adaptive template and the parameters of the adaptive template to fit with the patient-specific 

anatomical shapes and poses. The registration is solved in the 3D image domain to take advantage of rich 

image information and simple inter-object operations such as intersection and union without definition of 

correspondence as in point- or mesh-based registrations [207]. 

The fracture reduction planning solves the 6 degree-of-freedom (DoF) rigid transformations, 𝑇(𝑛), 

for bone fragments, 𝑆(𝑛), 𝑛 = 1,… ,𝑁, such that the fragments are well aligned with the adaptive template, 

𝐼𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒. 𝐼𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 is modeled by SSM parameters, 𝑣𝑆𝑆𝑀
(𝑙)

, 𝑙 = 1,2,… , 𝐿, and SPM parameters, 𝑣𝑆𝑃𝑀. SPM 

transformation matrices, 𝑇𝑆𝑃𝑀
(𝑙)

, can be obtained from 𝑣𝑆𝑃𝑀  via Equation (4.1). The cost function, 𝐶𝑟𝑒𝑔 , 

combines the squared difference between 𝐼𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒  and the transformed bone fragments, with a 

regularization term, 𝑅, to inhibit bone fragment collision / overlap: 
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𝐶𝑟𝑒𝑔 = ‖𝐼𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 − ∑ 𝑇(𝑛)(𝑆(𝑛))
𝑁

𝑛=1
‖

2

+ 𝜆𝑅, (5.6) 

and 𝑅 is the sum of overlap between any two fragments: 

𝑅 = ∑ ∑ ‖𝑇(𝑖)(𝑆(𝑖)) ∩ 𝑇(𝑗)(𝑆(𝑗))‖
2𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1
, (5.7) 

with 𝜆 controlling the strength of the regularization and allowing small overlap between bone fragment 

segmentations. For small segmentation errors at the fracture plane, such tolerance improves accuracy 

compared to a hard threshold that forbids any overlap. In addition, the soft regularization keeps the cost 

function smooth. Since bone fragments (𝑆) are represented as 3D binary images, the overlap can be easily 

computed by the sum of element-wise multiplication. 

Direct minimization of Equation (5.6) is challenging due to the high dimensional, generally non-

convex parameter space that is subject to local minima. To reduce the dimensionality, an alternating 

minimization approach is used that iteratively alternates among three stages: (1) registration of 𝑁 bone 

fragments to the adaptive template to solve for the rigid transformations, {𝑇(𝑛)}; (2) adaptation of the 

template shape (parametrized by {𝐯SSM
(𝑙)

}) to patient-specific shapes; and (3) adaptation of the template poses 

(parametrized by 𝐯SPM).  

Stage (1) computes the rigid transformations that minimize the squared difference between the bone 

fragments and SSM reference. Conventionally, image registration is computed in a one-to-one manner, and 

gradient descent optimization can be easily applied to minimize a similarity metric such as MSE. The 

registration of Equation (5.6), however, is a multi-to-one problem that requires solving the transformations 

for all fragments simultaneously to account for inter-fragment relationships. As a result, a derivative-free 

evolutionary optimization, covariance matrix adaption evolution strategy (CMA-ES) [221], was used. At 

each iteration of optimization, CMA-ES generates a population (𝜆) of random sample points around the 

current estimation and finds the point with lowest cost function value. The population distribution follows 

a multivariate normal distribution, where the mean and covariance are updated per iteration such that it is 
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approximately aligned with the gradient direction of the cost function. CMA-ES is robust to local minima 

and does not need analytical gradients of the cost function (Equation (5.7) is not differentiable).  

Once the bone fragments are aligned with the current adaptive template, stage (2) adapts the SSM 

to the patient shape (represented by the summation of bone fragments with current estimation of 

transformations, {𝑇(𝑛)}). An interior-point constrained optimization [185] is performed to find the SSM 

parameters that minimizes the squared difference between the adaptive template and the patient shape, 

under the constraints that the SSM parameters are within three standard deviations of the SSM eigenvalues. 

Finally, in stage (3), the poses of the undislocated bones can be recomputed using the updated SSM, and 

the target poses of the dislocated bones can then be updated using Equation (4.1a-4.1d) from Chapter 4, 

resulting in estimation of { �̂�𝑆𝑃𝑀
(𝑙)

}. 

Three special cases are evident. (i) Stage (2) may be omitted in cases in which a prior CT image 

(i.e., prior to the fracture) is available, or the contralateral bone can be assumed to provide a symmetric 

reference. (ii) Stage (3) may be omitted in cases for which no dislocation of the overall innominate is present. 

(iii) In case of trauma with sacral fracture, reduction planning of sacrum needs to be performed using only 

the SSM of the sacrum and omitting Stage (3). By assuming the sacrum is correctly reduced, reduction 

planning of the innominate bones can be performed following Algorithm 5.1. 

Algorithm 5.1. Multi-Body Registration using Alternative Optimization  

{ 𝑇𝑆𝑃𝑀
(𝑙) = 𝑇0

𝑆𝑃𝑀
(𝑙)

} , {𝐯SSM
(𝑙) = 𝟎}, {𝑇(𝑛) = 𝐼} 

for t = 1 to max_iteration 

    % Stage 1: Fragment Alignment Update  

    Solve {𝑇(𝑛)}: {�̂�(𝑛)} = arg min
{𝑇(𝑛)}

𝐶𝑟𝑒𝑔                 

    % Stage 2: SSM Adaption 

Solve  {𝐯SSM
(𝑙) }: {�̂�SSM

(𝑙)
} = arg min

{𝐯SSM
(𝑙)

}
𝐶𝑟𝑒𝑔 

% Stage 3: SPM Adaption 

    Solve { 𝑇𝑆𝑃𝑀
(𝑙) } using Equation (7a-b) 

End 
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The method is initialized with the SSM mean shape of each bone aligned with the largest fragment 

of each pelvic bone. Other bone fragments are then rigidly registered to the residual template (the SSM 

mean shape subtracted by initialized bones) sequentially in the order of fragment size. The dislocated bone(s) 

is identified, and the initial SPM poses, { 𝑇0
𝑆𝑃𝑀
(𝑙)

}, are computed. The alternating optimization, with an 

iteration loop that cycles between fragment alignment updates, SSM, and SPM adaptation. 

5.3 Experimental Methods 

5.3.1 Simulation Study 

The preoperative fracture reduction planning method was evaluated in a simulation study involving 

a leave-one-out cross validation of the atlas (𝑁 = 40). For each atlas member, the corresponding CT image 

and ground truth pelvic bone segmentations were used to simulate random pelvic fracture patterns, while 

the rest of the atlas was used for adaptive template construction. Extending from dislocation-only 

simulations in Chapter 4 [218] and iliac wing fracture simulations [208], the current study simultaneously 

simulates fractures and dislocations in a randomized fashion. Three categories of pelvic fractures were 

simulated: (1) unilateral two-body fractures [Figure 5.2(a)]; (2) unilateral three-body fractures [Figure 

5.2(b)]; and (3) bilateral two-body fractures [Figure 5.2(c)]. The unilateral fractures involved fractures and 

dislocations of one side of the pelvis (either left or right innominate bone), and the bilateral fractures 

involved fractures and dislocations of both sides of the pelvis (both left and right innominate bones). 

Disruptions of the sacrum were not simulated in the current study (and are relatively rare [222]). In total, 

120 cases were simulated (3 fracture categories for each of the 40 atlas members). 

For each simulation case, following the fracture simulation method in [223], the innominate bone 

was dissected by a cuboid (𝐵) with an arbitrary size and orientation to yield multiple fracture fragments. 

Compared to more intuitively dissecting using a plane, the cuboid method adds more degrees of freedom 

and creates more complex fracture patterns. Taking a unilateral (left-side) two-body fracture case as an 

example, the left innominate bone, 𝐼𝑙𝑒𝑓𝑡, was dissected by a random cuboid to form two bone fragments, 
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𝐼𝑙𝑒𝑓𝑡 ∘ 𝐵 and 𝐼𝑙𝑒𝑓𝑡 ∘ 𝐵′, where 𝐵′ is the complement of the binary cuboid, and 𝐴 ∘ 𝐵 is the element-wise 

matrix product. Various dislocations, 𝑇𝑑 , were further imparted to the bone fragments with magnitude 

uniformly distributed from 0-20 mm and 0°-15°. Dislocations that resulted in collision between bones were 

removed. Soft-tissue gaps between bones following transformation were filled with inpainting via linear 

interpolation.  

 
Figure 5.2. Simulation study for fracture reduction planning. Three categories of fracture were simulated: (a) unilateral 2-body 

fractures; (b) unilateral 3-body fractures; and (c) bilateral 2-body fractures. 3D views of simulated fractures, with unfractured bone 

fragments in white and fracture-dislocated bone fragments in various colors are rendered.  

Segmentation of bone fragments was performed using continuous max-flow and min-cut with one 

“seed point” for smaller fragments and up to three “seed points” for larger fragments. Sensitivity of 

segmentation accuracy with respect to two hyperparameters, 𝛽 and 𝛾 in Equation (5.1), were studied by 

searching 𝛽 ∈ [0,2] and 𝛾 ∈ [0,10]. As a comparison analysis, the multi-step segmentation method in [201] 

was implemented using adaptive thresholding of cortical bone, adaptive region-growing of trabecular bone 

from cortical bone, and a graph-cut bone fragment segmentation based on one “seed point” from each 

fragment. The same parameters were used as described in [201]. The method is denoted as “multi-step 

region-grow”. The same parameters were used as described in [201]. The accuracy of segmentation was 

quantified in terms of the Dice coefficient (DSC) between the segmentation and the ground truth 

segmentation, as well as Hausdorff distance (HD) of the segmentation contours to ground truth. The 

methods were evaluated to quantify the sensitivity to “seed point” selection, with success rate defined by 

the ratio of trials with DSC > 0.70 for all bone fragments. 
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An alternative fracture reduction planning method was implemented specifically to test the 

assumption of pelvic bilateral symmetry. A symmetry plane defined by the sacral midline was determined 

from the sacrum segmentation, and the unfractured contralateral side was mirrored about the symmetry 

plane to serve as a fixed image for multi-body registration. The registration (referred to below as the “mirror” 

method) was performed with the following cost function: 

𝐶𝑟𝑒𝑔 = ‖𝐼𝑚𝑖𝑟𝑟𝑜𝑟 − ∑ 𝑇(𝑛)(𝑆(𝑛))
𝑁

𝑛=1
‖

2

+ 𝜆 ∑ ∑ ‖𝑇(𝑖)(𝑆(𝑖)) ∩ 𝑇(𝑗)(𝑆(𝑗))‖
2𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1
, (5.8) 

where 𝐼𝑚𝑖𝑟𝑟𝑜𝑟 is the image obtained from contralateral mirroring. The accuracy of the fracture reduction 

planning was quantified in terms of the difference between the simulated dislocation and the bone fragment 

transformations from the multi-body registration in Equation (5.6): 𝜖𝑟
(𝑙)

= 𝑇(𝑙)−1
𝑇𝑑

(𝑙)
. The fracture 

reduction error was analyzed in terms of constituent translational and rotational magnitudes, which carry 

useful physical meaning that is more informative to the surgeons for quantitative understanding of planning 

error margins. 

5.3.2 Cadaver Study 

The performance of the proposed method for reduction planning was evaluated in a fresh human 

cadaver study. The specimen was acquired from the Maryland Anatomy Board and used under approved 

state and institutional protocols. A fellowship-trained orthopaedic surgeon created a fracture of the left 

innominate bone to mimic a common Tile C1 fracture, resulting in three bone fragments and no dislocation 

of the SI joint or PS. A preoperative MDCT was acquired (Precision CT, Canon Medical Systems, Tustin 

CA) and reconstructed at 0.39x0.39x0.5 mm3 voxel size. Bone fragment segmentation and fracture 

reduction planning were computed based on preoperative CT. 

The accuracy of the system was quantitatively evaluated. A MDCT scan was acquired before 

fracture as a ground truth for fracture reduction planning, and the residual transformation between the 

ground truth bone pose and planning bone pose was computed. In terms of segmentation, bone fragments 

were manually segmented, and the DSC of the semi-automatic segmentation was computed. Since the same 
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surgeon created the fracture and performed surgical reduction, a potential bias toward a very accurate final 

reduction could be present. For this reason, the accuracy of the postoperative final reduction with/without 

guidance was not evaluated relative to ground truth. The cadaver experiment was also used later in Chapter 

6 as a proof-of-concept of the intraoperative navigation system. 

5.3.3 Clinical Study 

The proposed method was further quantitatively assessed in an IRB-approved retrospective study 

of three patients undergoing pelvic fracture reduction surgery. The three patients were selected to represent 

different categories of pelvic fractures: two cases demonstrating different types of common pelvic ring 

fractures, and the third case presenting fracture of acetabulum around the articular surface. 

The first patient experienced a high-energy impact to the left side, resulting in unilateral dislocation 

of the left innominate bone, disruptions of both the left sacroiliac (SI) joint and the pubic symphysis (PS), 

and a three-body fracture of the left iliac crest. The second patient experienced a high-energy impact 

anteriorly, resulting in bilateral trauma, featuring dislocation of the right innominate bone, disruptions of 

both the right SI joint and PS, and comminuted fractures of the pubic rami on both sides. Small bone 

fragments about the left pubic ramus fracture were identified (but were not surgically reduced – instead, 

left in place for natural bone healing); therefore, the small bone fragments were not considered in the 

fracture reduction planning framework. The third patient exhibited a two-body right acetabular fracture 

resulting from trauma of the right femur. The acetabular fracture in Case 3 is clinically more challenging 

than pelvic ring fractures in Cases 1-2 due to its articulation with the femoral head. Unlike pelvic ring 

reductions (for which up to 5-10 mm residual displacement may be acceptable [177, 180]), acetabulum 

reduction requires residual displacement within 2 mm for proper functional outcomes [224].  

For each case, preoperative CT was acquired (Somatom Definition Flash, Siemens Healthineers, 

Erlangen Germany) and reconstructed at 0.74×0.74×3 mm³ voxel size and 512×5S12×260 voxels. Semi-

automatic segmentation of bone fragments was computed, and the accuracy of the segmentation was 
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quantified by DSC and HD to manual segmentation by a research assistant trained in pelvic anatomy. The 

manual segmentation was performed in The Medical Imaging Toolkit [225] with voxel-level annotation, 

linear intra-slice interpolation and manual correction. The proposed fracture reduction planning framework 

was applied to estimate transformations of bone fragments to obtain proper reduction. In comparison, 

manual definition of fracture reduction planning was conducted by a fellowship-trained, orthopaedic 

surgeon with over ten years of experience. The surgeon manually manipulated the poses of 3D segmentation 

models on a 3D workstation, and the difference between the automatic and manual plans was quantified in 

terms of the magnitude of rigid transformation between each fragment in the two plans.  

5.4 Results 

5.4.1 Simulation Study 

The performance of bone fragment segmentation among 120 simulations was first evaluated. Figure 

5.3(a) shows the effect of 𝛽 on segmentation as a function of DSC, a more relevant metric for measuring 

gross segmentation overlap with ground truth (i.e., over-segmentation of soft-tissue or other bone 

fragments). With smaller 𝛽, the surrounding bones (e.g., the femur and sacrum) not belonging to the “seed 

point” fragment were likely to be included in the segmentation. With larger 𝛽, the segmentation was largely 

dominated by gradient-weighted distance in Equation (5.3) and soft-tissue voxels close to the seed points 

or fracture lines were more likely to be segmented as bone. A nominal value 𝛽 = 0.5 was identified to 

maximize DSC. Figure 5.3(b) shows the effect of 𝛾  on segmentation RMSE, which measures the 

smoothness of boundary delineation or the alignment of segmentation boundary to ground truth. A nominal 

value of 𝜆 =  3 was found to minimize RMSE in the trade-off between segmentation boundary smoothness 

and accuracy, achieving median RMSE = 2.9 mm (0.6 mm IQR). Figure 5.3(c) shows an example CT 

sagittal slice of a left innominate bone fracture at the acetabulum with the segmentation and ground truth 

surface overlay using nominal parameters. The two bone fragments were accurately segmented without 
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over-segmentation of the femoral head or high-intensity contrast-enhanced soft-tissue, and the results 

closely followed the ground truth manual segmentation. 

 
Figure 5.3. Accuracy of segmentation using continuous max-flow and min-cut in the simulation study. (a) Segmentation accuracy 

(DSC) measured over 40 pelves as a function of hyperparameter 𝛽, maximized at 𝛽 = 0.5. (b) RMSE measured as a function of 

regularization parameter 𝜆, minimized at 𝜆 = 3. (c) Example CT sagittal slice of a fractured left innominate bone at the acetabulum, 

with segmentation (red region) and ground truth (green edges) overlay. 

The multi-step region-grow method [201] and the continuous max-flow and min-cut method 

achieved success rates (fraction of cases with DSC > 0.70 for all bone fragments) of 91% and 96%, 

respectively. The continuous max-flow and min-cut method showed slightly less sensitivity to “seed point” 

placement. DSC was comparable between the two methods (0.90 ± 0.07 and 0.92 ± 0.06, respectively) 

with no statistical significance observed via paired student t-test. However, the multi-step region-grow 

method showed higher HD (4.1 ± 2.0 mm) compared to the continuous max-flow and min-cut method 

(2.7 ± 1.7 mm, 𝑝 ≪ 0.01). As HD quantifies the worst alignment throughout the segmentation contour, 

the difference in performance was observed primarily around narrow joint spaces and trabecular bone edges, 

were the multi-step region-grow method often showed over-segmentation. The multi-label approach in the 

continuous max-flow and min-cut method, along with distance to “seed points” and a prior bone intensity 

distribution, successfully avoided such over-segmentation. 

The performance of fracture reduction planning was evaluated in the unilateral 2-body fracture 

simulation by comparing the mirror method and the proposed adaptive template method. As summarized 

in Table 5.1 and plotted in Figure 5.4(a-b), the mirror method exhibited translational errors of 5.3 ± 3.7 

mm and rotational errors of 7.4 ± 4.3°. One source of error lies in the assumption of contralateral symmetry 
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(e.g., pelvic asymmetry associated with the dominant leg or other normal anatomical variations resulting in 

shape differences between the left and right ilium). Figure 5.4(c) exemplifies such error, where the mirrored 

bones resulted in a solution that compresses the pubic symphysis and dislocates the left SI joint. In addition, 

the shape difference between the left and right iliac crests (more elongated in the superior-inferior direction 

on the right side) resulted in residual error of the iliac crest fragment (in pink) and a gap between the two 

bone fragments. 

Table 5.1. Reduction accuracy of the three fracture categories comparing the “mirror” and “adaptive” methods. 

 
Reduction Error: Translation (mm) / Rotation (°) 

Fracture Category Mirror Adaptive 

Unilateral 2-Body 5.3 ± 3.7 mm 7.4 ± 4.3°. 2.2 ± 1.6 mm 2.2 ± 1.6° 

Unilateral 3-Body 6.2 ± 4.4 mm 9.5 ± 5.7° 2.6 ± 1.6 mm 3.7 ± 1.8° 

Bilateral 2-Body   2.8 ± 1.5 mm 3.3 ± 2.1° 

The proposed adaptive template method achieved translational error of 2.2 ± 1.5  mm and 

rotational error of 2.2 ± 1.5°, which are both significantly smaller than the mirror method (𝑝 ≪ 0.01 using 

paired student t-test). The errors were further decomposed into 3 translational directions (1.3 ± 1.2 mm, 

1.4 ± 1.2 mm, 1.3 ± 1.2 mm) and 3 rotational directions (1.4 ± 1.2°, 1.2 ± 1.2°, 1.5 ± 1.3°). The error in 

each direction was found to be equally distributed and thus not reported in subsequent sections. Comparing 

to the reduction result using mirror method in Figure 5.4(c), the result using adaptive template in Figure 

5.4(d) shows several improvements as indicated by the red circles, including a better aligned pubic 

symphysis and a narrower gap between the two bone fragments. By accounting for statistical variations in 

bone shapes and poses via the SSM and SPM, the adaptive template method significantly improves the 

quality of the target shape used for registration and thus improves the overall reduction planning accuracy. 
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Figure 5.4. Fracture reduction planning for a unilateral 2-body fracture simulation: comparison of the mirror and adaptive template 

methods. (a) Translational error and (b) rotational error. Boxplots are superimposed with the distribution of 80 sample points (two 

fragments each of 40 simulations). Clinical acceptance range (5 mm and 5°) are plotted in red dashed lines. (c) and (d) show 

example 3D renderings of the pelvis after reduction planning using the mirror and adaptive methods, respectively. In each case, the 

unfractured bone is labeled white, and fractured-dislocated bone fragments are yellow and pink. Red circles highlight important 

differences between the two methods at the PS and fracture plane. 

The methods were further evaluated in a simulation study of unilateral three-body fractures to 

examine generalizability to more complex fracture patterns with multiple bone fragments. Figure 5.5(a-b) 

shows the accuracy of fracture reduction planning of unilateral three-body fractures in comparison to two-

body fractures. As summarized in Table 5.1, the mirror method yielded 6.2 ± 4.4 mm and 9.5 ± 5.7° 

translational and rotational error, respectively. The proposed adaptive method demonstrated significant 

improvement (𝑝 ≪ 0.01 using paired student t-test), achieving 2.6 ± 1.6 mm and 3.7 ± 1.8°, respectively. 

The mirror method example in Figure 5.5(c) yields a result with dislocation of the PS and misaligned 

posterior column – each of which is improved with the adaptive method in Figure 5.5(d) as highlighted by 

the red circles.  

Comparing the two-body and three-body fracture cases solved using the adaptive method, a slight 

decrease in accuracy was observed for the latter (average difference 0.4 mm (not statistically significant) 

and 1.5° (𝑝 < 0.01)). As the number of fragments increases, the amount of information associated with the 
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remaining innominate bone is reduced, challenging the SSM adaptation steps and deteriorating the accuracy 

of the template. Another source of error for a greater number of fragments is the increased dimensionality 

of the optimization space. Despite these effects, fracture reduction accuracy was within the targeted range 

of 5 mm and 5° for the strong majority of both two-body (88%) and three-body (77.5%) fracture simulations. 

 
Figure 5.5. Fracture reduction planning for unilateral three-body fracture simulations, comparing the mirror and adaptive template 

methods. (a) Translational error and (b) rotational error. Boxplots are superimposed with the distribution of 80 sample points (two 

fragments each of 40 simulations) for 2-body fractures and 120 sample points (three fragments each of 40 simulations) for 3-body 

fractures. Clinical acceptance range (5 mm and 5°) are plotted in red dashed lines. (c) and (d) show example 3D renderings of the 

pelvis after reduction planning. In each case, the unfractured bone is labeled white, and fractured-dislocated bone fragments are 

labled in colors. Red circles highlight important differences between the two methods at the PS and posterior column fracture plane. 

The performance of the adaptive method in bilateral fractures was further examined (for which the 

mirror method is not applicable). The adaptive method applied to bilateral two-body fractures achieved 

translational error of 2.8 ± 1.5 mm and rotational error of 3.3 ± 2.1°. As shown in Figure 5.6(a-b), the 

bilateral simulations resulted in slightly higher error in both translation (not statistically significant) and 

rotation (𝑝 = 0.05, computed via unpaired t-test) compared to the unilateral cases, due to challenges in 

estimating poses of both innominate bones in the SPM adaptation steps. The result of an example bilateral 

case is shown in Figure 5.6(c). The mean error of the proposed method was within clinically acceptable 
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accuracy (<5 mm and <5°) in the more challenging bilateral fracture cases, adding utility and feasibility to 

the translation to orthopaedic surgical applications. 

 
Figure 5.6. Fracture reduction planning for bilateral two-body fracture simulations using the adaptive template method. (a) 

Translational error and (b) rotational error. Boxplots are superimposed with the distribution of 80 sample points (two fragments 

each of 40 simulations) for unilateral fractures and 160 sample points (four fragments each of 40 simulations) for bilateral fractures. 

Clinical acceptance range (5 mm and 5°) are plotted in red dashed lines. (c) Example 3D rendering of the pelvis after reduction 

planning, with unfractured bone fragments in white and fracture-dislocated bone fragments in yellow, pink, blue and green. 

5.4.2 Cadaver Study 

 
Figure 5.7. Fracture reduction planning in cadaver study. (a) 3D rendering of the preoperative CT image segmentation using 

continuous max-flow, showing fracture and dislocation of the left innominate bone. (b) 3D rendering of the pelvis after reduction 

planning using the adaptive method. Surgeon’s manual definition is overlaid in gray.  

As shown in Figure 5.7(a), a Tile C1 pelvic ring fracture was imparted to the cadaver’s left 

innominate bone, resulting in three fragments and intact SI joint and PS. Only one fragment (yellow) not 

connected by SI joint or PS was isolated and dislocated. Continuous max-flow and min-cut segmentation 

achieved overall DSC of 0.92 ± 0.04 and HD of 5.2 ± 2.0 mm. While HD was higher due to significant 

bone spurs associated with osteoarthritis and low bone density, the DSC was comparable to the simulation 

study, and downstream algorithm performance was not affected. Fracture reduction planning using the 
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adaptive method is shown in Figure 5.7(b) in green, with the ground truth (defined from pre-fracture CT) 

overlaid in dark gray. The difference between the automatic plan and ground truth was 2.68 mm and 4.10°, 

which was deemed clinically insignificant by the surgeon and was within the target accuracy (5 mm) for 

pelvic ring fracture [180, 181]. 

Table 5.2. Computation time of the preoperative planning algorithm. 

Algorithm Stage Runtime (min) 

Seed points Input 3.3 ± 0.7 

Continuous Max-flow 

Segmentation 
1.4 ± 0.2 

Fracture Reduction Planning 42.3 ± 10.9 

5.4.3 Clinical Study 

The feasibility of the proposed method was further evaluated in an IRB-approved, retrospective 

clinical study involving three patients undergoing pelvic fracture reduction surgery at our institution. The 

three cases presented distinct fracture and dislocation patterns that challenged the registration methodology 

with increasing levels of complexity and accuracy requirement.  

Case 1: Unilateral Iliac Crest Fracture 

As shown in the segmented preoperative CT image in Figure 5.8(a), Case 1 involves a patient with 

a comminuted fracture of the left ilium with dislocation of the left SI joint and diastasis of the PS. Three 

major bone fragments were identified: two iliac crest fragments and the remaining innominate bone. 

Continuous max-flow segmentation achieved overall DSC of 0.87 ± 0.05 and HD of 2.8±0.9. The lower 

segmentation accuracy compared to the simulation study is attributed to the relatively blurry bony 

boundaries of the comminuted fracture and multiple tiny fragments around the fracture site. The fracture 

reduction planning result obtained using the adaptive template method is shown in Figure 5.8(b), 

demonstrating a strong improvement in the alignment of bone morphology at the fracture site, the left SI 

joint, and the PS. Manual planning by the surgeon is overlaid in dark gray, showing a small superior 

displacement from the proposed method. The difference between the automatic and manual planning was 
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3.3 ± 0.3 mm and 2.5 ± 2.1°, which was deemed clinically insignificant by the surgeon (i.e., could not 

differentiate between the two), and is within the target accuracy (5 mm) for pelvic ring fracture reduction 

[180, 181]. 

 
Figure 5.8. Fracture reduction planning in the clinical study. Case 1: (a) 3D rendering of the preoperative CT image segmentation 

using continuous max-flow, showing fracture and dislocation of the left innominate bone. (b) 3D rendering of the pelvis after 

reduction planning using the adaptive method. Surgeon’s manual definition is overlaid in gray. Preoperative CT segmentation and 

the result from reduction planning of Case 2 are shown in (c) and (d), respectively. Preoperative CT segmentation and the result 

from reduction planning of Case 3 are shown in (e) and (f), respectively.  

Case 2: Bilateral Pubic Rami Fracture 

As shown in Figure 5.8(c), Case 2 involves a patient with bilateral trauma resulted from high energy 

impact from the anterior direction. Bilateral pubic rami were fractured, and the right SI joint was dislocated. 

In addition, a comminuted fracture was observed around the left inferior pubic ramus, resulting in multiple 
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shattered tiny bone fragments, which were not surgically treated and hence left out in the proposed 

framework. continuous max-flow and min-cut segmentation achieved DSC of 0.89 ± 0.04 and HD of 

3.8 ± 1.2 mm. Figure 5.8(d) shows the result from the fracture reduction planning with much better restored 

morphology. It is worth to note that the healthy bony morphology was maintained in the left inferior pubic 

ramus, where a gap was automatically kept for the tiny bone fragments not surgical treated. Due to the 

nature of complex pelvic shape and the complete reference from the adaptive template, no explicit modeling 

of missing fragments was needed. Such scenario would cause challenges in methods using fracture line 

matching as in [204, 205]. The surgeon’s manual plan is superimposed in dark gray, showing close 

alignment with the proposed method. The difference between the two plans was 2.6 ± 0.3 mm, 3.4 ± 1.8° 

and was deemed clinically insignificant by the surgeon. Case 1 and 2 were both considered as pelvic ring 

fractures, and the proposed reduction planning yielded accuracy within the 5 mm clinical acceptance range. 

Case 3: Acetabular fracture 

As shown in Figure 5.8(e), Case 3 involves a patient with a two-body acetabular fracture. A small 

fragment at the posterior side of the acetabulum was fractured and severely dislocated (over 90°). 

Continuous max-flow and min-cut segmentation achieved DSC of 0.95 ± 0.02 and HD of 1.6 ± 0.5 mm. 

Since no overall innominate bone dislocation was present, the adaptive template method did not use SPM, 

thus bypassing Stage (3) in Algorithm 5.1. Figure 5.8(f) shows the result from the proposed fracture 

reduction planning, with the dislocation of more than 90° successfully resolved. The difference between 

the proposed method and the surgeon’s manual plan was quantified to be 1.0 mm and 5.8°, which was larger 

than the first two cases.  

Comparing to the 5 mm acceptance range for pelvic ring fracture in Case 1 and 2, acetabular 

fracture reduction requires a higher precision as low as 2 mm [224] to restore proper hip joint function. 

Improvement on the method is needed to reduce the reduction error and fit the clinical requirement of 

acetabular fracture. For example, other than modeling the shape of the full pelvis, a local shape model of 
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the acetabulum can be computed to refine the reduction planning. In addition, a model of the femoral head 

can be incorporated for more accurate estimation of the overall hip joint shape. 

5.5 Discussion and Conclusion  

A framework for preoperative CT image segmentation of the fractured pelvis and fracture reduction 

planning was reported. The framework involves semi-automatic, multi-label segmentation in CT images of 

the fractured pelvis using continuous max-flow, achieving segmentation DSC of 0.92 ± 0.06  in the 

simulation study. For fracture reduction planning, multi-body registration was proposed to register bone 

segmentations to an adaptive template constructed from SSM and SPM that adapts to patient-specific 

anatomy. The planning achieved 2-3 mm and 2-3o error for unilateral two-body, three-body, and bilateral 

two-body fracture simulations. The cadaver study achieved DSC of 0.92 and reduction planning error of 

2.68 mm and 4.1°. The retrospective clinical study of three patient cases demonstrated comparable accuracy 

to the simulation study, achieving segmentation accuracy of DSC ~0.9 and reduction planning accuracy of 

~3 mm. 

The performance of the image-based guidance of pelvic fracture reduction was shown to improve 

reduction accuracy without conventional surgical navigation and is on par with existing reduction 

navigation systems. In a survey of patients with pelvic ring fracture reduction surgery without navigation, 

[226] reported residual reduction error exceeding 5 mm in 17% of patients undergoing posterior ring 

reduction surgery, 29% of patients undergoing pubic rami reduction, and 52% of patients undergoing pubic 

symphysis reduction. The proposed system shows more consistent performance, with only 12% - 25% of 

cases presenting greater than 5 mm error for a variety of fracture patterns.  

The segmentation accuracy of bone fragments affects the accuracy of fracture reduction planning. 

As reported in Section 5.3, the segmentation was susceptible to errors in areas of comminuted fractures, 

where bone boundaries were less defined and bone fragments were partially connected. This error was 

somewhat mitigated in the current work using a “soft regularization” of collision constraints in Equation 
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(5.7), which allowed partial overlap between bone fragments to still be an acceptable solution provided that 

the reduction overall matched with the adaptive template. In addition, the segmentation method is semi-

automatic, requiring some manual interaction to place seed points. To improve segmentation accuracy and 

achieve full automation, more sophisticated deep learning algorithms will be considered, such as supervised 

U-Net segmentation using more simulation and clinical datasets of pelvic fractures [98, 227] and 

unsupervised segmentation based on local center of mass of each bone fragment [228]. 

The clinical study verified the applicability of the method to real clinical data but is not without its 

limitations. While the cases presented a range of common pelvic fracture patterns and included multiple 

image instances (multiple fluoroscopic images) that was sufficient to demonstrate basic feasibility, the 

study was retrospective and involved just three subjects; therefore, the generalizability of the method to the 

wide range of possible pelvic fracture scenarios is subject to future evaluation. In addition, evaluating the 

accuracy of surgical reduction planning by comparing to postoperative CT would add value to the study. 

Of course, confirmation that improvements in reduction accuracy gained by this approach are associated 

with improved functional outcome is the subject of longer-term clinical research.  

The preoperative process for fracture reduction planning exhibited a runtime of ~45 min, and 

runtime acceleration is certainly desirable even for preoperative workflow. For example, ongoing work 

considers tetrahedral volumetric mesh representations of bone fragments, which is more compact and 

numerically efficient for volume transformations without the need of interpolation at every iteration. 

Another direction of work to improve accuracy and runtime of the planning algorithm is to use deep neural 

networks to model shape and pose variations. For example, a variational autoencoder network has been 

used to learn common object shapes and predict the shape and poses of the missing parts given the 

remaining pieces of the objects [229]. Such a network was applied to planning jaw reconstruction surgery 

[223] and can potentially be adapted to planning of pelvic fracture reduction. Future work will also consider 

evaluation in a broader variety of orthopaedic procedures (e.g., ankle fracture, wrist fracture, and 

maxillofacial reconstruction). 
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Chapter 6 

3D-2D Registration of Patient Anatomy to Intraoperative Images: 

Application to Orthopaedic Surgery Guidance 

6.1 Introduction 

Previous chapters (Chapter 3-5) discussed preoperative planning of fixation trajectory for 

minimally displaced fracture and planning of reduction poses for dislocation and fracture reduction. 

Following preoperative planning, surgical treatment (including reduction and/or fixation) is often guided 

by intraoperative x-ray fluoroscopy. The accuracy of reduction and device placement is challenged by the 

difficulty in reckoning the poses of complex 3D pelvic anatomy from 2D fluoroscopic projections, resulting 

in extended fluoroscopy acquisition time and frequent trial-and-error even for experienced trauma surgeons. 

Surgical guidance is desired to help reduce trial-and-error attempts with the aid of preoperative plans. In 

addition, surgical guidance can potentially reduce radiation exposure to the patients and operating staff, 

which is a growing area of concern in the orthopaedic surgery community [230–232]. 

Surgical guidance and navigation has been central to orthopaedic surgery in the past decades [233], 

and has been applied to numerous applications (e.g., pedicle screw placement and fracture reduction) to 

improve the precision and safety of the procedures. Navigation addresses the questions of where the 

anatomical structures and preoperative plans are in the intraoperative coordinates. A common approach to 

navigation is surgical tracking through extrinsic optical or electromagnetic fiducial markers that are placed 

on the patients or surgical tools [234–236]. Surgical tracking is achieved by registration of the coordinate 

system of fiducial markers between preoperative images and intraoperative signals. While these modern 

navigation systems allow real-time guidance, they also require additional equipment in the operating room, 

additional workflow of affixing markers to tools or patients, calibration of markers, and constraints such as 

line-of-sight (for optical tracking) and metal interference (for electromagnetic tracking). In addition, the 
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accuracy of such systems may deteriorate over time due to motion of the markers or anatomical 

deformations induced during surgery. 

To overcome such limitations in workflow (as well as cost and equipment), methods for 3D-2D 

registration-based guidance are being developed to register routinely acquired x-ray radiographs or 

fluoroscopy images to preoperative 3D imaging as a basis for surgical guidance. Compared to surgical 

trackers that register a sparse set of points, the use of intraoperative imaging provides richer and more up-

to-date information about the anatomy. 3D-2D registration between preoperative CT and intraoperative 

fluoroscopy has been used for target localization and pedicle screw guidance in spine surgery [60, 61, 237, 

238]. However, these registration methods do not account for independent motions of multiple bones during 

the operation, presenting a source of geometric error that challenges conventional rigid registration methods. 

To address such limitations, a multi-scale 3D-2D image registration approach to account for rigid motions 

in orthopaedic surgery has been proposed [218]. Another technique, 3D-2D reconstruction, has been 

proposed to directly reconstruct 3D bones from 2D radiographs using SSM for surgical planning [52, 217]. 

The SSM only models healthy, non-fractured bones, and has not been applied to 3D-2D reconstruction of 

fractured bones due to high variation in fracture patterns. 

In this chapter, we extend the use of 3D-2D registration for guidance of pelvic orthopaedic surgery 

to address the registration of not only single-body structure (e.g., preoperative CT) to fluoroscopy, but also 

multi-body structures to fluoroscopy. In Section 6.2, 3D-2D registration between preoperative CT and 

intraoperative fluoroscopy is investigated for a guidance system of pelvic fracture fixation. Section 6.3 

describes multi-body 3D-2D registration between segmentation of multiple bone fragments and 

intraoperative fluoroscopy for dislocation and fracture reduction surgery. The preoperative planning 

methods for pelvic trauma developed in Chapter 3-5 can be integrated with the intraoperative guidance 

system to provide information of both locations of bony anatomy and preoperative plans (i.e., fixation 

trajectories and reduction poses) in the intraoperative coordinates.  
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Distinct contributions of the current work includes: (1) extending 3D-2D registration of a single 

body to multi-body registration to address the problem of motion tracking of multiple bones; (2) augmenting 

preoperative and intraoperative images with preoperative plans of trajectories for fixation and/or reduction 

pose for reduction surgery; and (3) enabling accurate 3D surgical guidance of pelvic orthopaedic surgery 

without trackers by using the intraoperative images themselves as the trackers. The system potentially 

overcomes limitations of conventional surgical tracking and offers to improve the accuracy of orthopaedic 

surgery using 2D fluoroscopy already common in routine care, without additional devices or disruption to 

surgical workflow. 
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6.2 Single-Body 3D-2D Registration: Guidance of Device Placement / Trajectories 

6.2.1 Algorithmic Methods 

Figure 6.1 illustrates the fluoroscopy-guided system for screw placement in pelvic fixation surgery. 

The trajectory plan is obtained preoperatively using an SSM-to-image registration developed in Chapter 3. 

Intraoperatively, the preoperative CT is mapped to intraoperative fluoroscopy via a single-body 3D-2D 

registration by matching digitally reconstructed radiograph (DRR) to a fluoroscopic image, and trajectory 

plans are overlaid on the fluoroscopic image to provide 2D fluoroscopic guidance. The system thereby 

provides guidance analogous to surgical navigation – specifically, helping the surgeon to determine if 

instrument trajectories are within acceptance corridors – without additional tracking systems. By 

augmenting each fluoroscopic view with the acceptance corridor (green overlay in Fig. 1), and with direct 

visualization of whether the instrument (e.g., K-wire) is within an acceptance corridor in multiple views, 

the system could help to resolve uncertainty in 3D positioning within the complex anatomical shape and 

thereby reduce trial-and-error, radiation exposure, and operating time.  

 
Figure 6.3. Flowchart for fluoroscopy-guided system for percutaneous pelvic screw placement. 

The 3D-2D registration is performed by optimizing image similarity between DRRs and one or 

more fluoroscopy images (𝑅) in a rigid 6 DOF transformation space (𝑇). A DRR can be generated from a 
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3D volume (the preoperative CT, 𝐼𝐶𝑇, in this case) in specific poses within a virtual x-ray imaging system 

following specific system geometry. In this work, a GPU-based ray casting technique was used [239], from 

which the CT was forward projected to an DRR image plane and each pixel value of the DRR was a line 

integral of CT values on the path of x-ray beam from the source to that pixel: 

𝐷𝑅𝑅 = ∫ 𝑇(𝐼𝐶𝑇)𝑟𝐻
𝐻

, (6.1) 

where 𝑟𝐻 denotes the rays from the source following system geometry (the projection matrix from CT to 

fluoroscopy), 𝐻 . In this section, 𝐻  is assumed to be known, which can be obtained from encoded 

angulations of a calibrated system (e.g., C-arm). 

