103 research outputs found

    Private reputation retrieval in public - a privacy-aware announcement scheme for VANETs

    Get PDF
    An announcement scheme is a system that facilitates vehicles to broadcast road-related information in vehicular ad hoc networks (VANETs) in order to improve road safety and efficiency. Here, the authors propose a new cryptographic primitive for public updating of reputation score based on the Boneh–Boyen–Shacham short group signature scheme. This allows private reputation score retrieval without a secure channel. Using this, the authors devise a privacy-aware announcement scheme using reputation systems which is reliable, auditable, and robust

    A privacy-aware reputation-based announcement scheme for VANETs

    Get PDF
    Abstract—An announcement scheme is a system that facilitates vehicles to broadcast road-related information in vehicular ad hoc networks (VANETs) in order to improve road safety and efficiency. In this paper, we propose a privacy-aware reputation-based announcement scheme that provides message reliability evaluation, auditability, and robustness. I

    Secure and robust multi-constrained QoS aware routing algorithm for VANETs

    Get PDF
    Secure QoS routing algorithms are a fundamental part of wireless networks that aim to provide services with QoS and security guarantees. In Vehicular Ad hoc Networks (VANETs), vehicles perform routing functions, and at the same time act as end-systems thus routing control messages are transmitted unprotected over wireless channels. The QoS of the entire network could be degraded by an attack on the routing process, and manipulation of the routing control messages. In this paper, we propose a novel secure and reliable multi-constrained QoS aware routing algorithm for VANETs. We employ the Ant Colony Optimisation (ACO) technique to compute feasible routes in VANETs subject to multiple QoS constraints determined by the data traffic type. Moreover, we extend the VANET-oriented Evolving Graph (VoEG) model to perform plausibility checks on the exchanged routing control messages among vehicles. Simulation results show that the QoS can be guaranteed while applying security mechanisms to ensure a reliable and robust routing service

    Blockchain Application on the Internet of Vehicles (IoV)

    Full text link
    With the rapid development of the Internet of Things (IoT) and its potential integration with the traditional Vehicular Ad-Hoc Networks (VANETs), we have witnessed the emergence of the Internet of Vehicles (IoV), which promises to seamlessly integrate into smart transportation systems. However, the key characteristics of IoV, such as high-speed mobility and frequent disconnections make it difficult to manage its security and privacy. The Blockchain, as a distributed tamper-resistant ledge, has been proposed as an innovative solution that guarantees privacy-preserving yet secure schemes. In this paper, we review recent literature on the application of blockchain to IoV, in particular, and intelligent transportation systems in general

    Anonymous Announcement System (AAS) for electric vehicle in VANETs

    Get PDF
    Vehicular Ad Hoc Network (VANET) allows vehicles to exchange information about road and traffic conditions through wireless communications. Nevertheless, providing reliable and authenticated information without violating the user\u27s privacy seems contradictory. In this paper, we propose an Anonymous Announcement System especially designed for Electric Vehicle (EV) in VANETs to achieve the aforementioned contradictory goals. We demonstrated the feasibility of the protocol with a prototype implementation on a suitable device and a network simulation with our protocol added on top of a normal VANET

    A reputation-based announcement scheme for VANETs

    Get PDF
    Vehicular ad hoc networks (VANETs) allow vehicles to generate and broadcast messages to inform nearby vehicles about road conditions, such as traffic congestion and accidents. Neighboring vehicles can utilize this information, which may improve road safety and traffic efficiency. However, messages generated by vehicles may not be reliable. We propose a novel announcement scheme for VANETs based on a reputation system that allows evaluation of message reliability. We present a secure and efficient scheme that is robust and fault tolerant against temporary unavailability of the central server

    SCTSC: A Semicentralized Traffic Signal Control Mode With Attribute-Based Blockchain in IoVs

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordAssisting traffic control is one of the most important applications on the Internet of Vehicles (IoVs). Traffic information provided by vehicles is desired since drivers or vehicle sensors are sensitive in perceiving or detecting nuances on roads. However, the availability and privacy preservation of this information are critical while conflicted with each other in the vehicular communication. In this paper, we propose a semicentralized mode with attribute-based blockchain in IoVs to balance the tradeoff between the availability and the privacy preservation. In this mode, a method of control-by-vehicles is used to control signals of traffic lights to increase traffic efficiency. Users are grouped their attributes such as locations and directions before starting the communication. The users reach an agreement on determining a temporary signal timing by interacting with each other without leaking privacy. Final decisions are verifiable to all users, even if they have no a priori agreement and processes of consensus. The mode not only achieves the aim of privacy preservation but also supports responsibility investigation for historical agreements via ciphertext-policy attribute-based encryption (CP-ABE) and blockchain technology. Extensive experimental results demonstrated that our mode is efficient and practical.National Key R&D Program of ChinaNatural Science Foundation of ChinaFundamental Research Funds for the Central Universities of Chin
    corecore