The 3D-2D registration requires an image similarity metric to measure how well the DRR is aligned 

with the fluoroscopy. In this work, gradient orientation metric [237] was used for bone registration due to 

its insensitivity to low spatial frequency differences (such as soft tissue deformation) and concentration on 

edge alignment. GO has been shown to be more robust against the presence of surgical implants in the 

fluoroscopic image (e.g., K-wires and percutaneous screws that may be absent from the preoperative CT):  

GO(𝐼1, 𝐼2) =
1

max(𝑁,𝑁𝐿𝐵)
∑ 𝑤′(𝑖)

𝑖∈{Ω:|∇I1(𝑖)|>𝑡1 ∩|∇I2|>𝑡2}

, (6.2𝑎) 

𝑤′(𝑖) =
2 − ln(|𝜓𝑖| + 1)

2
, (6.2𝑏) 

where ∇ denotes the gradient operator, 𝜓𝑖 denotes the angle between two gradient vectors at pixel location 

𝑖, and 𝑁 and 𝑁𝐿𝐵 denote the number of evaluated pixels and a lower bound of half of the total pixels in the 

radiograph, respectively. The thresholds, 𝑡1 and 𝑡2, are defined as the median gradient magnitude of each 

image, such that only pixels with gradient magnitude exceeding the thresholds are evaluated. The 3D-2D 

registration problem is defined as finding the CT transformation that maximizes GO between the DRRs and 

fluoroscopic images:  

�̂� = argmax
𝑇

GO(𝑅, 𝐷𝑅𝑅) . (6.3) 



103 

 

Equation (6.3) was solved using covariance matrix adaption evolution strategy (CMA-ES) optimization 

[221] . The CMA-ES generates a population of random sample points around the current estimate following 

a multivariate normal distribution, and each sample point evaluation can be computed in parallel. In 

comparison to gradient-based optimization such as Powell’s method or gradient descent, CMA-ES is more 

robust against local minima [60]. Additionally, a coarse-to-fine search strategy that started with low 

resolution image and gradually increased resolution during optimization was implemented to enable 

registration with suboptimal initial estimation of 𝑇. In this work, a population size of 100 was used, and the 

initial standard deviation was set to 𝜎 = 15  mm and 15° , respectively. The robustness of CMA-ES 

generally improves by increasing the population size to more densely sample the search space at the cost 

of performing more function evaluations [60], and the population size of 100 was empirically determined 

to yield robust 3D-2D registration without compromising computation time. An overly large σ results in an 

overly large search space that decreases robustness and requires more sampling population, whereas an 

overly small σ cannot reach convergence. The 3D-2D registration algorithm was implemented on GPU to 

parallelize computation.  

Figure 6.2(a) illustrates the challenge of assessing the 3D orientation of K-wires with respect to 

safe bone corridors within the fairly complex 3D pelvic anatomy projected onto a 2D plane. Besides limited 

depth resolution, overlaying structures present a complex radiographic scene in which it can be difficult to 

determine orientation. The automatic determination of acceptable device trajectory within the fluoroscopic 

view provides additional information for guidance and decision support – particularly in complex scenes 

and when applied to 2 or more fluoroscopic views, thereby resolving the question of depth. Following the 

3D-2D registration, correspondence between preoperative CT and intraoperative fluoroscopy can be 

established, as shown in Figure 6.2(b) with the DRR matching the fluoroscopy. Trajectory plans in the form 

of accumulation map (𝐴𝑐) computed on the preoperative CT from Chapter 3 can be transformed into the 

intraoperative coordinates to augment fluoroscopic images that may be otherwise hard to interpret. 
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As 𝐴𝑐 is defined in the same coordinate space as the preoperative CT, its relation to each radiograph 

is readily provided by 3D-2D registration with no additional computation. Figure 6.2(c) shows two example 

acceptance trajectories (denoted 𝑃𝐴𝑐
) computed by projecting the 3D accumulation map onto the 

fluoroscopic image as a form of augmented fluoroscopic guidance: 

𝑃𝐴𝑐
= ∫ �̂�(𝐴𝑐) d𝑟𝜃

𝑟𝜃

. (6.4) 

In addition to 2D fluoroscopic augmentation, the method is applicable to 3D navigation via the 

acquisition of 2 or more fluoroscopic views. In 3D navigation, the 3D-2D registration must solve for both 

the anatomy (as described above) as well as the K-wire – i.e., automatically detect the instrument and 

compute its 3D pose. Previous work [166] used deformable known component 3D-2D registration to 

determine the pose and orientation of K-wires and screws with 3 radiographs separated by at least 20° from 

each other. The automatic planning and 2D fluoroscopic guidance system investigated in this work is thus 

extensible to 3D guidance with minimal interference to workflow.  

 
Figure 6.4. Augmented fluoroscopic guidance. (a) Inlet view of the pelvis showing a superior ramus and iliosacral S1 K-wire 

insertion. (b) DRR of preoperative CT after 3D-2D registration (represented by Canny edges), showing close alignment with the 

fluoroscopic view in (a). (c) Projection of the trajectory accumulation 𝐴𝑐 onto the fluoroscopy image using the resulting 3D-2D 

registration. Augmentation of the fluoroscopic scene with such acceptance trajectories aids interpretation of complex 3D 

relationships of pelvic morphology and device orientation in the 2D projection view. In two fluoroscopic views (inlet and outlet, 

for example), conformance of the K-wire within augmented regions provides quick validation of conformance within the 

acceptance corridor. 

6.2.2 Experimental Methods 

The performance of 3D-2D registration and augmented fluoroscopy was evaluated in a study 

involving placement of four K-wire in a fresh cadaver study that is first described in Chapter 3 Section 

3.3.2. The preoperative CBCT was acquired and segmented, followed by trajectory planning as previously 
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described. A fellowship-trained orthopaedic surgeon inserted four K-wires (Stryker, Kalamazoo MI) of 1.6 

mm radius following trajectories: AIIS to PIIS, anterior column to iliac crest (left), superior ramus (left), 

and iliosacral (at S1). The superior ramus K-wire was slightly misplaced on purpose to demonstrate the 

potential benefit of fluoroscopic guidance in depicting breaches that can be difficult to appreciate in 2D 

projections alone. In placing each K-wire, fluoroscopic images were acquired (also on the O-arm) in views 

that are common to trauma surgery (viz., the posterior-anterior (PA), LAT, outlet, and inlet views), and 3D-

2D registration was computed for each view. 

3D-2D registration accuracy (CBCT to single fluoroscopy images) was evaluated in terms of the 

accuracy of the transformation (𝑇𝐶𝑇) and projection distance error (PDE). The error in each of the 6 DOF 

geometric parameters (𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾) was computed, with the first three being translations and the last three 

being rotations. The 𝑥 and 𝑦 axes were defined as parallel to the detector edge and the 𝑧 axis was defined 

by their cross product (depth direction out of the radiographic plane). Similarly, the 𝛼, 𝛽, 𝛾 parameters 

defined the orientation of the transformation in the 𝑧𝑦𝑥 Euler angle representation. Up to 10 unambiguous 

anatomical landmarks were identified in CBCT and radiographs, and PDE was measured as the distance 

(in the projection domain) between the registered landmarks in DRRs and the landmarks on radiographs: 

PDE =
1

𝑁
∑ ‖𝑝𝑖

DRR − 𝑝𝑖
R‖

𝑁

𝑖=1
, (6.5) 

where 𝑝𝑖
DRR  is the projection of the 𝑖 th target point on preoperative CT projected by the registration 

transformation, and 𝑝𝑖
R  is the 𝑖 th target point on the fluoroscopy image. The accuracy of augmented 

fluoroscopic guidance was evaluated by calculating the PPV of the projected trajectory accumulation in 

terms of truth defined by the reference trajectory corridors: 

PPV𝑃 =
(𝑃𝐴𝑐

> 0.5) ∩ 𝑃𝐴𝑟𝑒𝑓

𝑃𝐴𝑐
> 0.5

, (6.6) 

where 𝑃𝐴𝑐
 is the normalized projected trajectory accumulation, and 𝑃𝐴𝑟𝑒𝑓

 is the reference trajectory corridor 

(in the projection domain on the radiograph).  
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6.2.3 Results 

6.2.3.1 Accuracy of 3D-2D Registration 

Figure 6.3 summarizes the accuracy of 3D-2D registration of preoperative CT to single (PA or LAT) 

intraoperative fluoroscopy in the cadaver study. Registration performance was evaluated in terms of the 

PDE and accuracy of transformation. Figure 6.3(a-b) shows example PA and LAT radiographs overlaid 

with (blue) Canny edges from DRRs of the CT after 3D-2D registration. The images were acquired at 

intermediate steps in inserting K-wires along AIIS to PIIS, iliac crest (left), superior ramus (left), and 

iliosacral (at S1) (tipped marked by arrow). Despite the mismatch in image content between preoperative 

CT and intraoperative radiographs with high-contrast instrumentations, pelvic anatomy was fairly well 

aligned in all views. For calculation of PDE, target points are labeled as white and blue crosses in 

radiographs and 3D projection from the CT, yielding overall median PDE of 2.1 mm (0.3 mm IQR) after 

registration. A substantial component of this error is attributed to the challenge in landmark identification 

(i.e., truth definition), especially in LAT radiographs in which landmarks were difficult to visualize. As a 

result, manual definition of target points in PDE calculation exhibited ~0.1-0.9 mm intra-subject variability. 

The error in the 3D transformation is shown in Figure 6.3(c-d). The errors in (𝑥, 𝑦 ) refer to 

displacements in the plane of the x-ray detector, and errors in (𝑧) refer to out-of-plane errors (i.e., direction 

from the detector to the x-ray source). Errors in (𝑧) correspond to a magnification error in the projection 

geometry of the DRR, which is fairly insensitive with respect to augmentation of the (𝑥, 𝑦) fluoroscopic 

view. Considering the system geometry used in this work (source to detector distance ~ 1200 mm and 

magnification of 1.80), for example, a 5 mm error in 𝑧 corresponds to a 0.7% change in magnification. In-

plane translational error was within ~ 2 mm, and although out-of-plane translational errors were higher (up 

to ~6 mm), the associated error in the radiographic plane is small due to magnification. Similarly, rotational 

errors within the plane of the detector (𝛼) were low (median 0.02° ) and higher out-of-plane (𝛽, 𝛾), ~4°. 

The LAT radiographs yielded higher error in (𝑧) compared to PA or inlet views, because the lower level of 

image quality (increased attenuation) further challenged the definition of ground truth landmarks.  
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The computation time for 3D-2D registration is another important criterion for application in 

intraoperative guidance. With parallel implementation on GPU, the average runtime was 12.8 ± 3.2 s for 

registration of a single radiograph to the CT image. The runtime could be further reduced for subsequent 

radiographs (i.e., images acquired after the first shot) where registration was initialized according to the 

result of previous radiographs to narrower the search space. The runtime for the current implementation 

may be consistent with step-and-shoot workflow and initial clinical studies. Future work to improve the 

level of parallelization and initialization could yield near-real-time performance (~1-3 s). 

 
Figure 6.3. 3D-2D registration accuracy in cadaver studies. Example (a) PA and (b) LAT radiographs overlaid with Canny edges 

of the registered DRR. Anatomical landmarks defined in the radiographs are labeled in white, and those projected from CT are 

shown in blue. Yellow arrows depict the tips of each K-wire. (c) Translational and (d) rotational error in the 3D-2D registration 

transformation. Note that (𝑥, 𝑦) and 𝛼 refer to in-plane displacements and rotation, respectively, whereas 𝑧 and (𝛽, 𝛾) refer to out-

of-plane translation and rotations. 

6.2.3.2 Accuracy of Augmented Fluoroscopic Guidance 

Figure 6.4 illustrates the augmentation of PA and LAT radiographs with acceptance corridors 

during placement of four K-wires at intermediate steps of insertion. Projection of the trajectory 

accumulation volumes (𝑃𝐴𝑐
, shown in green) are overlaid onto each radiograph for a given trajectory, 
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providing a quick check on safe bone corridors for the corresponding K-wire. The projection of 𝑃𝐴𝑐
 is 

shown in a green colormap with brighter intensity indicating higher confidence in the safety of instrument 

placement (proportional to the value of the 𝑃𝐴𝑐
). Visualization in two views (e.g., PA, LAT, inlet, and/or 

outlet) provides quick validation of conformance in 3D, potentially reducing guesswork in image 

interpretation and trial and error in K-wire placement. Among the four trajectories, three of the K-wires 

(AIIS to PIIS, iliac crest, iliosacral S1) are seen to reside entirely within the green acceptance regions, 

whereas a (purposely) misplaced K-wire in the superior ramus shows a risk of breach if advanced along its 

current trajectory as in Fig. 6.4(b). Manual reference definitions of trajectory contours were highlighted in 

yellow, showing consistent overlap with 𝑃𝐴𝑐
.  

The accuracy of augmented fluoroscopic guidance was evaluated in terms of the positive predictive 

value (PPV𝑃) of the projected accumulation, representing the amount of overlap between the normalized 

projection accumulation 𝑃𝐴𝐶
 above 0.5 and the manually defined trajectory contour in the fluoroscopic 

image plane. As shown in Table 6.1, the PPV𝑃 achieved >95% in AIIS to PIIS and iliosacral S1 trajectory 

and >90% in superior pubic ramus and iliac crest trajectory, indicating accurate overlap of the projected 

plans with the reference trajectory corridors. The much narrower bone corridors associated with the superior 

pubic ramus and iliac crest trajectory contributed to the slightly lower PPV𝑃.  

Table 6.1. The 𝑷𝑷𝑽𝑷 of projected accumulation in augmented fluoroscopic guidance. 

Trajectory 𝐏𝐏𝐕𝑷 

AIIS to PIIS 94.5% 

Superior pubic ramus 91.7% 

Iliac crest 92.2% 

Iliosacral S1 97.4% 
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Figure 6.4. Augmented fluoroscopy in the cadaver study. Projection of automatic planning trajectories (green) of four cases of K-

wire placement: (a) AIIS to PIIS, (b) superior ramus, (c) iliac crest, and (d) iliosacral at S1. Each superimposes the projected 

acceptant volume on PA and LAT radiographs via 3D-2D registration. Reference trajectory boundaries 𝑃𝐴𝑟𝑒𝑓
 are labeled in yellow, 

and blue arrows point to the pertinent K-wire in each case. 

The errors in 3D-2D registration described in Section 6.2.3.1 propagated to the augmented 

fluoroscopy scene, where the in-plane error (𝑥, 𝑦, 𝛼) led to a change in the translation and orientation of the 

projected accumulation with respect to the reference definition. Similarly, out-of-plane errors in (𝑧) led to 

an apparent change in the size of the projected volume. As evident in LAT views in Figure 6.4, the projected 
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𝑃𝐴𝐶
 shown in green are slightly magnified compared to the reference definition. However, the majority of 

the 𝑃𝐴𝐶
 was inside the reference definition, and areas extending slightly outside the reference definition 

contour were of lower value, indicating reduced certainty of safety conformance.  

6.3 Multi-Body 3D-2D Registration: Guidance to Reduction 

6.3.1 Algorithmic Methods 

Figure 6.5 shows overall system of preoperative planning and intraoperative guidance for pelvic 

reduction surgery, including both dislocation and fracture reduction. The preoperative steps (top row, gray) 

are discussed in Chapter 4 and 5, resulting in bone fragment segmentations and plans of the target poses of 

bones that need to be reduced during surgery. Intraoperatively, bone fragment segmentations mapped to 

one or more 2D fluoroscopic images via a two-stage multi-body 3D-2D registration to provide guidance to 

pelvic fracture and dislocation reduction. In contrary to Section 6.2 that assumes known system geometry, 

this section considers a more generic scenario with unknown geometry. The multi-body 3D-2D registration 

solves the system geometry using one bone component in the first stage, and then solves poses between 

multiple bones in the second stage. 

 
Figure 6.5. Process flowchart of multi-body registration for pelvic fracture reduction planning and guidance, addressing not only 

dislocations of SI joint and PS (Chapter 4)[218] but also multi-fragment fractures (Chapter 5). Preoperative registration steps 

(segmentation and fracture reduction planning) are in the top branch (gray). Intraoperative steps (multi-body 3D-2D registration 

and 2D/3D guidance) are in the bottom branch (blue). 
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Both 2D guidance (i.e., visualization in fluoroscopy) and 3D guidance (i.e., visualization in the 3D 

model) are possible via the 3D-2D registration and preoperative reduction plan. In 2D guidance, 

preoperative plans can be mapped to the fluoroscopic scene to augment the fluoroscopic view and provide 

guidance in a form that is familiar to orthopaedic surgeons. In 3D guidance, the position of bone fragments 

can be visualized relative to the preoperative CT and reduction plan. In either 2D or 3D guidance, the target 

pose from reduction planning augment the surgeon’s determination of the extent to which the current 

reduction is within an acceptable range of the desired reduction. 

6.3.1.1 First-Stage Registration: Resolving One Bone Component to the System Geometry 

In the first stage of the registration, the pose of one bone out of 𝐿 bones is solved with respect to 

the x-ray imaging system geometry (𝐻). In case of registration to multiple fluoroscopic images (𝑅), the 

system geometry associated with each image can be obtained via separate registrations. 𝐻 is decomposed 

into 9 DOF describing the intrinsics (source position 𝑇𝑠 = [𝑇𝑠,𝑥 , 𝑇𝑠,𝑦, 𝑇𝑠,𝑧]
𝑇

) and extrinsics (detector position 

𝑇𝑑 = [𝑇𝑑,𝑥, 𝑇𝑑,𝑦, 𝑇𝑑,𝑧]
𝑇

 and 3D rotation of the detector 𝑅𝑑 = [𝑅𝑑,𝑥, 𝑅𝑑,𝑦, 𝑅𝑑,𝑧]
𝑇

). 𝐻 can be expressed as: 

𝐻 = [

𝑇𝑠,𝑧 0 𝑇𝑠,𝑥 0

0 𝑇𝑠,𝑧 𝑇𝑠,𝑦 0

0 0 1 0

] [
𝑅3×3(𝑅𝑑,𝑥, 𝑅𝑑,𝑦, 𝑅𝑑,𝑧)

𝑇𝑑,𝑥

𝑇𝑑,𝑦

𝑇𝑑,𝑧

0 0 0 1

] . (6.7) 

Any 3D voxel in the CT can be forward projected to the detector plane by multiplying its 

homogenous coordinates by 𝐻. For a calibrated x-ray system such as a C-arm for which 𝐻 is known, the 

pose of one bone with respect to the system can be simplified to a 6 DoF extrinsic transformation (the 

second term in Equation (6.7)) and is solved in Section 6.2.  

Following the notion of “self-calibration” described in [58, 240], the first stage registers a single 

bone with salient image features (e.g., the left or right innominate bone) to a single 2D fluoroscopy. If 

segmentation was computed from SSM as in Chapter 4, the segmentation surface was first voxelized to a 

binary volume. If segmentation was computed by continuous max-flow and min-cut as in Chapter 5, no 

additional step was needed. The segmentation image (𝑆(𝑙), 𝑙 ∈ [1, 𝐿]) of the bone was filled with its 



112 

 

corresponding attenuation coefficients from the preoperative CT. DRRs were computed via linear forward 

projection of the bone volume. GO was used as the similarity metric between the DRR and fluoroscopic 

image. The first stage registration solves for either 𝐻 (for a 9 DoF system, such as a mobile radiography 

system, Equation (6.8a) or 𝑇 (for a 6 DoF system such as a calibrated mobile C-arm, Equation (6.8b) by 

maximizing GO: 

�̂� = argmax
𝐻

GO(𝑅,∫ 𝑆(𝑙)𝑑𝑟𝐻
𝐻

) , (6.8𝑎) 

�̂� = argmax
𝑇

GO(𝑅,∫ 𝑇(𝑆(𝑙))𝑑𝑟𝐻
𝐻

) . (6.8𝑏) 

6.3.1.2 Second-Stage Registration: Solving Inter-Body Poses 

A second stage registration solves for the 𝐿 inter-body poses parametrized by 6 × (𝐿 − 1) DoF 

rigid transformations. DRRs were computed as the summation of the forward projection of the multi-body 

3D models via the solved system projection matrix �̂�, and GO was measured between the DRRs and the 

radiographs 𝑅 . The multi-body 3D-2D registration solves for the set of rigid 6 DoF transformations 

{�̂�3𝐷2𝐷
(𝑙)

} of the 3D models that maximizes the summation of GO from 𝐾 radiographs: 

{�̂�3𝐷2𝐷
(𝑙)

} = argmax
{𝑇(𝑙)}

∑ GO(𝑅𝑘 , ∫ ∑𝑇(𝑙)(𝑆(𝑙))

𝑙

𝑑𝑟�̂�𝑘
𝐻

)
𝐾

𝑘=1
, (6.9) 

where 𝐾 is the total number of fluoroscopic images used for registration and can be as little as 1. 𝑅𝑘 and 

�̂�𝑘 are the 𝑘𝑡ℎ fluoroscopic image and associated system projection matrix, respectively. 

Equation (6.8) and (6.9) were solved using CMA-ES optimization in a multi-resolution pyramid 

with image downsampling factor of [4×, 2×], a population size of [100, 100], and initial standard deviation 

σ of [4, 1] mm and [4, 1]°. In comparison to Section 6.2, smaller 𝜎 were used because bone fragments were 

smaller than a full CT image. The 3D-2D registration, as shown in Figure 6.6(a), serves as an image-based 

tracking method of the dislocated bone(s) 𝑇3𝐷2𝐷,𝑋  with respect to the observed undislocated bone(s) 

𝑇3𝐷2𝐷,𝑂. The target reduction pose (𝑇𝑡𝑎𝑟𝑔𝑒𝑡) computed in Chapter 4 and 5 can thus be transformed into the 
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intraoperative coordinate frame as 𝑇3𝐷2𝐷,𝑂 𝑇𝑡𝑎𝑟𝑔𝑒𝑡  and forward projected onto the radiograph for 2D 

augmented guidance ∫ 𝑇3𝐷2𝐷,𝑂  𝑇𝑡𝑎𝑟𝑔𝑒𝑡(𝑆𝑋)𝑑𝑟𝐻𝐻
, as illustrated in Figure 6.6(b). In addition, the residual 

transformation required to reduce the dislocated bone from the current location to the target can be 

computed as 𝑇𝑟𝑒𝑠 = 𝑇3𝐷2𝐷,𝑂  𝑇𝑡𝑎𝑟𝑔𝑒𝑡𝑇3𝐷2𝐷,𝑋
−1 . As shown in Figure 6.6(c), such information can be used for 

3D visualization of the current reduction with respect to the preoperative target reduction. The proposed 

multibody 3D-2D registration therefore can provide both 2D fluoroscopy augmentation and 3D navigation 

using intraoperative 2D images alone. 

 
Figure 6.6. Multi-body 3D-2D registration and guidance. (a) AP fluoroscopic image of a pelvis with left innominate dislocation. 

The DRR Canny edges (yellow) computed from the left/right innominate bones and sacrum after registration overlaid on the 

fluoroscopic image show close alignment. (b) The fluoroscopic image is augmented with a projection (green) of the target pose of 

the dislocated innominate bone using the resulting 3D-2D registration to visualize the current state of the patient relative to the 

target pose (and possible need for further reduction). (c) 3D rendering of preoperative CT overlaid with the target pose (green) of 

the dislocated left innominate bone. 

6.3.2 Experimental Methods: Pelvic Dislocation 

Multi-body 3D-2D registration was first evaluated in a sequence of simulation, phantom, and 

clinical studies with pelvic dislocation. No fractures were considered in order to first examine the algorithm 

using simpler, dislocation only cases. 

6.3.2.1 Simulation Study 

Chapter 4 Section 4.3.2 describes a simulation study that simulated pelvic dislocations from CT 

and corresponding bone segmentations. For each simulated CT with dislocation 𝑇𝑑𝑖𝑠𝑙, fluoroscopic images 

in terms of DRR were also simulated at intermediate stages of reduction, 𝑇𝑑𝑖𝑠𝑙
′ , where ‖𝑇𝑑𝑖𝑠𝑙

′ ‖ < ‖𝑇𝑑𝑖𝑠𝑙‖. 
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The radiographs were simulated for standard pelvic views (AP, lateral, inlet, and oblique) using the 

projection geometry of a mobile C-arm (source-axis distance=600 mm, source-detector distance=1100 mm). 

The bone segmentations (via SSM-to-image registration) were registered to two such radiographs, using 

the two-stage registration with 6 DoF projection geometry of the C-arm. The accuracy of 3D-2D registration 

was measured in terms of the difference between the intermediate dislocation and the registration result: 

ε3D2D = 𝑇′
𝑑𝑖𝑠𝑙
−1

𝑇3𝐷2𝐷, from which the translational error (𝑥, 𝑦, 𝑧) can be extracted. The 𝑥 and 𝑧 coordinates 

define the in-plane horizontal and vertical axes parallel to the detector edge, respectively, and 𝑦 defines 

their cross product (out-of-plane). A total of 120 simulated registrations were performed (3 for each of the 

40 atlas members). 

The multi-body 3D-2D registration was initialized by the poses from preoperative CT and typical 

x-ray system geometry (subject at isocenter) to provide coarse overlap between the radiographs and the 

DRRs at the start of the registration. Because initialization can differ strongly from the poses in 

intraoperative radiographs (e.g., due to surgical reduction, patient motion, or changes in setup geometry), 

we investigated the sensitivity of the algorithm to initialization error by evaluating the accuracy (ε3D2D) of 

multi-body 3D-2D registration with the initialization in translation (𝑥, 𝑦, 𝑧) perturbed by ±200 mm and in 

rotation (𝑟𝑥, 𝑟𝑦, 𝑟𝑧) perturbed by ±60°. 

6.3.2.2 Phantom Study 

The multi-body 3D-2D registration was also evaluated in the phantom study described in Section 

4.3.3 using a custom Sawbone phantom. With the left innominate bone displaced at moderate and severe 

magnitude (~10 mm and ~15 mm, respectively), two preoperative CT scans were acquired (Precision CT, 

Canon Medical Systems, Tustin CA) and reconstructed at 0.39 × 0.39 × 3 mm³ voxel size with a volume 

size of 1024 × 1024 × 100 voxels. Segmentation and reduction planning were computed as in Section 

4.3.3.  

In physical experiments to study intraoperative registration, the left innominate bone was moved 

to three intermediate poses between full dislocation and complete reduction, and radiographs were acquired 
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on a mobile C-Arm (Cios Spin, Siemens Healthineers, Erlangen, Germany) at 16 gantry orbital and tilt 

angle combinations: (0,0), (0, ±10), (0, ±20), (±15,0), (±30,0), (±30,±20), (±45,0), (90,0)°. The 

radiographs were acquired at 120 kV, 4.1 mA, and 50 𝜇Gy/frame, a dose rate typical in conventional 

fluoroscopy (6-28 𝜇Gy/frame for low-dose fluoroscopy and 56-110 𝜇Gy/frame for high-dose fluoroscopy 

[241]). CBCT images were also acquired at the three intermediate poses for truth definition of BB targets. 

Multi-body 3D-2D registrations were computed with 6 DoF system projection geometry between the 

segmentation models and 40 combinations of two radiographic views, with the BB targets masked to 

remove the bias in 3D-2D registration. The accuracy of registration was measured in terms of 3D TRE, 

defined as the distance of metal BB between their intraoperative locations (defined by CBCT) and their 

registered locations from MDCT to radiographs. 

The effect of fluoroscopy dose on 3D-2D registration accuracy was investigated for potential dose 

reduction. The radiographs in the study described above, acquired at 50 𝜇Gy/frame nominal dose, were 

tested for baseline performance. Radiographs accurately reflecting increased noise at lower dose that were 

not achievable using our current C-Arm were simulated as in [242] by injecting corresponding levels of 

quantum and electronic noises to the nominal dose radiographs. Five levels of lower dose radiographs 

(down to 0.5  𝜇Gy/ frame, 1% of the nominal dose) were simulated. In each dose level, the same 

combinations of two radiographic views were used for registration as in the baseline study, and the 

dependence of registration accuracy on fluoroscopy dose was measured in terms of TRE. 

6.3.2.3 Clinical Study 

The method was further assessed in an IRB-approved retrospective study of images acquired for a 

patient undergoing pelvic reduction surgery. The patient exhibited dislocation of the left innominate bone, 

including both the SI joint and PS (“open book” dislocation). Preoperative CT was acquired (Somatom 

Definition Flash, Siemens Healthineers, Erlangen Germany) and reconstructed at 0.74×0.74×3 mm³ voxel 

size and 512 × 512 × 260 voxels. As in the standard clinical workflow, two preoperative and two 

intraoperative radiographs (AP and inlet views) were acquired on a mobile radiography system (DRX-
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Revolution, Carestream Health, Rochester NY) to visualize the pelvic bony anatomy. Thirteen 

unambiguous anatomical landmarks were identified in the preoperative CT and radiographs. Single-view, 

two-stage 3D-2D registration was performed for each radiograph according to the 9 DoF optimization of 

Section 2.2, and registration accuracy was quantified in terms of the projection distance error (PDE) – i.e., 

the distance (on the detector plane) between the registered landmarks projected from 3D segmentations and 

the corresponding landmarks on the radiographs. 

The images from the mobile radiography system had a field of view (FOV) of 350 x 420 mm²  at 

the detector plane with magnification factor slightly above 1, covering the entire pelvis from the iliac crest 

to the inferior aspect of the ischium with roughly the same FOV at the anatomy. In many intraoperative 

settings, however, radiographs are acquired with limited FOV to reduce scatter and dose-area product. To 

study the performance of the registration algorithm in such scenarios, radiographs were cropped to sizes 

ranging from 340×340 mm² FOV down to 150 × 150 mm² centered randomly within the original FOV 

such that at least 20% of at least two bones was contained in the cropped image. FOV dimensions are at the 

image plane – e.g., 350x430 mm² for a common full-field (14” x 17”) digital radiograph or 300 x 300 mm² 

maximum FOV for recent FPD mobile C-arms, as used for the simulation and phantom study.  Considering 

magnification factor ~1.8, such mobile C-arms have FOV around 180-220 mm at the anatomy. FOV size 

smaller than 150 mm was not studied due to violation of the requirement of multiple bones present in the 

cropped radiograph. Single-view, two-stage 3D-2D registration was performed using 10 randomly cropped 

images at each FOV size, and the sensitivity of 3D-2D registration to FOV was measured in terms of PDE 

over 10 random trials. 

6.3.3 Results: Pelvic Dislocation 

6.3.3.1 Simulation Study 

Figure 6.7 summarizes the accuracy of multi-body 3D-2D registration in the simulation study. 

Registration performance was evaluated in terms of the translational component of 6 DoF transformations 
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{𝑇3𝐷2𝐷
(𝑙)

} , 𝑙 = 1, 2, 3. Example AP and oblique (orbit 30° and tilt -20°) radiographs are shown Figure 6.7(a) 

with SI and PS dislocation magnitude of ~10 mm and ~5° (near the average magnitude in simulation 

studies). In Figure 6.7(b), DRR Canny edges of the left innominate after the first-stage registration are 

overlaid on the radiographs, showing accurate pose estimation. In Figure 6.7(c), DRR Canny edges of all 

three pelvic bones are overlaid on the radiographs after the second-stage registration, showing good 

alignment to the anatomy and accurate inter-body pose estimation. The 3D-2D registration achieved 0.3 

mm (0.2 mm IQR) in-plane and 0.3 mm (0.2 mm IQR) out-of-plane translational error, demonstrating 

accurate and robust performance over a wide range of test cases despite the presence of potentially 

confounding image features (e.g., the femurs and contrast-enhanced bowel) that are present in the 

radiographs but not in the 3D models. SPMCC target reduction estimation and 3D-2D registration guidance 

yielded median error of 2.3 mm and 0.3 mm in the simulation study, respectively. The overall surgical 

reduction error, combining the two source of error, can be well below 4 mm, which is surgical acceptance 

range suggested in [180, 181]. 

 
Figure 6.7. Multi-body 3D-2D registration accuracy in the simulation study. (a) Example AP and oblique radiographs (orbit 30° 

and tilt -20°) with dislocation of the left innominate bone. (b) Yellow DRR Canny edges of the left innominate after first-stage 

registration overlaid on the radiograph, resolving its pose with respect to the x-ray system. (c) Canny edges of three pelvic bones 

after the second-stage registration overlaid onto the radiographs, resolving the poses of all three bones with respect to each other. 

(d) In-plane and out-of-plane translational error in the multi-body 3D-2D registration after two-stage registration. 
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The capture range of the registration algorithm is characterized in Figure 6.8 in terms of the 

translation error measured as a function of initialization error. For each case, 0 mm on the horizontal axis 

represents initializing the 3D model at the ground truth location, and the dashed horizontal line indicates 4 

mm translational error. In this work, the capture range was defined as the range of initialization error in 

which registration error was below 4 mm (according to long term prognosis of complications due to residual 

error [180, 181]). The in-plane capture range (x, z) of registration was measured to be around ±50 mm, 

beyond which the method did not reliably converge to the correct solution due to image gradients moving 

out of the radiographic scene. In the out-of-plane direction (related to the magnification of the DRRs), 

however, the capture range was even more robust, yielding ±120 mm. A possible explanation of the 

robustness is that the overall alignment of the multi-object DRRs to the radiographic anatomy is maintained 

for a wider range of displacement in the out-of-plane direction (i.e., salient image gradients do not leave 

the FOV). The plateaus in y and z directions as shown in Figure 6.8(b-c) was due to the absent of anatomical 

structures in the direction of initialization error, which allowed the registration to converge to a similar 

solution. For rotations as shown in Figure 6.8(d-e), the in-plane rotation capture range was shown to be 

significantly larger (±50°) compared to the out-of-plane rotation capture ranges (±30°). One reason for 

narrowder out-of-plane rotational capture range is that out-of-plane rotations resulted in DRRs of 

significantly different shapes, creating potential local minima that was challenging to the optimization. 

Considering the size of the pelvis, the result suggested a high degree of robustness to initialization error in 

all three directions and the potential feasibility for clinical application without time-consuming manual 

initialization. 
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Figure 6.8. Capture range measurement characterizing the robustness of multi-body 3D-2D registration to initialization error in 

translations: (a) in-plane direction 𝑥, (b) in-plane direction 𝑧, and (c) out-of-plane direction 𝑦 and in rotations: (d) in-plane direction 

𝑟𝑥, (e) out-of-plane direction 𝑟𝑧, and (f) out-of-plane direction 𝑟𝑥. The horizontal dashed line indicates 4 mm translational error, 

below which the capture range was defined. 

6.3.3.2 Phantom Study 

Figure 6.9 summarizes the accuracy of multi-body 3D-2D registration to two radiographic views 

in the phantom study. Figure 6.9(a-b) shows example AP and oblique (orbital 30° and tilt 10°) radiographs 

with moderate dislocation (~12 mm) of the left innominate bone. DRR Canny edges (yellow) of the three 

bones overlaid onto the radiograph show close alignment to the anatomy. TRE after registration is plotted 

in Figure 6.9(c), with median of 1.8 mm (0.8 mm IQR) (in-plane) and 1.6 mm (2.1 mm IQR) (out-of-plane). 

The out-of-plane IQR was higher due to limited depth information from some combinations of  radiographic 

views (e.g. (0,0), (0,10) views). In addition, the error of 3D bone model definition associated with ASM 

segmentation error could potentially result in registration local minima, especially in the out-of-plane 

direction that had limited resolution. The overall TRE exhibited median of 2.5 mm (1.5 mm IQR), within 

reasonable accuracy for orthopaedic surgical applications [180, 181]. 
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Figure 6.9. Multi-body 3D-2D registration in the phantom study with dislocation of the left innominate bone. (a-b) Radiographs 

at two C-arm views with registered DRR Canny edge overlay. Cyan and yellow points mark the fiducials on the radiographs and 

projected via the DRRs respectively. (c) In-plane and out-of-plane registration error from 3D-2D registration. 

The sensitivity of multi-body 3D-2D registration to simulated image noise (dose) is summarized in 

Figure 6.10. Figure 6.10(a-c) shows radiographs at the nominal 50 𝜇Gy/frame, 5 𝜇Gy/frame and 0.5 

𝜇Gy/frame dose level, respectively. DRR Canny edges after registration overlaid on the radiographs show 

accurate registration at both 50 𝜇Gy/frame and 5 𝜇Gy/frame, which is consistent with the TRE plot in 

Figure 6.10(d). A fairly weak dependence was observed with dose down to ~5 𝜇Gy/frame, below which 

TRE increases sharply as quantum noise dominates the image. Registration accuracy with TRE < 4 mm 

(horizontal dashed line) at doses as low as 5 𝜇Gy/frame suggests the possibility of reducing fluoroscopy 

dose while maintaining guidance accuracy. 

 
Figure 6.10. 3D2D registration accuracy as a function of radiographic dose. (a) Radiographs at nominal dose of 50 𝜇Gy/frame, 

with yellow DRR Canny edges after registration. (b-c) Simulated low dose radiographs at 5 𝜇Gy/frame (10% of nominal dose) and 

0.5 𝜇Gy/frame (1% of nominal dose), respectively, with DRR Canny edges (yellow) after registration. (d) Registration accuracy 

(TRE) measured as a function of dose. 
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6.3.3.3 Clinical Study 

Clinical feasibility was further evaluated in a case study involving a subject presenting with “open 

book” separation of the PS and disruption of the left SI joint, as shown in the 3D rendering of the 

preoperative CT in Figure 6.11(a). ASM segmentation of the preoperative CT achieved segmentation 

surface RMSE of median 1.4 mm and overall DSC of 0.97, comparable to the result from the simulation 

study. Two radiographs (AP and inlet) were acquired immediately prior to reduction as shown in Figure 

6.11(b-c), and a 9 DoF multi-body 3D-2D registration was computed (9 DoF, since unlike the mobile C-

arm, the mobile radiography system allows free variation of SDD and detector angulation). In both cases, 

DRR Canny edges of all three bones show reasonable alignment with the anatomy as depicted in the 

radiograph. The estimation of the target reduction is overlaid on the radiographs in green to illustrate the 

reduction needed to restore the left innominate bone to the correct pose. 

Two intraoperative radiographs (AP and inlet) were subsequently acquired in the course of surgical 

reduction as shown in Figure 10(e-f). Single-view, two-stage, multi-body, 9 DoF registrations were 

performed, and each demonstrates close alignment of anatomy after registration (evident in Canny edge 

overlay) despite the presence of surgical instrumentation in the image. The overall registration accuracy in 

the four images yielded PDE 3.1 mm (1.0 mm IQR) at the detector plane. A substantial component of this 

error is attributed to truth definition – i.e., the ability to define consistent, corresponding landmarks between 

the CT and radiographs, which exhibited ~1.5 mm intra-subject variability. Figure 6.11(e-f) shows the target 

reduction overlaid in green, providing a guide to further refinement of the reduction. The residual reduction 

is similarly evident in the orientation of the PS in the 3D-rendered CT image of Figure 6.11(d). 
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Figure 6.51. Multi-body 3D-2D registration and target reduction pose in a clinical case study. (a) 3D rendering of preoperative CT, 

showing “open book” dislocation at the PS and SI joint. Intraoperative AP (b) and inlet (c) radiographs acquired prior to reduction 

and overlaid with Canny edges of DRRs from 3 registered bones. The reduction target is overlaid in green, providing guidance for 

surgical reduction. Anatomical landmarks defined in the radiographs are labeled in cyan, and those projected from 3D models are 

shown in yellow.  Images in (d-f) show the progress of reduction, again overlaid with DRR Canny edges (yellow), reduction target 

(green), and anatomical landmarks. 

Figure 6.12 summarizes the sensitivity of multi-body 3D-2D registration to the size of the 

radiograph FOV. Figures 5.12(a) shows example FOVs of size (190×190) mm² with 10 randomly cropped 

boundaries overlaid (left subfigure). The Canny edges of registered DRRs from ten trials are also overlaid 

(right subfigure). Over the range of FOV studied, accurate edge alignment was achieved within the FOV. 

However, the edge alignment outside the FOV could not be guaranteed, and the overall robustness of 

registration degraded as FOV size decreased, primarily due to decreased feature content in the images used 

for registration. The finding is evident in the Canny edge overlays in the right subfigures of Figure 6.12(a): 

the PS (present in all cropped images) were well registered in all cases, whereas the right iliac crest (not 

present in every cropped image) was not accurately registered in all ten trials. Figure 6.12(b) quantifies the 

observation in terms of PDE, showing a weak dependence on FOV above 170 mm (median PDE < 4 mm 

and IQR < 2 mm). For FOV smaller than 170 mm, PDE and variability increased sharply. Common 
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intraoperative mobile C-arms, as used in the simulation and phantom study, have FOV (at the anatomy) of 

around 180-220 mm, as shown in the gray zone. It is worth to note that FOV of such systems is toward the 

minimum FOV requirement for accurate 3D-2D registration. Such findings support application of the 

method in scenarios with reduced FOV down to approximately 170 mm – e.g., fluoroscopy systems with 

limited FOV and/or collimation minimized to an area of interest to reduce dose and scatter – provided that 

enough salient anatomical features remain in the FOV to drive registration. 

 
Figure 6.62. Effect of radiographic FOV on 3D2D registration accuracy. (a) Preoperative inlet radiograph with 10 randomly 

cropped FOV boundaries at 190× 190 mm². The 10 cropped FOVs are shown as color boxes on the left, and registered DRR Canny 

edges from ten trials are overlaid on the right in the corresponding colors. (b) Registration accuracy (PDE) measured as a function 

of FOV size., with FOV of mobile C-arm used in the simulation and phantom study labeled in gray. 

6.3.4 Experimental Methods: Pelvic Fracture 

Multi-body 3D-2D registration was further evaluated on pelvic fracture cases in simulation and 

clinical studies. Additionally, a cadaver experiment was conducted to mimic common clinical workflow 

for fracture reduction. A guidance software interface was developed and the utility of it was surveyed by 

an orthopaedic surgeon performing the procedure. 

6.3.4.1 Simulation Study 

A simulation study was conducted following the fracture simulation from Section 5.3.1, which 

involved a leave-one-out cross validation of the pelvis atlas (N = 40). Intraoperative fracture reduction 

scenes were simulated from the CT images of pelvic fracture, with one or more bone fragments dislocated 

with transformation 𝑇𝑑 . Random intermediate reductions (𝑇𝑟 ) were imparted to the dislocated bone 

fragments to emulate an intermediate surgical stage during fracture reduction. Soft-tissue gaps resulting 
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from bone transformation were inpainted via linear interpolation. Fluoroscopic images were simulated via 

forward projection using the projection geometry of a mobile C-arm (source-axis distance=600 mm, source-

detector distance=1100 mm). The segmentations of bone fragments were registered to two fluoroscopic 

images of standard pelvic views (AP, inlet, or oblique) using multi-body 3D-2D registration.  

The 3D-2D registration was performed in the unilateral two-body and three-body fracture 

simulations, and a total of 80 registrations were performed (two fracture categories, one for each of the 40 

atlas members). The registration was initialized by the poses from preoperative CT and typical x-ray system 

geometry. The registration accuracy was measured in terms of the difference between the intermediate 

reduction and the registration solution of each bone fragment: 𝜖3𝐷2𝐷
(𝑙)

= 𝑇3𝐷2𝐷
(𝑙) −1

𝑇𝑟
(𝑙)

, from which the 

translational and rotational components were extracted. The translational and rotational errors were 

decomposed into in-plane (parallel to the detector plane) and out-of-plane components. 

6.3.4.2 Clinical Study 

The proposed method was further quantitatively assessed in an IRB-approved retrospective clinical 

study of three patients undergoing pelvic fracture reduction surgery. The three cases and the corresponding 

segmentation in CT and fracture reduction planning were detailed in Section 5.3.3. Two intraoperative and 

two postoperative fluoroscopic images (AP and inlet views) were also acquired in each case using a mobile 

radiography system (DRX Revolution, Carestream Health, Rochester NY) to visualize pelvic anatomy 

before and after reduction. Each fluoroscopic image was individually registered due to patient motion 

between the fluoroscopy acquisitions. Since neither intraoperative nor postoperative CT were available for 

these cases, ground truth definition of 3D poses could not be obtained, and the accuracy of 3D-2D 

registration could not be evaluated in terms of 3D transformation differences. Instead, the accuracy was 

quantified by PDE. Eight to thirteen anatomical landmarks were manually annotated depending on the field 

of view of the fluoroscopic images. 
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6.3.4.3 Proof-of-Concept Cadaver Study: Guidance System Prototype 

A proof-of-concept cadaver study was performed to evaluate the clinical workflow of the proposed 

preoperative planning (from Chapter 5) and intraoperative guidance system for orthopaedic reduction 

surgery. The preoperative steps were discussed in Section 5.3.2, including creating a Tile C1 fracture of the 

left innominate bone, CT acquisition, bone fragment segmentation, and fracture reduction planning. 

The utility of fluoroscopy-guided navigation was evaluated with the surgeon performing fracture 

reduction on the cadaver with and without guidance from the preoperative planning. Figure 6.13(a) shows 

the experimental setup, with the reduction surgery guided by fluoroscopy acquired on a mobile C-Arm 

(Cios Spin, Siemens Healthineers, Erlangen, Germany). An in-house intraoperative guidance system was 

built using 3D Slicer and TREK framework [243]. The guidance system displayed both 2D and 3D 

navigation as shown in Figure 6.13(b). The surgeon was first surveyed on general challenges in fracture 

reduction, fluoroscopy acquisition, and change of surgical difficulty with respect to experience. The 

surgeon was further asked to rate the usability of the guidance system before and after the procedure for 

both 2D navigation and 3D navigation. Furthermore, the surgeon was asked to comment on the potential to 

reduce exposure time associated with “fluoro hunting” (i.e., searching for a particular fluoroscopic view 

that best depicts the anatomy and instrumentation) and how the utility of the system could vary between 

novice and expert surgeons. The workflow associated with the proposed method was primarily evaluated 

in terms of computation time in each step, since no additional devices or imaging was needed. 
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Figure 6.13. Cadaver study for fracture reduction planning and fluoroscopy-guided navigation. (a) Experimental setup, showing 

the mobile C-Arm, cadaver, and navigation interface. (b) Detailed view of the navigation screen, with both 2D navigation 

(fluoroscopic images overlaid with the preoperative plan) and 3D navigation (slice and 3D renderings of the preoperative plan and 

current bone poses relative to preoperative CT). 

In addition to the qualitative usability assessment, the accuracy of the system was also 

quantitatively evaluated. A MDCT scan was acquired before fracture as a ground truth for fracture reduction 

planning, and the residual transformation between the ground truth bone pose and planning bone pose was 

computed. In terms of segmentation, bone fragments were manually segmented, and the DSC of the semi-

automatic segmentation was computed. Since the same surgeon created the fracture and performed surgical 

reduction, a potential bias toward a very accurate final reduction could be present. For this reason, the 

accuracy of the postoperative final reduction with/without guidance was not evaluated relative to ground 
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truth; rather, only the accuracy of the intraoperative guidance system was evaluated, which is independent 

of the surgeon’s familiarity with the fracture. Intraoperatively, bone fragments were manipulated to 3 

different stages during fracture reduction surgery, and 6 fluoroscopic images with different C-Arm poses 

that resembles common views in orthopaedic surgery (e.g., PA, LAT, and Inlet) were acquired at each stage. 

A cone-beam CT (CBCT) scan was also acquired on the C-Arm at each stage for ground truth definition of 

3D bone poses. 3D-2D registration was computed using any combination of two fluoroscopic images, and 

the accuracy was quantified by the transformation difference between the registration solution and the 

ground truth poses from CBCT. 

6.3.4 Results: Pelvic Fracture 

6.3.4.1 Simulation Study 

The multi-body 3D-2D registration method was evaluated in both two-body and three-body 

unilateral fracture simulations. Figure 6.14(a-c) shows example result from a unilateral two-body fracture 

simulation. As shown in Figure 6.14(a), an AP fluoroscopic image of the pelvis is overlaid with DRR Canny 

edges of each bone fragment after registration. All bone fragments were correctly aligned to the anatomy 

on the fluoroscopic image, demonstrating accurate 3D-2D registration. Example 2D guidance using 3D-2D 

registration is shown in Figure 6.14(b), in which the reduction plan of the two fracture-dislocated fragments 

are projected and highlighted on the radiograph to augment fluoroscopy with additional guidance 

information. By comparing the poses of the registered bone fragments and desired reduction in one or 

multiple views, further reduction required to restore morphology can be obtained. In addition, Figure 6.14(c) 

shows the corresponding 3D guidance, where bone fragments are rendered at their registered intraoperative 

poses (unfractured bone fragments in white and fracture-dislocated bone fragments in yellow and pink). 

The reduction plan is superimposed in green, providing guidance of additional reduction both qualitatively 

and quantitatively comparable to conventional surgical navigation system.  

As shown in Figure 6.14(d), the 3D-2D registration achieved 1.4 ± 0.8 mm and 1.4 ± 0.8 mm in-

plane translational error for the two-body and three-body fractures, respectively, while achieving 1.3 ± 0.8 
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mm and 1.6 ± 1.1 mm out-of-plane error. No statistical significance was found between the two-body and 

three-body translational errors in either in-plane or out-of-plane directions. The overall translational error 

combining in-plane and out-of-plane directions was 2.1 ± 0.9 mm and 2.4 ± 1.0 mm for two-body and 

three-body, respectively, which is within the clinical acceptance error of 5 mm for pelvic ring cases. For 

acetabular cases with clinical acceptance error of 2mm, the proposed method succeeded in 80% of cases. 

Rotational errors shown in Figure 6.14(e) show 0.1 ± 0.1° in-plane rotational error for the two-body 

fractures and 0.2 ± 0.1° in the three-body fractures (𝑝 ≪ 0.01 using unpaired student t-test). The same 

trend was observed in the out-of-plane rotational error, with 0.2 ± 0.1° and 0.3 ± 0.2°, respectively (𝑝 ≪

0.01 using unpaired t-test). The overall rotational error combining in-plane and out-of-plane directions was 

0.3 ± 0.1° and 0.4 ± 0.2° for two-body and three-body fracture, respectively. The slight increase in error 

is primarily due to the registration of small bone fragments that increase in number with more complex 

fractures. The 3D-2D registration demonstrated accurate and robust performance over a wide range of 

simulation cases of different fracture patterns and dislocations despite the presence of potentially 

confounding image features (e.g., contrast-enhanced bowel). 

The overall accuracy of the proposed registration framework depends on the accuracy of reduction 

planning and 3D-2D registration, which are independent of each other and can happen in arbitrary directions 

depending on the fracture patterns and image content. The unilateral two-body fracture simulation, for 

example, achieved mean translational accuracy of 2.6 mm for reduction planning and 2.1 mm for 3D-2D 

registration. Thus, the overall mean accuracy combining the two would range between the addition and the 

subtraction of the two errors, 0.5 mm~4.7 mm, which is within the clinical acceptance range of 5 mm 

suggested in [180, 181].  
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Figure 6.14. Evaluation of fluoroscopy-guided navigation via multi-body 3D-2D registration, showing the results for an example 

unilateral two-body fracture simulation. (a) AP fluoroscopic image overlaid with Canny edges of registered bone fragments. (b) 

Reduction plans of the fracture-dislocated bone fragments highlighted in corresponding colors on the fluoroscopic image. (c) 3D 

rendering of the reduction plan (green) and the registered bone fragments (unfractured bone fragments in white and fracture-

dislocated bone fragments in yellow and pink). 3D-2D registration errors [(d) translational and (e) rotational] characterized in terms 

of in-plane and out-of-plane directions and comparing results obtained for unilateral two-body and three-body fractures. 

6.3.4.2 Clinical Study 

Figure 6.15 summarizes the multi-body 3D-2D registration from the second case of the clinical 

study, involving a patient with bilateral trauma resulted from high energy impact from the anterior direction. 

The preoperative CT segmentation and the corresponding fracture reduction plan were computed in Section 

5.3.3 and are shown in (a) and (b), respectively. An AP intraoperative fluoroscopic image is shown in Figure 

6.15(c) from which multi-body 3D-2D registration was computed. In Figure 6.15(d), DRR Canny edges of 

the two pubic bone fragments and the other healthy bones (left/right innominate and sacrum) are overlaid 

on the fluoroscopic image using the same colors as the segmentation in (a). The results of the 3D-2D 

registration showed reasonable alignment with the underlying anatomy in the fluoroscopic image. An 

overall PDE across all three cases achieved 2.6 ± 1.2 mm as shown by the close alignment between the 

fluoroscopic image anatomical landmarks (green triangles) and 3D projected landmarks (corresponding 
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color squares). The registration converged to the correct solution even when the field of view was limited 

and bone fragments were partially occluded. In addition, the registration was robust to the presence of 

surgical instruments in the fluoroscopic image that were not in the 3D models. In Figure 6.15(e), the fracture 

reduction plan is superimposed on the fluoroscopy with corresponding bone colors to illustrate the desired 

poses to restore the fractured bones.  

 
Figure 6.15. Fracture reduction planning and fluoroscopy-guided navigation in clinical Case 2. (a) 3D rendering of the preoperative 

CT image segmentation using continuous max-flow, showing fracture and dislocation of the left innominate bone. (b) 3D rendering 

of the pelvis after reduction planning using the adaptive method. Surgeon’s manual definition is overlaid in gray. (c) Example AP 

intraoperative fluoroscopy. (d) The AP fluoroscopic image overlaid with DRR Canny edges of registered bone fragments in 

corresponding colors. Fluoroscopic image landmarks (green triangle) and 3D projected landmarks (corresponding color squares) 

are also overlaid. (e) Preoperative reduction plan highlighted on the fluoroscopic image in corresponding colors. 

6.3.4.3 Proof-of-Concept Cadaver Study: Guidance System Prototype 

The usability of the planning and guidance system was evaluated in the cadaver study. The surgeon 

was surveyed before and after using the system for fracture reduction and the detailed questionnaire is 

shown in Appendix I. The surgeon reported that experienced trauma surgeons should be fairly confident in 

performing reduction using unlabeled fluoroscopic images but anticipated that less experienced surgeons 

attempting to perform the reduction using unlabeled fluoroscopic images would find the task considerably 
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challenging. The surgeon indicated that major challenges lie in comminuted fractures and multi-body 

fractures, both of which are addressed in the proposed system. Another challenge in conventional workflow 

is to acquire specific fluoroscopic views to visualize bone fragments, requiring repeated exposures (“fluoro 

hunting”). 

Two modes of guidance were presented to the surgeon as shown in Figure 6.13(b). The first mode 

of guidance was 2D guidance alone, which augments fluoroscopy with projected preoperative planning. 

The surgeon commented that the system was very useful in the reduction procedure and would allow fewer 

fluoroscopy acquisition. In addition, the 2D guidance was very intuitive and in a format familiar to 

orthopaedic surgeons, which would improve surgical capability without adding additional cognitive load, 

especially for less experienced surgeons. The second mode of guidance combined 2D and 3D guidance, 

which additionally shows triplanar views and 3D rendering of registered bone fragments with respect to 

preoperative plans. The surgeon commented that the 2D+3D guidance system was somewhat useful to the 

reduction surgery. Since 2D fluoroscopy is still the mainstream in orthopaedic trauma surgery, the 3D 

interface is new to the surgeons and would require a learning curve. Nevertheless, the 3D guidance provided 

multi-dimensional understanding of reduction accuracy compared to 2D guidance and would alleviate 

challenges of “fluoro hunting,” since any two fluoroscopic views (with structures of interest in the field of 

view) are sufficient for registration and 2D+3D guidance. 

Table 6.2. Computation time of the preoperative and intraoperative framework 

PREOPERATIVE RUNTIME (MIN) INTRAOPERATIVE RUNTIME (S) 

Seed points Input 𝟑. 𝟑 ± 𝟎. 𝟕 
Multi-Body 3D-2D 

Registration 
𝟏𝟐𝟎. 𝟔 ± 𝟒𝟖. 𝟎 Continuous Max-flow and 

Min-cut Segmentation 
𝟏. 𝟒 ± 𝟎. 𝟐 

Fracture Reduction 

Planning 
𝟒𝟐. 𝟑 ± 𝟏𝟎. 𝟗 2D/3D Guidance 𝟎. 𝟐 ± 𝟎. 𝟏 

The workflow associated with the proposed system was also evaluated. No additional imaging or 

devices was required, as the system only used images already acquired in clinical workflow. Therefore, 

computation time was the primary concern for integration of the system to clinical workflow. Table 6.2 

summarizes computation time for each step of the preoperative and intraoperative steps. Preoperatively, 
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runtime for segmentation including seed points input and continuous max-flow was ~4.5 min, and runtime 

for fracture reduction planning was ~42 min. The main bottleneck in the relatively long runtime of fracture 

reduction planning was the memory-intensive, evolution-based CMA-ES optimization on 3D images, 

which requires evaluation on multiple instances per iteration. Besides the seed points input step, all other 

steps were fully automated. The preoperative steps can be conducted prior to the case, and therefore do not 

bear on intraoperative workflow. Intraoperative runtime includes multi-body 3D-2D registration and 2D / 

3D guidance, with overall runtime ~2 min for the first fluoroscopic image acquired in the procedure. For 

subsequent registrations with better initialization, runtime can be further reduced due to improved 

initialization. In fluoroscopy-guided orthopaedic surgery, surgeons often rely on step-and-shoot workflow 

in which a single fluoroscopic image is acquired to assess the surgical field before acquiring a subsequent 

view, thus fitting with the runtime of the proposed framework. The reported runtime is based on a basic 

research implementation, and further optimization and acceleration is discussed in the Discussion to bring 

runtime more suitable for the workflow requirement. The surgeon commented that the additional runtime 

associated with the guidance system was acceptable considering the benefit gained from improved surgical 

guidance, improved understanding of reduction accuracy, and reduced dependence on fluoro hunting to 

acquire specific fluoroscopic views. 

6.4 Discussion and Conclusion  

A 3D-2D registration algorithm was reported to register either a single body (e.g., a bone fragment) 

or multiple bodies (e.g., multiple bones following dislocation or facture) to intraoperative 2D fluoroscopy. 

By integrating the 3D-2D registration with preoperative planning of fixation trajectories and/or reduction 

plans, a guidance system was implemented to provide planning and guidance of the entire workflow of 

orthopaedic fracture reduction and fixation surgery. The registration algorithm was tested in a series of 

simulation, phantom, cadaver, and clinical studies. When using a single fluoroscopic image for registration, 

the algorithm achieved better than 2 mm in-plane translational error, less than 2° in-plane rotational error, 
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and higher errors in out-of-plane directions (which did not strongly affect fluoroscopy augmentation 

through projection). The out-of-plane errors were significantly reduced when more than one fluoroscopic 

image was used, achieving a mean error of 1.5 mm in all directions. 

Compared to existing orthopaedic navigation systems, a lower limb reduction navigation system 

using manual reduction planning and optical tracking presented in [244] showed reduction error of ~ 1mm 

and 1°. For a more complicated pelvic fracture scenario, the work in Ref, [245] presented a computer-aided 

pelvic fracture reduction system using manual planning and intra-operative CT for guidance that yielded 

an overall mean reduction error of 3.2 mm and 2.7°. The proposed fluoroscopy-guided navigation system 

in this work shows comparable reduction accuracy without additional requirements (e.g., optical tracking 

devices, attaching rigid-body markers on bones, or intraoperative CT). 

The clinical study verified the applicability of the method to real clinical data but is not without its 

limitations. While the cases presented a range of common pelvic fracture patterns and included multiple 

image instances (multiple fluoroscopic images) that were sufficient to demonstrate basic feasibility, the 

study was retrospective and involved just three subjects; therefore, the generalizability of the method to the 

wide range of possible pelvic fracture scenarios, especially challenging comminuted fractures, is subject to 

future evaluation. The study permitted visual assessment of registration performance and quantitative 

evaluation of 2D PDE, but 3D evaluation of intraoperative navigation accuracy would be preferable, 

drawing on intraoperative CT or cone-beam CT that may be available in future clinical studies. In addition, 

evaluating the accuracy of surgical reduction by comparing intraoperative registration results to 

postoperative CT would add value to the study. Of course, confirmation that improvements in reduction 

accuracy gained by this approach are associated with improved functional outcome is the subject of longer-

term clinical research.  

 The performance of the 3D-2D registration is dependent on initialization of the 3D poses. As 

shown in Section 6.3.3.1, for the registration of a large bone (e.g., an innominate bone), registration would 

not converge to the right solution if the initial estimation was off by 40 mm or 30° in certain directions. 
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Such dependency on initialization would be even larger for smaller bone fragments as seen in pelvic fracture 

cases. Manual interaction would be needed for initialization, at least at the beginning of the case when the 

overall transformation from the preoperative coordinates to the intraoperative coordinates was unknown. 

Manual interaction could be time consuming and would interrupt time-sensitive intraoperative workflow. 

More robust automatic initialization methods need to be investigated to improve the utility of 3D-2D 

registration in the intraoperative setting. For example, a 2D segmentation was performed on the fluoroscopy 

that was registered to anatomy on the DRR as an initialization [246]. Another approach is to automatically 

detect corresponding anatomical landmarks in both CT and fluoroscopy, from which a point registration 

could be performed as an initialization [247]. 

The multi-body 3D-2D registration exhibited a runtime of ~2 min when the initialization was not 

close to the solution. Even with good initialization (e.g., from an automatic initialization method described 

above), runtime acceleration is certainly desirable. For example, adopting a cascade of optimizers in 3D-

2D registration could be envisioned that uses slower but more robust CMA-ES at coarse resolutions and a 

faster, derivative-based optimizer at finer resolutions [248]. In addition, learning-based 3D-2D registration 

methods have gained popularity in the past few years, which shift time-consuming optimization to prior 

training and reduce computation time in the intraoperative room. For example, the 3D-2D registration was 

formulated as a regression problem that could be solved by a convolutional neural network in real time [66]. 

A spatial transformer was generalized to x-ray projection operation, enabling an end-to-end learning of 3D-

2D registration in an unsupervised fashion [62].  

The 3D-2D registration proposed in this work is limited to registering anatomy. Intraoperative 

devices, such as K-wire and screws, may also be tracked using 3D-2D registration, and the intraoperative 

spatial relations between devices and preoperative plans would add value to the guidance system. For 

example, K-wires were modeled as deformable parametric cylinders and were registered using a deformable 

3D-2D registration in [249]. Deep learning object detection can also be used to identify the devices from 

fluoroscopy and then triangulate the 3D position of the devices using 3D-2D registration [250].  
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The multi-body 3D-2D registration combined with automatic planning demonstrated accurate 

performance in a variety of scenarios for fluoroscopy-guided navigation in fracture reduction and fixation 

surgery. The solution offers the potential for application in mainstream trauma surgery since it uses images 

already routinely acquired in common clinical workflow, does not introduce additional hardware or tracking 

systems, and requires minimal user interaction. The system has the potential to improve surgical accuracy, 

reduce radiation dose associated with trial-and-error “fluoro hunting,” and provide quantitative analysis of 

the surgical product compared to the reduction plan. Through the development from Chapter 3 to Chapter 

6, a fairly comprehensive system for pelvic trauma guidance can be envisioned that could help address the 

need for improved accuracy and reduced radiation dose in pelvic trauma surgery. 
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Chapter 7.  

Deformable MR-CT Registration Using Pointwise Mutual 

Information Demons (pMI-Demons): Application to Neurosurgical 

Guidance 

7.1 Introduction 

Minimally invasive neurosurgical approaches are prevalent in tumor biopsy [3], cyst resection [4], 

treatment of obstructive hydrocephalus [5], and deep brain stimulation [6]. Incision of the dura frequently 

results in changes in intracranial pressure and cerebrospinal fluid (CSF) volume that significantly deforms 

the brain, resulting in nonrigid deformation of the intraoperative scene relative to preoperative images and 

planning. In neuroendoscopic approaches, other instruments (specifically, a cylindrical sheath and 

endoscope) are introduced into the cerebral ventricles, resulting in further CSF egress. Such procedures 

commonly employ neuro-navigation to assist targeting accuracy, but conventional neuro-navigation can 

suffer from unresolved geometric error at the brain cortex (“brain shift”) [251] and in complex deep brain 

deformations – up to 10 mm [10] following the introduction of devices. The work reported below focuses 

on resolving the geometric error in deep brain structures to improve the accuracy of targeting about the 

cerebral ventricles and hippocampus. Of particular interest is minimally invasive neuro-endoscopic 

approach (for treatment of hydrocephalus or trans-ventricular delivery of neuroelectrodes) in which the 

peri-ventricular space deforms following egress of CSF. 

Image guidance has been widely utilized in neurosurgery and neuro-navigation. Preoperative 

images are used to assess disease, define normal anatomy (e.g., vessels and eloquent brain), and define 

trajectories to surgical targets. MR images are often the basis of preoperative imaging, offering clear 

delineation of white and gray matter, CSF, and vasculature. However, conventional, rigid neuro-navigation 

based on preoperative images is prone to geometric error induced by disease progression, patient 
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positioning, and—especially—deformation induced during the procedure [252]. Intraoperative imaging, 

including MR and CT, helps to resolve errors from the changing geometry throughout the course of the 

operation. Compared to intraoperative MRI, intraoperative CT tends to be less expensive, faster, and does 

not require a specialized MR-compatible environment and tools. While intraoperative CT in its current form 

provides high-resolution visualization of bone and instrumentation, it is limited with respect to low-contrast 

gray / white matter, CSF, and parenchymal lesions [253]. Deformable registration of preoperative MR to 

intraoperative CT thereby offers the potential to leverage the strengths of each imaging modality – the 

image quality of the former and the speed and simplicity of the latter – in support of high-precision surgery. 

As discussed in Chapter 1, deformable registration can be roughly summarized in four broad 

categories: parametric transformation-based, prior knowledge-based, physics-based models, and deep 

learning-based models. The first two of these are reviewed briefly as follows, the third (physics-based) 

forms the topic of this chapter, and the fourth is detailed and investigated further in Chapters 8-9. 

Parametric transformation-based registration models the deformation via parametric functions 

defined at a sparse set of locations, and deformations throughout the image are interpolated from the 

parametric functions. Cubic B-splines coupled with free-form deformation (FFD) is possibly the most 

commonly used parametric transformation-based method due to flexibility in modeling different 

deformation patterns, and it has been applied to a variety of registration tasks [22, 74–76]. Such methods 

have the advantages of simplicity, robustness, and speed in solving large deformations with relatively few 

degrees of freedom (compared to methods described below). However, parametric transformation models 

may not realistically reflect the complex deformations of anatomy and can introduce artifacts (non-

diffeomorphism) such as ringing and tissue tearing.  

Prior knowledge-based registration methods tend to be applied in scenarios of well-defined 

anatomical contexts driven by site-specific motion and/or material models. Prior knowledge can be 

introduced via constraints or regularization according to factors such as the variability in anatomical shape 

(e.g., SSM [88]), the probability density function for deformation in different anatomical regions [82], and 
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biomechanical models [84, 85]. Although such registration methods have been shown to be robust, they 

rely on the accuracy and quality of prior knowledge, often require anatomical segmentation, and can be 

computationally complex. 

Physics-based registration incorporates concepts such as elasticity, diffusion, and flow of 

diffeomorphism. Two well-established techniques in this category are the Large Deformation 

Diffeomorphic Metric Mapping (LDDMM) method and Demons registration. LDDMM [24, 254] models 

motion according to the diffeomorphic flow of the velocity field integrated over time according to Lagrange 

transport equations. Such methods have been shown to yield accurate and diffeomorphic transformations 

that are smooth and invertible. However, the explicit formulation of diffeomorphism results in a fairly heavy 

computational load and prolonged computation time. 

The Demons registration method, proposed in [23] and extended to a diffeomorphic variant [255], 

formulates deformable registration as an optical flow problem with diffusion regularization. Demons 

methods have been successfully applied to intra-modality registration of a broad range of anatomical 

contexts [95, 256, 257]. The voxel-wise computation of the update at each iteration makes it ideal for 

parallel computation on GPU, and fast approximation of diffeomorphism via exponentiation of the update 

makes it well suited to rapid workflow requirements of intraoperative guidance. Demons registration has 

been extended in many forms for improved performance—e.g., the symmetric formulation [258] and 

adherence to prescribed physical constraints [95]. The “modality-independent neighborhood descriptor” 

(more precisely, the modality-insensitive neighborhood descriptor, MIND) was proposed as a means to 

transform images into representations encoding local structural information and has demonstrated shows 

advantages in the presence of image intensity inhomogeneity and non-correspondence in the intensity 

distribution of anatomical structures between modalities [30]. MIND has been incorporated into the 

diffeomorphic Demons method (MIND-Demons) for inter-modality registration between MR and CT 

images of the spine [96]. However, MIND-Demons was shown to be sensitive to local estimates of noise 

variance and can be computationally intensive. De Senneville et al. [259] proposed another type of 
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structure-based registration method that maximizes edge alignment, simplifies the computational burden, 

and is more robust than MIND against structural variations (i.e. image texture) between modalities. 

However, edge orientation computation can suffer from noise and low image contrast, and the variational 

optimization method does not provide support for diffeomorphic transformations. 

Mutual information (MI) is a simple and commonly used similarity metric for inter-modality image 

analysis and has also been incorporated into the Demons method [260] for registering multimodality MR 

(e.g., T1 and T2 weighted) brain images. However, MI describes a global statistical characteristic across 

two images, and evaluating MI at every voxel in parallel can be challenging. As reported in [260], MI can 

be approximated using Parzen windows with cubic B-splines. The computation of MI numerical gradients 

was shown to be very intensive in computational load and memory requirements, requiring allocation of a 

continuous joint histogram function for each degree of freedom at every iteration. The conventional Gauss-

Newton optimization method in the Demons method required further modification to incorporate inversion 

of the correspondingly large Hessian matrix linked through the joint histogram estimation. To overcome 

such limitations, local estimations of image statistics – as in the point-wise mutual information (pMI) metric 

proposed in [261] (and detailed in Section 7.2.2, below) permits fast, voxel-wise approximation of MI, 

which dramatically reduces computation time and memory cost and may be more suitable to time-critical 

registration tasks in neurosurgery. 

In this chapter, we combine the Demons method with the pMI similarity metric, referred to as pMI-

Demons, for deformable inter-modality (MR-CT) image registration. Unique contributions of the work 

include: (i) a pMI-Demons inter-modality registration method; (ii) a simple pre-processing step for 

nonlinear intensity normalization that improves inter-modality registration performance; and (iii) 

integration of pMI-Demons with a momentum-based acceleration and GPU implementation to reduce 

computation time. A phantom study was conducted to analyze the sensitivity of pMI-Demons to various 

parameters within the algorithm, and the registration performance of the resulting method was evaluated in 

a clinical study of MR-CT registration.  
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7.2 Algorithmic Methods 

7.2.1 Pre-processing and Initialization 

A simple pre-processing step was used to nonlinearly normalize the histograms of input MR and 

CT images as follows. The MR images (T1-weighted or T2-weighted) were linearly scaled to an intensity 

range 0 – 1000 between the 1st and 99th percentile of voxel values. For the CT images, a parametric 

piecewise histogram stretch  adapted from the preprocessing method in [27] was applied to extend the range 

of voxel intensities associated with brain parenchyma and CSF: voxel values in the range -120 HU to +120 

HU (encompassing fat, CSF, gray/white matter, and blood) were scaled to span a majority of intensity 

values between 0 and 1000 using Equation 7.1(b); voxel values below -120 HU and above 120 HU (air and 

bony structure) were mapped to a small fraction of intensity values near 0 and 1000 using equation 7.1(a, 

c) , respectively: 
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min(𝐼) :−120 𝐻𝑈 → 0: 1000 ∗ 𝑝, (7.1𝑎) 

−120 ∶ 120 𝐻𝑈 → 1000 ∗ 𝑝: 1000 ∗ (1 − 𝑝), (7.1𝑏) 

120 𝐻𝑈 ∶ max(𝐼) → 1000 ∗ (1 − 𝑝): 1000, (7.1𝑐) 

where 𝐼 denotes the CT image and 𝑝 is a hyperparameter controlling the extend of the histogram stretch. A 

smaller 𝑝 results in a greater span of soft-tissue voxel intensity. Figure 7.1 shows example images before 

and after pre-processing, with 𝑝 = 0.05. The choice of 𝑝 on registration performance is later investigated 

in Section 7.4.1.  

 
Figure 7.1. Image pre-processing. (a) Example axial CT image prior to histogram stretch (120 kV, 380 mAs, 0.44 mm isotropic 

voxels). (b) The same CT image following histogram stretch with 𝑝 = 0.05. (c) Normalized T1-weighted MR image (repetition 

time 420 ms, echo time 6.5 ms) following NMI rigid registration. Histograms below each image illustrate the piece-wise linear 

stretch applied to CT, with image intensities between ±120 HU stretched according to Equation (7.1). 

Image registration (histogram-normalized fixed CT and moving MR) was initialized by rigid 

registration using normalized mutual information (NMI) as defined by [26]: 

NMI(𝐹,𝑀) =
𝐻(𝐹) + 𝐻(𝑀)

𝐻(𝐹,𝑀)
, (7.2) 
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where F denotes the fixed image, M denotes the moving image, 𝐻(∙) is the marginal entropy of an image, 

and 𝐻(∙,∙) is the joint entropy between two images. A 6 DOF rigid transformation, 𝑇𝑟𝑖𝑔𝑖𝑑, was computed 

by maximizing NMI,  

𝑇𝑟𝑖𝑔𝑖𝑑 = argmax
𝑇

NMI(𝐹, 𝑇(𝑀)) (7.3) 

using gradient descent optimization implemented in ITK 4.1 [262]. 

7.2.2 Pointwise Mutual Information (pMI) 

As mentioned above, MI quantifies the distance between the joint distribution of two images, 

𝑝(𝐹,𝑀), and the joint distribution in the case of independence, 𝑝(𝐹)𝑝(𝑀). MI, maximized when the images 

are correctly aligned [263], is defined as:  

MI = 𝐻(𝐹) + 𝐻(𝑀) − 𝐻(𝐹,𝑀) = ∑𝑝(𝐹,𝑀) log(
𝑝(𝐹,𝑀)

𝑝(𝐹)𝑝(𝑀)
)

𝐹,𝑀

. (7.4) 

Local similarity can be described in terms of pointwise mutual information (pMI) as described in 

[261] to compute pixel-wise contribution to the global MI: 

pMI(𝐹(𝑥),𝑀(𝑥)) = log(
𝑝(𝐹(𝑥),𝑀(𝑥))

𝑝(𝐹(𝑥))𝑝(𝑀(𝑥))
) , (7.5) 

where 𝑥 is the voxel location in the image. The overall MI metric between the two images can thus be 

presented as the sum of pMI across all voxel locations, 𝑥: 

MI = ∑pMI(𝐹(𝑥),𝑀(𝑥))

𝑥

. (7.6) 

The gradient of pMI with respect to the moving image at location 𝑥 is computed numerically by 

applying a small displacement (𝒖) to the moving image, changing both the moving image intensity: 

𝑀(𝑥) → 𝑀(𝑥 − 𝒖), and joint probability: 𝑝(𝐹(𝑥),𝑀(𝑥)) → 𝑝′(𝐹(𝑥),𝑀(𝑥 − 𝒖)), where 𝑝′(∙,∙) denotes a 

new global joint distribution following the small displacement. Since reevaluating the joint distribution for 

each gradient computation is time consuming, the pMI after displacement can be simplified by Taylor 

expansion to avoid re-computation: 
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pMI(𝐹(𝑥),𝑀(𝑥 − 𝒖))= log(
𝑝′(𝐹(𝑥),𝑀(𝑥−𝒖))

𝑝(𝐹(𝑥))𝑝(𝑀(𝑥 − 𝒖))
) =

log(
𝑝(𝐹(𝑥),𝑀(𝑥 − 𝒖))

𝑝(𝐹(𝑥))𝑝(𝑀(𝑥 − 𝒖))
) +

𝜕

𝜕𝑢
log (

𝑝(𝐹(𝑥),𝑀(𝑥 − 𝒖))

𝑝(𝐹(𝑥))𝑝(𝑀(𝑥 − 𝒖))
)𝒖 + ⋯ . (7.7)

 

The terms above zeroth order in Equation (7.7) describe changes of the joint distribution due to local 

displacement, which can be ignored in iterative approaches for which 𝒖 in each iteration is small (e.g., the 

Demons approach described below). Hence, the gradient of pMI can be calculated as: 

∇pMI(𝑥) =
1

‖𝒖‖
(pMI(𝐹(𝑥),𝑀(𝑥 − 𝒖)) − pMI(𝐹(𝑥),𝑀(𝑥)))

≈
1

‖𝒖‖
(log (

𝑝(𝐹(𝑥),𝑀(𝑥 − 𝒖))

𝑝(𝐹(𝑥))𝑝(𝑀(𝑥 − 𝒖))
) − log(

𝑝(𝐹(𝑥),𝑀(𝑥))

𝑝(𝐹(𝑥))𝑝(𝑀(𝑥))
)) . (7.8)

 

Notice that using 𝑝(∙,∙)  instead of 𝑝′(∙,∙)  is only valid for small displacements. To work with larger 

displacements, the probability distributions need to be recomputed in each iteration. 

7.2.3. Diffeomorphic pMI-Demons 

The diffeomorphic Demons algorithm [94, 255] is a fairly widely used deformable registration 

method that iteratively solves an optical flow problem with two-step regularization, and is commonly 

applied to intra-modality image registration (e.g., CT-to-CT). Section 1.2.1 introduced the idea of 

diffeomorphism, a smooth and invertible transformation that preserves the topology of the images. In 

LDDMM algorithms such as Symmetric Normalization (SyN), the diffeomorphism relies on 

computationally heavy solutions of some partial differential equations (also see below in Section 7.2.5). 

The diffeomorphic Demons considers the transformations on a Lie group. Let a Lie group be 𝐺, the current 

transformation, 𝜙, be a point on 𝐺, and the space tangent to 𝐺 at 𝜙 is a Lie algebra, 𝑔. Recall in Section 

2.3.1, exponential mapping connects vectors in 𝑔 to elements in 𝐺. For any diffeomorphic transformation 

close to 𝜙, 𝜙′ ∈ 𝐺, there exists a vector, 𝒖 ∈ 𝑔, such that 𝜙′ = 𝜙 ∘ exp(𝒖). As a result, if the update (𝒖) 

at each iteration is small, an exponential mapping of 𝒖 yields overall diffeomorphism. Vercauteren et al. 

[94] proposed a fast, numerical approximation of the exponential mapping, following the property: 
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exp(𝒖) = exp(𝑁−1𝒖)𝑁, where 𝑁 is a positive integer. Using this property in a recursive manner yields the 

“scaling and squaring” algorithm for vector field exponentials, and the output, 𝑣, approximates velocity 

field in Equation (1.1) of the LDDMM algorithms. 

Algorithm 7.1. Scaling and Squaring algorithm for vector field exponentials. 

Choose 𝑁 such that 2−𝑁𝒖 is a small number. E.g., max
𝑥

‖2−𝑁𝒖‖ ≤ 0.5 

Scale the vector field 𝑣 = Id + 2−𝑁𝒖 

Do 𝑁 recursive squarings of 𝑣 ← 𝑣 ∘ 𝑣 

Given an initial deformation field (𝜙) between fixed image (𝐹) and moving image (𝑀), the intra-

modality diffeomorphic Demons registration is formulated as a global energy minimization with respect to 

image intensities and the update field, u: 

𝐸(𝒖) = ‖𝐹 − 𝑀 ∘ (𝜙 ∘ (Id + 𝒖))‖
2
+

𝜎𝑖
2

𝜎𝑥
2
‖𝒖‖2, (7.9) 

where 𝜎𝑖
2 , 𝜎𝑥

2  account for the noise in image intensities and spatial uncertainty of transformation 

correspondence, respectively. The operator ∘ denotes vector field composition. 

A first-order Gauss-Newton optimization is used to solve for 𝒖, such that the gradient of the energy 

function Equation (7.9) is zero. Taking ∇𝐸(𝒖) = 0 and solving for 𝒖 yields: 

𝒖 = −
𝐹 − 𝑀 ∘ 𝜙

|∇𝑀|2 +
𝜎𝑖

2

𝜎𝑥
2

∇𝑀. (7.10)
 

At each iteration, the exponential mapping, 𝒖 ← exp(𝒖), is computed to maintain diffeomorphism 

of the update field. The deformation field is accumulated in each iteration via 𝜙 ← 𝜙 ∘ (Id + 𝒖) . 

Alternating Gaussian smoothing of the update field, 𝐺σu
∗ 𝒖, and the deformation field, 𝐺σ𝜙

∗ 𝜙,  is applied 

in each iteration, where subscripts of 𝐺 denote respective kernel widths and ∗ is the convolution operator. 

Inter-modality Demons registration based on pMI (referred to below as pMI-Demons) replaces the 

first image similarity term in Equation (7.9) by pMI as in Equation (7.5), resulting in the energy formulation: 
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𝐸(𝒖) = −
1

𝑁
∑pMI (𝐹(𝑥),𝑀(𝑥) ∘ (𝜙 ∘ (Id + 𝒖)))

𝑥

+
𝜎𝑖

2

𝜎𝑥
2
‖𝒖‖2. (7.11) 

Using the same Gauss-Newton optimization, the update is computed by taking the gradient of Equation 

(7.11) and setting it to 0, where the gradient of the pMI term follows Equation (7.8): 

∇𝐸(𝑢) = −∇pMI(𝐹,𝑀 ∘ 𝜙)∇(𝑀 ∘ 𝜙) + 2
𝜎𝑖

2

𝜎𝑥
2 𝒖 = 0. (7.12) 

Changing 2
𝜎𝑖

2

𝜎𝑥
2 to a constant coefficient, 1/𝑘update, the update can be calculated as: 

𝒖 = 𝑘update∇pMI(𝐹,𝑀 ∘ 𝜙)∇(𝑀 ∘ 𝜙). (7.13) 

Since the pMI metric is not analytically differentiable, the gradient is calculated numerically by 

linear perturbation. Taking account for registration consistency, the update is computed using a symmetric 

formulation of forward and reverse forces as in [264]. The forward force (𝐹 to 𝑀), 𝑓𝑓𝑜𝑟𝑤𝑎𝑟𝑑, at point 𝑥 is: 

𝑓𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑥) = ∇𝐹pMI(𝐹(𝑥),𝑀 ∘ 𝜙(𝑥)) = ∇𝐹pMI(𝐹(𝑥 + 𝜖),𝑀 ∘ 𝜙(𝑥)), (7.14a) 

and the reverse force (𝑀 to 𝐹), 𝑓𝑟𝑒𝑣𝑒𝑟𝑠𝑒, is: 

𝑓𝑟𝑒𝑣𝑒𝑟𝑠𝑒(𝑥) = ∇𝑀pMI(𝐹(𝑥),𝑀 ∘ 𝜙(𝑥)) = ∇𝑀pMI(𝐹(𝑥),𝑀 ∘ 𝜙(𝑥 + 𝜖)), (7.14b) 

where 𝜖 is a small linear perturbation. Substituting Equation (7.14) to Equation (7.13) yields: 

𝒖(𝑥) = 𝑘update (𝑓𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑥)∇𝐹(x) − 𝑓𝑟𝑒𝑣𝑒𝑟𝑠𝑒(𝑥)∇(𝑀 ∘ 𝜙(𝑥))) . (7.15) 

The choice of parameters is described in section 7.4.1 below. 

7.2.4. Momentum-Based Acceleration 

Gradient descent optimization can be accelerated using a momentum term by taking the previous 

updates as a predictive step for subsequent iterations [265, 266]. The momentum-based approach can 

accelerate convergence, dampen oscillation, and potentially avoid local minima. Santos-Ribeiro et al. [267] 

proposed an inertial Demons approach that integrates a momentum term in intra-modality diffeomorphic 

Demons registration. In the experiments reported below, we incorporated a momentum term in the pMI-

Demons algorithm for accelerated inter-modality image registration. 
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The momentum, 𝐩[𝑛] adjusts the current iteration (𝑛) based on the previous update field, 𝒖[n−1]: 

𝐩[𝑛] = 𝛼𝒖[𝑛−1], (7.16𝑎) 

𝒖[𝑛] ← 𝒖[𝑛] ∘ 𝐩[𝑛], (7.16𝑏) 

where 𝛼 is a parameter controlling the strength of momentum in the current iteration—a constant ranging 

between [0,1]. The momentum term, 𝐩, increases the step length when the previous update has the same 

direction as the current update, and it prevents sudden changes that can be caused by noise or artifact. Since 

the momentum term is a diffeomorphic transformation multiplied by a scalar, composing it with the current 

update maintains diffeomorphism.  

We incorporated momentum-based pMI-Demons into a coarse-to-fine multi-resolution pyramid to 

improve robustness against local minima and further speed run-time. The multi-resolution pyramid was 

constructed with 𝑁𝑙  levels, starting at the coarsest level and proceeding to finer levels, with the 

transformation resulting from the previous level used to initialize the next. The choice of pyramid and 

downsampling factor is described in Section 7.4.1 below. The CPU version of pMI-Demons algorithm was 

implemented using the Insight Segmentation and Registration Toolkit (ITK 4.1) and is summarized in 

Algorithm 7.2. An alternative GPU implementation was developed in CUDA 9.1 to parallelize steps 2 

through 7. 

Algorithm 7.2 pMI-Demons 

Input Fixed and Moving images 𝐹, 𝑀 

 Number of pyramid levels  𝑁𝑙 

 Maximum number of iterations 𝑁𝑘 

 Registration parameters  σu, σ𝜙, 𝑘𝑢𝑝𝑑𝑎𝑡𝑒, 𝛼 

   

Step 1 Initialize 𝜙 = 𝐼𝑑, and 𝐩 = 𝐼𝑑   

 for level 𝑙 < 𝑁𝑙  

    for iteration 𝑘 < 𝑁𝑘 

  

Step 2 Compute update field, 𝒖 , using 

Equation (7.15) 

  

Step 3 Apply momentum to 𝒖 using Equation (7.16b) 

Step 4 Regularize update field: 𝐮 ← 𝐺σu
∗ 𝐮 

Step 5 Compose deformation field: 𝜙 ← 𝜙 ∘ exp(𝐮) 

Step 6 Regularize deformation field: 𝜙 ← 𝐺σ𝜙
∗ 𝜙 

Step 7 Update momentum using Equation (7.16a) 
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7.2.5 Baseline Comparison Algorithms 

Two state-of-the-art registration algorithms were evaluated as baseline comparison to the proposed 

pMI-Demons method—the first being B-spline free-form deformation (FFD) and the second being 

Symmetric Normalization (SyN). Only CPU versions of the two algorithms were available in open-source 

packages and GPU implementations was beyond the scope of the study. 

7.2.5.1 Free-Form Deformation Registration Using Mutual Information: MI-FFD 

The B-spline FFD method models the deformation field as B-splines, controlled by the 

deformations at a meshed control grid, 𝑐. The deformation field, 𝜙, is represented as the 3D tensor product 

of 1D cubic B-splines [22]: 

𝜙 = ∑ ∑ ∑ 𝐵𝑙(𝑢)𝐵𝑚(𝑣)𝐵𝑛(𝑤)𝑐𝑖+𝑙,𝑗+𝑚,𝑘+𝑛

3

𝑛=0

3

𝑚=0

3

𝑙=0

, (7.17) 

where 𝑖 = ⌊
𝑥

∆𝑐
⌋ − 1, 𝑗 = ⌊

𝑦

∆𝑐
⌋ − 1, 𝑘 = ⌊

𝑧

∆𝑐
⌋ − 1,𝑢 =

𝑥

∆𝑐
− ⌊

𝑥

∆𝑐
⌋, 𝑣 =

𝑦

∆𝑐
− ⌊

𝑦

∆𝑐
⌋, 𝑤 =

𝑧

∆𝑐
− ⌊

𝑧

∆𝑐
⌋, and ∆𝑐  is the 

spacing of the control grid. The B-spline basis, up to the 3rd order, is denoted 𝐵𝑖, 𝑖 ∈ [0,3]. FFD registration 

based on the MI similarity metric (referred to as MI-FFD) can be formulated as an energy minimization 

combining MI as in Equation (7.2) with a bending energy regularization: 

𝐸(𝜙) = −𝑀𝐼(𝐹,𝑀 ∘ 𝜙) + 𝜆|∇𝜙|2, (7.18) 

where 𝜆 is a smoothness regularization parameter. In this work, the MI-FFD implementation from ITK was 

used, with bounded-constraints quasi-Newton optimization (LBFGSB) of Equation (7.18). The momentum-

based acceleration approach described in Section 7.2.2 was not combined with the MI-FFD method in the 

current work, since re-computation of the grid locations after each iteration introduced a lack of 

correspondence with the deformation fields from previous iterations and caused instability in the 

optimization.   

7.2.5.2 Symmetric Normalization using Mutual Information: MI-SyN 

Symmetric Normalization (SyN) [24] is a variant of LDDMM that solves for geodesic 

diffeomorphic deformations from the fixed-to-moving image (forward direction) and moving-to-fixed 
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image (backward direction) symmetrically. It explicitly guarantees diffeomorphic transformations by 

including invertibility constraints in the optimization. Using MI as the similarity metric in SyN (referred to 

as MI-SyN) is formulated as an energy minimization with forward and backward optimization 

parameterized by a “time” variable, 𝑡 ∈ [0,1]. Given forward and backward “velocity” fields, 𝑣1 and 𝑣2, 

and their corresponding deformation fields, 𝜑1 and 𝜑2, the SyN energy term can be calculated with respect 

to the midpoint 𝑡 = 0.5: 

𝐸(𝑣1, 𝑣2) = inf
𝜑1

inf
𝜑2

∫ {‖𝑣1(𝑥, 𝑡)‖𝐿
2 + ‖𝑣2(𝑥, 𝑡)‖𝐿

2}𝑑𝑡
0.5

𝑡=0

+ 𝑀𝐼(𝐹 ∘ 𝜑1(0.5),𝑀 ∘ 𝜑2(0.5)) (7.19) 

subject to 
𝑑𝜑𝑖

𝑑𝑡
= 𝑣𝑖(𝜑𝑖(𝑥, 𝑡), 𝑡), with 𝜑𝑖(𝑥, 0) = Id, 𝜑𝑖

−1(𝜑𝑖) = Id, and 𝜑𝑖(𝜑𝑖
−1) = Id, 

where 𝐿 = 𝑎∇2 + 𝑏Id  is a velocity field regularization. The first term in Equation (7.19) defines the 

regularization on the velocity field to ensure diffeomorphism, and the second term defines the image 

similarity term at the midpoint. The final deformation is computed by composing the forward and reverse 

deformations, 𝜑1 ∘ 𝜑2
−1. 

The deformation field is obtained by iteratively integrating the velocity field calculated from the 

gradient of Equation (7.19) at every iteration. To maintain diffeomorphism, the inverse of the deformation 

is calculated to ensure invertibility constraints.  

MI-SyN was incorporated in the alternating update and deformation field smoothing framework 

similar to Demons registration, implemented using ANTs (Advanced Normalization Tools version 2.1.0 

[268])  with gradient descent optimization. Momentum-based acceleration as discussed in Section 7.2.2 

was not incorporated in the current work, because applying momentum to both forward and inverse velocity 

fields introduced inconsistency in invertibility and broke the diffeomorphism constraints of the algorithm. 

The general workflow of the symmetric algorithm requires significant modification to incorporate 

momentum in a stable manner and was beyond the scope of the current work.  
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7.3 Experimental Methods 

The registration performance of pMI-Demons, MI-FFD, and MI-SyN was evaluated in two studies 

detailed below focusing on registration of MR and CT images of the head. The first study involved an 

anthropomorphic head phantom imaged in CT and MR with simulated deformation of structures within the 

intracranial space modeling contraction of the ventricles following egress of CSF. The phantom study 

allowed investigation of the sensitivity of each algorithm to associated parameter settings (with known truth) 

and established nominal parameter settings for each. A second study translated each algorithm (with 

nominal parameters established in the phantom study) to clinical images of neurosurgical patients receiving 

MR and CT imaging. 

7.3.1 Phantom Studies 

A 3D anthropomorphic MR-CT compatible head phantom (CIRS® Model 603A, Norfolk, VA) 

was used to analyze the sensitivity to algorithm parameter selection and evaluate registration performance. 

The intracranial space was filled with a water-based polymer and a 3D grid matrix of thin plastic cylinders. 

The plastic cylinders were 3.0 mm in diameter and spaced at regular intervals in 3D of 15.0 mm. As 

described below, the matrix of rods provided visualization of simulated deformation fields within the brain 

and presented 305 intersection points for analysis of TRE. 

A T1-weighted MR image (gradient echo pulse sequence, repetition time 14 ms, echo time 0.7 ms) 

was acquired on a 1.5 T Magnetom Avanto (Siemens Healthineers, Erlangen Germany) and reconstructed 

at 0.70x0.70x0.75 mm3 with a volume size of 432x432x240 voxels. The CT fixed image was acquired on 

an Aquilion ONE scanner (Toshiba Corporation, Tokyo Japan) (120 kV, 150 mAs) and reconstructed at 

0.43x0.43x0.5 mm3 with a volume size of 512x512x320 voxels. Distortion intrinsic to the MR image (e.g., 

due to nonuniformity in gradient fields) was confirmed to be small (<0.40 mm) for this object. 

Intracranial deformation analogous to contraction of the ventricles following CSF egress was 

simulated in the CT image. Two points (referred to below as “source points”) were placed in the central 

region of the cranial vault, and an attractive force model was used to calculate the displacement at every 
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voxel induced by the source points. The overall deformation field, 𝜙, was determined by the summation of 

forces. In general, for 𝑁 source points: 

𝜙 = ∑
𝑘

|𝒓𝒏|𝑐 + 𝜖

𝒓𝒏

|𝒓𝒏|

𝑁

𝑛=1
, (7.20) 

where 𝒓𝒏 is the vector from 𝑥 to the 𝑛𝑡ℎ source point, 𝑘 controls the scale force magnitude, 𝑐 controls the 

rate of force falloff with distance, and 𝜖 is a small constant to maintain stability in proximity to the source 

points. Figure 7.7 illustrates the deformation imparted to the head phantom for a range of force magnitude 

with 𝑘 = {25, 80,135} voxels, and 𝑐 = 0.5. The focus of the current work is deformation of the deep brain 

space about the hippocampus and ventricles—analogous to that following CSF egress in neuro-endoscopic 

approach—and the simulation therefore did not include shift or air filling at the surface of the brain. 

 
Figure 7.2. Intracranial deformation in phantom. (a) Undeformed CT image of the head phantom overlaid with an example 

deformation field induced from two attractive force locations (k = 80). (b)-(d) CT images showing the degree of deformation for 

small (k = 25), medium (k = 80), and large (k = 135) deformations. Target point locations are shown before (red) and after (blue) 

deformation. 

Registration performance was characterized for each algorithm in terms of TRE, diffeomorphism 

of the deformation field via Jacobian determinant, and computation time. For each registration method, the 

sensitivity to the selection of algorithm parameters was investigated, and nominal parameter values were 

selected for subsequent experiments. All registrations reported below were run to convergence such that 

the change in MI with iteration number (∇𝑖MI) was below 1% of the maximum ∇𝑖MI in the registration. 
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TRE measures the geometric accuracy of registration according to the distance between 𝑁 

corresponding anatomical points, 𝑥𝐹 and 𝑥𝑀, in the fixed and registered moving images: 

𝑇𝑅𝐸(𝑥𝐹 , 𝑥𝑀; 𝜙) =
1

𝑁
∑‖𝑥𝐹(𝑛) − 𝜙 ∘ 𝑥𝑀(𝑛)‖

𝑁

𝑛=1

). (7.21) 

In the phantom study, 305 target points were defined in each image by the centroid of the intersections of 

the 3D grid matrix. 

The Jacobian determinant (|ℐ|) describes how a local volume changes under transformation and is 

related to the diffeomorphic property of the applied motion. Specifically, a negative value of |ℐ| indicates 

a change of topology (e.g., folding or tearing) and non-diffeomorphism of the deformation. In the phantom 

study, |ℐ| was computed by: 

|ℐ| = det

(
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. (7.22) 

Computation time for each algorithm was measured in terms of the time per iteration, number of 

iterations, and total runtime. The CPU implementations of each algorithm were performed on a Dell 

Precision T7910 with two 1.70 GHz Intel Xeon processor and 32 GB RAM. The GPU parallelized 

implementation of pMI-Demons was performed on a single Nvidia GeForce GTX TITAN X GPU with 

28.4 GB memory using CUDA v9.1. 

The sensitivity of each algorithm to parameter settings was investigated by varying parameter 

values over a broad range and evaluating with respect to the figures of merit described above. For the pMI-

Demons method, a three-level multiresolution pyramid was selected with isotropic downsampling factors 

[4,2,1] voxels and Gaussian kernel widths [4,2,1] voxels. Using Scott’s Rule [269] below and rounding to 

power of 2 for efficient computation, 128 histogram bins were used for MI calculation: 
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bins =
r

3.49𝜎𝑁−
1
3

, (7.23) 

where 𝑟 is the range of intensity values in the input image, 𝜎 is the standard deviation of image intensities, 

and 𝑁 is the number of pixels in the overlapping region of inputs. For each method, the histogram stretch 

parameter, 𝑝, was evaluated over the range [0.01, 0.4], and the value that minimized TRE was selected. 

For the pMI-Demons method, the update field and deformation field Gaussian smoothing kernels 

were jointly optimized with respect to TRE over the range: 𝜎u ∈ [0,5] pixels and 𝜎𝜙 ∈ [0,5] pixels with a 

step size of 0.25 pixels. Update step length was varied over: 𝑘𝑢 ∈ [1,3]. For the accelerated pMI-Demons 

method, the momentum strength, 𝛼, was varied over the range [0,0.9]. 

For the MI-FFD method, a three-level multi-resolution pyramid was used with control grid spacing 

of [4,2,1] voxels. The finest control grid spacing, ∆𝑐, was varied over the range [2,40] voxels. The number 

of histogram bins (128) was the same as for pMI-Demons. Maximum step length was set to 0.4∆𝑐 based on 

[76] to promote local injectivity. The regularization parameter, 𝜆, was varied over the range [10-8,10-3]. 

For MI-SyN, the multi-resolution pyramid and number of histogram bins was the same as used for 

pMI-Demons. Update and deformation field Gaussian kernel widths were similarly varied and optimized 

to minimize TRE. The gradient descent step length was varied over the range [0.1, 1]. 

For each method, the sensitivity analysis guided selection of nominal parameter settings – usually 

that which minimized TRE. For some parameters (e.g., update step length, 𝑘𝑢, and momentum strength, 𝛼) 

tradeoffs among TRE, stability of convergence (e.g., oscillations in the objective function), and runtime 

were examined in order to identify reasonable (if not optimal) nominal settings. The resulting nominal 

parameters are summarized in results reported below. 

7.3.2 Clinical Studies 

The performance of each registration method was further tested in an IRB-approved retrospective 

clinical study. Preoperative MR and postoperative CT images were selected involving four patients 

undergoing minimally invasive neurosurgery at our institution. All four cases included preoperative T1-
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weighted MR images, and two included T2-weighted MR images, giving a total of six CT-MR registrations 

evaluated in the clinical study. Each case exhibited mild to moderate deformation owing to CSF egress 

associated with burr hole incision, endoscope sheath placement, and/or shunt placement.  

T1-weighted MR images (taken as the moving image, M) were acquired with 2D acquisition on a 

3T Skyra (Siemens Healthineers, Erlangen Germany) with slice thickness of 4 mm, repetition time varying 

from 400-700 ms, echo time varying from 6.5-11 ms, and reconstructed at approximately 0.8x0.8x4 mm3. 

T2-weighted MR images were acquired with slice thickness of 4 mm, repetition time varying from 3800-

4000 ms, echo time varying from 85~92 ms, and reconstructed at approximately 086x8.86x4 mm3. CT 

images (taken as the fixed image, 𝐹) were acquired on a Somatom Definition (Siemens Healthineers, 

Erlangen Germany) MDCT scanner (120 kV, 380 mAs), and images were reconstructed at 0.44x0.44x0.44 

mm3 voxel size and a volume size of 600x600x214 voxels. 

Registration performance was evaluated in terms of TRE using twelve unambiguous anatomical 

landmarks for each patient on the third and lateral ventricles as well as major sulci. Variability in target 

point selection attributable to intraobserver error in manual localization was less than 1 mm. The TRE, |ℐ|, 

and runtime were evaluated for each registration method using the nominal parameters identified in the 

phantom study as detailed in Section 7.3.1. 

7.4 Results 

7.4.1 Phantom Studies: Parameter Selection 

The sensitivity of registration performance to algorithm parameters was investigated using the head 

phantom and simulated intracranial deformation illustrated in Fig. 7.3. The influence of the histogram 

stretch parameter (𝑝) on TRE for each registration method is shown in Figure 7.3(a). All registration 

methods exhibited similar behavior with respect to p, with TRE improving as p was decreased to a level of 

~0.1, suggesting that the histogram stretch of soft-tissue intensities (values in the range -120 HU to +120 

HU stretched linearly to normalized image values 100-900 as in Equation (7.1)) led to improved registration 
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accuracy. Improvements were negligible for p below 0.1, and lower values (i.e., a broader range of intensity 

stretch) resulted in distortion of bone structures. A value of p=0.1 was selected as a nominal choice for all 

results reported below.  

 
Figure 7.3. Selection of algorithm parameters. (a) Sensitivity of registration performance to the histogram stretch parameter, 𝑝. 

TRE improved with reduction in p (larger range of soft-tissue intensity stretch) down to 𝑝 =  0.1 (marks by black arrows). (b) 

Sensitivity of registration performance of pMI-Demons to the Gaussian smoothing kernels 𝜎𝑢 and 𝜎𝜙. The circle marks the nominal 

values. 

The choice of Gaussian smoothing kernels (𝜎update  and 𝜎deformation ) for pMI-Demons was 

investigated as shown in Figure 7.3(b).  Values lower than the optimum resulted in slow convergence and 

poor registration accuracy due to noise in the update and deformation fields. Values greater than the 

optimum resulted in diffuse blurred edges and poor registration accuracy due to over-smoothing. Nominal 

values, 𝜎update = 2.75 voxels and 𝜎deformation = 2.25 voxels, were used in studies reported below. 

The sensitivity of pMI-Demons to the update step length (𝑘update) is shown in Fig. 7.4(a), with 

registration performance evaluated in terms of both the pMI objective function (summed over the entire 

images) and convergence speed (number of iterations). Increased metric value correlates with improved 

registration accuracy, and a lower number of iterations indicates faster convergence. Note that the large 

drops in MI metric are caused by the transitions in the multi-resolution pyramid whereby the finer image 

sampling increases the magnitude of statistical mismatch. As shown in Figure 7.4(a) for nominal 𝜎update 

and 𝜎deformation and a multi-resolution downsampling of [4,2,1] voxels, a larger update step length yielded 
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faster convergence, especially in the lower resolution levels of the pyramid. However, larger 𝑘update 

resulted in lower pMI at the full-resolution level and introduced undesirable oscillations in the optimization. 

To achieve fast convergence, accuracy in the registration result, and stability in the optimization, the update 

step length was varied in the course of the three-level multi-resolution pyramid: 𝑘update = 3, 2, 1 in levels 

1, 2, 3, respectively.  

 
Figure 7.4. Selection of (a) update step length, 𝑘𝑢𝑝𝑑𝑎𝑡𝑒, and (b) momentum-based acceleration strength, 𝛼, in the pMI-Demons 

method. (a) Convergence plots for various settings of update step length. (b) Sensitivity analysis of momentum strength plotted as 

pMI vs. number of iterations, where arrows indicate oscillation in the pMI-Demons objective function for 𝛼 = 0.9 curve. 

The sensitivity to momentum strength (𝛼) was investigated in a multi-resolution framework shown 

in Figure 7.4(b). The 𝛼 = 0 case corresponds to conventional convergence (no momentum) and reproduces 

the basic pMI-Demons result. Varying 𝛼 did not change the magnitude of MI achieved at convergence for 

any resolution level, and larger 𝛼 resulted in faster convergence up to a value of 𝛼 = 0.7. For larger 𝛼 (𝛼 =

0.9), oscillation in the pMI objective function was observed (subtly evident at points marked by the arrows 

in Fig. 7.4(b) for the 𝛼 = 0.9 case), which slowed convergence and introduced instability in the registration 

result. Table 7.1 summarizes TRE and computation time of pMI-Demons obtained with various values of 

𝛼. There was no evidence of a statistically significant effect on TRE for any level of 𝛼 (paired Student t-

test 𝑝 > 0.05). A nominal value 𝛼 = 0.7 was selected for all registrations reported below with momentum-

based acceleration, giving reasonably stable convergence and fast runtime performance. 
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Table 7.1. Performance of pMI-Demons with varying levels of momentum acceleration (𝛂). 

Momentum Acceleration 𝜶 = 0 𝜶 = 0.1 𝜶 = 0.3 𝜶 = 0.5 𝜶 = 0.7 𝜶 = 0.9 

TRE median (IQR) (mm) 
0.79 

(0.45) 

0.77 

(0.45) 

0.75 

(0.42) 

0.74 

(0.41) 

0.73 

(0.39) 

0.74 

(0.44) 

Computation Time (min) 12.8 11.8 10.5 9.0 8.3 8.7 

For the MI-FFD method, TRE was evaluated as a function of ∆𝑐 over the range [2,40] voxels. A 

nominal ∆𝑐= 12  voxels was shown to minimize TRE, with smaller ∆𝑐  eventually causing unstable 

interpolation and larger ∆𝑐  leading to under-sampling of the control points on images. Regularization 

parameter, 𝜆 , was also investigated (ranging from 10-8 to 10-3), which showed noisy and irregular 

displacement fields when 𝜆 was too small, and over-smoothed and low-magnitude displacement fields 

when 𝜆 was too large. Accordingly, a nominal value of 𝜆 = 10-6 was selected.  

For the MI-SyN method, the sensitivity to the choice of update and deformation field Gaussian 

kernel widths was investigated over the range [0, 5] voxels. A minimum in TRE was observed at values of 

σu = 1.5 voxels and σ𝜙 = 2 voxels, similar to the trends exhibited for pMI-Demons in Fig. 7.3(b). A 

nominal gradient descent step length of 1 was found to achieve fast and stable convergence without 

compromising TRE. Larger step length led to unstable optimization, and smaller step length increased the 

number of iterations for convergence. 

7.4.2 Phantom Studies: Registration Performance 

Figures 7.5 and 7.6 summarize the registration performance of pMI-Demons, MI-FFD, and MI-

SyN methods in registering T1-weighted MR and CT images of the head phantom. Figure 7.5(a) shows 

registration results prior to histogram stretch, showing unacceptably large registration errors for each 

method. Figure 7.5(b) shows the results following histogram stretch. The histogram stretch significantly 

reduced registration error for all three methods (𝑝 < 0.01), improving median TRE (and interquartile range, 

IQR) from 2.58 mm (1.81 mm IQR) to 0.63 mm (0.52 mm IQR) for MI-FFD, from 1.85 mm (1.90 mm 
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IQR) to 0.56 mm (0.31 mm IQR) for MI-SyN, and from 2.23 mm (1.74 mm IQR) to 0.73 mm (0.39 mm 

IQR) for pMI-Demons. 

 
Figure 7.5. Registration performance in phantom studies. (a) TRE without histogram stretch. (b) TRE with histogram stretch. (c) 

Jacobian determinant, with negative values indicating non-diffeomorphic distortion. 

Moreover, compared to MI-FFD and MI-SyN, pMI-Demons significantly reduced the number of 

outliers (𝑝 < 0.01 in a Kolmogorov-Smirnov test of differences in TRE distributions), which primarily 

occurred in homogenous regions of the images. Two properties of pMI-Demons can contribute to outlier 

reduction: the unconstrained optimization in Demons allows larger Gaussian smoothing kernels, and 

incorporation of momentum helps to avoid local minima by accelerate optimization in the relevant direction, 

especially in places where image gradient is scarce, and dampen optimization oscillation in places where 

image noise is salient [270]. 

The range in Jacobian determinant of the deformations is shown in Figure 7.5(c), showing that MI-

SyN and pMI-Demons preserved topology and diffeomorphism (|𝒥| > 0); however, MI-FFD introduced 

unrealistic deformations (folding, tearing, etc. indicated by |𝒥|  < 0) and exhibited a greater positive 

Jacobian determinant overall than the other two algorithms, which can be an indication of unrealistically 

large deformations. 

Figure 7.6 depicts the registration results in the head phantom, with MR images following 

deformable registration overlaid by Canny edges from the (fixed) CT image shown in green. Zoomed-in 

regions show example areas of large deformation along with Jacobian determinant maps. All three methods 

showed overall improvement in registration, as indicated by the improve match between the green Canny 
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edges and the dark background edge areas in the registered MRI. The differences in registration 

performance – especially for the diffeomorphic algorithms – are illustrated in the zoomed-in regions, where 

MI-FFD produced tearing and folding artifacts (non-diffeomorphic transformations), as indicated by yellow 

arrows in Figure 7.6(b) and negative values in the Jacobian determinant map. The MI-SyN and pMI-

Demons, on the other hand, maintained realistic structural integrity of features in the phantom.  

 
Figure 7.6. Registration results in phantom studies emulating contraction throughout the central cranial vault. Each case shows the 

T1-weighted MR image after registration overlaid with green Canny edges from the fixed CT image. The zoomed-in region shows 

subtle differences in each case, with zoomed-in Jacobian determinant 𝒥 maps in the bottom row. (a) MI-Rigid, showing a fairly 

large TRE following deformation. (b) MI-FFD, showing unrealistic deformations (|ℐ|<0 in regions marked by the arrow). (c) MI-

SyN and (d) pMI-Demons, showing realistic and diffeomorphic deformations (|ℐ|>0 everywhere). 

Average computation time for the CPU implementation of each method was 10.5 min for MI-FFD, 

30.1 min for MI-SyN, and 8.3 min for pMI-Demons. Momentum-based acceleration reduced pMI-Demons 

runtime by as much as 35% due to reduction in the number of iterations (without compromising 

computation cost at each iteration). MI-SyN incurs a significantly longer runtime than the other algorithms 
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due to the relatively heavy computation in maintaining symmetry and diffeomorphism at each iteration. For 

pMI-Demons, the majority of computation time was spent on constructing histograms for the pMI metric. 

Average computation time for the GPU implementation of pMI-Demons was 1.6 min, yielding a ~5x 

speedup compared to the CPU implementation – primarily attributed to parallelization of the histogram 

construction, voxel-wise metric computation, and voxel-wise Gaussian regularization. 

 
Figure 7.7. Registration performance evaluated as a function of the magnitude of initial deformation. The identity line demarks 

regions below which the registration method improved upon the initial displacement.  

As shown in Fig. 7.7, registration performance was further analyzed as a function of the magnitude 

of deformation. For each registration method, TRE is plotted as a function of the initial displacement for 

each target point (varied by changing the force constant 𝑘 in Eq. (7.20)). Points below the identity line 

indicate an improvement in image alignment. Each method provided overall improvement (consistent with 

the TRE distributions in Fig. 7.5(b)); however, some differences in performance can be appreciated. First, 

we see that MI-FFD performed reasonably well for small displacements (<5 mm), but exhibited the highest 

number of outliers (~3%) above the identity line and a broader overall TRE distribution. The MI-SyN 

method exhibited fewer outliers (~1.8%) and achieved TRE <3 mm for deformations up to ~7 mm. The 

pMI-Demons method exhibited the fewest outliers (0.2%) and tightest distribution overall, maintaining 

TRE <3 mm for deformations up to ~10 mm, beyond which none of the methods provided accurate 

registration performance. 
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7.4.3 Clinical Studies  

Figures 7.8, Figure 7.9, and Table 7.2 summarize the performance of each registration method 

applied to clinical data of T1-weighted MR images. Figure 7.8(a-b) shows the distributions in TRE without 

and with histogram stretch. Similar to the phantom studies, the histogram stretch significantly improved 

registration for all three methods (𝑝 < 0.01), reducing TRE: from 4.15 mm (2.18 mm IQR) to 1.40 mm 

(0.65 mm IQR) for MI-FFD; from 3.59 mm (1.56 mm IQR) to 1.64 mm (1.02 mm IQR) for MI-SyN; and 

from 3.57 mm (1.11 mm IQR) to 1.57 mm (1.11 mm IQR) for pMI-Demons. Interestingly, MI-SyN and 

pMI-Demons yielded reasonable registration (TRE<5 mm) without histogram stretch, whereas MI-FFD did 

not. Following histogram stretch, all three methods yielded TRE < ~3 mm, and there was no statistically 

significant difference among the TRE distributions. The clinical study demonstrated fewer outliers in TRE 

than the phantom study, possibly due to fewer target points (unambiguous anatomical landmarks) or a richer 

heterogeneity of salient anatomical features in the clinical image data. 

 
Figure 7.8. Target registration error in clinical studies. (a) TRE without histogram stretch. (b) TRE with histogram stretch. (c) 

Jacobian determinant, with negative values suggesting non-diffeomorphic transformation. 

Figure 7.8(c) quantifies the extent to which each method provided diffeomorphic transformation. 

The MI-FFD method exhibited non-diffeomorphic transformations (|𝒥| < 0 for 4.5% of the data), whereas 

MI-SyN and pMI-Demons preserved tissue topology with |𝒥| > 0 . The effects of non-diffeomorphic 

transformation are illustrated in the example images of Figure 7.9. In each case, the MR image following 

deformation is overlaid by Canny edges from the fixed CT image. Zoomed-in regions are shown about the 
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lateral ventricles. Yellow arrows mark regions of unrealistic deformation (negative |𝒥| as shown in the 

zoomed-in Jacobian determinant map) for the MI-FFD method—e.g., distortion of the medial aspect of the 

lateral ventricles. In the current study, algorithm parameters for all methods were selected based on the 

accuracy of registration (specifically, TRE), which may result in less than ideal diffeomorphic performance 

for some methods (e.g., the lack of diffeomorphism observed in FFD). Increasing the smoothness of 

transformation (i.e., via increasing the regularization) could potentially improve the diffeomorphic 

characteristics of FFD at the expense of registration accuracy. A local injectivity constraint (MSL≤0.4c) 

was used for MI-FFD registration as described in Section 7.2.5 to promote local diffeomorphism near each 

control grid point [76, 271, 272], but a degree of non-diffeomorphism was still observed in the overall FFD 

transformations, particularly in locations exhibiting large deformations. 

As shown in Fig. 7.9(c-d), MI-SyN and pMI-Demons exhibit close alignment between the CT 

Canny edges and the deformed MR image. The registered ventricular system was slightly larger in pMI-

Demons, possibly due to a larger displacement field smoothing kernel in pMI-Demons. In both cases, 

anatomical topology was preserved, and the overall transformation was diffeomorphic. The runtime for 

each algorithm is summarized in Table 7.2 along with the median and IQR in TRE and Jacobian determinant 

for the clinical studies.  The pMI-Demons method converged ~1.5x faster than MI-FFD and ~3.5x faster 

than MI-SyN, while yielding comparable performance. Similar to the phantom study, momentum-based 

acceleration reduced runtime of pMI-Demons by 30%. The GPU implementation of pMI-Demons further 

improved runtime by ~5x. The accelerated runtime and accurate registration performance of the GPU 

implementation of pMI-Demons with momentum-based acceleration makes it a potentially promising 

method for translation to neurosurgical guidance. 
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Figure 7.9. Registration results of T1-weighted MR to CT in clinical studies. Each case shows the registered MR overlaid with 

Canny edges from the fixed CT image. Zoomed-in views (middle row) along with Jacobian determinant maps (bottom row) show 

detailed differences between each case.  (a) NMI-Rigid, showing gross misalignment up to ~11.5 mm. (b) MI-FFD, with arrows 

marking areas of unrealistic deformation (|ℐ|<0). (c) MI-SyN with histogram stretch. (d) pMI-Demons with histogram stretch. 

Table 7.2. Performance of MR to CT registration in the clinical studies. TRE and |𝓘| are shown in median (IQR). 

Method NMI-Rigid MI-FFD MI-SyN pMI-Demons 

TRE (mm) 5.56 (1.97) 1.40 (0.65) 1.64 (1.02) 1.54 (0.83) 

|ℐ| - -4.32 (0.89) 0.15 (0.17) 0.04 (0.24) 

Runtime per case 

(min) 

CPU / GPU 

1.7 / - 16.5 / - 39.2 / - 11.6 / 2.3 

1.0 / - 14.1 / - 34.1 / - 10.4 / 2.1 

1.2 / - 15.7 / - 31.6 / - 9.3 / 1.9 

1.2 / - 16.1 / - 30.8 / - 10.0 / 2.2 

1.3 / - 14.9 / - 35.9 / - 10.7 / 2.1 

1.3 / - 15.5 / - 36.6 / - 11.1 / 2.4 

Mean Runtime (min) 

CPU / GPU 
1.3 / - 15.5 / - 34.7 / - 10.5 / 2.2 

Comparable performance was observed in T2-weighted MR to CT registration using pMI-Demons, 

showing close alignment of the CT canny edges and the MR images as in Figure 7.10. With histogram 
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stretch, pMI-Demons reduced median TRE from 5.08 mm (2.18 mm IQR) in NMI-Rigid to 1.78 mm (0.66 

mm IQR), which was comparable to TRE of T1-weighted MR to CT registration. Diffeomorphic 

transformations were preserved with non-negative Jacobian determinant.  

 
Figure 7.10. Registration results for T2-weighted MR to CT registration in clinical studies. Each case shows the T2-weighted MR 

image after registration overlaid with Canny edges from the fixed CT image. The center column shows zoomed-in views of the 

images with Canny edge overlay, and the column at right shows the corresponding Jacobian determinant map within the zoomed 

view. (a) NMI-Rigid, showing gross misalignment up to ~11.5 mm. (b) Registration result from pMI-Demons, showing better 

alignment of MR to CT edges in ventricles and major sulci, as well as diffeomorphic transformation (non-negative Jacobian 

determinant). 

7.5 Discussion and Conclusions 

An inter-modality deformable image registration method was reported that combines a 

diffeomorphic implementation of the Demons algorithm with a pre-processing histogram stretch to 

emphasize soft-tissue image gradients in the transformation, pMI similarity metric, momentum-based 

acceleration to speed convergence, and implementation on GPU providing runtime potentially suitable to 

clinical application. Overall, the MI-FFD, MI-SyN, and pMI-Demons methods demonstrated comparable 

registration accuracy (sub-voxel TRE < 2.0 mm in clinical studies) with notable differences: MI-FFD was 

prone to non-diffeomorphic distortion (|ℐ|<0), especially in locations of large deformations; MI-SyN 

showed a slightly reduced range in TRE and fewer outliers, while maintaining diffeomorphism; and pMI-
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Demons exhibited the least range in TRE and the least number of outliers, as well as producing 

diffeomorphic transformations. In terms of computation time, pMI-Demons showed the fastest runtime 

(1.5x faster than MI-FFD and 3.5x faster than MI-SyN).  

The current work is not without its limitations. CT and MR images were acquired using clinical 

technique protocols that are fairly standard to clinical practice at our institution, yielding images with a 

level of noise, spatial resolution, and artifact that is representative of current clinical image quality. The 

effect of increased noise or artifact (e.g., from low-dose CT or fast MRI scan protocols) on registration 

performance was not investigated in the current work.  

In the phantom studies, the intracranial structures were simple in comparison to real anatomy, and 

the image content was identical apart from the deformation itself – i.e., there was no mismatch in image 

content owing to instrumentation introduced or tissue excised in the intraoperative CT. The clinical studies 

exhibited realistic anatomy (including pathologies such as tumor or hemorrhage), but there was only minor 

mismatch in image content between the moving and fixed images (e.g., a ventricular shunt in 2 of the 4 

cases). Larger mismatch in image content, such as the presence of a neuroendoscope, may confound the 

registration methods and deserve further investigation. For example, Nithiananthan et al. [97] reported a 

variation of the Demons method to account for such changes in image content. None of the cases exhibited 

major shift of the brain surface, although such was not the focus of the current study.  

For purposes of comparison among algorithms, this chapter only studied the basic implementations 

of FFD, and many variations of FFD that might better maintain diffeomorphism were not investigated. For 

example, Modat et al. [273] exponentiated the B-spline velocity field at every iteration to preserve 

diffeomorphism similar to Demons registration, and De Craene et al. [274] integrated B-spline velocity 

fields across time similar to SyN to maintain diffeomorphism. Future investigation could involve evaluation 

of pMI-Demons with the above mentioned FFD variants. 

The momentum-based acceleration was incorporated within a Gauss-Newton optimization method, 

providing ~35% speedup, but there is room for further improvement in runtime by considering more 
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sophisticated momentum strategies, such as computing updates based on previous momentum estimates as 

in Nesterov optimization [266], or using adaptive momentum estimation [275]. In addition, this chapter 

only studied the impact of momentum in terms of TRE and computation time. Future investigation that 

considers various optimization methods with respect to momentum will give better understanding of the 

utility of momentum in image registration. Furthermore, momentum-based acceleration was not considered 

in the FFD or SyN methods implemented in the current study. Extension of momentum-based acceleration 

to these methods also merits future investigation. 

The choice of similarity metric is integral the performance of multi-modality registration—in terms 

of robustness to local optima, geometric accuracy of the registration result, and computational load. While 

this paper focused on variations of strategies using MI-based similarity, other research has used structural 

descriptors such as MIND [30, 96] or edge alignment metric [259]. Such structural similarity metrics can 

be advantageous in scenarios exhibiting inhomogeneity in image intensities and strong non-correspondence 

in the intensity distribution of anatomical structures between modalities. The pMI metric used in the current 

work carries potential advantages of simplicity and speed and exhibited fairly good accuracy in clinical 

data, motivating its use in scenarios of image-guided surgery, where clinical workflow requires fast runtime. 

The clinical studies involved high-quality CT images obtained on a diagnostic-quality MDCT 

scanner. Considering application in intraoperative neurosurgical guidance, the performance of each 

registration method under conditions of lower fidelity intraoperative CT or CBCT images—e.g., lower dose 

images with higher levels of noise and artifact—are the subject of future work. The high geometric accuracy 

and fast runtime of pMI-Demons warrants further investigation for translation to intraoperative 

neurosurgical guidance.
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Chapter 8. 

Deformable MR-CT Registration Using Deep Learning-Based Dual-

Channel Registration for Application to Neurosurgical Guidance 

8.1 Introduction 

As demonstrated in Chapter 7, navigation of minimally invasive approaches in neurosurgery could 

benefit substantially from deformable registration algorithms that establish anatomical correspondence 

between preoperative MR and intraoperative CT images via non-linear transformation. A number of inter-

modality deformable registration methods have been reported by iteratively optimizing image similarity 

between the images [76, 96, 259, 260]. Chapter 7 also reported an iterative optimization-based method, 

pMI-Demons, that improves runtime compared to state-of-the-art methods (FFD and SyN) by utilizing 

parallel metric computation, momentum acceleration, and GPU implementation. However, the method still 

requires a few minutes of runtime, with multiple iterations before convergence and each iteration carrying 

high computational load. Recent advances in deep learning-based registration may provide improved 

robustness and faster runtime than conventional “physics-based” methods, making them an important 

candidate for further development and translation to clinical application. 

Deep learning-based deformable registration methods often use CNNs to predict either a set of 

deformation parameters or a full deformation field. Depending on the type of annotation available in 

training data, deep learning registration approaches can be broadly categorized as: 

(i) Supervised learning. Supervised learning requires the training dataset to include ground-truth 

deformation fields. Since the performance of registration depends on the quality of the ground-truth 

definition, this approach can be limited by the accuracy of the conventional registration used to obtain 

ground truth [103–105]. Alternatively, ground-truth can be defined via simulated deformations [106–108], 
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recognizing that the simulated motion may or may not be physically realistic (and thereby challenge 

generalizability to real test data). 

(ii) Unsupervised learning. To overcome the limitations of supervised and weakly supervised 

learning, unsupervised learning methods have been developed that learn to minimize losses between fixed 

and registered images. Loss functions are often based on either similarity metrics such as sum of squared 

difference (SSD), normalized cross-correlation (NCC) [109, 110, 276], or neural network-based “deep 

metrics” [113, 114].  

(iii) Weakly supervised learning. Weakly supervised learning methods perform optimization on 

image surrogates, such as segmentation maps or landmarks. For example, methods reported in Ref. [122, 

123] demonstrated networks trained to maximize the alignment between tissue labels. Alternatively, 

Blendowski et al. [124] used a shape encoder-decoder network to extract cardiac shape representations as 

a basis for registration. The time-consuming nature of tissue labeling and the dependence of performance 

of the resulting network on the accuracy of tissue labeling are well recognized. 

While a considerable amount of previous work has focused on deep learning-based deformable 

registration within a single imaging modality (e.g., MR-to-MR image registration), inter-modality image 

registration presents a challenging problem. Inter-modality registration commonly relies on some degree of 

supervision, either ground-truth deformation fields or labeled landmarks/segmentations. Unsupervised, 

inter-modality deformable registration approaches have been demonstrated that optimize an inter-modality 

similarity metric, such as mutual information (MI) [115, 277]. Such metrics, however, can be insensitive to 

local spatial information, which can diminish registration accuracy compared to mono-modality (intra-

modality) similarity metrics.  

To mitigate challenges associated with inter-modality similarity metrics, a popular approach is to 

convert multi-modality registration to an intra-modality registration via image synthesis, allowing 

optimization according to a mono-modality metric. For example, Generative Adversarial Networks (GANs) 

are used to generate synthetic CT from MR images and perform mono-modality CT registration [117–120]. 
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Similarly, Xu et al. further fused the multi-modality MR-CT and mono-modality CT registration into a 

single prediction [278]. Such methods, however, only used the MR-to-CT synthesis, and the inverse (CT-

to-MR) synthesis was omitted. Alternatively, a disentangled networks to decouple images into shape and 

appearance representations is proposed, and mono-modality registration is performed on the resulting shape 

representations [279]. 

The method reported below extends previous work using image synthesis for unsupervised, inter-

modality MR-CT registration. Inspired by inter-modality and intra-modality fusion [278] and multi-channel 

registration [280, 281], this work utilizes MR-CT synthesis to reduce the registration to two, intra-modality 

registrations in the MR and CT domains, subsequently fusing the two channels for the final estimate of the 

deformation. Contributions of this work include: 

(i) A novel unsupervised, deformable registration network is proposed for MR-CT registration to 

provide guidance in minimally invasive neurosurgery. The network contains two subnetworks: (1) an image 

synthesis subnetwork to generate synthetic MR/CT images from the input image pairs; and (2) a dual-

channel registration subnetwork that predicts the deformations in MR and CT channels and fuses the two 

into a final diffeomorphic deformation field. 

(ii) The image synthesis subnetwork implements a novel probabilistic CycleGAN that generates 

both the synthetic images and the associated uncertainty. Instead of global averaging of the dual-channel 

registration loss functions as in conventional dual-channel registration [280], the uncertainties are used to 

provide a principled, spatially varying weighting of the dual channels. 

(iii) An end-to-end training strategy is employed to jointly optimize image synthesis and 

registration subnetworks, which guides the synthesis subnetwork in generating intermediate representations 

that are advantageous to the task of deformable registration. 

The chapter is organized as follows: in Section 8.2, the details of the proposed method are described 

along with an end-to-end training strategy; Sections 8.3 and 8.4 present the experimental methods, ablation 

studies (variations of the algorithm with and without dual-channel fusion and uncertainty weighting), and 
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results comparing the proposed method to two baseline algorithms (symmetric normalization [24]) and 

VoxelMorph [109]); and Section 8.5 demonstrates the benefits of dual-channel fusion and end-to-end 

training. The proposed deformable registration method was tested on a spectrum of datasets, including 

datasets with a broad variety of simulated deformations, real deformations associated with long-time 

baseline longitudinal studies, and real deformations induced by neurosurgical intervention. 

8.1.1. Acknowledgements and Unique Contributions 

The methods and results reported in this chapter were reported as part of a journal article and a 
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W. S., & Siewerdsen, J. H. "Deformable MR-CT image registration using an unsupervised, dual-

channel network for neurosurgical guidance". Medical Image Analysis, vol 75: 102292, 2022. 

• Han, R., Jones, C. K., Ketcha, M. D., Wu, P., Vagdargi, P., Uneri, A., Lee, J., Luciano, M., 

Anderson, W. S., & Siewerdsen, J. H. "Deformable MR-CT image registration using an unsupervised 
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Image-Guided Procedures, Robotic Interventions, and Modeling, vol 11598, p. 42, 2021. 

with permission from the publishers for reproduction of content (text and Figures 8.1-13) in this dissertation. 

The author’s unique contributions include: implementation of the reported algorithms; development and 
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The work in this chapter was supported by NIH grant U01-NS-107133 and academic industry 

partnership with Medtronic Inc. (Littleton, MA). The authors would like to acknowledge Department of 

Radiation Oncology at Johns Hopkins University for providing imaging data (described in Section 8.3.1). 

8.2 Algorithmic Methods 

An unsupervised deformable registration framework is proposed for registering preoperative MR 

images to intraoperative CT images. Let 𝐼𝑀𝑅 be the moving preoperative MR image and 𝐼𝐶𝑇 be the fixed 

intraoperative CT image defined over a 3D spatial domain. The two images are rigidly aligned as a 

preprocessing step (same as Section 7.22.1), such that the network only learns the nonlinear local 
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deformation, an essential step for the proper convergence of the deformable registration network. As 

illustrated in Figure 8.1, a fully convolutional neural network with image synthesis and dual-channel 

registration subnetworks is implemented to estimate the deformation field between 𝐼𝑀𝑅 and 𝐼𝐶𝑇.  

The MR-CT image synthesis subnetwork implements a probabilistic cycle-consistency GAN 

(CycleGAN), which contains two generators (𝐺𝐶𝑇  and 𝐺𝑀𝑅 ) that generate MR-to-CT and CT-to-MR 

mapping, respectively. The subnetwork synthesizes the moving synthetic CT image (𝐼𝐶𝑇
𝑠 ) from the moving 

MR image (𝐼𝑀𝑅) and the fixed synthetic MR image (𝐼𝑀𝑅
𝑠 ) from the fixed CT image (𝐼𝐶𝑇), along with the 

corresponding image synthesis uncertainties. Then the second subnetwork, dual-channel registration, uses 

two separate registration modules (𝑅𝑀𝑅 and 𝑅𝐶𝑇), to estimate the stationary velocity fields (SVF), 𝑣𝑀𝑅 and 

𝑣𝐶𝑇, between the fixed and moving image pairs in the respective imaging modality. A fusion module fuses 

the SVF estimations from the two channels, and a vector integration module (VecInt) [110] converts the 

fused SVF into a diffeomorphic deformation field (𝜙). Finally, the moving MR image (𝐼𝑀𝑅) is warped via 

a spatial transformer network (STN) to yield the registered MR image (𝐼𝑀𝑅 ∘ 𝜙), which is deformably 

aligned with the fixed image (𝐼𝐶𝑇).  

 
Figure 8.1. Flowchart for deformable MR-CT image registration using an unsupervised, dual-channel network. Both the moving 

MR (𝐼𝑀𝑅) and fixed CT (𝐼𝐶𝑇 ) are used to synthesize the corresponding cross-domain images via a probabilistic CycleGAN 

subnetwork. The probabilistic CycleGAN contains two generators, 𝐺𝐶𝑇 and 𝐺𝑀𝑅, and two discriminators, 𝐷𝐶𝑇 and 𝐷𝑀𝑅. A dual-

channel registration subnetwork then registers the single-channel moving/fixed image pairs by the CT and MR channel registration 

modules (𝑅𝑀𝑅 and 𝑅𝐶𝑇) and fuses the estimations into a single SVF with synthesis uncertainty weighting. The SVF is then mapped 

to a diffeomorphic deformation field 𝜙 via VectInt. Finally, a STN warps 𝐼𝑀𝑅 to obtain the registered image, 𝐼𝑀𝑅 ∘ 𝜙.  
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8.2.1 MR-CT Image Synthesis Using Probabilistic CycleGAN  

The first part of the unsupervised, end-to-end network uses a probabilistic CycleGAN for MR-CT 

image synthesis, which does not require paired training data. While image synthesis using CycleGAN is 

often formulated as a deterministic regression problem [118, 282], in this work CycleGAN is extended to 

a probabilistic framework to simultaneously estimate the mean and variance of cross-domain mapping. The 

probabilistic CycleGAN network estimates both the mean synthetic image and the associated aleatoric 

uncertainty of cross-domain mapping. The aleatoric uncertainty captures noise/uncertainty inherent in the 

imaging data [283, 284] that cannot be reduced even when the network is trained with unlimited data. The 

CycleGAN contains two generators, 𝐺𝐶𝑇  and 𝐺𝑀𝑅 , that learn the MR-to-CT and CT-to-MR mapping, 

respectively. Additionally, the subnetwork contains two discriminators, 𝐷𝐶𝑇 and 𝐷𝑀𝑅, which distinguish 

between real and synthetic images in the CT and MR domain, respectively. As shown in the two panels of 

Figure 8.2, the training stage of probabilistic CycleGAN includes two paths: the MR-CT-MR path that 

reconstructs an MR image from an input MR image; and the CT-MR-CT path that reconstructs a CT image 

from an input CT image. At test stage, only the generators are used to generate synthetic fixed and moving 

images for the subsequent registration subnetwork, as indicated in Figure 8.1. 

The architectures of the generators and discriminators are shown in Figure 8.2(c-d). The generators 

follow a 3D U-Net architecture, as shown in Figure 8.2(c), with 4 levels of encoders/decoders and skip 

connections in between. 3D convolutions are followed by instance normalization (IN) and Leaky rectified 

linear unit (LeakyReLU) activation to combat the effects of contrast difference across instances. The 

generator decoders use trilinear upsampling instead of transpose convolution to reduce the checkerboard 

artifacts in the synthetic images [285]. The output head of the U-Net generators (the last few convolutional 

layers) are modified and split into two output heads to predict both the mean and uncertainty (𝜎). Instead 

of directly predicting 𝜎, log(𝜎) is predicted for numerical stability [283]. Figure 8.2(d) illustrates the 

discriminator architecture, an extension from the Patch-GAN discriminator [286] to multi-scale Patch-GAN, 

which distinguishes real or synthetic image patches at 3 levels of image resolution. 



172 

 

 
Figure 8.2. Details of the probabilistic CycleGAN models for MR and CT image synthesis. Two generators (𝐺𝐶𝑇 and 𝐺𝑀𝑅) are 

learned to generate MR-to-CT and CT-to-MR mapping, while the two discriminators (𝐷𝐶𝑇 and 𝐷𝑀𝑅) are learned to distinguish 

between real and synthetic images in the CT and MR domain, respectively. The training of the CycleGAN optimizes adversarial 

loss (ℒ𝑎𝑑𝑣), cycle-consistency loss (ℒ𝑐𝑦𝑐𝑙𝑒), and structural-consistency loss (ℒ𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒). The training workflow includes two paths: 

cycled synthesis from (a) input MR image and (b) input CT image. (c) The generators (𝐺𝑀𝑅 and 𝐺𝐶𝑇) architecture, using U-Net 

architecture with two output heads for estimation of mean and uncertainty. (d) The discriminators (𝐷𝑀𝑅 and 𝐷𝐶𝑇) architecture, 

using a multi-scale patch architecture, which differentiate real and synthetic patches at three resolution levels. 

Loss functions of the MR-CT-MR path are explained below as an example, and the loss functions 

of the CT-MR-CT path can be similarly derived. The loss function of each path contains three components: 

the cycle-consistency loss, the adversarial loss, and the structural-consistency loss. The common practice 

of using 𝐿1 loss in image synthesis assumes that the synthetic image follows a Laplace distribution, which 

improves the sharpness of synthetic images compared to using L2 loss [286]. The generator, 𝐺𝐶𝑇, maps the 

input, 𝐼𝑀𝑅, to the CT domain synthetic image, 𝐼𝐶𝑇
𝑠 , as: 

𝐼𝐶𝑇
𝑠  ~ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝑥; 𝐼�̅�𝑇

𝑠 , 𝜎𝐶𝑇
𝑠 ) ≡

1

2𝜎𝐶𝑇
𝑠 exp(−

|𝑥 − 𝐼�̅�𝑇
𝑠 |

𝜎𝐶𝑇
𝑠 ) , (8.1𝑎) 

 (𝐼�̅�𝑇
𝑠 , 𝜎𝐶𝑇

𝑠 ) ← 𝐺𝐶𝑇(𝐼𝑀𝑅), (8.1𝑏) 

where 𝐼�̅�𝑇
𝑠  and 𝜎𝐶𝑇

𝑠  are the estimated mean and uncertainty from 𝐺𝐶𝑇, respectively. The synthetic CT image 

( 𝐼𝐶𝑇
𝑠 ) is a random sample of the Laplace distribution using the “re-parametrization trick” [287]. In 

CycleGAN, 𝐼𝐶𝑇
𝑠  is mapped back to the original MR domain via the CT-to-MR generator, 𝐺𝑀𝑅, and the 
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cycle-consistency loss is defined as the error between the original 𝐼𝑀𝑅 and the reconstructed 𝐼𝑀𝑅
𝑟 . Similar 

to Equation (8.1a, 8.1b), the reconstructed 𝐼𝑀𝑅
𝑟  follows a Laplace distribution: 

𝐼𝑀𝑅
𝑟  ~ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝑥; 𝐼�̅�𝑅

𝑟 , 𝜎𝑀𝑅
𝑟 ), (8.2𝑎)  

(𝐼�̅�𝑅
𝑟 , 𝜎𝑀𝑅

𝑟 ) ← 𝐺𝑀𝑅(𝐼𝐶𝑇
𝑠 ), (8.2𝑏)  

where 𝐼�̅�𝑅
𝑟  and 𝜎𝑀𝑅

𝑟  are the estimated mean and uncertainty of the reconstructed MR image from 𝐺𝑀𝑅 . 

Equation (8.2b) is solved using maximum likelihood, assuming that the voxel-wise residual error between 

the reconstructed image and the input image follow a zero-mean Laplace distribution: 

𝜀𝑀𝑅 = 𝐼𝑀𝑅 − 𝐼�̅�𝑅
𝑟  , (8.3𝑎)  

𝜀𝑀𝑅~𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝜖; 0, 𝜎𝑀𝑅
𝑟 ) ≡

1

2𝜎𝑀𝑅
𝑟 exp(−

|𝜖|

𝜎𝑀𝑅
𝑟 ) , (8.3𝑏)  

where 𝜀𝑀𝑅  is the voxel-wise residual error of the reconstructed MR image. In this work, the aleatoric 

uncertainty of each voxel is treated as independently and non-identically distributed, thus the overall 

likelihood of the reconstruction is given by: 

𝐿 = ∏𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝜀𝑀𝑅(𝑥𝑖)|0, 𝜎𝑀𝑅
𝑟 (𝑥𝑖))

𝑁

𝑖=1

= ∏
1

2𝜎𝑀𝑅
𝑟 (𝑥𝑖)

exp(−
|𝐼𝑀𝑅 − 𝐼�̅�𝑅

𝑟 |

𝜎𝑀𝑅
𝑟 (𝑥𝑖)

)

𝑁

𝑖=1

, (8.4) 

where 𝑁 is the number of voxels of the input image and 𝑥 denotes voxel location. The optimization of the 

CycleGAN generators maximizes the log likelihood (or minimizes the negative log likelihood), yielding 

the cycle-consistency loss (normalized by the total number of voxels, 𝑁): 

ℒ𝑐𝑦𝑐𝑙𝑒𝑀𝑅
= −

1

𝑁
log(𝐿)  = −

1

𝑁
∑log(

1

2𝜎𝑀𝑅
𝑟 (𝑥𝑖)

)

𝑁

𝑖=1

−
|𝐼𝑀𝑅 − 𝐼�̅�𝑅

𝑟 |

𝜎𝑀𝑅
𝑟 (𝑥𝑖)

  

=
1

𝑁
 ∑

|𝐼𝑀𝑅 − 𝐼�̅�𝑅
𝑟 |

𝜎𝑀𝑅
𝑟 (𝑥𝑖)

+ log(2𝜎𝑀𝑅
𝑟 (𝑥𝑖))

𝑁

𝑖=1

. (8.5)  

The path of reconstructing a CT image from the original input 𝐼𝐶𝑇, as shown in Figure 8.2(b), 

follows the same rationale by exchanging the MR and CT subscripts. The sum of losses from both directions 

gives the overall cycle-consistency loss: 
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ℒ𝑐𝑦𝑐𝑙𝑒(𝐺𝐶𝑇 , 𝐺𝑀𝑅) =
1

𝑁
∑

1

𝜎𝑀𝑅
𝑟 (𝑥𝑖)

|𝐼𝑀𝑅 − 𝐼�̅�𝑅
𝑟 | + log(2𝜎𝑀𝑅

𝑟 (𝑥𝑖))

𝑁

𝑖=1

                               +
1

𝑁
∑

1

𝜎𝐶𝑇
𝑟 (𝑥𝑖)

|𝐼𝐶𝑇 − 𝐼�̅�𝑇
𝑟 | + log(2𝜎𝐶𝑇

𝑟 (𝑥𝑖))

𝑁

𝑖=1

. (8.6)

 

Each term in Equation (8.6) contains two factors: (1) the L1 norm between the mean reconstructed image 

and the input image with voxel-wise uncertainty weighting; and (2) the summation of the uncertainties, 

which prevents the uncertainties from growing infinitely large.  

The adversarial loss of the probabilistic CycleGAN is defined as a least-square minimization in 

matching the discriminator output of the mean synthetic images to that of cross-domain target images: 

ℒ𝑎𝑑𝑣(𝐺𝐶𝑇, 𝐷𝐶𝑇 , 𝐺𝑀𝑅 , 𝐷𝑀𝑅) = 𝐷𝐶𝑇(𝐼�̅�𝑇
𝑠 )2 + (1 − 𝐷𝐶𝑇(𝐼𝐶𝑇))

2
+ 𝐷𝑀𝑅(𝐼�̅�𝑅

𝑠 )2 + (1 − 𝐷𝑀𝑅(𝐼𝑀𝑅))
2
. (8.7)  

In training, 𝐺𝐶𝑇 attempts to generate synthetic CT images close to a real CT image, while 𝐷𝐶𝑇 attempts to 

differentiate between the synthetic CT and the real CT image. The action of 𝐺𝑀𝑅 and 𝐷𝑀𝑅 is analogous, 

respectively, relative to the synthetic and real MR image. 

Additionally, since deformations exist between the training MR and CT image pairs, a structural 

consistency loss using MIND is added to maintain the input image structure within the synthetic images 

[288]. As noted in Chapter 1, MIND is a multi-modality patch-based feature extractor that describes the 

local structure around each voxel as a feature vector. The structural-consistency loss is then defined as the 

L1 norm between the structural features of the synthetic and input images: 

ℒ𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒(𝐺𝐶𝑇 , 𝐺𝑀𝑅) =
1

𝑁𝑁𝑀𝐼𝑁𝐷

∑|𝑀𝐼𝑁𝐷(𝐼�̅�𝑇
𝑠 (𝑥𝑖)) − 𝑀𝐼𝑁𝐷(𝐼𝑀𝑅(𝑥𝑖))|

𝑁

𝑖=1

+∑|𝑀𝐼𝑁𝐷(𝐼�̅�𝑅
𝑠 (𝑥𝑖)) − 𝑀𝐼𝑁𝐷(𝐼𝐶𝑇(𝑥𝑖))|

𝑁

𝑖=1

, (8.8)

 

where 𝑁𝑀𝐼𝑁𝐷 is the length of features in MIND, defined by the number of sampled neighborhood locations. 

In this work, MIND was implemented with 𝑁𝑀𝐼𝑁𝐷= 6 nearest neighbors and computed using local patch of 

size 7x7x7, with details of the parameter selection discussed in Section 8.4.1. 
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Given the definitions of the adversarial, cycle, and structural-consistency losses, the training loss 

of the probabilistic CycleGAN is defined as: 

ℒ𝐺𝐴𝑁 = ℒ𝑎𝑑𝑣(𝐺𝐶𝑇 , 𝐷𝐶𝑇 , 𝐺𝑀𝑅 , 𝐷𝑀𝑅) + 𝜆𝑐𝑦𝑐𝑙𝑒ℒ𝑐𝑦𝑐𝑙𝑒(𝐺𝐶𝑇 , 𝐺𝑀𝑅) + 𝜆𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒ℒ𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒(𝐺𝐶𝑇 , 𝐺𝑀𝑅), (8.9) 

where 𝜆𝑐𝑦𝑐𝑙𝑒 and 𝜆𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 control the relative importance of the cycle-consistency loss and structural-

consistency loss. The network is trained by alternating between updating 𝐷𝐶𝑇 and 𝐷𝑀𝑅 (with 𝐺𝐶𝑇 and 𝐺𝑀𝑅 

fixed) and updating 𝐺𝐶𝑇 and 𝐺𝑀𝑅 (with 𝐷𝐶𝑇 and 𝐷𝑀𝑅 fixed). 

8.2.2 Dual-Channel Registration 

Through the probabilistic CycleGAN described in Section 8.2.1, the moving MR image (𝐼𝑀𝑅) and 

fixed CT image (𝐼𝐶𝑇) are synthesized to their corresponding cross-domain images, 𝐼𝐶𝑇
𝑠  and 𝐼𝑀𝑅

𝑠 , respectively. 

In this work, the mean synthetic images (𝐼�̅�𝑇
𝑠  and 𝐼�̅�𝑅

𝑠 ) are used as inputs to the registration subnetwork, 

while the uncertainty estimates (𝜎𝐶𝑇
𝑠  and 𝜎𝑀𝑅

𝑠 ) are used to weight the relative contributions of MR and CT 

channel registration loss. 

The dual-channel registration subnetwork uses two single-modality registration modules (𝑅𝑀𝑅 and 

𝑅𝐶𝑇) with identical network architecture to estimate the deformation field associated with the MR and CT 

channel, respectively. The architecture of 𝑅𝑀𝑅 and 𝑅𝐶𝑇 is shown in Figure 8.3, with a U-Net architecture 

similar to that in VoxelMorph [109]. Some modifications include: (1) adding instance normalization after 

the first two convolution blocks of the encoder to remove the effects of contrast differences across different 

registration instances; and (2) increasing the number of features in the deeper layers for more accurate 

modeling of the registration function. The encoder uses 3D convolutions with stride of 2 for downsampling 

(i.e., computing convolution at locations equally spaced by 2 voxels in each dimension). The decoder uses 

3D trilinear upsampling to restore the spatial resolution. For the MR channel, with 𝐼𝑀𝑅 as the moving image 

and 𝐼�̅�𝑅
𝑠  as the fixed image, 𝑅𝑀𝑅 predicts an SVF, 𝑣𝑀𝑅, a vector field that is constant over time and the 

integration of which (over time) defines the deformation field. Similarly for the CT channel, given 𝐼�̅�𝑇
𝑠  as 

the moving image and 𝐼𝐶𝑇 as the fixed image, 𝑅𝐶𝑇 predicts a CT channel SVF, 𝑣𝐶𝑇. 
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Figure 8.3. Detailed architecture of the mono-modality registration module (𝑅𝑀𝑅  and 𝑅𝐶𝑇). The U-Net architectures use the 

concatenation of the fixed and moving images as input to output a 3D SVF.  

The two SVFs, 𝑣𝑀𝑅 and 𝑣𝐶𝑇, are concatenated into a single tensor and a fusion module is applied 

to estimate the combined SVF, 𝑣. The fusion module consists of two 3D convolutions with kernel size of 

3×3×3. As discussed in Section 7.2.3, vector field exponentiation provides a diffeomorphic transformation 

and can be approximated by the scaling and squaring algorithm. Following the implementation in [110], a 

seven-step scaling and squaring module (VecInt) is used to recursively perform vector field exponentiation, 

resulting in the final diffeomorphic deformation field, 𝜙 = exp(𝑣). Finally, the moving image is warped 

according to 𝜙 via a spatial transformer layer. 

During training, an unsupervised loss is evaluated to measure the similarity between the warped 

moving image and the fixed image. Due to the challenges associated with multi-modality similarity metrics 

(e.g., MI), a mono-modality similarity metrics, local NCC [109], is computed in both the MR and CT 

channel: 

ℒ𝑠𝑖𝑚(𝑅𝑀𝑅 , 𝑅𝐶𝑇) = −𝑤𝑀𝑅𝑁𝐶𝐶(𝐼𝑀𝑅 ∘ 𝜙, 𝐼�̅�𝑅
𝑠 ) − 𝑤𝐶𝑇𝑁𝐶𝐶(𝐼�̅�𝑇

𝑠 ∘ 𝜙, 𝐼𝐶𝑇), (8.10) 

where 𝑤𝑀𝑅 and 𝑤𝐶𝑇 denotes the weight parameters for the MR and CT channel similarity loss, respectively. 

The negative sign of each term makes the optimization a minimization problem. In a naïve approach, 𝑤𝑀𝑅 

and 𝑤𝐶𝑇 can be two scalar hyper-parameters that control the relative importance of the MR and CT channel 

in registration. However, the MR and CT imaging modalities present different information at different 

anatomical structures (e.g., higher white-gray matter contrast in MR and higher brain parenchyma-skull 

contrast in CT). Such spatially varying importance of the two channels cannot be fully modeled by scalars.  
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In this work, a novel weighting scheme is proposed that uses the aleatoric uncertainty estimation 

from the image synthesis subnetwork. The uncertainties, 𝜎𝑀𝑅
𝑠  and 𝜎𝐶𝑇

𝑠 , from the Laplace distribution, are 

the input uncertainties to the corresponding channel registration, which describe the uncertainties intrinsic 

to the MR-to-CT and CT-to-MR synthesis process. The similarity loss computed at a particular location is 

weighted in inverse proportion to the input uncertainty (of the MR and CT channels) at that location. The 

inverse weighting of the uncertainties, therefore, provides a simple and elegant way of spatial weighting of 

the two-channel similarity losses: 

𝑤𝑀𝑅 =
𝜎𝐶𝑇

𝑠

𝜎𝑀𝑅
𝑠 ∘ 𝜙 + 𝜎𝐶𝑇

𝑠  (8.11𝑎)  

𝑤𝐶𝑇 =
𝜎𝑀𝑅

𝑠 ∘ 𝜙

𝜎𝑀𝑅
𝑠 ∘ 𝜙 + 𝜎𝐶𝑇

𝑠  , (8.11𝑏) 

where 𝜎𝑀𝑅
𝑠 ∘ 𝜙 denotes the warped MR uncertainty that is deformably aligned with the fixed image (𝐼𝐶𝑇), 

and the sum of the two weights equals 1 everywhere. Intuitively, if an input is uncertain, the prediction 

based on the input should be weighed less. Similarly, for dual-channel registration, aleatoric uncertainties 

of the synthetic images denote regions that have a higher likelihood of being inaccurate (i.e., inaccurate 

image intensity or suboptimal edge generation), which can potentially lead to deteriorated registration 

performance and is thus down-weighed via the spatial weighting in Equation (8.11). 

An additional regularization is applied on the deformation field, 𝜙, to encourage smoothness: 

ℒ𝑠𝑚𝑜𝑜𝑡ℎ(𝑅𝑀𝑅, 𝑅𝐶𝑇) = ∑‖𝛻𝜙(𝑥)‖2

𝑥∈Ω

, (8.12) 

which reflects the L2 norm of the gradient of the deformation field. The combined loss function for the 

registration task is therefore: 

ℒ𝑟𝑒𝑔 = 𝐿𝑠𝑖𝑚(𝑅𝑀𝑅 , 𝑅𝐶𝑇) + 𝜆𝑠𝑚𝑜𝑜𝑡ℎℒ𝑠𝑚𝑜𝑜𝑡ℎ(𝑅𝑀𝑅 , 𝑅𝐶𝑇), (8.13) 

where 𝜆𝑠𝑚𝑜𝑜𝑡ℎ is a weighting parameter on the smoothness regularization term. For test cases, the final, 

predicted deformation field directly warps the preoperative 𝐼𝑀𝑅 to produce the registered image, 𝐼𝑀𝑅 ∘ 𝜙. 
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8.2.3 End-to-End Learning of Image Synthesis and Registration 

The proposed unsupervised deformable registration network contains two subnetworks (a 

probabilistic CycleGAN for MR and CT cross-domain synthesis) and a dual-channel registration 

subnetwork for intra-modality registration of both the MR and CT channels, with fusion of the channel 

outputs to a single deformation field. To more fully investigate the behavior and performance of the network, 

two training strategies were implemented – a sequential training strategy and an end-to-end training strategy. 

The sequential training strategy, referred to below as “SEQ”, sequentially trains the two 

subnetworks and is a common training strategy demonstrated in previous work for image synthesis in multi-

modality registration [117, 119, 276, 278, 289]. The SEQ training first optimizes the image synthesis 

subnetwork via Equation (8.6) and then optimizes the dual-channel registration subnetwork via Equation 

(8.13) with the image synthesis subnetwork fixed. While such a training strategy is intuitive and can be 

expected to produce the most realistic image synthesis, optimization of image synthesis and registration are 

separate, do not benefit one another, and may not be optimal to the overall task of inter-modality registration.  

To optimize the joint parameter space of the image synthesis and registration subnetworks, a novel 

end-to-end training strategy, referred to below as “E2E”, was implemented. The E2E training first optimizes 

the image synthesis subnetwork via Equation (8.6) and then optimizes the two subnetworks jointly in an 

end-to-end manner by optimizing a combined loss function: 

ℒ𝐸2𝐸 = ℒ𝐺𝐴𝑁 + 𝜆𝑟𝑒𝑔ℒ𝑟𝑒𝑔 , (8.14) 

where 𝜆𝑟𝑒𝑔 is a hyperparameter controlling the relative importance of the image synthesis loss and the 

registration loss. The first phase of the E2E training provides a reasonable initialization of the image 

synthesis subnetwork that is essential for stable optimization of the second phase. The second phase of the 

E2E training allows gradient backpropagation from the registration loss to the image synthesis subnetwork, 

driving the probabilistic CycleGAN to generate synthetic images that are advantageous to the registration 

task. To improve training stability, the gradients from the synthetic images (𝐼�̅�𝑅
𝑠  and 𝐼�̅�𝑇

𝑠 ) are stopped in 

computing 𝐿𝑟𝑒𝑔. Even though the synthetic images from E2E may be less accurate than the synthetic images 
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from SEQ, such images are only used in the intermediate step of the registration network. Thus, the goal of 

E2E training is to find an intermediate synthesis domain that is more optimal to registration performance 

(despite changes in the image synthesis). 

8.3 Experimental Methods 

8.3.1 Image Datasets 

Three datasets were used in training, validation, and testing of the proposed method. The first 

dataset contained 50 paired T1-weighted MR and CT images (acquired under IRB-approved protocol in 

collaboration with the Department of Radiation Oncology) acquired on the same day without neuro-

intervention or evidence of deformation. These images were used to create a large dataset with simulated 

deformations as detailed below. A second dataset (acquired under IRB-approved protocol in collaboration 

with the Department of Radiation Oncology) consisted of 9 MR images with the same MR scan protocols 

as the first dataset along with 9 corresponding CT images with real deformations that were acquired 6 

months to 3 years apart from the MR images. These images were used to test the algorithms trained using 

the first dataset. A third dataset (acquired under IRB-approved protocol in collaboration with the 

Department of Neurosurgery) comprised 16 MR images (with a broad variety of MR scan protocols) and 

16 corresponding CT images exhibiting large deformations resulting from neurosurgical intervention. 

These images were used to further test the method under conditions of large, realistic deformations, 

including additional transfer learning to accommodate variations in MR scan protocols. 

8.3.1.1 Paired MR/CT with Simulated Deformations 

Fifty pairs of T1-weighted MR and CT images were acquired on the same day with no evidence of 

deformation. The CT images were acquired using a Brilliance Big Bore CT scanner (Philips Medical 

Systems, Netherlands) with standard head scan protocols (120 kV, 400-550 mAs) and reconstructed at 

voxel size ranging between 0.6×0.6×1.0 mm³ and 1.0×1.0×1.0 mm³. The T1-weighted MR scans were 

acquired using a Magnetom Espree 1.5T scanner (Siemens Medical Solutions, Malvern, PA) with a spin 
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echo pulse sequence (TR = 1130 ms, TE = 4.24 ms, TI = 600 ms, and flip angle = 15 deg) and reconstructed 

at 0.5×0.5×1.0 mm³ voxel size.  

The MR and CT pairs were first rigidly registered using iterative optimization of MI similarity via 

3D Slicer and ITK library [290]. To fit within GPU memory, MR and CT images were resampled to 

1.5×1.5×1.5 mm³ isotropic spacing and cropped to 128×160×128 voxels to capture the entire brain at the 

center of the field of view. The CT images were normalized to the range 0 – 1 for voxel values between -

100 to 100 HU to expand the dynamic range around soft tissue (clipping values below -100 HU (air) and 

above 100 HU (bone) to 0 and 1, respectively). The MR images were similarly normalized to the range 0 – 

1 for the 1-99th percentile of MR image intensities. Skull stripping was not performed, and the proposed 

network is intended to solve brain deformations within the context of surrounding rigid anatomy.  

To generate training and testing data for deformable registration, random deformations were 

simulated that emulate brain deformations during neurosurgical applications due to CSF egress. The 

deformation simulation method originated from the method from Chapter 7, Section 7.3.1  and was 

extended in [291] to model more complex deformation patterns. Deformations were modeled according to 

points randomly placed within the ventricles that attract or repulse surrounding brain tissue and CSF 

according to a 3D inverse power-law with distance. By combining the contributions of a random number 

of sources, the overall simulated deformation is: 

𝜙𝑠𝑖𝑚(𝒙) = exp (∑
𝛼𝑖

|𝒔𝒊 − 𝒙|𝛽𝑖
(𝒔𝒊 − 𝒙)

𝑁

𝑖=1

) , (8.15) 

where 𝑠 is the source location, 𝛼 is the maximum deformation magnitude, 𝛽 is the power-law decay rate, 

and 𝑁 is the number of sources. The operation exp( ) reflects the diffeomorphic mapping computed by the 

VecInt module. We select 𝛼, 𝛽, and 𝑁 in uniform distribution between 2-5 mm, 0.005-0.01, and 1-5, 

respectively for each simulated source. Deformations outside the brain were clipped to 0 to prevent 

unrealistic deformations of the skull or irrelevant deformations outside the skull. Since the sources were 
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placed within deep regions of the brain, deformation at the inner boundary of the skull were small enough 

that we did not observe edge effects from clipping the motion vector field.  

The moving images 𝐼𝑀𝑅 were obtained by warping MR images with the simulated deformations, 

while the undeformed CT images were taken as the fixed images, 𝐼𝐶𝑇. Figure 8.4(a-c) shows multiple 

instances of 𝐼𝑀𝑅 warped with simulated deformations from the same MR image, demonstrating the wide 

range of deformation patterns the proposed simulation method can produce. As shown in Figure 8.4(d), the 

simulation resulted in deformation magnitude up to 12 mm, comparable to the magnitude of deep brain 

deformation in deep brain stimulation surgery [10]. In total, 45 subjects were used to simulate a total of 400 

training and 10 validation pairs, and the remaining 5 subjects were used as 10 testing pairs. During training, 

augmentation of random rigid transformations (translations of 0-10 mm and rotations of 0-10°) were applied 

to the image pairs to avoid overfitting. 

 
Figure 8.4. 3D diffeomorphic deformation simulation from the same MR image. (a-c) Three instances of the warped MR image at 

the same axial slice. Yellow asterisks mark the locations of points of attraction or repulsion (Equation 12) projected to this axial 

slice. Green and purple contours represent the ventricle boundary as seen in the MR image before deformation. (d) Histogram of 

deformation magnitude in the 10 simulated test cases with up to 12 mm deformation. 

Registration performance was quantitatively evaluated first in terms of the alignment of segmented 

structures, including DSC, mean surface distance (SD), and Hausdorff distance (HD). Segmentations of the 

lateral, third and fourth ventricles, amygdala, hippocampus, caudate nucleus and thalamus were obtained 

automatically from MALPEM, a state-of-the-art segmentation tool that has been validated on several brain 

datasets [292]. Segmentations were computed on MR images before deformation and were warped by the 

simulated deformations to give the moving image segmentations. The accuracy automatic segmentations 
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were evaluated with respect to manual segmentations performed on three MR images, with DSC of 0.95 ±

0.01 for the lateral ventricles and 0.90 ± 0.03 for other anatomical structures.  Additionally, TRE was 

evaluated in terms of the Euclidean distance between the predicted deformation and the ground truth 

simulated deformation on target points. Thirty target points were defined by the centroid of small (< 1500 

mm³) anatomical segmentations throughout the brain (e.g., the amygdala, ventral diencephalon, and medial 

orbital gyrus). Finally, the Jacobian determinant (|𝐽𝜙|) of the deformation field was computed, with |𝐽𝜙| <

0 indicative of non-diffeomorphic folding or tearing. 

Registration runtime was recorded for test cases. The deformable registration network was 

implemented using Keras with a Tensorflow backend and trained on an NVIDIA Quadro RTX 6000. The 

sequential training (SEQ) required 12 GB of GPU memory, and the end-to-end (E2E) training required 24 

GB of GPU memory. Due to the high memory usage for training the 3D network, batch size was set to 1, 

and the Adam optimizer with default parameters and a learning rate of 2x10-4 was used. 

8.3.1.2 Paired MR/CT with Real Deformations 

The second dataset contained paired MR and CT scans of 9 subjects with substantial brain 

deformation associated with radiosurgical intervention and longitudinal brain deformation between the two 

scans (separated by 6 months to 3 years). The same MR and CT scan protocols were used. The MR image 

from the initial scan was used as the moving image, and the CT image from the second scan was used as 

the fixed image.  

The same preprocessing steps as in Section 8.3.1.1 were applied, including rigid registration, 

resampling, cropping, and normalization. Since this dataset shares the same imaging protocol as in Section 

3.1.1, no retraining or transfer learning was required. Instead, registration performance was evaluated 

directly using network models trained from the simulated deformations described in Section 8.3.1.1. 

Automatic segmentations were obtained from the MR images at both time points using MALPEM, and 

DSC, SD, HD, and TRE were evaluated. 
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8.3.1.3 Neurosurgery Dataset with Real Deformations 

To further evaluate the performance of the registration method on real deformations induced by 

neurosurgical intervention, 16 cases with preoperative T1-weighted MR and intraoperative/postoperative 

CT were collected in an IRB-approved retrospective clinical study. Each case exhibited substantial 

deformation owing to CSF egress associated with burr hole incision, endoscope sheath placement, and/or 

shunt placement. The MR images were acquired on different machines with a wide range of imaging 

protocols (i.e., spin echo / MP-RAGE pulse sequences, 1.5T / 3T, 2D axial / 2D sagittal, and different voxel 

sizes ranging from 0.45×0.45×0.9 mm³ to 0.94×0.94×5 mm³). The CT images were acquired on a Somatom 

Definition scanner (Siemens Healthineers, Erlangen Germany), and images were reconstructed at either 

0.4×0.4×0.5 mm³ or 0.45×0.45×0.5 mm³. 

Following the same preprocessing steps as in Section 8.3.1.1, the MR and CT image pairs were 

rigidly registered, resampled to 1.5×1.5×1.5 mm³, cropped to 128×160×128 voxels, and the signal 

normalized to 0-1. Registration performance was evaluated in terms of DSC, SD, HD, and TRE. For the 

segmentation-based metrics, the preoperative MR images were segmented via MALPEM, while the 

intraoperative CT images were first synthesized to MR via probabilistic CycleGAN, then segmented via 

MALPEM as an initialization, and the resulting segmentations were manually corrected to yield 

segmentations in the fixed image. For analysis of TRE, six target points were manually defined for each 

case using unambiguous anatomical landmarks visible in both MR and CT (e.g., the anterior commissure, 

interventricular foramen, and the most posterior point on the lateral ventricle posterior horn). 

Due to the significant changes in scan protocols in this dataset, and the resulting variations in image 

intensity, resolution, and texture, direct application of the networks trained in Section 8.3.1.1 was 

unsuccessful. Therefore, a transfer learning approach was applied to adapt from the paired MR/CT dataset 

with simulated deformations to the neurosurgery dataset with real deformations. The entire pre-trained 

model (with no frozen layers) was used as an initialization and was refined on the neurosurgery dataset with 

a much smaller learning rate. In this experiment, 10 random cases were used for transfer learning training, 
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and 6 cases were used for testing. To improve the robustness of the transfer learning, data augmentation 

was applied by applying random rigid transformations (uniformly distributed translations of 0-10 mm and 

rotations of 0-10°). The transfer learning used Adam optimizer with a small learning rate of 2x10-5 trained 

with 80 epochs. Further training resulted in overfitting. 

8.3.2 Ablation Studies 

To investigate the effect of multiple elements of the proposed deformable registration method, a 

series of ablation studies was performed on the paired MR/CT dataset with simulated deformations. As 

detailed in Table 8.1, each ablation study removed a particular aspect of the method, and both sequential 

(SEQ) and end-to-end (E2E) training were performed. The parameters of each study were individually 

optimized according to the validation data. A total of 9 studies (8 ablation studies along with the final 

proposed method, denoted E2E:2CH+U) were implemented. Parameter selection of the methods is 

documented in Section 8.4.1.  

Table 8.1. Eight variations in network design investigated via ablation studies. The abbreviation of each method contains two parts 

– a training strategy (SEQ or E2E) and the channels used for registration (CT, MR, MR-CT, or 2CH, the last of which denotes dual 

CT+MR channels). Inclusion of the spatially varying uncertainty in image synthesis is represented by +U. The proposed method 

is thus denoted E2E:2CH+U, denoting end-to-end training, dual CT and MR channel registration, and inclusion of spatially varying 

uncertainty. 

 Training Synthesis Registration 

Method SEQ E2E 

MR-

to-CT 

𝐺𝐶𝑇 

CT-

to-

MR 

𝐺𝑀𝑅 

CT 

Channel 

𝑅𝐶𝑇 

MR 

Channel 

𝑅𝑀𝑅 

MR-CT 

Channel 

RMR−CT 

Fusion 
Uncertainty 

Weighting 

S
eq

u
en

ti
a

l 

SEQ:CT ⨯  ⨯  ⨯     

SEQ:MR ⨯   ⨯  ⨯    

SEQ:MR+Multi ⨯   ⨯  ⨯ ⨯ ⨯  

SEQ:2CH ⨯  ⨯ ⨯ ⨯ ⨯  ⨯  

SEQ:2CH+U ⨯  ⨯ ⨯ ⨯ ⨯  ⨯ ⨯ 

E
n

d
-t

o
-E

n
d

 E2E:CT  ⨯  ⨯ ⨯     

E2E:MR  ⨯ ⨯   ⨯    

E2E:2CH  ⨯ ⨯ ⨯ ⨯ ⨯  ⨯  

E2E:2CH+U 

(proposed) 
 ⨯ ⨯ ⨯ ⨯ ⨯ 

 
⨯ ⨯ 
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8.3.2.1 Sequential Training 

The first set of ablation studies evaluated the effect of dual-channel registration compared to single-

channel registration: 

SEQ:CT. A network using probabilistic CycleGAN for MR-to-CT image synthesis and mono-

modality registration in the CT domain (denoted by SEQ:CT) was first implemented. The network only 

used the MR-to-CT generator (𝐺𝐶𝑇) in the CycleGAN to generate a moving synthetic CT image from the 

moving MR image and used 𝑅𝐶𝑇 alone for registration. Since no dual-channel fusion was required, the 

fusion module shown in Figure 8.1 was removed, and the SVF output from 𝑅𝐶𝑇 was directly mapped by 

the VecInt module to the final diffeomorphic deformation 𝜙. While the loss function of the CycleGAN was 

unchanged, the registration subnetwork optimized a new loss: 

ℒ𝑟𝑒𝑔 = ℒ𝑠𝑖𝑚(𝐼𝑠
𝐶𝑇 ∘ 𝜙, 𝐼𝐶𝑇) + 𝜆𝑠𝑚𝑜𝑜𝑡ℎℒ𝑠𝑚𝑜𝑜𝑡ℎ(𝜙), (8.16) 

where the regularization parameter (𝜆𝑠𝑚𝑜𝑜𝑡ℎ) was set to 2 according to parameter sweep detailed in Section 

8.4.1. The same value of 𝜆𝑠𝑚𝑜𝑜𝑡ℎ was used for all registration loss functions using NCC similarity metric. 

The same probabilistic CycleGAN parameters as in Section 8.3.2 were used for SEQ:CT  and each of the 

following ablation studies. SEQ:CT exercised the same ideas proposed in [117, 118], which sequentially 

performed MR-CT image synthesis and CT domain registration.  

SEQ:MR. A network using CT-to-MR image synthesis and intra-modality registration in the MR 

domain (denoted SEQ:MR) was implemented using the CT-to-MR generator (𝐺𝑀𝑅) and intra-modality 

registration module 𝑅𝑀𝑅. The loss function of SEQ:MR is given by: 

ℒ𝑟𝑒𝑔 = ℒ𝑠𝑖𝑚(𝐼𝑀𝑅 ∘ 𝜙, 𝐼𝑠
𝑀) + 𝜆𝑠𝑚𝑜𝑜𝑡ℎℒ𝑠𝑚𝑜𝑜𝑡ℎ(𝜙). (8.17) 

Note that SEQ:MR used the same registration strategy as in [120], performing MR-CT image synthesis and 

MR domain registration sequentially. 

The second set of ablation studies focused on the effect of dual-channel registration and uncertainty 

weighting: 
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SEQ:MR+Multi. A dual-channel registration following [278] was implemented, which fused 

single-modality MR registration  with multi-modality MR-CT registration. Following the original 

implementation, SEQ:MR+Multi optimized a multi-modality similarity loss: 

ℒ𝑟𝑒𝑔 = 𝑆𝑆𝐼𝑀(𝐼𝑀𝑅 ∘ 𝜙, 𝐼𝐶𝑇) + 𝜆𝑠𝑚𝑜𝑜𝑡ℎℒ𝑠𝑚𝑜𝑜𝑡ℎ(𝜙), (8.18) 

where SSIM represents structural similarity index measure.  

SEQ:2CH. The proposed network as illustrated in Figure 8.1 was implemented but replacing the 

uncertainty weighting in Equation (8.10-8.11) with scalars, 𝑤𝑀𝑅 = 𝑤𝐶𝑇 = 0.5 (denoted as SEQ:2CH). 

The above ablation variations, SEQ:CT, SEQ:MR, SEQ:MR+Multi, and SEQ:2CH investigated the 

performance of CT, MR, and two variants of dual channels registration.  

SEQ:2CH+U. Finally, the sequential method denoted SEQ:2CH+U using both dual-channel 

registration and uncertainty weighting was trained. Both dual-channel networks minimized the registration 

loss defined in Equation (8.13). The comparison between SEQ:2CH and SEQ:2CH+U probed the extent to 

which the spatially varying uncertainty weighting affects dual-channel registration.  

8.3.2.2 End-to-End Training 

The impact of end-to-end (E2E) training was further investigated in comparison to the sequential 

(SEQ) training. For single-channel registration in the CT domain (SEQ:CT), single-channel registration in 

the MR domain (SEQ:MR), and dual-channel registration with uncertainty weighting (SEQ:2CH+U) as 

described in Section 8.3.2.1, the corresponding end-to-end networks were trained, yielding E2E:CT, 

E2E:MR, and E2E:2CH+U, respectively. The E2E training of dual-channel registration without uncertainty 

weighting (denoted E2E:2CH) was omitted due to comparable performance found using only the MR 

channel, discussed further in Section 8.4.2.2. The E2E training optimized the combined loss function for 

image synthesis and registration via Equation (8.14), with ℒ𝑟𝑒𝑔 for each method defined in Equation (8.16), 

(8.17), and (8.12), for respective E2E:CT, E2E:MR, and E2E:2CH+U.  
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8.3.3 Baseline Methods 

8.3.3.1 Symmetric Normalization (SyN) 

The proposed registration method was compared to SyN [24, 293], a iterative optimization-based 

deformable registration algorithm that was described in Chapter 7. For MR-CT registration of the brain, MI 

similarity metric was selected, and a parameter search was performed to maximize DSC on both the paired 

MR/CT dataset and the neurosurgery dataset, yielding the following parameter selections for the paired 

MR/CT dataset: step size 0.5, update field Gaussian smoothing 2 voxels, deformation field Gaussian 

smoothing 1 voxel, 4×2×1 multiresolution pyramid, convergence criteria of 1x10-5, and 32 histogram bins 

for MI calculation. For the neurosurgery dataset: step size 0.25, update field Gaussian smoothing 5 voxels, 

deformation field Gaussian smoothing 0 voxels, 4×2×1 multiresolution pyramid, convergence when MI 

change between iterations is below 1x10-5, and 32 histogram bins for MI calculation. Parameter selection 

is more fully detailed in Section 8.4.1. 

8.3.3.2 VoxelMorph 

To compare performance of the proposed method with other learning-based registration approaches, 

multi-modality VoxelMorph [115] was implemented using MI as a similarity metric (denoted as VM-MI). 

For fair comparison, VM-MI used the same registration architecture as in Section 8.2.2, with the U-Net 

registration network modified from the original VoxelMorph [109]. Multi-modality input (𝐼𝑀𝑅 𝑎𝑛𝑑 𝐼𝐶𝑇) 

were directly input to the registration without performing image synthesis. The VecInt module that 

encourages diffeomorphism was also included in VM-MI. Additionally, a weakly-supervised VoxelMorph 

(denoted as VM-Seg) was tested [109], which combined MI similarity with an auxiliary DSC loss of 

anatomical segmentations: 

ℒreg = 𝑀𝐼(𝐼𝑀𝑅 ∘ 𝜙, 𝐼𝐶𝑇) + 𝜆𝑠𝑚𝑜𝑜𝑡ℎℒ𝑠𝑚𝑜𝑜𝑡ℎ(𝜙) + 𝜆𝑠𝑒𝑔𝐷𝑖𝑐𝑒(𝑠𝑀𝑅 ∘ 𝜙, 𝑠𝐶𝑇), (8.19) 

where 𝑠𝑀𝑅 and 𝑠𝐶𝑇 are the anatomical segmentations from the moving MR and fixed CT, respectively, and 

𝜆𝑠𝑒𝑔 is a hyperparameter controlling the strength of supervision from segmentations. The segmentations 

were used only in training and not at testing time. The hyperparameter selection is detailed in Section 8.4.1. 
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8.4 Results 

8.4.1 Parameter Selection 

8.4.1.1 Probabilistic CycleGAN Image Synthesis  

The image synthesis subnetwork contains the following parameters: cycle-consistency loss 

parameter (𝜆𝑐𝑦𝑐𝑙𝑒), structural-consistency loss parameter (𝜆𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒), and MIND patch size. 𝜆𝑐𝑦𝑐𝑙𝑒 was 

searched in the range 1-20, and 𝜆𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 was searched in the range 0.5-10. Ten trainings were conducted 

with random samples of the two parameters, and the plot in Figure 8.5(a) shows the overall MAE of mean 

synthetic images (combining normalized MR and CT images) on the validation dataset of paired MR/CT 

images with simulated deformations. Nominal values of 𝜆𝑐𝑦𝑐𝑙𝑒 = 10  and 𝜆𝑐𝑦𝑐𝑙𝑒 = 5  were selected to 

minimize the MAE. Performance was relatively insensitive to the choice of MIND patch size. Three-

dimensional patch sizes of 5×5×5, 7×7×7, and 9×9×9 were evaluated and found to yield comparable MAE; 

therefore, a 3D patch size of 7×7×7 was used in the work. The probabilistic CycleGAN was trained with 

the Adam optimizer with learning rate of 2x10-4, and an early stopping criterion was set such that the 

decrease in validation MAE was less than 0.002. 

 
Figure 8.5. Network parameter selection. (a) Sensitivity MAE to the choice of image synthesis parameters, 𝜆𝑐𝑦𝑐𝑙𝑒  and 𝜆𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙, 

in the validation set. 𝜆𝑐𝑦𝑐𝑙𝑒 = 10 and 𝜆𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 = 5 were selected to minimize MAE. (b) Sensitivity of the DSC to the choice of 

the registration parameter (𝜆𝑠𝑚𝑜𝑜𝑡ℎ) in the validation set. An optimal value of 2 was identified to maximize DSC.  

8.4.1.2 Dual-Channel Registration and Ablation Studies 

The registration subnetwork contains one hyperparameter – the deformation smoothness 

regularization,  𝜆𝑠𝑚𝑜𝑜𝑡ℎ. A parameter search on 𝜆𝑠𝑚𝑜𝑜𝑡ℎ was performed over the range 0-5, and Figure 
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8.5(b) shows the DSC versus 𝜆𝑠𝑚𝑜𝑜𝑡ℎ  in the validation set from SEQ:2CH+U. An optimal value of 2 was 

selected, with smaller 𝜆𝑠𝑚𝑜𝑜𝑡ℎ  leading to less smooth and under-regularized deformations and larger 

𝜆𝑠𝑚𝑜𝑜𝑡ℎ leading to overly rigid deformations. The same value was used in all the other ablation variations. 

For end-to-end training, one additional hyperparameter, 𝜆𝑟𝑒𝑔, was used to balance between the 

image synthesis and registration loss. Optimal parameter selection was inspired by use of gradient 

normalization for adaptive loss balancing [294], which balances among loss functions of multiple tasks. In 

this work, a simplified gradient normalization was applied only at the beginning of training to estimate 𝜆𝑟𝑒𝑔, 

which remained fixed throughout training to speedup training time. The 𝐿2 norm of synthesis loss and 

registration loss gradients (backpropagated to the last shared layer of image synthesis and registration – i.e., 

to the last layer of the CycleGAN generator) were computed, and 𝜆𝑟𝑒𝑔 was computed such that the two 

gradients had equal contribution. A nominal value of 𝜆𝑟𝑒𝑔 = 2 was used for all E2E methods. 

8.4.4.3 Symmetric Normalization (SyN) 

SyN was performed using a multiresolution approach, with a 4x2x1 resolution pyramid. The MI 

metric used 32 histogram bins, and a convergence criterion of 1x10-5 was set. For the two paired MR/CT 

datasets, step size was searched in the range 0.1- 2, and 0.5 was chosen to balance between registration 

accuracy and runtime. The two Gaussian smoothing parameters (update field smoothing and deformation 

field smoothing) were searched in the range 1-5 and 0-3 voxels with an increment of 0.5, respectively. 

Nominal values of 2 (for the update field) and 1 (for the deformation field) were identified. For the 

neurosurgery dataset, step size of 0.25 and Gaussian smoothing of (5,0) were used. However, SyN was not 

able to register every MR/CT image pair as discussed in Section 8.5.3.      

8.4.4.4 VoxelMorph – MI (VM-MI and VM-Seg) 

VoxelMorph using MI as the similarity loss function contains one regularization parameter, 𝜆𝑟𝑒𝑔. 

DSC was evaluated for registration in the validation set with 𝜆𝑟𝑒𝑔 ranging 0-5 (in increments of 1), and a 

nominal value of 3 was found to be optimal. Additionally, the patch size in the MI computation was set to 

8 to maximize DSC. Similar to the findings in [115], registration performance was relatively insensitive to 
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change in patch size over the range 8-24, and lower values are more conservative of memory usage. 𝜆𝑠𝑒𝑔 

in Equation (8.19) was searched in the range 0-1 with nominal value of 0.5.   

8.4.2 Paired MR/CT Dataset with Simulated Deformations 

8.4.2.1 MR-CT Image Synthesis 

The performance of the intermediate MR-CT synthesis from probabilistic CycleGAN was first 

examined. A series of CycleGAN models were trained in this work according to Table 8.1, including 

sequential (SEQ) training and the end-to-end (E2E) training variations (E2E:CT, E2E:MR, and 

E2E:2CH+U). This section details the results from SEQ training, providing a baseline evaluation for the 

case in which probabilistic CycleGAN is trained on its own (separate from registration). Performance 

comparison of SEQ and E2E training models is detailed in subsequent sections. 

Example synthesis results from SEQ training are illustrated in Figure 8.6 for a test case in the paired 

MR/CT dataset. MR-to-CT synthesis is shown on the top row. Given an input MR image [Figure 8.6(a)], 

the mean synthetic CT image [Figure 8.6(b)] shows structures consistent with the ground truth CT image 

[Figure 8.6(d), which is only shown as a reference and was not included in training]. Accurate depiction of 

anatomical structures (e.g., the ventricles, sulci, and skull) is important for the subsequent task of image 

registration. As evident in comparing Figure 8.6(b) and (d), the synthetic images are smoother (blurrier) 

than ground truth, a common phenomenon observed in learning-based image synthesis. The uncertainty 

map of MR-to-CT synthesis is shown in Figure 8.6(c), demonstrating high uncertainty in regions of 

extracranial soft-tissues (less visible in CT than in MR), low uncertainty in regions of CSF, and a fairly 

homogenous level of certainty throughout the brain parenchyma. A similar trend is observed in terms of 

the mean absolute [MAE, Fig. 8.6(e)] between the ground truth CT and the mean synthetic CT, showing 

low error throughout the brain and higher error outside the skull. 

Similarly, the CT-to-MR synthesis result is shown in the bottom row of Figure 8.6, and the mean 

synthetic MR image [Figure 8.6(g)] maintains structural consistency with the ground truth MR image 

[Figure 8.6(i)]. While major structures appear to be accurately synthesized from CT to MR, some finer, 
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low-contrast structures that are not well depicted in CT are lost in the synthesis process. The uncertainty 

map [Figure 8.6(h)] demonstrates a high degree of uncertainty about high gradient edges of the MR image 

– e.g., about the ventricles and other cortical and subcortical boundaries. The MAE [Fig. 8.6(j)] between 

the mean synthetic MR image and the ground truth MR shows a low level of error inside the brain and 

higher error around the skull and skin. 

 
Figure 8.6. MR-to-CT (top row) and CT-to-MR (bottom row) image synthesis using probabilistic CycleGAN on a test case paired 

MR/CT dataset with simulated deformation. For MR-to-CT synthesis: (a) input MR image, (b) mean synthetic CT image, (c) 

uncertainty of the synthetic CT image, (d) reference ground truth CT image (not used in training), and (e) MAE of the mean 

synthetic CT image. For CT-to-MR synthesis: (f) input CT image, (g) mean synthetic MR image, (h) uncertainty of the synthetic 

MR image, (i) reference ground truth MR image, and (j) MAE of the mean synthetic MR image. 

Quantitatively, MR-to-CT synthesis test cases exhibited MAE of 0.039±0.003 (dimensionless in 

HU normalization to the range 0 – 1) and structural similarity index measure (SSIM) of 0.84±0.01, whereas 

the CT-to-MR synthesis yielded MAE of 0.091±0.004 and SSIM of 0.72±0.01. Since CT images carry less 

information relating to fine, low-contrast soft-tissues than the T1-weighted MR images, the CT-to-MR 

synthesis is considerably more challenging than MR-to-CT synthesis, resulting in the higher error measures. 

Such error and blurriness can potentially be reduced by incorporation of 2D or patch-based synthesis 

networks; however, the 3D formulation is required for the proposed end-to-end training (so 2D patches 

were not investigated in this work). Additionally, since the synthetic images are only used in the 
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intermediate step for registration, the absolute accuracy of image synthesis may be less important than the 

registration accuracy, as discussed further below. 

8.4.2.2 Registration Using Sequential Training 

The performance of the proposed registration network with the sequential training strategy 

(SEQ:2CH+U) was first evaluated in comparison to the sequential ablation variations (SEQ:CT, SEQ:MR, 

and SEQ:2CH) and baseline alternative methods (SyN, VM-MI, and VM-Seg). Table 8.2 summarizes 

registration results in 10 test cases, where the average DSC, SD, and HD measures were computed over all 

associated anatomical structures. The baseline methods improved upon initial rigid registration and SyN 

demonstrated better overall performance than VM-MI. With anatomical segmentation for weak supervision, 

VM-Seg improved significantly from VM-MI and showed superior performance than SyN. However, 

obtaining segmentations is nontrivial and not always practical, especially when paired MR/CT without 

deformation is not available (i.e., the neurosurgery dataset presented in Section 8.3.1.3). 

The four SEQ variations further improved performance compared to SyN and VM-MI. The SEQ:MR 

network (which learns registration in the MR domain) showed improved DSC, SD, HD, and TRE compared 

to SEQ:CT (which learns registration in the CT domain). SEQ:MR+Multi (which fuses MR channel and 

MR-CT channel deformations) achieved comparable DSC and slightly worse SD than SEQ:MR. While the 

fusion of single-modality MR and multi-modality MR-CT registration was beneficial to the overall 

registration, the multi-modality similarity metric used in the original implementation [278] limited the 

accuracy. Interestingly, the dual-channel method SEQ:2CH (which fuses the CT and MR channel 

deformations without uncertainty weighting) yielded comparable registration accuracy to SEQ:MR. In 

addition, both dual-channel fusion methods without uncertainty weighting, whether fusing two single-

modality channels or fusing a single-modality channel with a multi-modality channel, yielded comparable 

registration accuracy. The proposed SEQ:2CH+U method (which includes uncertainty weighting in the 

dual channels) achieved the highest DSC (0.816±0.070), lowest SD (0.24±0.07 mm), lowest HD (2.43±0.68 

mm), and lowest TRE (1.30±0.64 mm). All the algorithms tested were found to yield diffeomorphic 
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deformations, with only SyN, VM-Seg, and SEQ:CT showing sign of tissue folding (<0.2% of voxels with 

|𝐽𝜙| < 0). The runtime of the learning-based methods required around 3 seconds to register a single pair of 

images, compared to ~15 min for SyN.  

Table 8.2. Registration performance of the methods investigated (including four variations of sequential training) on the paired 

MR/CT dataset with simulated deformations. The proposed method is marked in bold, and asterisks (*) denote statistical 

significance (𝒑 < 𝟎. 𝟎𝟓) assessed in paired t-tests between SyN and the proposed SEQ:2CH+U method. Values for DSC, SD, HD, 

and TRE are the mean (and standard deviation) computed over the segmented anatomical structures. 

Method DSC SD (mm) HD (mm) TRE (mm) |𝑱𝝓| ≤ 𝟎 Runtime (s) 

Rigid 0.504 ± 0.202 1.02 ± 0.43 4.14 ± 1.12 3.06 ± 1.76 - - 

SyN 0.687 ± 0.183 0.53 ± 0.36 4.04 ± 1.43 2.57 ± 1.37 0.14% 902 ± 106 

VM-MI 0.607 ± 0.181 0.74 ± 0.34 3.79 ± 0.95 2.93 ± 1.56 0 2.57 ± 0.02 

VM-Seg 0.786 ± 0.103 0.33 ± 0.17 3.08 ± 0.95 1.51 ± 0.82 0.04% 2.58 ± 0.02 

SEQ:CT 0.707 ± 0.146 0.47 ± 0.23 3.44 ± 1.11 1.85 ± 1.13 0.02% 3.07 ± 0.02 

SEQ:MR 0.798 ± 0.079 0.28 ± 0.09 2.57 ± 0.73 1.40 ± 0.71 0 3.07 ± 0.02 

SEQ:MR+Multi 0.788 ± 0.090 0.34 ± 0.17 2.68 ± 0.81 1.46 ± 0.80 0 3.35 ± 0.03 

SEQ:2CH 0.805 ± 0.077 0.32 ± 0.13 2.53 ± 0.60 1.44 ± 0.76 0 3.36 ± 0.03 

SEQ:2CH+U 0.816 ± 0.070* 0.24 ± 0.07* 2.43 ± 0.68* 1.30 ± 0.64* 0 3.45 ± 0.03 

 

Figure 8.7 further details the registration performance among each method, showing the DSC 

analyzed for individual anatomical structures. The VM-MI implementation appears to be particularly 

challenged due to the challenge of optimizing MI with respect to a complex registration network. For the 

3rd and lateral ventricles, the SyN, VM-Seg, and the SEQ methods achieved comparable DSC, primarily due 

to the high CSF-soft-tissue contrast in CT and MR and the relatively large size of those structures. For 

relatively large subcortical structures such as the caudate nucleus and the thalamus exhibiting lower image 

contrast, SEQ:MR, SEQ:MR+Multi and SEQ:2CH achieved better DSC than SyN and SEQ:CT, while the 

proposed SEQ:2CH+U method demonstrated highest performance overall. The trend was even more 

evident for the smallest structures (e.g., amygdala, hippocampus, and 4th ventricle), where SyN was 

challenged, and the SEQ methods (and the SEQ:2CH+U method in particular) were able to align these 

important DBS target structures with DSC > 0.7.  
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Figure 8.7. DSC for individual anatomical structures for various registration methods. While baseline methods SyN and VM-MI 

were challenged for small, low-contrast structures, the proposed SEQ variations demonstrated successive improvements, with 

SEQ:2CH+U showing best performance overall. 

 
Figure 8.8. Example registration results among baseline and proposed methods in a test case MR/CT dataset with simulated 

deformations. Registered images from (a) Rigid, (b) SyN, (c) SEQ:CT, (d) SEQ:MR, and (e) SEQ:2CH+U are overlaid with 

segmentations contours of anatomical structures (defined in the fixed CT image). Cyan arrows mark example regions of residual 

registration error.   

Figure 8.8 shows qualitative comparison of registered images in an example test case among 

method: Rigid, SyN, SEQ:CT, SEQ:MR, and SEQ:2CH+U. VM-MI is not shown for reasons of space, and 

because it did not yield a result significantly better than Rigid. SEQ:2CH is not shown, as its performance 

was similar to SEQ:MR. The boundaries of anatomical segmentations (defined in the fixed CT image) are 
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overlaid in corresponding colors. All methods improved the result in comparison to Rigid registration; 

however, residual errors are evident (indicated by cyan arrows in the SyN and SEQ:CT results). The left 

hippocampus, in particular, was misaligned in both SyN and SEQ:CT due to low contrast in the CT images. 

By using the MR channel, SEQ:MR and SEQ:2CH+U achieved good alignment for such low-contrast 

structures. 

8.4.2.3 Registration Using End-to-End Training 

The potential benefit of end-to-end training (variations of E2E in Table 8.1) that jointly optimizes 

the image synthesis and registration subnetworks was further investigated in comparison to conventional 

sequential training. E2E training was performed to yield network variations denoted E2E:CT, E2E:MR, and 

E2E:2CH+U (each analogous to the sequential training methods, SEQ:CT, SEQ:MR, and SEQ:2CH+U, 

respectively). Dual-channel registration without uncertainty weighting (E2E:2CH) was omitted from 

results shown below, as it exhibited similar performance as the E2E:MR method. 

Table 8.3. Registration performance of sequential (SEQ) and end-to-end (E2E) methods in paired MR/CT dataset with simulated 

deformations. The proposed method is marked in bold, and asterisks (*) denote statistical significance (𝒑 < 𝟎. 𝟎𝟓) assessed from 

paired t-test between the corresponding SEQ and E2E methods. DSC, SD, HD, and TRE values are the mean (and standard deviation)  

computed over pertinent structures. 

Method DSC SD (mm) HD (mm) TRE (mm) |𝑱𝝓| ≤ 𝟎 Runtime (s) 

SEQ:CT 0.707 ± 0.146 0.47 ± 0.23 3.44 ± 1.11 1.85 ± 1.13 0.02% 3.07 ± 0.02 

E2E:CT 0.757 ± 0.107* 0.37 ± 0.16* 2.85 ± 0.70* 1.57 ± 0.98* 0.10% 3.03 ± 0.02 

SEQ:MR 0.798 ± 0.079 0.28 ± 0.09 2.57 ± 0.73 1.40 ± 0.71 0 3.07 ± 0.02 

E2E:MR 0.806 ± 0.078 0.26 ± 0.08 2.51 ± 0.71 1.34 ± 0.71* 0 3.12 ± 0.04 

SEQ:2CH+U 0.816 ± 0.070 0.24 ± 0.07 2.43 ± 0.68 1.30 ± 0.64 0 3.45 ± 0.03 

E2E:2CH+U 0.824 ± 0.072 0.23 ± 0.08 2.34 ± 0.68* 1.21 ± 0.62* 0 3.42 ± 0.03 

Table 8.3 provides a summary of registration results on the paired MR/CT test dataset with 

simulated deformations. For each pair of SEQ vs E2E training, the E2E training significantly improved 

DSC, SD, HD, and TRE. The proposed E2E:2CH+U method achieved the highest accuracy overall, with 

average DSC (0.824±0.072), SD (0.23±0.08 mm), HD (2.34±0.68 mm), and TRE (1.21±0.62 mm). 

Interestingly, the E2E:CT results exhibited a degree of non-diffeomorphic tissue folding (non-positive 

Jacobian determinant) compared to SEQ:CT, presumably due to the more complex network optimization 
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in E2E training. Nevertheless, the degree of non-diffeomorphism was low (or zero) in all cases. The E2E 

methods required significantly longer offline training time (60% more), but the runtime at test was 

comparable to the SEQ counterparts, performing registration in ~3 seconds. 

Figure 8.9 further illustrates the performance of SEQ and E2E methods in terms of DSC for 

individual anatomical structures. In each case, E2E training improved or maintained performance compared 

to the corresponding SEQ method. The most significant improvement was evident in the CT-channel 

registration, and improvements in the MR-channel and dual-channel methods were less profound. The 

proposed dual-channel registration with uncertainty weighting method (E2E:2CH+U) primarily boosted 

the DSC for small structures (i.e., 3rd ventricle, amygdala, and hippocampus), where both image synthesis 

and registration tasks were challenging, and joint optimization proved beneficial. 

 
Figure 8.9. Comparison of SEQ and E2E methods in terms of DSC for individual anatomical structures in registration of paired 

MR/CT dataset with simulated deformations. 

8.4.3 Paired MR/CT Dataset with Real Deformations 

To further validate the accuracy and robustness of the proposed method trained on simulated 

deformations, the method was applied to paired MR/CT dataset with real deformations as described in Sec. 

8.3.1.2. The proposed registration method (E2E:2CH+U), which was shown in the previous section to 
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perform best among the variations in Table 8.1, was compared to baseline SyN and VM-MI. For the learning-

based methods, the models trained in the previous section on simulated deformations were directly applied 

to the unseen dataset with real deformations. 

Table 8.4 summarizes the resulting registration performance. Rigid initialization showed an average 

DSC of 0.785±0.126. (The higher DSC values in this dataset compared to those in the simulated 

deformations (0.504±0.202 in Table 8.1) suggests that the overall magnitude of real deformations was 

smaller than in the simulated deformations.) All three deformable registration methods were found to reduce 

TRE compared to Rigid, suggesting improved overall registration (with target landmarks distributed 

throughout the brain). SyN slightly improved the average DSC, SD, and TRE compared to Rigid (with 

statistical significance only in TRE). VM-MI improved TRE (p<0.05) compared to Rigid registration but 

appeared to slightly diminish DSC, SD, and HD (no statistical significance). The proposed E2E:2CH+U 

method improved performance in each regard, showing DSC (0.830±0.067), SD (0.23±0.10 mm), HD 

(3.34±2.80), and TRE (1.38±0.65 mm), all comparable to the E2E:2CH+U results for the MR/CT dataset 

with simulated deformations. Each of the methods yielded diffeomorphic transformations with zero tissue 

folding. The runtime of the learning-based methods was ~3 sec, compared to ~15 min for SyN.  

Table 8.4. Registration performance of the baseline methods and E2E:2CH+U (marked in bold) tested on the paired MR/CT 

dataset with real deformations. Asterisks (*) denote statistical significance (𝒑 < 𝟎. 𝟎𝟓) from paired t-test between E2E:2CH+U 

and SyN. DSC, SD, HD, and TRE values are the mean (and standard deviation) computed over pertinent structures. 

Method DSC SD (mm) HD (mm) TRE (mm) |𝑱𝝓| < 𝟎 Runtime (s) 

Rigid 0.785 ± 0.126 0.34 ± 0.23 3.47 ± 3.25 2.83 ± 1.30 - - 

SyN 0.805 ± 0.086 0.30 ± 0.11 3.48 ± 3.22 1.42 ± 0.61 0 902 ± 106 

VM-MI 0.756 ± 0.117 0.40 ± 0.20 3.82 ± 3.35 1.60 ± 0.76 0 2.57 ± 0.02 

E2E:2CH+U 0.830 ± 0.067* 0.23 ± 0.10* 3.34 ± 2.80 1.38 ± 0.65* 0 3.42 ± 0.03 

8.4.4 Neurosurgery Dataset with Real Deformations 

The networks trained on simulated deformations were further trained and tested on the 

neurosurgery dataset with real deformations via transfer learning.  While the Rigid registration showed DSC 

(0.581±0.229) comparable to the simulated deformations in Section 8.4.1, the TRE (7.40 ± 2.79) was much 

larger than the simulated deformations. One explanation is the simulation mostly deformed regions in 
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vicinity to the ventricles, whereas real deformations from neurosurgery were more globally distributed. As 

a result, TRE, computed on more globally distributed target points, was more representative of the real 

deformations than DSC, which was only computed on deep brain structures.  

As discussed in Section 8.3.1.3, the dataset contains a diverse range of MR images with different 

T1-weighted pulse sequences, magnetic field strength, and slice thickness. The large slice thickness of some 

of the MR images (up to 5 mm) particularly challenged the baseline SyN, due to lack of MR image 

information compared to the CT. Such findings are evident in Table 8.5, where SyN did not improve 

compared to Rigid registration. VM-MI showed slight improvement from Rigid, but with fairly large 

residual registration error. The proposed method (E2E:2CH+U) showed good generalizability via transfer 

learning despite the non-uniformity of the dataset. E2E:2CH+U yielded significant improvements in DSC 

(0.791±0.134), SD (0.51±0.27 mm), and HD (5.87±2.33 mm), further illustrated in Figure 8.10(a). 

Similarly, E2E:2CH+U significantly reduced TRE compared to Rigid and the baseline methods, yielding 

an overall TRE of 1.58±0.98 mm, further illustrated in Figure 8.10(b). Both SyN and E2E:2CH+U yielded 

a small degree of non-diffeomorphism (arguably negligible ~0.10% of voxels with non-positive Jacobian 

determinant). E2E:2CH+U achieved runtime of 3.42±0.04 s, compared to ~15 min runtime of SyN. 

Table 8.5. Registration performance of the baseline methods and E2E:2CH+U (marked in bold) tested on the neurosurgery dataset 

with real deformations. Asterisks (*) denote statistical significance (𝒑 < 𝟎. 𝟎𝟓) assessed from paired t-test between E2E:2CH+U 

and SyN. DSC, SD, HD, and TRE values are the mean (and standard deviation) computed over pertinent structures. 

Method DSC SD (mm) HD (mm) TRE (mm) |𝑱𝝓| ≤ 𝟎 Runtime (s) 

Rigid 0.581 ± 0.229 1.35 ± 0.71 7.33 ± 2.30 7.40 ± 2.79 - - 

SyN 0.572 ± 0.229 1.29 ± 0.65 7.39 ± 2.38 6.81 ± 2.48 0.10% 961 ± 123 

VM-MI 0.613 ± 0.226 1.21 ± 0.70 7.17 ± 2.41 5.77 ± 2.01 0 2.55 ± 0.03 

E2E:2CH+U 0.791 ± 0.134* 0.51 ± 0.27* 5.87 ± 2.33* 1.58 ± 0.98* 0.11% 3.42 ± 0.04 

Registration results for the E2E:2CH+U method are shown in Figure 8.11 for two example test 

cases. Figure 8.11(a) shows a multi-slice MR image (moving image) acquired in the sagittal plane using a 

spin echo pulse sequence and reconstructed with 0.94×0.94×5 mm³ voxel size (before resampling), whereas 

Figure 8.11(d) shows a multi-slice MR image (moving image) acquired in the axial plane using an MP-

RAGE pulse sequence and reconstructed with 0.45×0.45×0.9 mm³ voxel size (before resampling). The 
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fixed CT images are shown in Figure 8.11(c) and (f) for the two cases, respectively. Through transfer 

learning, E2E:2CH+U was able to register a diverse range of MR images to fixed CT images. In both cases, 

the registered MR images showed close alignment to the fixed CT ventricle segmentation contours as 

indicated in Figure 8.11(b) and (e).  

 
Figure 8.10. Registration performance of the proposed method and baseline methods tested on the neurosurgery dataset with real 

deformations. (a) Boxplots of DSC of 3rd, 4th, and lateral ventricles. (b) Boxplots of TRE. 

 
Figure 8.11. Example registration results for the proposed E2E:2CH+U method on two test cases of the neurosurgery dataset with 

real deformations: (a-c) the moving MR image, the registered MR image, and the fixed CT image, respectively, with the MR images 

acquired using a spin echo pulse sequence in the sagittal plane; (d-f) the moving MR image, the registered MR image, and the fixed 

CT image, respectively, with the MR image acquired using an MP-RAGE pulse sequence in the axial plane. Contours of the lateral 

and third ventricle segmentations (defined in the fixed CT images) are overlaid in yellow and green, respectively.  

8.5. Discussion and Conclusion 

8.5.1 Single-Channel Vs. Dual-Channel Registration 

The performance of the dual-channel registration with uncertainty weighting compared to the 

ablation variations (SEQ:CT, SEQ:MR, SEQ:2CH, and SEQ:2CH+U) demonstrated several findings with 
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respect to the effects of MR, CT, and the combination of MR and CT on deformable image registration. 

First, using the MR channel alone (SEQ:MR) showed higher performance than using the CT channel alone 

(SEQ:CT) except for registration of the lateral ventricles, where comparable performance was achieved 

from both. While both MR and CT images show high contrast between CSF and brain tissue, CT images 

exhibit lower contrast on other brain structures, especially in cortical and subcortical structures. Through 

MR-to-CT image synthesis, the amount of soft-tissue information is reduced (compared to the MR image), 

and the lack of contrast or gradients diminished the performance of SEQ:CT. On the other hand, accurate 

CT-to-MR image synthesis in SEQ:MR appeared to increase the amount of structural information by 

learning from large training datasets and improved the registration of such structures. 

 
Figure 8.12. Example spatially varying weights determined by MR-CT image synthesis uncertainty using probabilistic CycleGAN. 

(a) The MR-channel spatial weighting. (b) The CT-channel spatial weighting. MR weighting contributes primarily throughout the 

parenchyma, whereas CT weighting contributes primarily in the ventricles and peripheral sulci. 

Secondly, the studies in Section 8.4.2.2 show that dual-channel registration without uncertainty 

weighting (SEQ:2CH) exhibited no benefit compared to SEQ:MR. Such a finding implies that the MR-

channel registration dominates the network optimization when the MR and CT channel similarity loss 

functions are globally averaged, primarily due to reduced soft-tissue information in the CT channel. The 

CT-channel registration, however, still carries value by way of image synthesis. While the synthetic MR 

appears to carry more information regarding brain soft-tissue structures than synthetic CT, it is also less 

reliable due to the challenges of CT-to-MR synthesis for low-contrast cortical and subcortical structures. 

The spatial weighting of the two channels (by the inverse of the synthesis uncertainties) provides a means 

to leverage the more reliable aspects of synthesis in each case. The spatially varying weights, as shown in 
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Figure 8.12, illustrate that the CT channel has a greater contribution within the ventricles and sulci 

boundaries, whereas the MR channel contributes more throughout the rest of the brain parenchyma. The 

inclusion of spatially varying weights in the similarity loss functions therefore improved registration, 

evident in the improved performance of SEQ:2CH+U versus the other SEQ methods. 

8.5.2 Sequential Vs. End-to-End Training 

As shown in Section 8.4.2.3, E2E training achieved consistent improvement in registration 

accuracy compared to SEQ training in all three registration methods: registration using the CT channel, the 

MR channel, and dual channels. While the SEQ training optimizes the image synthesis subnetwork alone 

such that the synthesis loss function is optimally minimized, and the synthetic images are as close to the 

cross-domain images as possible, such synthesis does not guarantee the best registration. On the other hand, 

E2E training aims to minimize a combined loss function of image synthesis and registration and promotes 

the synthesis subnetwork to generate intermediate representations more advantageous to registration. 

Taking the MR-to-CT synthesis as an example, Figure 8.13(a-c) shows the ground truth CT, the mean 

synthetic CT with its MAE to ground truth after SEQ training, and the mean synthetic CT with its MAE 

after E2E training. The E2E synthetic CT image demonstrated a strong change in image appearance from 

the SEQ synthetic CT image, with sharper edges and enhanced contrast (e.g., strong white bands on CSF-

soft tissue boundaries), which are characteristics that contribute to better registration.  

As evident in the studies in Section 8.4.2.3, the registration improvement between SEQ:MR and 

E2E:MR is less significant than the CT channel registrations, suggesting that the change of the intermediate 

synthetic MR images from SEQ to E2E training is less evident. Figure 8.13(d-f) shows an example of 

synthetic MR images from SEQ and E2E training, and there is less visual change to the synthetic MR 

images between SEQ and E2E training compared to the CT channel counterparts. Some small changes can 

be observed in the MAE between the mean synthetic MR and the ground truth, with fewer outliers and 

better aligned edges in the E2E synthetic MR. One explanation is that the MR channel, which exhibits high 
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soft-tissue contrast, is more suitable for deformable brain registration than the CT channel, of course. Since 

SEQ:MR already achieves high registration accuracy, there is less room for improvement with E2E training.  

 
Figure 8.13. Intermediate image synthesis results from probabilistic CycleGAN comparing SEQ:2CH+U and E2E:2CH+U 

methods on a test case of the paired MR/CT dataset with simulated deformations (Section 3.1.1). (a-c) Axial slice of the input CT, 

the synthetic CT from SEQ, and the synthetic CT from E2E, respectively. (d-f) Axial slice of the input MR, the synthetic MR from 

SEQ, and the synthetic MR from E2E, respectively. Zoomed-in views of MAE (corresponding to the yellow box regions) are shown 

alongside the mean synthetic images. Blue arrows mark areas of high error that are reduced via E2E training. 

8.5.3 Generalizability and Future Work 

The proposed E2E:2CH+U method demonstrated robustness and good generalizability to unseen 

data. The models trained on the paired MR/CT dataset with simulated deformations (Section 8.3.1.1) 

yielded high accuracy when applied directly to paired MR/CT dataset with real deformations (Section 

8.3.1.2). Such findings suggest that the simulated deformation method is a reasonable emulation of real 

brain deformations. Unlike the two paired MR/CT datasets that are acquired with homogenous acquisition 

parameters and near isotropic voxels, the neurosurgery dataset with diverse acquisition parameters (Section 

8.3.1.3) was significantly more challenging to register. The variations in magnetic field strength, pulse 

sequence, spatial resolution, and 2D acquisition orientation all contributed to the complications of 

registration and network learning. In addition, the limited number of training images (10 pairs) further 

complicated the challenge. Nonetheless, the proposed method achieved high accuracy via transfer learning, 
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yielding high DSC on the ventricles and low TRE that are comparable with the simulation results and 

superior to baseline comparison methods.  

As shown in Section 8.4.4, SyN did not accurately register images in the neurosurgery dataset – 

attributable primarily to the large slice thickness (up to 5 mm) in many of the MR images, whereas the CT 

image slice thickness was ~0.5 mm. Partial volume effects for such large slice thickness can result in 

apparently large structural changes (e.g., the appearance or disappearance of fine structures) across adjacent 

slices, which appeared to challenge SyN in particular. Even with linear interpolation and resampling, there 

was insufficient image gradient information in the through-plane direction (perpendicular to the image 

acquisition plane) to drive a reliable registration. Similar to the ideas of using a super-resolution network 

to interpolate between thick slices for electron microscopy registration in [295], the proposed method 

incorporating image synthesis partially overcomes the low through-plane resolution challenge: the low-

resolution MR images were mapped to effectively higher-resolution CT images via the MR-to-CT generator. 

By fusing the deformations from both MR and CT channels, the network was provided with sufficient 

image gradients to drive registration. 

The work reported here is not without its limitations. While a probabilistic CycleGAN is proposed 

to model image synthesis and its associated uncertainties, the registration subnetwork is still deterministic, 

and the uncertainties from the synthesis are only used in the dual-channel loss function weighting as an 

approximation to the true velocity/deformation field uncertainty. A probabilistic registration network, such 

as the probabilistic VoxelMorph [110], would be desirable for future work to fully capture the uncertainties 

of the entire registration workflow. For example, the synthesis uncertainties can be treated as additional 

input to registration, and the dual-channel probabilistic registration network would predict the mean and 

variance of the velocity fields for both channels. The velocity field uncertainties can be used either to 

explicitly fuse the two channel predictions or to weight the dual-channel loss function. 

Moreover, the brain deformations treated in the current work correspond to deep brain deformations 

associated with loss of CSF—e.g., due to insertion of the ventriculoscope in neuroendoscopy. This scenario 
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is appropriate to a spectrum of endoscopic neurosurgeries, such as transventricular cystectomy, biopsy, and 

DBS, and concerns primarily the accuracy of registration and guidance relative to deep brain structures (cf., 

the cortical surface). The current work does not address the scenario in which the brain undergoes a 

macroscopic brain shift separating from the inner surface of the cranium. 

The proposed method uses 3D formulations that predicts a 3D deformation field from input 3D 

images. The first reason for such implementation is that full-field 3D prediction has significantly faster 

runtime compared to a patch-based implementation. The second reason is that merging dual-channel 

deformation patches to a smooth and diffeomorphic deformation field is non-trivial and would require 

further investigation. While the 3D network is able to capture the global semantic context, local information 

cannot be fully maintained, as evident in the loss of small structures in image synthesis. Additionally, the 

3D network requires orders of magnitude more network parameters than 2D networks, limiting the depth 

and the number of channels. Due to GPU memory constraints, the input images were downsampled, which 

inevitably removes some high-frequency content. Future work could invoke a multi-resolution approach, 

such as following the strategy in [296] – registering the downsampled images as an initialization and 

refining at full-resolution patches. 

The current work on MR-CT deformable registration relies on an accurate rigid pre-registration, 

which is essential for the proper convergence of the deformable registration. Without the rigid registration, 

network training would be trapped in suboptimal local minima, leading to severely deteriorated registration 

performance. For a fully integrated registration pipeline for clinical applications, a deep learning-based 

rigid registration such as proposed in [73, 297] with fast runtime warrants future investigation. Lastly, 

registration of preoperative MR and intraoperative cone-beam CT (CBCT)—including challenges posed by 

the factors of increased image noise and artifacts in CBCT—will be investigated in the next chapter.  

8.5.4. Conclusions 

An unsupervised, dual-channel network for MR-CT deformable registration was reported. The 

method uses a probabilistic CycleGAN for MR-CT image synthesis and a dual-channel registration to 
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predict and fuse the deformation field in both MR and CT channels. The image synthesis uncertainties, a 

representation of the aleatoric uncertainty, are used as spatially varying weights to balance the contributions 

of the MR and CT channel registration loss functions. In addition to a conventional sequential training 

strategy that treats image synthesis and registration as separate, sequential tasks, an end-to-end training 

strategy was proposed to jointly optimize the two tasks to improve the registration performance. The 

proposed method (E2E:2CH+U, involving end-to-end training and dual-channel registration with 

uncertainty weights) achieved superior registration accuracy compared to baseline conventional and deep-

learning-based methods as well as a number of pertinent network variations investigated by ablation. The 

method achieved TRE within 2 mm, maintained diffeomorphism, and operated with fast runtime (~3 s). 

The proposed registration network may be compatible with the demands of high-precision neurosurgery, 

warrants further investigation in clinical studies of CT-guided procedures, and begins to establish a 

framework whereby the even more challenging task of MR-CBCT registration may be addressed, as 

detailed in the next chapter. 

 

 



206 

 

Chapter 9. 

Deformable MR-CBCT Registration using Deep Learning-Based 

Joint Synthesis and Registration for Neurosurgical Guidance 

9.1 Introduction 

Chapter 7 and 8 demonstrated two deformable registration algorithms for MR-CT registration for 

guidance of CT-guided minimally invasive neurosurgery. Intraoperative CBCT offers an alternative to CT 

due to affordability, convenience in bedside operation, and smaller footprint of the imaging device. MR-

CBCT registration is even more challenging than  MR-CT registration due to: (i) truncation effects in CBCT 

that not only limit the FOV but also incur inaccurate image intensities (lack of accurate HU calibration); 

(ii) the distinct image appearances with non-linear, non-monotonic, non-reproducible, and spatially varying 

correspondence between MR and CBCT image intensities; and (iii) suboptimal CBCT image quality due 

to artifacts and noise that reduce soft-tissue contrast and diminish image uniformity (shading and streak 

artifacts). Largely due to the loss of soft-tissue contrast resolution in CBCT, previous work on MR-CBCT 

registration has been limited primarily to rigid registration [298, 299], and few deformable registration 

methods have been proposed.  

A number of registration algorithms have been proposed for (more tractable) MR-CT or CBCT-CT 

deformable registration based on iterative optimization of a similarity metric. Most MR-CT registration 

algorithms optimize a multi-modality image similarity metric between the fixed and moving images, 

including MI [259, 260, 300] and MIND [30, 96]. Algorithms for CBCT-CT registration have employed 

local intensity corrections (for correction of shading artifacts) to map CBCT to a better match of CT image 

intensity, followed by intra-modality registration [257, 301, 302]. However, such iterative optimization-

based approaches often carry high computational load and long runtimes, limiting their application in 

intraoperative workflow. 
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Recent advances in deep learning-based registration demonstrate potential improvement in 

accuracy and runtime compared to the methods mentioned above. Several deep learning-based registration 

algorithms have focused on unsupervised approaches involving a CNN with encoder-decoder architecture 

to predict the deformation field between fixed and moving images without ground truth definition of 

deformation fields [73, 109]. A loss function consisting of an image similarity metric (e.g., NCC for intra-

modality registration) and deformation regularization is minimized during network learning. Inter-modality 

registration algorithms often rely on either some degree of weak supervision (e.g., labeled segmentations) 

or optimizing an inter-modality similarity metric. Common inter-modality similarity metrics, however, are 

often subject to reduced registration accuracy compared to intra-modality metrics. Momin et al. [303] 

sought to address such a challenge using a deep learning self-correlation descriptor for registration of MR 

and CBCT pelvis images. In Ref. [304], biomechanical models of segmented anatomy were constructed to 

constrain deformations between MR and CBCT; however, reliable anatomical segmentation may not be 

feasible in broad clinical application. 

As in Chapter 8, a popular approach to mitigate the challenges in inter-modal image registration is 

to convert the images into a common (intermediate) modality using image synthesis, permitting subsequent 

intra-modality registration. For MR-CT registration, GANs have been used to generate synthetic images 

for subsequent intra-modality registration, in either the CT or MR domain [117, 118, 305]. The strong 

disparity in image appearance and limitations in CBCT soft-tissue image quality, however, present 

additional challenges for development of such approaches in MR-CBCT registration. 

In this Chapter, we propose a joint synthesis and registration network that synthesizes MR and 

CBCT to an intermediate CT domain for registration. The network used encoders to extract latent 

representations from input images, synthesis decoders to generate synthetic CT images and a multi-

resolution registration decoder to estimate the deformation field between the latent representations. The 

multi-resolution decoder, inspired by the multi-resolution decoder for intra-modality registration [306, 307], 

is employed for an inter-modality synthesis and registration network. As described below, a method for 



208 

 

deformable registration of MR and CBCT brain images is proposed for application in minimally invasive 

neurosurgery, with major points of novel contribution including: (i) jointly performing MR-to-CT and 

CBCT-to-CT image synthesis and CT registration using shared encoders and separate decoders between 

image synthesis and registration tasks that are learned jointly; (ii) a novel multi-resolution pyramid 

registration decoder designed to estimate the deformation field between the moving and fixed images (in 

the synthetic CT domain); and (iii) initial training of the proposed network with simulated brain 

deformations, followed by transfer learning for training with real clinical images. To our knowledge, this 

is the first work to test a deep learning-based deformable brain image registration algorithm for CBCT-

guided procedures and includes comparison to a series of state-of-the-art iterative optimization-based and 

deep learning-based registration methods in real clinical images from neurosurgery. 
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9.2 Algorithmic Methods 

A 3D deformable registration framework is proposed for registering preoperative MR images to 

intraoperative CBCT images using a CNN-based Joint Synthesis and Registration network (denoted JSR). 

The JSR network jointly estimates synthetic CT images and the 3D deformation field between the input 

images. As illustrated in Figure 9.1, let 𝐼𝑀𝑅 be the moving preoperative MR image and 𝐼𝐶𝐵𝐶𝑇 be the fixed 

intraoperative CBCT image as input. JSR predicts the deformation field 𝜙 that maps the moving 𝐼𝑀𝑅 to the 

fixed 𝐼𝐶𝐵𝐶𝑇 coordinate frame.  

 
Figure 9.8. Schematic illustration of the Joint Synthesis and Registration (JSR) network. Two encoders extract information from 

the moving MR (𝐼𝑀𝑅) and the fixed CBCT (𝐼𝐶𝐵𝐶𝑇) into latent representations, 𝑧𝑀𝑅 and 𝑧𝐶𝐵𝐶𝑇. Two synthesis decoders separately 

decode the latent representations to synthetic CT images. Finally, a registration decoder estimates the deformation field between 

the moving and fixed images at four resolution levels.  

An MR encoder and a CBCT encoder are used to encode 𝐼𝑀𝑅 and 𝐼𝐶𝐵𝐶𝑇 into latent representations 

(𝑧𝑀𝑅 and 𝑧𝐶𝐵𝐶𝑇), respectively, which are then decoded via synthesis decoders into synthetic CT images 

(𝐼𝐶𝑇
𝑀𝑅  and 𝐼𝐶𝑇

𝐶𝐵𝐶𝑇 ), transforming the inter-modality input into the a common intermediate domain for 

improved registration learning. For both MR-to-CT and CBCT-to-CT synthesis, the encoder and synthesis 
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decoder with skip connections form a U-Net architecture, which serves as the synthesis generator. 

Additional CT discriminators are employed to differentiate whether the synthetic CT images (𝐼𝐶𝑇
𝑀𝑅  and 

𝐼𝐶𝑇
𝐶𝐵𝐶𝑇) are real or fake.   

Simultaneously, 𝑧𝑀𝑅 and 𝑧𝐶𝐵𝐶𝑇 are concatenated and decoded via a multi-resolution registration 

decoder. At each resolution level (𝑖) of the decoding path, the registration decoder estimates an intermediate 

deformation field (𝜙𝑖) from the previous deformation (𝜙𝑖+1) and feature maps from the synthesis decoders, 

progressively refining the deformation field in a coarse-to-fine pyramid. The final deformation (𝜙 ) 

accumulated from predictions across four resolution levels is used to deform 𝐼𝑀𝑅 to produce a registered 

MR image (𝐼𝑀𝑅 ∘ 𝜙)  that is aligned with the fixed image (𝐼𝐶𝐵𝐶𝑇). It is worth noting that with skip 

connections between encoders and synthesis decoders and connections between synthesis and registration 

decoders, information from both the original input MR and CBCT, in addition to information from the 

synthetic CT, can be successfully propagated to the registration. 

9.2.1 Network Architecture 

9.2.1.1 Encoders 

The input images (𝐼𝑀𝑅 and 𝐼𝐶𝐵𝐶𝑇) are first encoded into latent representations (𝑧𝑀𝑅 and 𝑧𝐶𝐵𝐶𝑇) via 

the MR and CBCT encoders as depicted in Figure 9.1, respectively. Each encoder consists of four 

downsampling convolution blocks. The convolution block contains two 3D convolutions with residual 

connection [308] and a strided convolution with stride of 2. Convolution is followed by LeakyReLU 

activation and instance normalization. The encoders extract low-resolution latent representations of the 

input MR and CBCT images that are used for downstream synthesis and registration, promoting the latent 

representations to encode information pertinent to both tasks. 

9.2.1.2 Synthesis Decoders 

Two CT synthesis decoders are employed to decode 𝑧𝑀𝑅 and 𝑧𝐶𝐵𝐶𝑇  into synthetic CT images. 

Each decoder consists of four upsampling convolution blocks, each containing two 3D convolutions with 
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residual connection and trilinear upsampling to increase the spatial dimension by two. A final 3D 

convolution without activation or normalization is appended at the end to estimate the single-channel 

synthetic CT image. Additionally, skip connections are used to connect the encoders to the synthesis 

decoders at corresponding resolution to preserve fine-grained details from the encoding-decoding process.  

The encoder and synthesis decoder with skip connections form a U-Net architecture, which serves 

as the generator for conditional GAN CT synthesis for MR-to-CT and CBCT-to-CT synthesis. Through the 

generators, the synthetic moving CT (𝐼𝐶𝑇
𝑀𝑅) is generated from the moving 𝐼𝑀𝑅 and synthetic fixed CT (𝐼𝐶𝑇

𝐶𝐵𝐶𝑇) 

is generated from the fixed 𝐼𝐶𝐵𝐶𝑇. For both MR-to-CT and CBCT-to-CT synthesis, a CT discriminator 

( 𝐷𝐶𝑇
𝑀𝑅  and 𝐷𝐶𝑇

𝐶𝐵𝐶𝑇 , respectively) conditioned on input MR or CBCT images is also applied. The 

discriminator follows a multi-scale Patch-GAN design that distinguishes between real and synthetic CT 

images at three resolution levels. Both the generator and discriminator models are a modified 3D version 

of the Pix2Pix conditional GAN network (Isola et al., 2017).  

9.2.1.3 Registration Decoders 

For deformable registration, a multi-resolution registration decoder is employed to progressively 

predict the deformation field in a multi-resolution pyramid. The registration decoder uses four devised 

“registration blocks” (shown as pink boxes in Figure 9.1 and detailed further in Figure 9.2(a)) to predict the 

deformation fields at four resolution levels (𝜙𝑖, 𝑖 = 0, 1, 2, 3) using intermediate feature maps from the CT 

synthesis decoders (paired feature maps from the fixed CBCT synthesis (𝐹3~𝐹0) and moving MR synthesis 

(𝑀3~𝑀0)). The “registration block” uses three inputs, the intermediate fixed/moving feature maps (𝐹𝑖 and 

𝑀𝑖) and the predicted deformation from the previous resolution (𝜙𝑖). 𝜙𝑖 is first upsampled by 2 to match 

with the current level spatial dimension and is used to warp the moving feature map 𝑀𝑖  via a spatial 

transformer (STN) module. The previous deformation field 𝑢𝑝2(𝜙𝑖+1), the warped moving feature map 

(𝑀𝑖 ∘ 𝑢𝑝2(𝜙𝑖+1)), and the fixed feature map (𝐹𝑖) are concatenated and fed into two convolutions with 

residual connection (followed by LeakyReLU activation and instance normalization), one 1×1×1 

convolution, and a Vector Integration module (VectInt) that exponentiates the deformation into a 



212 

 

diffeomorphic field [110]. The output from this series of operations is an update field (𝑢𝑖) that corresponds 

to the residual deformation between the fixed image and warped moving image by the previous deformation 

field. Instead of directly adding the update to the previous deformation field, a deformation composition is 

computed via the STN to preserve diffeomorphism: 

𝜙𝑖 = 𝑐𝑜𝑚𝑝𝑜𝑠𝑒(𝑢𝑝2(𝜙𝑖+1), 𝑢𝑖) = 𝑢𝑝2(𝜙𝑖+1) + 𝑢𝑖 ∘ 𝑢𝑝2(𝜙𝑖+1) (9.1) 

Figure 9.2(b-d) illustrates one example of the progressive deformation field estimations from the 

registration decoder. While the lower-resolution deformation fields capture coarse and more global 

deformations, the higher-resolution deformation fields are refined on the coarse fields and contain more 

fine-grained local deformations. The multi-resolution pyramid of the registration decoder is thus able to 

obtain deformations of a wide range of magnitudes. 

 
Figure 9.2. Registration decoder design. (a) The proposed “registration block” used in the registration decoder takes feature maps 

from the synthesis decoder (𝑀𝑖 and 𝐹𝑖) and the deformation field (𝜙𝑖+1) from the previous resolution level as input to predict the 

deformation field (𝜙𝑖) at the current resolution level. (a-c) Deformation field predicted at three resolution levels, from coarse to 

fine deformations. (d) “Registration block” used in single-resolution JSR ablation study in Section 9.3.4. 

9.2.2 End-to-End Learning of JSR 

The JSR network parameters are optimized using a multi-task learning strategy that jointly learns 

CT image synthesis and deformable registration. The image synthesis is learned using either a conditional 
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GAN or Cycle-GAN depending on the availability of ground truth CT images with same spatial alignment 

as the input images. The deformable registration is learned in an unsupervised manner by optimizing an 

image similarity loss function. 

9.2.2.1 Image Synthesis Loss 

The loss functions of a conditional GAN image synthesis are first described, assuming availability 

of a reference CT both from the preoperative stage (𝐼𝐶𝑇
𝑝𝑟𝑒

) and from the intraoperative stage (𝐼𝐶𝑇
𝑖𝑛𝑡𝑟𝑎). Three 

loss functions are computed: an adversarial loss, an L1 loss, and a structural-consistency loss. The 

adversarial loss allows the generators to generate synthetic CT images that can fool the discriminators, 

while training the discriminators to better distinguish between real and synthetic images. A least-square 

minimization is used for the adversarial loss functions as follows: 

ℒ𝑎𝑑𝑣
𝑀𝑅 = 𝐷𝐶𝑇

𝑀𝑅(𝐼𝐶𝑇
𝑀𝑅 , 𝐼𝑀𝑅)

2
+ (1 − 𝐷𝐶𝑇

𝑀𝑅(𝐼𝐶𝑇
𝑝𝑟𝑒

, 𝐼𝑀𝑅))
2
 (9.2𝑎)

ℒ𝑎𝑑𝑣
𝐶𝐵𝐶𝑇 = 𝐷𝐶𝑇

𝐶𝐵𝐶𝑇(𝐼𝐶𝑇
𝐶𝐵𝐶𝑇 , 𝐼𝐶𝐵𝐶𝑇)

2
+ (1 − 𝐷𝐶𝑇

𝐶𝐵𝐶𝑇(𝐼𝐶𝑇
𝑖𝑛𝑡𝑟𝑎, 𝐼𝐶𝐵𝐶𝑇))

2
(9.2𝑏)

 

where the discriminators take the concatenation of real/synthetic CT image and input image (MR or CBCT) 

as input. The L1 loss is applied to reduce the difference between the synthetic CT and the reference CT: 

ℒ𝐿1
𝑝𝑟𝑒

= |𝐼𝐶𝑇
𝑝𝑟𝑒

− 𝐼𝐶𝑇
𝑀𝑅| (9.3𝑎)

ℒ𝐿1
𝑖𝑛𝑡𝑟𝑎 = |𝐼𝐶𝑇

𝑖𝑛𝑡𝑟𝑎 − 𝐼𝐶𝑇
𝐶𝐵𝐶𝑇|. (9.3𝑏)

 

Additionally, a structural-consistency loss is added to improve the image anatomical alignment 

between input images and synthetic images, which is important for deformable registration. Following Ref. 

[288] and Chapter 8, MIND is used to calculate local structural feature vectors around each voxel, and the 

L1 norm of MIND features between input and synthetic images is minimized: 

ℒ𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 = |𝑀𝐼𝑁𝐷(𝐼𝐶𝑇
𝑀𝑅) − 𝑀𝐼𝑁𝐷(𝐼𝑀𝑅)| + |𝑀𝐼𝑁𝐷(𝐼𝐶𝑇

𝐶𝐵𝐶𝑇) − 𝑀𝐼𝑁𝐷(𝐼𝐶𝐵𝐶𝑇)|. (9.4) 

In this work, MIND was implemented with 6 nearest neighbors and computed using local patch of size 7, 

as in Chapter 8. 

The synthesis training loss is the combination of the adversarial, L1, and structural-consistency 

loss:
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ℒ𝐺𝐴𝑁 = ℒ𝑎𝑑𝑣 + 𝜆𝐿1(ℒ𝐿1
𝑝𝑟𝑒

+ ℒ𝐿1
𝑖𝑛𝑡𝑟𝑎) + 𝜆𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒ℒ𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 , (9.5)

where 𝜆𝐿1  and 𝜆𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒  are hyperparameters that control the relative importance of the L1 loss and 

structural-consistency loss. The network is trained by alternating between updating 𝐷𝐶𝑇
𝑀𝑅 and 𝐷𝐶𝑇

𝐶𝐵𝐶𝑇 (with 

JSR fixed) and updating JSR (with 𝐷𝐶𝑇
𝑀𝑅 and 𝐷𝐶𝑇

𝐶𝐵𝐶𝑇 fixed). 

Alternatively, if no paired reference CT that is spatially aligned with MR or CBCT is available, an 

unsupervised Cycle-GAN can be used for image synthesis. In an initial synthesis pre-training, MR-CT 

cycled synthesis and CBCT-CT cycled synthesis (each consisting of forward and backward generators and 

discriminators) are separately trained. Once the Cycle-GAN networks are trained, the MR-to-CT generator 

and CBCT-to-CT generator parameter weights are copied to the associated encoders and synthesis decoders 

of the JSR network. Further training of the JSR network image synthesis then minimize Equation (9.5) with 

𝜆𝐿1 set to 0. For details of Cycle-GAN synthesis implementation, please refer to Ref. [305]. For simplicity, 

the supervised conditional GAN synthesis will be used for the remainder of this chapter, and comparison 

of supervised conditional GAN and unsupervised Cycle-GAN is discussed in Section 9.5.1. 

9.2.2.2 Image Registration Loss 

The unsupervised deformable registration loss consists of three terms, an intra-modality image 

similarity loss, an inter-modality image similarity loss, and a deformation smoothness regularization. The 

intra-modality image similarity loss measures the NCC between the fixed and synthetic CT images. As the 

deformation fields are estimated progressively in a coarse-to-fine pyramid, the loss is computed at all 4 

resolution levels: 

ℒ𝑖𝑛𝑡𝑟𝑎𝑚𝑜𝑑𝑎𝑙 = −∑𝑁𝐶𝐶 (𝑑𝑜𝑤𝑛2𝑖(𝐼𝐶𝑇
𝑀𝑅 ∘ 𝜙), 𝑑𝑜𝑤𝑛2𝑖(𝐼𝐶𝑇

𝐶𝐵𝐶𝑇))

3

𝑖=0

, (9.6) 

where 𝑑𝑜𝑤𝑛2𝑖 denotes trilinear downsampling with a factor of 2𝑖. Image synthesis is inevitably associated 

with inconsistency and error, thus information from the original input may be lost during the mapping 

process. An additional inter-modality image similarity loss is therefore computed between the fixed 
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synthetic CT and MR to better utilize the input MR image, which contains abundant information of brain 

soft-tissue anatomy: 

ℒ𝑖𝑛𝑡𝑒𝑟𝑚𝑜𝑑𝑎𝑙 = ∑|𝑀𝐼𝑁𝐷 (𝑑𝑜𝑤𝑛2𝑖(𝐼𝑀𝑅 ∘ 𝜙)) − 𝑀𝐼𝑁𝐷 (𝑑𝑜𝑤𝑛2𝑖(𝐼𝐶𝑇
𝐶𝐵𝐶𝑇))|

3

𝑖=0

. (9.7) 

The synthetic CT is used as the fixed image instead of the CBCT, because the CBCT image contains 

lower contrast, higher noise, and various artifacts that would potentially deteriorate registration 

performance. 

To encourage smooth deformations, an additional regularization is applied on the L2 norm of 

deformations 𝜙𝑖, 𝑖 = 0, 1, 2, 3 from each resolution level: 

ℒ𝑠𝑚𝑜𝑜𝑡ℎ = ∑‖𝛻𝜙𝑖‖
2

3

𝑖=0

. (9.8) 

The combined loss function for the registration task is therefore: 

ℒ𝑟𝑒𝑔 = ℒ𝑖𝑛𝑡𝑟𝑎𝑚𝑜𝑑𝑎𝑙 + 𝜆𝑖𝑛𝑡𝑒𝑟𝑚𝑜𝑑𝑎𝑙ℒ𝑖𝑛𝑡𝑒𝑟𝑚𝑜𝑑𝑎𝑙 + 𝜆𝑠𝑚𝑜𝑜𝑡ℎℒ𝑠𝑚𝑜𝑜𝑡ℎ, (9.9) 

where 𝜆𝑖𝑛𝑡𝑒𝑟𝑚𝑜𝑑𝑎𝑙  and 𝜆𝑠𝑚𝑜𝑜𝑡ℎ  are hyperparameters on the intermodal similarity loss and smoothness 

regularization, respectively. At inference, the final predicted deformation (𝜙0) warps 𝐼𝑀𝑅 to produce the 

registered MR image, 𝐼𝑀𝑅 ∘ 𝜙. 

To optimize the joint parameter space of the image synthesis and registration, the JSR is trained 

with a combined loss function: 

ℒ𝑗𝑜𝑖𝑛𝑡 = ℒ𝐺𝐴𝑁 + 𝜆𝑟𝑒𝑔ℒ𝑟𝑒𝑔 , (9.10) 

where 𝜆𝑟𝑒𝑔 is a hyperparameter balancing between the two loss terms. In this work, ℒ𝑗𝑜𝑖𝑛𝑡 is first optimized 

with 𝜆𝑟𝑒𝑔 = 0 for a small number of iterations (e.g., 5 epochs) to provide a reasonable initialization of the 

synthetic images. Then 𝜆𝑟𝑒𝑔 is computed using adaptive loss balancing for multi-task learning [294] to 

dynamically balance between the two tasks.  

9.3 Experimental Methods 
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9.3.1 Image Datasets 

Two datasets were used in training, validation, and testing of the proposed method. The first dataset 

consisted of 50 paired T1-weighted MR and MDCT images without evidence of deformation. The MDCT 

images were used to simulate CBCT images using the high-fidelity, physics-based forward projection 

simulation system described in Ref. [XXX]. Deep brain deformations were simulated following the method 

in Section 8.3.3.1 to create a large training dataset. The network trained from the first dataset was then 

refined via transfer learning on a second dataset containing 14 pairs of MR and corresponding CBCT images 

exhibiting large deformations resulting from neurosurgical interventions. The second dataset was used to 

further evaluate the proposed JSR method under clinical scenarios of large, realistic deformations.  

9.3.1.1 Simulation Dataset 

Fifty pairs of T1-weighted MR and MDCT images from Section 8.3.1.1 were used. The MR and 

MDCT scans were acquired on the same day with no evidence of deformation. Preprocessing steps included 

rigid registration (minimizing NMI similarity as in Chapters 7 and 8), resampling to 1.5×1.5×1.5 mm³ 

isotropic spacing, and cropping to 128×160×128 voxels to capture the entire brain at the center of the field 

of view. CBCT images were simulated from the MDCT images via the high-fidelity forward simulator 

[309], which utilized highly accurate, physics-based models of the imaging chain and image formation 

process. Incident spectrum, scatter, quantum noise, electronic noise, glare, and lag were included in the 

simulation under the system geometry of the Medtronic O-arm (Littleton, MA). The CBCT images were 

clipped between -100 HU and 100 HU and normalized to the range 0-1 to focus the dynamic range around 

soft tissue. The MR images were similarly normalized to range 0-1 between the 1st-99th percentile of MR 

image intensities. 

Random deep brain diffeomorphic deformations were simulated following the method proposed in 

Ref. [305] and Section 8.3.1.1, by placing multiple attractive/repulsive points within the ventricles to 

deform the surrounding brain tissue and CSF. Figure 9.3 shows the simulation of one example MR/CBCT 

image pair. The original MR image in 9.3(a) was warped by a random deformation to yield the moving MR 
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image (𝐼𝑀𝑅) as shown in 9.3(b), whereas the fixed CBCT image (𝐼𝐶𝐵𝐶𝑇) in 9.3(d) was simulated from the 

MDCT image in 9.3(c). In total, 45 subjects were used to simulate a total of 400 training and 10 validation 

pairs, and the remaining 5 subjects were used to simulate 10 testing pairs.  

An additional study was conducted to investigate the influence of surgical instrumentation (viz., 

metal) on algorithm performance. The simulation study was expanded to include a variety of such 

instruments and realistic metal artifacts in the image data. Metal objects were modeled in a variety of shapes 

and material content, including 5 mm radius spheres and 5 mm radius x 70 mm length rods, randomly 

placed in deep-brain regions proximal to the thalamus and caudate nucleus in the MDCT image. The 

attenuation coefficient of these simulated instruments was varied randomly between 0.06-0.16 mm-1 [as a 

reference, Al (0.08 mm-1)]. Random rigid transformations were also applied to the metals to vary their 

position and orientation. Simulated CBCT images were formed from the MDCT (with simulated metal) 

including effects of scatter, beam-hardening, and photon starvation to yield realistic metal artifacts as 

illustrated in Figure 4(e). A total of 100 additional image pairs with metal were generated (from the same 

45 subjects) for training in MR (no metal) and CBCT (with metal), with an additional 10 pairs (from the 

remaining 5 subjects) used for testing. 

 

Figure 9.3. Paired MR/CBCT dataset from simulations. (a) The original MR image. (b) The moving MR image (𝐼𝑀𝑅), deformed 

from the original MR with a random simulated deformation. (c) The original MDCT image (with or without simulated metal 

instrumentation). (d) The fixed CBCT image (𝐼𝐶𝐵𝐶𝑇) simulated from the MDCT using a high-fidelity forward simulator [309] –

shown without instrumentation. (e) The fixed CBCT image (𝐼𝐶𝐵𝐶𝑇) with a simulated metal object, illustrating realistic metal artifacts 

associated with scatter, beam-hardening, and photon starvation. 
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The performance of image synthesis was evaluated quantitatively in terms of mean absolute error 

(MAE) and structural similarity index measure (SSIM) between the synthetic CT and reference CT images. 

The geometric accuracy of registration was evaluated in terms of DSC, SD, and HD for segmentations of 

the lateral, third, and fourth ventricles as well as the amygdala, hippocampus, caudate nucleus, and thalamus. 

The segmentations were obtained automatically from MALPEM [292] in the original MR images before 

simulated deformations. The segmentations were propagated to the fixed CBCT coordinates, as no 

deformation existed between the CBCT and the original MR. The segmentations were further warped by 

the simulated deformation with nearest neighbor interpolation to the moving preoperative MR coordinates. 

Additionally, TRE was evaluated in terms of the Euclidean distance between target points on the registered 

and fixed images. Thirty target points were defined by the centroids of relatively small (<1500 mm³) 

anatomical segmentations throughout the brain (e.g., the amygdala, ventral diencephalon, and medial orbital 

gyrus). The diffeomorphism of the deformation field was further quantified by the Jacobian determinant 

(|𝐽𝜙|), where voxels with |𝐽𝜙| < 0 indicates non-realistic folding or tearing. 

9.3.1.2 Clinical Dataset 

A second dataset of paired MR and CBCT images with real deformations induced by neurosurgical 

intervention (acquired under IRB-approved protocol in collaboration with the Department of Neurosurgery) 

was acquired to further evaluate the performance of the registration network on real, clinical settings. A 

total of 14 cases with preoperative T1-weighted MR and intraoperative CBCT were collected in an IRB-

approved retrospective clinical study. Each case exhibited substantial deformation associated with burr hole 

incision, endoscope and/or shunt placement, and disease progression between the scans. The MR images 

were selected from the neurosurgery dataset described in [305], which were acquired on different machines 

with a wide range of imaging protocols (i.e., spin echo / MP-RAGE pulse sequences, 1.5T / 3T, 2D axial / 

2D sagittal, and different voxel sizes ranging from 0.45×0.45×0.9 mm³ to 0.94×0.94×5 mm³). The CBCT 

images were acquired using a prototype mobile U-arm [310, 311] at 100 kV and reconstructed at 

0.44×0.44×0.44 mm³ voxel size with filtered back-projection. Similar to the preprocessing in Section 
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9.3.1.1, the MR and CBCT image pairs were rigidly registered using NMI metric, resampled to 1.5×1.5×1.5 

mm³ isotropic spacing, cropped to 128×160×128 voxels, and normalized to 0-1. Intraoperative reference 

CT images as described in [305] were also available and were similarly processed as the CBCT images. 

Registration performance was evaluated in terms of DSC, SD, HD, and TRE. Ventricle 

segmentations were obtained via MALPEM on the MR images and via manual segmentation on the CBCT 

images. For analysis of TRE, six target points were defined in both MR and CBCT at unambiguous 

landmarks (e.g., the anterior commissure, interventricular foramen, and the most posterior point on the 

lateral ventricle posterior horn).  

9.3.2 Implementation Details  

The proposed JSR network was implemented using PyTorch and trained on a NVIDIA Quadro 

RTX 6000 with 24 GB of GPU memory. The network predicted a 3D deformation field of the entire 3D 

image domain (128x160x128 voxels), and batch size was set to 1 due to the high memory usage for training 

the 3D network. The Adam optimizer was used with default parameters [275]. In the simulation study, 

learning rate was first set to 2x10-4 for the first 5 epochs for image synthesis pre-training by optimizing 

Equation (9.5). Then learning rate was reduced to 1x10-4 to optimize the joint synthesis and registration 

loss function in Equation (9.10) for 100 epochs. The sensitivity of registration performance to image 

synthesis pre-training is discussed in Section 9.5.1. Augmentation of random rigid transformations 

(translations of 0-10 mm and rotations of 0-10°) were applied to the image pairs to avoid overfitting. 

Two hyperparameters associated with the image synthesis loss are the L1 loss hyperparameter (𝜆𝐿1) 

and the structural-consistency loss hyperparameter (𝜆𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒). The 𝜆𝐿1 parameter was varied over the 

range 30-300, and 𝜆𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒  was varied over the range 0-20. Nominal values of 𝜆𝐿1 = 200  and 

𝜆𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 = 5 were identified to minimize the L1 accuracy of the synthetic CT images in the validation 

dataset. In terms of registration losses, the inter-modality similarity loss hyperparameter 𝜆𝑖𝑛𝑡𝑒𝑟𝑚𝑜𝑑𝑎𝑙 was 

varied over the range 0-1, and the smoothness regularization hyperparameter (𝜆𝑠𝑚𝑜𝑜𝑡ℎ) was varied over the 
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range 0.5-3. Nominal values of 𝜆𝑖𝑛𝑡𝑒𝑟𝑚𝑜𝑑𝑎𝑙 = 0.1 and 𝜆𝑠𝑚𝑜𝑜𝑡ℎ = 1 were selected to maximize DSC over 

all segmented structures after registration in the validation dataset. 

In the clinical study, JSR was not trained from scratch due to the limited training data and 

significant changes in scan protocols. Instead, a transfer learning approach was applied to adapt from the 

network trained in the simulation study to the clinical dataset with real deformations. The transfer learning 

included two steps: synthesis pre-training; and joint synthesis and registration training. In synthesis pre-

training, only the synthesis decoders were refined while freezing other parts of the network to minimize 

Equation (9.5). Due to the lack of reference CT that spatially aligned with the MR or CBCT images, 𝜆𝐿1 

was set to 0. The pre-training used a learning rate of 1x10-4 for the 30 epochs. Subsequently, joint synthesis 

and registration was trained by refining the entire network with a learning rate of 1x10-5 set on the synthesis 

and registration decoders and 1x10-6 set on the MR and CBCT encoders. A three-fold cross-validation was 

performed by splitting the 14 image pairs into 10 training cases, 2 validation cases, and 2 test cases.  

9.3.3 Comparison of Registration Methods 

To evaluate the performance of the proposed JSR network, a series of registration methods were 

implemented for comparison. JSR was first compared to a single-resolution JSR (JSR-Single) method to 

investigate the effect of the multi-resolution registration decoder (described in Section 9.2.1.3), and the 

findings of the comparison are discussed in Section 9.5.2. A second question investigated whether 

transforming inter-modality registration into intra-modality registration via image synthesis improves 

registration performance. To this end, two state-of-the-art direct inter-modality registration methods were 

implemented – an iterative optimization-based registration (SyN-MI) and a deep learning-based registration 

(VM-MI), as described in Chapter 8. Additionally, two deep learning-based registration methods using 

image synthesis to the MR or CT domain (VM-Synth-NCC and VM-DualSynth-NCC were implemented to 

test which domain (MR or CT domain) is more suitable to the task of MR-CBCT registration.  

Single-Resolution JSR (JSR-Single). A simplified JSR network with a single-resolution 

registration decoder, denoted JSR-single, was implemented to investigate the effect of the multi-resolution 
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registration decoder. The single-resolution registration decoder does not explicitly estimate a deformation 

field at each resolution level. The “registration block” is illustrated in Figure 9.2(e),  where the fixed feature 

map (𝐹𝑖) and moving feature maps without warping (𝑀𝑖) are concatenated with the fused feature map from 

the previous level (𝐶𝑖+1) and fed into two convolutions with residual connection and one 1×1×1 convolution 

to yield a fused feature map at the current level (𝐶𝑖). To maintain a fair comparison between the single-

resolution and multi-resolution registration decoder, the same number of convolution parameters were used. 

Since only one deformation field is predicted at the end of the decoding, registration loss functions Equation 

(9.6-8) were computed only at the full resolution. 

SyN-MI. Symmetric Normalization (SyN), an iterative optimization-based deformable registration 

algorithm popular in brain registration [24, 293] was performed to directly register MR to CBCT. Mutual 

information (MI) was selected as the image similarity metric. Parameter search was performed to maximize 

DSC after registration in the simulation study: step size = 0.5; update field Gaussian smoothing = 2 voxels; 

total field Gaussian smoothing = 1 voxel; 4×2×1 multiresolution pyramid; convergence when MI change 

between iterations is below 1x10-5; and 32 histogram bins for MI calculation. Parameters were optimized 

per image pair on the clinical study, with step size ranging 0.25-1 and the update and total field Gaussian 

smoothing ranging 0-5 voxels over the course of the pyramid.  

VM-MI. A multimodality VoxelMorph [115] using MI similarity metric was performed as a 

baseline representation of unsupervised deep learning registration algorithms. MR and CBCT images were 

directly input to the network without image synthesis. A MI patch size of 8 (searched in 4-10), 𝜆𝑠𝑚𝑜𝑜𝑡ℎ =

1 (searched in 0-2) and learning rate of 1 × 10−4 were selected to maximize DSC in the validation dataset. 

VM-Synth-NCC. An image synthesis-based registration algorithm, VM-Synth-NCC, was 

implemented utilizing MR-CBCT synthesis. A CBCT to MR image synthesis network was first trained 

using a conditional GAN network, with the generator and discriminator design identical to the image 

synthesis part of the JSR network (encoder, synthesis decoder, and discriminator). The moving MR image 

was then registered to the fixed synthetic MR from CBCT via an intra-modality VoxelMorph network by 
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minimizing NCC similarity loss. The whole registration pipeline, named as VM-Synth-NCC, investigated 

the feasibility of using MR-CBCT synthesis for registration in the MR domain. 

VM-DualSynth-NCC. An additional image synthesis-based registration algorithm, VM-DualSynth-

NCC, was performed using two image synthesis networks, a MR-to-CT synthesis and a CBCT-to-CT 

synthesis. VoxelMorph with NCC image similarity loss was then trained to register between the two 

synthetic CT images. The VM-DualSynth-NCC shared a similar idea as the proposed JSR network in 

performing registration in an intermediate CT domain but sequentially learned image synthesis and 

registration networks instead of jointly as in JSR. Both VM-Synth-NCC and VM-DualSynth-NCC used 

𝜆𝐿1 = 200  and 𝜆𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 = 5  for image synthesis (same as the hyperparameters used in JSR) and 

λsmooth = 1 for VoxelMorph registration. 

9.4 Results 

9.4.1 Simulation Studies  

9.4.1.1 Accuracy of Image Synthesis  

The performance of MR-to-CT and CBCT-to-CT synthesis from JSR was first examined. As shown 

in a simulation study test case in Figure 9.4, both image synthesis methods generated synthetic CT images 

that resembled the reference CT images. Given an input preoperative MR image [Figure 9.4(a)], the 

synthetic CT [Figure 9.4(b)] shows anatomical structures consistent with the reference CT [Figure 9.4(c)], 

which is important for the registration task. The MAE of the synthetic CT with respect to the reference CT 

is depicted in Figure 9.4(d), showing errors of less than 10 HU throughout the brain parenchyma and higher 

errors only outside the brain, which are not relevant to brain registration performance. Similarly, the CBCT-

to-CT synthesis result is shown in Figure 9.4(e-f). The MAE between the synthetic CT from CBCT and the 

reference CT shows a low level of error (<10 HU) throughout the brain. Since the CBCT and CT contain 

similar intensity distribution of different anatomical structures, errors inside and outside of the skull were 

similar. The errors of the skull were zero because the CT images were clipped to 100 HU. 
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Figure 9.4. MR-to-CT (top row) and CBCT-to-CT (bottom row) image synthesis on a test case in the simulation study. For MR-

to-CT synthesis: (a) input preoperative MR image, (b) synthetic CT image, (c) reference ground truth CT image in the preoperative 

coordinates, and (d) MAE between the synthetic CT from MR and reference preoperative CT image. For CBCT-to-CT synthesis: 

(e) input intraoperative CBCT image, (f) synthetic CT image, (g) reference ground truth CT image in the intraoperative coordinates, 

and (h) MAE between the synthetic CT from CBCT and reference intraoperative CT image. The yellow arrows in (e-h) highlight 

a location with higher synthesis error due to structures occluded by CBCT artifacts.   

Quantitatively, MR-to-CT synthesis exhibited MAE of 18.4 ± 1.5 HU and SSIM of 0.86 ± 0.02 

within the brain soft-tissue region. The CBCT-to-CT synthesis yielded MAE of 16.0 ± 0.7 and SSIM of 

0.89 ± 0.01. While the CBCT-to-CT synthesis yielded overall better MAE and SSIM than MR-to-CT 

synthesis, some fine structures in CT may not be accurately restored in the synthetic CT from CBCT due 

to artifacts present in the CBCT. The yellow arrows in Figure 9.4(e-h) indicate an example of structures 

lost in the synthesis process, potentially due to the strong shading artifact that removes the presence of the 

contrast in CBCT. The accuracy of synthesis (in terms of MAE) of soft tissues in the brain is on par with 

other state-of-the-art approaches—for example: 13-30 HU in CBCT-to-CT synthesis (Chen et al., 2020; 

Harms et al., 2019; Liang et al., 2019; Spadea et al., 2021) and 14-50 HU in MR-to-CT synthesis (Boulanger 

et al., 2021; Bourbonne et al., 2021). The accuracy of synthesis in bone (the skull) was not measured, 

because the images were clipped to 100 HU to emphasize soft-tissue synthesis. Since the goal of the work 

is to achieve accurate soft-tissue brain registration, the absolute accuracy of the image synthesis (especially 

of the skull) is less important than registration accuracy, which is discussed in detail below.  
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9.4.1.2 Accuracy of Deformable MR-CBCT Registration 

The performance of the JSR network was first evaluated in comparison to the alternative methods. 

Table 9.1 summarizes registration results of the test cases in the simulation dataset, where the average DSC, 

SD, and HD metrics were computed over all seven brain anatomical structures (lateral ventricles, third 

ventricles, fourth ventricles, amygdala, hippocampus, caudate nucleus, and thalamus). The SyN-MI and 

VM-MI showed minimal overall improvement compared to the initial rigid registration, suggesting that 

using MI metric alone was not able to accurately register the given MR and CBCT images, either in 

conventional iterative optimization (SyN-MI) or in deep learning-based unsupervised registration (VM-MI). 

The remaining four image synthesis-based registration methods, on the other hand, all 

demonstrated improved registration compared to rigid initialization. The VM-Synth-NCC method, 

computing registration in the MR domain, yielded DSC (0.56 ± 0.19), SD (0.58 ± 0.36 mm), HD (2.43 ± 

0.68 mm), and TRE (2.65 ± 1.12 mm). The VM-DualSynth-NCC method, which computed the registration 

in the CT domain, further improved registration performance. The ablation study, JSR-Single, which only 

estimated the deformation field at the original resolution, demonstrated comparable accuracy to VM-

DualSynth-NCC. Finally, the proposed JSR method with multi-resolution registration decoder achieved the 

highest DSC (0.69 ± 0.11), and lowest SD (0.43 ± 0.23 mm), HD (2.43 ± 0.68 mm), and TRE (2.05 ± 0.96 

mm). A boxplot summarizing TRE from all compared method is also shown in Figure 9.5(b). All 

registration methods yielded diffeomorphic deformations, with few voxels with |𝐽𝜙| ≤ 0. The runtime of 

VM-MI, JSR-Single, and JSR were around 2.5 seconds, compared to ~ 3 seconds for sequential synthesis 

and registration methods VM-Synth-NCC and VM-DualSynth-NCC, and ~ 16 min for SyN-MI.  

Table 9.3. Registration performance of registration methods evaluated on the simulation study. The proposed method (JSR) is 

marked in bold, and asterisks (*) denote statistical significance (𝒑 < 𝟎. 𝟎𝟓) in paired t-tests between JSR and the best performing 

of the other methods. Values for DSC, SD, HD, and TRE are the mean (and standard deviation) computed over the segmented 

anatomical structures. 

Method DSC SD (mm) HD (mm) TRE (mm) |𝑱𝝓| ≤ 𝟎 Runtime (s) 

Rigid 0.49 ± 0.20 1.15 ± 0.47 4.24 ± 1.22 3.25 ± 1.83 - - 

SyN-MI 0.49 ± 0.20 1.01 ± 0.43 4.05 ± 1.35 3.07 ± 1.75 0 982 ± 155 

VM-MI 0.48 ± 0.20 0.95 ± 0.40 4.00 ± 1.02 2.95 ± 1.69 0.03% 2.59 ± 0.02 

VM-Synth-NCC 0.56 ± 0.19 0.58 ± 0.36 3.76 ± 0.92 2.65 ± 1.12 0.01% 3.07 ± 0.02 
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VM-DualSynth-NCC 0.68 ± 0.09 0.45 ± 0.25 2.89 ± 0.75 2.20 ± 0.71 0.01% 3.07 ± 0.02 

JSR-Single 0.67 ± 0.11 0.47 ± 0.26 2.91 ± 0.86 2.23 ± 0.80 0.05% 2.55 ± 0.03 

JSR 0.69 ± 0.11 0.43 ± 0.23 2.66 ± 0.69* 2.05 ± 0.96* 0.01% 2.66 ± 0.03 

 
Figure 9.5. Quantitative registration result from the simulation study. (a) DSC for individual anatomical structures of various 

registration methods. (b) TRE of various registration methods. 

Figure 9.5 further quantifies the registration DSC for each method with respect to individual 

anatomical structures. SyN-MI and VM-MI were particularly challenged in MR-CBCT registration, likely 

due to the large image appearance discrepancy that is beyond the description power of MI similarity metric. 

The VM-Synth-NCC method yielded substantial improvement in many structures, including the 3rd 

ventricles, 4th ventricles, and amygdala. Due to the challenges in CBCT-to-MR synthesis, however, many 

structures (e.g., lateral ventricles) were not accurately synthesized, resulting in suboptimal registration 

performance. The remaining methods, which all computed registration in the synthetic CT domain, 

demonstrated superior registration performance. Among VM-DualSynth-NCC, JSR-Single, and JSR, the 

proposed JSR method showed overall higher DSC: JSR achieved better alignment of the 3rd ventricle, 

amygdala, and thalamus than VM-DualSynth-NCC, and JSR achieved better alignment of 4th ventricle, 

thalamus, and caudate nucleus than JSR-single.  

Figure 9.6 shows qualitative comparison of Rigid, SyN-MI, JSR-Single, and JSR in an example test 

case. The boundaries of segmentations (defined in the intraoperative fixed CBCT images) are overlaid on 
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the registered MR images. Compared to Rigid, SyN-MI improved alignment in some regions, while failed 

to align the moving MR to the fixed image at other regions, as shown in Figure 9.6(b), resulting in no 

significant change in DSC. Additionally, the skull appeared to be substantially deformed, even though no 

deformation existed between the MR and CBCT in the skull region, suggesting that using MI was 

suboptimal in modeling deformation between the input images. As shown in Figure 9.6(c), JSR-Single 

improved anatomical alignment compared to SyN-MI, while maintaining the rigidity of the skull. JSR 

further improved registration upon JSR-Single, as evident in regions marked by the arrows in Figure 9.6(c-

d). With the multi-resolution registration decoder, JSR was able to gradually refine the estimated 

deformation in the decoding process and hence model more complex deformation patterns.  

 
Figure 9.6. Example registration results among proposed and comparison methods in a test case of the simulation study. Registered 

MR images from (a) Rigid, (b) SyN-MI, (c) JSR-Single, (d) JSR are overlaid with segmentations contours of anatomical structures 

(defined in the fixed CBCT coordinates). Arrows mark example regions of residual registration error that was improved from JSR-

Single to JSR. 

9.4.1.3 Accuracy of Deformable Registration in the Presence of Metal 

The performance of JSR in the presence of metal is depicted in Figure 9.7. Figures 9.7(a-c) show a 

metal-free simulation case, in the order of CBCT, the synthetic CT (from CBCT), and the registered MR. 

Figures 9.7(d-f) show the corresponding case with a simulated metal instrument adjacent to the anterior 

horn of the right lateral ventricle. The synthetic CT in Figure 9.7 (d) successfully reduced metal artifacts 
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(streaks) compared to the CBCT, while maintaining visibility of the ventricle boundaries. Both registrations 

(with and without metal) demonstrated comparable improvement in anatomical alignment compared to the 

moving MR image before deformable registration [Figure 9.7 (g)]. Figure 9.7 (h) further depicts the norm 

of the difference between the deformation fields of the two cases, showing only a minor difference 

throughout the brain, except in a tightly localized region adjacent to the metal. Therefore, the presence of 

metal had only limited impact on JSR performance and was restricted to the immediate region adjacent to 

the metal. In addition, JSR achieved diffeomorphic deformations even in the presence of metal, with only 

a negligible number of voxels (0.01%) with |𝐽𝜙| ≤ 0. 

A similar finding is observed in the DSC plot of Figure 9.7(i), where JSR performance without 

metal (JSR) and with metal (JSR-Metal) achieved comparable DSC for most anatomical structures. The 

accuracy of alignment of the thalamus and caudate nucleus, however, were reduced because the metal 

simulations were specifically adjacent to those structures (as noted in Section 9.3.1.1), thereby occluding 

necessary soft-tissue structures for registration. That the registration performed well overall is attributable 

to the CBCT-to-CT synthesis that is integral to JSR, which reduces metal artifacts and alleviated some of 

the challenges of metal in registration. The performance of JSR compared favorably to direct intermodal 

registration (VM-MI) as shown in the VM-MI-Metal result of Figure 9.7(i), which suffered a strong 

reduction in accuracy due to metal artifacts.  
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Figure 9.7. JSR registration with and without (simulated) metal instruments in the fixed CBCT image. An example case without 

metal is illustrated in (a) CBCT, (b) synthetic CT from CBCT, and (c) registered MR. The corresponding case with metal is shown 

in (d) CBCT, (e) synthetic CT from CBCT, and (f) registered MR. (g) The moving MR image and (h) the norm of difference 

between the deformation fields from the two cases, with the pink arrow pointing to the location of the metal. Segmentations contours 

of anatomical structures (defined in the fixed CBCT coordinates) are overlaid in (c, f, and g). (i) DSC for individual anatomical 

structures following various registration methods. The segmentation contours of anatomical structures (defined in the fixed CBCT 

coordinates) are overlaid in yellow and pink. Arrows mark the location of metal, showing a tightly localized difference in predicted 

deformation. 

9.4.2 Clinical Studies 

The JSR network trained in the simulation study was further trained and evaluated using clinical 

images with real deformations. As discussed in Section 9.3.1.2, the clinical dataset contains a diverse range 

of MR images with different acquisition protocols, resulting in large variations of intensity, resolution, and 

texture. Additionally, a few patients present more substantial pathological morphology that severely 

deformed the brain beyond what is typical in deep brain deformation from endoscopic surgery. Both 

complications posed challenges to the registration methods. The registration performance is summarized in 

Table 9.2, where SyN-MI and VM-MI did not improve compared to Rigid registration. JSR with the benefit 

of transfer learning, on the other hand, demonstrated good generalizability on the clinical images despite 

these challenges. Transfer learning leveraged the network previously trained with a large number of 

simulated images in Section 9.4.1 to accommodate changes evident in the real clinical images. JSR yielded 

statistically significant improvement compared to Rigid, with DSC 0.68 ± 0.14, SD 0.63 ± 0.31 mm, HD 

3.14±1.32 mm, and TRE 2.95 ± 1.08 mm. Figure 9.7(a) further illustrates the DSC of individual ventricles 

after registration, which shows a similar trend as the overall metrics. All methods yielded similar level of 
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diffeomorphism with only an arguably negligible percent of non-positive Jacobian determinant. JSR 

achieved runtime of 2.66 ± 0.03 seconds, compared to ~17 min for SyN-MI. 

Table 9.2. Registration performance of the methods investigated on the clinical study. Asterisks (*) denote statistical significance 

(p<0.05) assessed from paired t-test between JSR and other methods. DSC, SD, HD, and TRE values are the mean (and standard 

deviation) computed over pertinent structures. 

Method DSC SD (mm) HD (mm) TRE (mm) |𝑱𝝓| ≤ 𝟎 Runtime (s) 

Rigid 0.61 ± 0.19 1.24 ± 0.55 5.04 ± 2.02 5.40 ± 2.53 - - 

SyN-MI 0.56 ± 0.20 1.32 ± 0.57 4.85 ± 2.35 5.11 ± 2.78 0.10% 1020 ± 136 

VM-MI 0.61 ± 0.19 1.20 ± 0.52 4.92 ± 2.02 5.07 ± 2.09 0.08% 2.59 ± 0.02 

JSR 0.68 ± 0.14* 0.63 ± 0.31* 3.14 ± 1.32* 2.45 ± 1.08* 0.02% 2.66 ± 0.03 

The JSR result of an example test case is further shown in Figure 9.8(b-g). Figure 9.8(b) shows the 

moving MR image (acquired in the sagittal plane using a spin echo pulse sequence and reconstructed to 

0.94×0.94×5 mm³ voxel size). The synthetic CT from MR is shown in Figure 9.8(c), which roughly matches 

with CT image appearance, albeit a slight loss of CSF contrast due to lack of training data. The fixed CBCT 

image and synthetic CT from CBCT are shown in Figure 9.8(e) and (f), respectively. The presence of a 

ventricular shunt and brain shift at the cortical surface (separating the brain from the cranium) were not 

seen in the simulation or training. Interestingly, the artifacts (streaks) surrounding the shunt in CBCT were 

successfully removed in the synthetic CT image, suggesting that the CBCT-to-CT synthesis was robust to 

unseen CBCT artifacts. The brain shift was not correctly handled, because such deformations likely violated 

diffeomorphism and the network did not see such a scenario during training. Despite all the challenges, 

registration about the ventricles achieved comparable accuracy as in the simulation study, noting that 

deformations within the deep brain are more pertinent than deformations at the cortex for the clinical use 

case of neuroendoscopic deep brain surgery. As evident in Figure 9.8(d), the registered MR image showed 

close alignment to the fixed CBCT ventricle segmentation contours.  
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Figure 9.8. Registration results in clinical data. (a) Boxplots of DSC of ventricles in the clinical study. Example registration results 

for the proposed JSR method on a test case in the clinical study: (b) the moving MR image, (c) the synthetic CT image from MR, 

(d) the registered MR image, (e) the fixed CBCT image, (f) the synthetic CT image from CBCT, and (g) the reference CT (not used 

in training or testing). Contours of the lateral ventricles (defined in the fixed CBCT coordinates) are overlaid in yellow in (b-g).  

9.5. Discussion and Conclusions 

The results reported in this chapter summarize the performance of the JSR network trained with 

nominal hyperparameters, which is dependent on the image synthesis pre-training described in Section 9.3.2. 

To better understand the utility of the synthesis pre-training, the sensitivity of registration accuracy to the 

image synthesis performance is discussed further in Section 9.5.1, below. Furthermore, the comparison 

among alternative architectures warrants further discussion, provided in Section 9.5.2 for the single- and 

multi-resolution registration decoders in JSR-Single and JSR, respectively. Finally, we discuss questions 

regarding the intermediate (MR-like or CT-like) intermediate domain for synthesis-based registration 

methods in Section 9.5.3. 

9.5.1 Sensitivity of Registration Accuracy to Image Synthesis Performance 

The sensitivity of registration accuracy with respect to image synthesis pre-training was evaluated 

first as a means for initializing the fixed and moving synthetic CT images. Different JSR trainings were 
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conducted with initialization of different number of epochs of synthesis pre-training. The validation DSC 

loss curve (summarized over all associated anatomy) of different JSR trainings with 0 (without pre-training), 

1, 3, 5, and 10 epochs of synthesis pre-training is shown in Figure 9.9(a), and the final DSC of the ventricles 

is shown in Figure 9.9(b). Synthesis pre-training of 1-10 epochs yielded comparable overall registration 

performance in terms of DSC, whereas the case without synthesis pre-training (epoch 0) yielded the lowest 

DSC. The study suggests that while synthesis pre-training is required, JSR registration performance is 

relatively insensitive to the amount of synthesis pre-training, because the joint training appears to 

compensate for the remaining synthesis learning, and as little as one epoch is sufficient for convergence. 

Another interesting finding was that registration performance slightly decreased from 5 epochs to 10 epochs 

of pre-training. One explanation is that if the synthesis pre-training proceeded for too many epochs, the 

encoders could be trapped in a local minimum that only encoded synthesis-related information, thus 

reducing the final registration performance. 

 
Figure 9.9. Sensitivity of registration accuracy to image synthesis pre-training. (a) Validation DSC with respect to number of JSR 

training epochs initialized with different synthesis pre-training. (b) DSC of the test cases after JSR training convergence with 

different synthesis pre-training. 

As discussed in Section 9.2.2.1, the image synthesis part of the JSR network can be trained in either 

a supervised manner using a conditional GAN (with reference CT in the preoperative and intraoperative 

coordinates) or an unsupervised manner using a Cycle-GAN. The Cycle-GAN training differs from the 



232 

 

conditional GAN training in two aspects: (1) in the pre-training phase, the Cycle-GAN required two 

additional synthesis generators (CT-to-MR and CT-to-CBCT), which were later removed in JSR training; 

and (2) 𝜆𝐿1 in Equation (9.5) was set to 0 for the Cycle-GAN. The accuracy of synthesis and JSR using the 

two synthesis trainings is summarized in Table 9.3. As expected, the MAE for image synthesis from the 

unsupervised Cycle-GAN training was slightly higher than the supervised conditional GAN. The 

registration accuracy, however, was relatively insensitive to the two synthesis methods, and the DSC and 

SD metrics obtained from Cycle-GAN JSR were only slightly lower than conditional GAN JSR (without 

statistical significance, 𝑝 > 0.1 in student t-test). With a large training dataset and the incorporation of 

structural-consistency loss in image synthesis (Equation 9.4), both conditional GAN and Cycle-GAN were 

able to generate synthetic CT images with similar image appearance and correct structural information as 

real CT images. Additionally, NCC was used as the similarity metric in JSR, which could potentially 

tolerate some level of intensity error in the synthetic images 

Table 9.3. JSR registration accuracy with respect to supervised conditional GAN and unsupervised CycleGAN image synthesis. 

Synthesis Method 

Image Synthesis Accuracy JSR Registration Accuracy 

MAE 

(MR-to-CT)  

(HU) 

MAE 

(CBCT-to-CT)  

(HU) 

DSC SD (mm) 

Conditional GAN 18.4 ± 1.5 16.0 ± 0.7 0.69 ± 0.11 0.43 ± 0.23 

Cycle-GAN 25.8 ± 7.3 22.3 ± 5.5 0.68 ± 0.10 0.45 ± 0.25 

9.5.2 JSR Architecture Design   

The innovation of the proposed JSR network is twofold: (1) a joint synthesis and registration 

network trained with shared encoders and multi-task learning strategy, and (2) a multi-resolution 

registration decoder that estimates deformation fields from coarse to fine resolutions. To explore the 

potential benefit of the joint synthesis and registration learning, JSR was compared to VM-DualSynth-NCC, 

which employed a sequentially training strategy. In VM-DualSynth-NCC, MR-to-CT and CBCT-to-CT 

synthesis were first trained, and then a VoxelMorph registration network taking the synthetic CTs as input 

was trained. JSR, on the other hand, jointly trained the entire network, driving the encoders to encode 

important information for both synthesis and registration. Such a multi-task learning strategy utilizes the 
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synergy between image synthesis and registration to improve registration performance (as shown in Table 

9.1 and Figure 9.5) while reducing the total number of learnable parameters by 20%. 

The efficacy of the multi-resolution registration decoder can be observed by comparing JSR to the 

ablation study JSR-Single. As shown in Table 9.1 and Figure 9.5, JSR achieved better registration 

performance than JSR-Single, especially in the 4th ventricle, thalamus, and caudate nucleus. By using the 

multi-resolution registration decoder, the lower levels of the network only needed to learn the course and 

more global deformations, while leaving the higher levels of the network to refine the estimation, enabling 

the network to model more complex deformation patterns. Additionally, the multi-resolution registration 

decoder allows loss computation at each resolution, which provided “deep supervision” that is known to 

benefit deep neural network learning [312].  

9.5.3 Which Domain is Best for MR-CBCT Registration: The Inter-Modality, Synthetic MR 

Domain, or Synthetic CT Domain? 

The registration result of JSR and the several comparison methods offered some insight into the 

question of which domain should MR-CBCT registration be computed. Direct, inter-modality registration 

methods (SyN-MI and VM-MI) were not able to solve the deformations between MR and CBCT due to 

challenges of large image appearance difference and presence of image artifacts. To directly compute 

registration between MR and CBCT, some level of supervision (e.g., labeled segmentation [122, 304]) or 

deep learning-based similarity metrics [113, 114] may be needed.  

Intuitively, the MR domain, which offers good soft-tissue contrast, would be a good choice for 

brain registration, and Ref. [305] also showed that for MR-CT registration, synthesizing CT to MR and 

performing MR domain registration yielded better registration performance than doing so in the CT domain. 

In MR-CBCT registration, the quality of CBCT-to-MR synthesis, however, was diminished by the large 

image appearance difference. Figure 9.10 shows a test case of CBCT-to-MR synthesis using conditional 

GAN (used in VM-Synth-NCC), and the synthetic MR image in Figure 9.10(b) is very noisy with blurry 

anatomical boundaries, in comparison to synthetic CT images with clearly defined boundaries in Figure 
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9.4(b, f). Such blurry boundaries are not desirable for registration, resulting in diminished registration 

performance of VM-Synth-NCC compared to registrations in the synthetic CT domain (VM-DualSynth-NCC, 

JSR-Single, and JSR) as evident in Table 9.1.  

 
Figure 9.10. CBCT-to-MR image synthesis on a test case in the simulation study. (a) Input intraoperative CBCT image. (b) 

Synthetic MR image. (c) Reference ground truth MR image in the intraoperative coordinates. (d) MAE between the synthetic and 

reference MR. 

The CBCT images, on the other hand, can be seen to exhibit a lower level image quality and 

increased contamination of artifacts compared to the CT images. Performing registration in the CBCT 

domain, therefore, is obviously suboptimal. The CBCT-to-CT synthesis, to some extent, can be considered 

as an artifact correction and denoising process, improving the CBCT image quality to the level of CT. 

Registration methods computed in the CT domain (VM-DualSynth-NCC, JSR-Single, and JSR), therefore, 

achieved better performance than methods performed in other domains. Future work could also investigate 

CBCT reconstruction and artifact correction as a pre-processing step before registration, which could 

potentially improve the input image quality and hence improve registration performance. 

9.5.4 Network Performance in Clinical Situations 

The behavior of the network and the corresponding registration performance in complex, realistic 

surgical situations (such as brain shift, the presence of abnormal anatomy, and metal instruments) is also 

an important consideration for clinical application. In the simulation study in Section 9.4.1.3, the JSR 

method demonstrated a comparable level of registration accuracy (DSC) in simulations with and without 

metal, with the difference in deformation field only localized in the metal region. The results suggest that 
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the influence of metal was highly localized to regions adjacent to the instrument, and JSR performed well 

overall in part due to the integral synthesis step reducing the magnitude of metal artifacts. 

While metal and topological changes were not explicitly modeled in the JSR network, the network 

was able to maintain a proper synthesis and registration through transfer learning to accommodate 

topological changes (e.g., metal and missing tissue) present in the training data. Figure 9.11 shows two 

examples from the clinical study zoomed-in to regions of metal artifacts. Figures 9.11(a-f) show a clinical 

case in which a ventricular shunt is present at the anterior horn of the lateral ventricles, and cortical brain 

shift is evident in the right frontal lobe. Compared to the CBCT [Figure 9.11(a)], the synthetic CT [Figure 

9.11(b)] demonstrated reduced metal artifacts (streaks) around the shunt and maintained the anatomical 

structures from the CBCT in the region of cortical shift in comparison to the CT. In terms of registration, 

the network was able to faithfully align the moving image in regions not adjacent to the metal artifacts. In 

regions immediately adjacent metal instrumentation [within ~8 mm as evident in Figure 9.9(h)] metal 

artifacts challenged registration, which was prone to aligning the ventricle boundary from the moving MR 

to the metal boundary in the CBCT.  

On the other hand, realistic, diffeomorphic deformations were obtained overall despite the 

topological changes, as shown in Figure 9.11(f). A possible explanation of the diffeomorphic performance 

could be the multi-resolution registration decoder, which progressively estimates diffeomorphic 

deformations in a coarse-to-fine manner, heavily regularizing the output deformations to be smooth and 

diffeomorphic. Similar observations were evident in another case presenting a ventricular shunt and tissue 

excision, as shown in Figure 9.11(h-m), where the JSR network yielded diffeomorphic deformations even 

in regions with such strong topological change. The clinical dataset also contained numerous instances of 

metal staples or cranial pins on the skull, which were found not to affect the brain soft-tissue registration 

(and were therefore not evaluated in this work). 
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Acknowledging that accurate delineation of anatomical boundaries in the presence of such artifacts 

is challenging even for a neuroradiology / neurosurgery expert, additional work is warranted in the future 

to more explicitly model the presence of metal and other clinical scenarios involving gross anatomical 

change. For example, the extra-dimensional Demons registration [97] was shown to handle such changes 

in topology by invoking a fourth pseudo-dimension allowing tissue to be excised (or instrumentation to be 

introduced) within the 3D image volume and thereby model deformations even in the presence of such 

dramatic changes / mismatch between preoperative and intraoperative images. Such an idea could 

potentially be incorporated into the current framework to better model registration for intraoperative 

scenarios. 

 

Figure 9.11. JSR synthesis and registration performance in the presence of topological changes and metal artifacts in the clinical 

study. Two example cases are shown in (a-f) and (h-m), respectively. Illustration in each case include: (a,h) fixed CBCT, (b,i) 

synthetic CT from CBCT, (c,g) reference CT, (d,k) moving MR, (e,l) registered MR, and (f,m) deformation field overlaid on the 

CBCT image. The boundary of the lateral ventricles (defined in the fixed CBCT coordinates) and masks of hyper-dense regions of 

metal and skull (yellow) and missing tissue (red) are overlaid in (d-e) and (k-l). 
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9.5.5 Limitations, Generalizability, and Future Work 

One limitation of the work is that the JSR network in the current form relies on an accurate rigid 

pre-registration. References [306, 307] proposed a multi-resolution decoder that includes a rigid alignment 

module at the coarsest level to simultaneously estimate rigid and deformable registration in a single pass 

for intra-modality registration. Such a rigid alignment module can potentially be incorporated into the JSR 

network to provide a more integrated registration pipeline.  

The JSR network was first trained in the simulation study and then transfer-learned in the clinical 

study. JSR demonstrated robustness and generalizability to unseen real data and outperformed state-of-the-

art SyN-MI and VoxelMorph, yielding DSC and TRE comparable to the simulation study. Several 

challenges were present in the clinical study and were not included in the simulation study, including (1) 

diverse MR acquisition protocols resulted in variations in MR intensity distribution, texture, and spatial 

resolution; (2) metal in the intraoperative CBCT but not in the preoperative MR; (3) a macroscopic brain 

shift separating from the inner surface of the cranium (not commonly seen in neuroendoscopic surgery), 

and (4) a limited number of training images. Future work needs to acquire preoperative MR images with 

more consistent acquisition protocols and increase the total number of training images. MR harmonization 

techniques will be explored to normalize MR scans from different sequences and scanners into a common 

image appearance [313, 314], which would reduce the variation of training and test data and improve 

registration performance. Metal artifact reduction or metal inpainting techniques may also be desirable to 

handle shunt/endoscope/electrode stimulations in the intraoperative CBCT images. 

9.5.6. Conclusions 

A joint image synthesis and registration network for MR-CBCT deformable registration was 

reported, which converts a very challenging inter-modality registration into a simpler intra-modality 

registration in the intermediate CT domain. The method uses encoders to extract latent representations from 
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MR and CBCT, which are then jointly decoded into synthetic CT images and the deformation field between 

the two. A novel multi-resolution registration decoder was also implemented to estimate the deformation 

in a coarse-to-fine resolution pyramid, which was shown to outperform a single-resolution registration 

decoder (JSR-Single).  

The proposed JSR network was first trained in a simulation study with simulated CBCT from CT 

and simulated brain deformations. JSR achieved mean DSC of 0.69 and mean TRE of 2.05 mm, superior 

to alternative conventional and deep learning-based methods (SyN-MI, VM-MI, VM-Synth-NCC, and VM-

DualSynth-NCC). Additionally, JSR, with the proposed multi-resolution registration decoder, achieved 

improved registration performance compared to single-resolution JSR (JSR-Single). JSR was further trained 

with real clinical images via transfer learning, achieving mean DSC of 0.68 and mean TRE of 2.45 mm. In 

all cases, JSR yielded diffeomorphic transformations and fast runtime (< 3 s). The proposed registration 

network may be compatible with the demands of high-precision neurosurgery and warrants further 

investigation in clinical studies of CBCT-guided procedures. 
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Chapter 10. 

Conclusions 

The work presented in this dissertation investigated numerous registration methods motivated by 

the following thesis: 

Two major themes were advanced throughout the dissertation: 

(i) the complexity of motion that can be accommodated, ranging from single-body rigid motion 

(e.g., a single bone, such as the pelvis or cranium) to multi-body rigid motion (e.g., bone dislocations or 

fractures) and fully deformable motion (e.g., soft-tissue motion in the brain); and 

(ii) the sophistication of registration models brought to bear in resolving such motion, ranging from 

abstract statistical models (e.g., SSMs and SPMs) to physics-based models (e.g., Demons) to data-driven 

deep learning models (e.g., JSR). 

Motivated by the need for improved accuracy and precision in image-guided surgery, the methods 

were developed and tested in applications for orthopaedic surgery and intracranial neurosurgery. 

10.1 Contributions 

Chapter 1 established the significance and clinical motivation for advancing the state of the art in 

image-guided surgery, including long-standing shortfalls in  existing standards of care and the opportunity 

to improve patient outcomes by more accurate and precise planning and intervention. Chapter 1 also defined 

numerous concepts regarding image transformations, similarity metrices, and image registration techniques 

Thesis Statement: Advanced motion models for inter-modality image registration, 

including statistical modeling, physics-based models, and data-driven deep learning 

approaches, can improve the accuracy of preoperative planning and intraoperative guidance 

in image-guided interventions. 
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pertinent to methods used throughout the thesis. Chapter 2 reviewed the fundamentals of several statistical 

modeling methods (including SSM, SPM, and SSPMs) that laid a foundation for methods advanced in 

Chapters 3-5. Specific developments arising from this work beyond the previous state of the art in image 

registration include the following: 

Chapter 3 developed a method for preoperative planning of K-wire and screw trajectories for 

minimally displaced (simple) pelvic fracture fixation. The system involves a method for automatic 

segmentation via registration, performing an SSM-to-image registration that aligns a single-body SSM to a 

patient’s preoperative CT using ASM and FFD. Surgical trajectories are automatically determined in the 

preoperative CT by transforming an atlas of trajectories via the resulting registration. An atlas, including 

pelvic bone segmentations, SSMs of each bone, and expert definitions of 10 pertinent K-wire trajectory 

volumes, was constructed and shared as an open-source resource (https://istar.jhu.edu/wp-

content/uploads/2019/03/open-source%20atlas.zip). Experiments demonstrated mean surface registration 

accuracy of 1.8 mm in leave-one-out cross-validation across 40 atlas members and 1.6 mm in a cadaver 

study (N=1). The trajectory planning achieved an overall success rate of 98.4% in trajectory placement in 

the atlas cross-validation (breach rate of 1.6%), with failures attributed to challenging trajectories in the 

superior ramus and iliosacral joint. 

Chapter 4 reported a multi-body registration method for preoperative surgical planning for 

reduction of pelvic dislocation. The method used the same SSM-to-image registration from Chapter 3 to 

register SSMs of the pelvic bones to a preoperative CT. An SPM is then fit to bones that are not dislocated 

for estimation of the target pose of the dislocated bone, with an additional refinement to avoid collision as 

the joint is reduced. Experiments conducted in a simulation study demonstrated ~2 mm translational and 

~2° rotational error and showed significantly lower error than reduction via the conventional assumption 

of contralateral mirroring. Experiments conducted using a pelvis phantom and orthopaedic surgeon reader 

study showed comparable performance, with planned reductions clinically indistinguishable from natural, 

healthy pelves. 
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Chapter 5 proposed a multi-body registration framework for preoperative surgical planning for 

reduction of pelvis fracture (with or without dislocation). The framework involves semi-automatic 

continuous max-flow and min-cut segmentation of fractured pelves in CT images, achieving segmentation 

accuracy of DSC = 0.92 ± 0.06 in a simulation study. Bone fragment segmentations are then registered to 

an adaptive template (computed via SSPM) via a novel multi-to-one registration with alternating 

optimization, jointly solving the reduction poses of the fragments  and the shape and pose parameters of the 

template. The surgical planning method achieved 2-3 mm and 2-3o error for various fracture simulations, 

with comparable accuracy in both cadaver and clinical studies. The planning algorithm requires minimal 

user interaction and offers a potentially streamlined solution for various dislocation and fracture reduction 

scenarios in pelvic trauma surgery.  

Chapter 6 integrated the preoperative planning methods from Chapter 3-5 into a system for 3D-

2D guidance of orthopaedic trauma surgery. The 3D-2D registration registers either a single rigid body (i.e., 

a CT image of the pelvis or a bone fragment) or multiple rigid bodies (i.e., multiple bone fragments) to 

intraoperative 2D fluoroscopy images as routinely acquired during surgery. The registration not only 

establishes a method to track bone anatomy during surgery but also transforms preoperative plans (i.e., 

reduction of dislocations and fractures as well as placement of fixation screws) to the intraoperative 

coordinates for guidance in 2D and/or 3D images. When using a single fluoroscopic image for registration, 

the algorithm achieved less than 2 mm in-plane translational error and less than 2° in-plane rotational error. 

Out-of-plane errors were reduced to < 2 mm using 2 or more fluoroscopic images for registration. Guidance 

based on 3D-2D registration was found to provide accuracy that is comparable to that reported for 

conventional tracker-based navigation systems, but 3D-2D guidance achieves this via images already 

acquired in routine workflow without additional optical tracking devices, rigid-body markers attached to 

bones, or intraoperative CT. 

Chapter 7 shifted the scope of methodology and clinical application to the challenging scenario of 

soft-tissue, intracranial deformation in neurosurgery. An inter-modality, deformable registration algorithm 
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was proposed for minimally invasive neurosurgery that combines a diffeomorphic form of the Demons 

algorithm with the pMI similarity metric and momentum-based acceleration, denoted pMI-Demons. The 

algorithm was applied to registration of T1/T2-weighted MR and CT images of the brain, and performance 

was compared to alternative physics-based methods (MI-FFD and MI-SyN). Overall, the three methods 

demonstrated comparable registration accuracy (sub-voxel TRE < 2.0 mm in clinical studies) with a few 

notable differences: MI-FFD exhibited a measurable degree of non-diffeomorphism; MI-SyN demonstrated 

a reduced range in TRE with fewer outliers and maintained diffeomorphism; and pMI-Demons exhibited 

the lowest range in TRE and the fewest outliers while also yielding diffeomorphic transformations. In terms 

of computation time, pMI-Demons showed the fastest runtime (1.5x faster than MI-FFD and 3.5x faster 

than MI-SyN).  

Chapter 8 developed an unsupervised, deep learning-based method for MR-CT deformable 

registration for neurosurgical guidance. The method uses a probabilistic CycleGAN for MR-CT image 

synthesis to estimate the motion vector field along with aleatoric uncertainty in the mapping, transforming 

the registration to two intra-modality registrations in MR and CT channels. A dual-channel registration is 

used to predict and fuse the deformation fields from the two domains, and spatially varying weights were 

incorporated to balance the contributions of the MR and CT channel. In addition to a conventional 

sequential training, an end-to-end (E2E) training strategy was proposed to jointly optimize the image 

synthesis and registration tasks and further improve registration performance. In both simulation and 

clinical studies, the proposed method achieved superior registration accuracy compared to baseline 

conventional (physics-based) methods, previously reported deep-learning-based methods, and a number of 

pertinent network variations. The method achieved TRE within 2 mm, maintained diffeomorphism, and 

operated with fast runtime (~3 s). The proposed dual-channel registration network offers an exciting 

advance for potential application in CT-guided neurosurgery. 

Chapter 9 extended the MR-CT deformable registration from Chapter 8 to the challenging task of 

MR-CBCT registration, utilizing a joint image synthesis and registration network, denoted JSR. The 
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method solves the MR-CBCT registration via a somewhat simpler registration by transferring to an 

intermediate domain of synthesized CT images. The method uses encoders to extract latent representations 

from MR and CBCT, which are then jointly decoded into synthetic CT images and the deformation field 

between the two. A novel multi-resolution registration decoder was implemented to estimate the 

deformation in a coarse-to-fine resolution pyramid, which was shown to outperform a single-resolution 

registration decoder. JSR achieved mean TRE of ~2.1 mm in simulation studies and ~2.5 mm in clinical 

studies, superior to alternative conventional and deep learning-based methods. In all cases, JSR yielded 

diffeomorphic transformations and fast runtime (< 3 s) that may be compatible with the demands of high-

precision CBCT-guided neurosurgery. 

10.2 Possible Areas of Future Work 

A number of important areas of future work are suggested based on the research reported in this 

dissertation. Some of these are described below, including new methodology to improve the robustness and 

run-time of registration algorithms, analysis of usability and workflow in a manner that addresses practical 

challenges, and possible extension to new areas of clinical application. Although it has been nearly 20 years 

since the introduction of 3D intraoperative imaging in clinical use, the current state of the art in image-

guided surgery is still primarily rigid, point-based registration. Realizing the full potential of image-based 

registration—including multi-body and deformable registration—will require continuing development in 

computational methods and clinical collaboration. 

Accurate definition of preoperative plans is essential for IGS. For orthopaedic pelvic trauma 

surgery, Chapter 2-5 developed a series of preoperative planning methods using statistical models, 

computed from PCA and PGA under linear assumptions in the Euclidean space and Lie group, respectively. 

While the proposed methods demonstrated improved performance than conventional methods (e.g., 

contralateral mirroring), the models still presented sources of error and did not generalize well to cases not 

captured by the linear space of PCA and PGA. More sophisticated models, such as nonlinear hierarchical 
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modeling [147] and deep neural networks [223], may be desired to better model the anatomical variations, 

or even to model the relationship between anatomical variations and surgical annotations. For neurosurgical 

applications, Chapter 7-9 focused on deformable registration to map preoperative images to the 

intraoperative coordinates, and preoperative planning (e.g., definition of surgical targets and trajectory to 

the targets) were not discussed. While the plans are typically manually defined by surgeons, more 

automated preoperative planning would be beneficial. Development on automatic brain segmentation, for 

example, could not only provide a basis for planning, but also potential assist deformable registration, as 

previously discussed in weakly supervised learning. 

Mapping preoperative images and planning data to the intraoperative scene via 3D-2D registration 

holds tremendous promise to improve the accuracy and precision of surgeries that conventionally rely solely 

on 2D fluoroscopy and qualitative, cognitive 3D reckoning. Work in Chapter 6 demonstrated that the 3D-

2D registration methods developed in this thesis were robust against initialization errors up to a few 

centimeters for larger anatomy and were able to operate despite the relatively small fluoroscopic field of 

view. However, for smaller anatomical structures (e.g., bone fragments in comminuted fractures), a fairly 

high degree of initialization—e.g., within 10 mm for each fragment—would likely be needed. Future work 

is warranted to investigate more automatic initialization methods and better ways to improve the robustness 

of the algorithm, such as landmark detection and  point-based registration alongside the image-based 

registration [247]. 

Another important aspect of 3D-2D registration for clinical translation is computation time. In 

comparison to conventional 3D tracking with real-time feedback, 3D-2D registration for orthopaedic 

surgery guidance could follow more of a “step-and-shoot” workflow in which the surgeon acquires an x-

ray image intermittently to visualize the surgical scene. Multi-body 3D-2D registration, with a runtime of 

~2 min for the initial registration and faster for subsequent, better initialized registrations, may be 

compatible with such step-and-shoot workflow. However, improved runtime is still desired to better 

streamline and integrate with intraoperative workflow. Opportunities to reduce the runtime of 3D-2D 
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registration include better optimization techniques, faster DRR generation, and potentially learning-based 

approaches to 3D-2D registration [62]. 

The work in Chapter 8 utilizes aleatoric uncertainty in estimation of image synthesis, which 

provides additional information to weight the deterministic dual-channel registration. Future work could be 

envisioned to include a fully probabilistic registration network that output the mean and uncertainties of the 

deformation. The deformation spatial uncertainty not only caries its own value, but also could be 

incorporated into the registration to provide additional information. For example, instead of using a 

stationary smoothness regularization, the uncertainty can be used in an adaptive spatially verifying 

regularization, penalizing regions with high uncertainty [315]. 

For inter-modality, deformable registration, a series of methods were demonstrated in Chapter 7-9 

that advanced conventional, physics-based iterative optimization to novel forms of emerging deep learning 

approaches. All of the methods shown were intensity-based (i.e., involved some form of image intensity-

based similarity metric), and future work could investigate the incorporation of segmentation or key points 

as additional components to drive registration. For the deep learning-based solutions developed in this work, 

the networks were first trained on simulated data and refined on clinical data with a single transfer learning, 

and better recognition of (often strongly varying) clinical MR, CT, and CBCT imaging protocols among 

input images deserves consideration. Techniques in image harmonization could be helpful in normalizing 

the clinical images to the same distribution to improve the robustness of the methods on new data [313, 

314]. To handle out-of-distribution data (e.g., clinical images with rare pathology), methods using one-shot 

learning [316] or intermediate layer optimization [317] can potentially be used to optimize network 

parameters that accommodates the minority cases. 

In addition, fast and robust rigid registration (treated simply as a preprocessing step prior to 

deformable registration in this dissertation) also warrants further investigation. Developing a deep learning-

based rigid registration—or combining the rigid registration component with the deformable registration 

networks—could also benefit practicality in translation to clinical applications. 
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Finally, future development of image registration algorithms like those developed in this work can 

and should extend to new applications. In doing so, it is essential to understand how the algorithms can be 

streamlined and integrated with clinical workflows of preoperative planning and intraoperative guidance, 

how failure cases should be detected and handled, and how clinicians interact with and interpret results 

from the registration algorithms. Such considerations can be especially important for deep learning-based 

methods, such as those developed for deformable registration in Chapters 8 and 9. In the current 

implementations, the networks would likely generalize only to data that are similar to the training data, and 

uncertainty measures were only computed for the image synthesis process and used as a weighting term for 

registration. More explicit modeling of registration uncertainties with a probabilistic framework could be 

helpful to inform clinicians of the uncertainties in the resulting registration. Another approach warranting 

future investigation is to decouple the network feature extraction from the optimization [116] or to combine 

feed-forward networks with instance optimization [316], each of which could enable clinicians to interact 

with registration algorithms and adjust hyperparameters in real-time. 
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