19 research outputs found

    A Novel Multimedia Network backbone Architecture base on Proportional Delay Differentiation

    Get PDF
    Abstract This paper proposes a novel multimedia network backbone architecture that supports all-optical transmission and Quality of Service (Qo

    Convergencia de tecnologías ópticas y Ethernet en LAN, MAN y SAN: nuevas arquitecturas, análisis de prestaciones y eficiencia energética

    Get PDF
    Mención Internacional en el título de doctorThe development of Information Technologies in the last decades, especially the last two, together with the introduction of computing devices to the mainstream consumer market, has had the logical consequence of the generalisation of the Internet access. The explosive development of the smartphone market has brought ubiquity to that generalisation, to the point that social interaction, content sharing and content production happens all the time. Social networks have all but increased that trend, maximising the diffusion of multimedia content: images, audio and video, which require high network capacities to be enjoyed quickly. This need for endless bandwidth and speed in information sharing brings challenges that affect mainly optical Metropolitan Area Networks (MANs) and Wide Area Networks (WANs). Furthermore, the wide spreading of Ethernet technologies has also brought the possibility to achieve economies of scale by either extending the reach of Ethernet Local Area Networks (LANs) to the MAN and WAN environment or even integrating them with Storage Area Networks (SANs). Finally, this generalisation of telecommunication technologies in every day life has as a consequence an important rise in energy consumption as well. Because of this, providing energy efficient strategies in networking is key to ensure the scalability of the whole Internet. In this thesis, the main technologies in all the fields mentioned above are reviewed, its core challenges identified and several contributions beyond the state of the art are suggested to improve today’s MANs andWANs. In the first contribution of this thesism, the integration between Metro Ethernet and Wavelength Division Multiplexion (WDM) optical transparent rings is explored by proposing an adaptation architecture to provide efficient broadcast and multicast. The second contribution explores the fusion between transparent WDM and OCDMA architectures to simplify medium access in a ring. Regarding SANs, the third contribution explores the challenges in SANs through the problems of Fibre Channel over Ethernet due to buffer design issues. In this contribution, analysis, design and validation with FCoE traces and simulation is provided to calculate buffer overflow probabilities in the absence of flow control mechanisms taking into account the bursty nature of SAN traffic. Finally, the fourth and last contribution addresses the problems of energy efficiency in Plastic Optical Fibres (POF), a new kind of optical fibre more suitable for transmission in vehicles and for home networking. This contribution suggests two packet coalescing strategies to further improve the energy effiency mechanisms in POFs.El desarrollo de las Tecnologías de la Información en las últimas décadas, especialmente las últimas dos, junto con la introducción de dispositivos informáticos al mercado de masas, ha tenido como consecuencia lógica la generalización del acceso a Internet. El explosivo desarrollo del mercado de teléfonos inteligentes ha añadido un factor de ubicuidad a tal generalización, al extremo de que la interacción social, la compartición y producción de contenidos sucede a cada instante. Las redes sociales no han hecho sino incrementar tal tendencia, maximizando la difusión de contenido multimedia: imágenes, audio y vídeo, los cuales requieren gran capacidad en las redes para poder obtenerse con rapidez. Esta necesidad de ancho de banda ilimitado y velocidad en la compartición de información trae consigo retos que afectan principalmente a las Redes de Área Metropolitana (Metropolitan Area Networks, MANs) y Redes de Área Extensa (Wide Area Networks, WANs). Además, la gran difusión de las tecnologías Ethernet ha traído la posibilidad de alcanzar economías de escala bien extendiendo el alcance de Ethernet más allá de las Redes de Área Local (Local Area Networks, LANs) al entorno de las MAN y las WAN o incluso integrándolas con Redes de Almacenamiento (Storage Area Networks, SANs). Finalmente, esta generalización de las tecnologías de la comunicación en la vida cotidiana tiene también como consecuencia un importante aumento en el consumo de energía. Por tanto, desarrollar estrategias de transmisión en red eficientes energéticamente es clave para asegurar la escalabilidad de Internet. En esta tesis, las principales tecnologías de todos los campos mencionados arriba serán estudiadas, sus más importantes retos identificados y se sugieren varias contribuciones más allá del actual estado del arte para mejorar las actuales MANs y WANs. En la primera contribución de esta tesis, se explora la integración entre Metro Ethernet y anillos ópticos transparentes por Multiplexión en Longitud de Onda (Wavelength Division Multiplex, WDM) mediante la proposición de una arquitectura de adaptación para permitir la difusión y multidifusión eficiente. La segunda contribución explora la fusión entre las arquitecturas transparentes WDM y arquitecturas por Accesso Dividido Múltiple por Códigos Ópticos (OCDMA) para simplificar el acceso en una red en anillo. En lo referente a las SANs, la tercera contribución explora los retos en SANs a través de los problemas de Fibre Channel sobre Ethernet debido a los problemas en el diseño de búferes. En esta contribución, se provee un análisis, diseño y validación con trazas FCoE para calcular las probabilidades de desbordamiento de buffer en ausencia de mecanismos de control de flujo teniendo en cuenta la naturaleza rafagosa del tráfico de SAN. Finalmente, la cuarta y última contribución aborda los problemas de eficiencia energética en Fibras Ópticas Plásticas (POF), una nueva variedad de fibra óptica más adecuada para la transmisión en vehículos y para entornos de red caseros. Esta contribución sugiere dos estrategias de agrupamiento de paquetes para mejorar los mecanismos de eficiencia energética en POFs.Programa Oficial de Posgrado en Ingeniería TelemáticaPresidente: Luca Valcarenghi.- Secretario: Ignacio Soto Campos.- Vocal: Bas Huiszoo

    On the Merits of Deploying TDM-based Next-Generation PON Solutions in the Access Arena As Multiservice, All Packet-Based 4G Mobile Backhaul RAN Architecture

    Full text link
    The phenomenal growth of mobile backhaul capacity required to support the emerging fourth-generation (4G) traffic including mobile WiMAX, cellular Long-Term Evolution (LTE), and LTE-Advanced (LTE-A) requires rapid migration from today\u27s legacy circuit switched T1/E1 wireline and microwave backhaul technologies to a new fiber-supported, all-packet-based mobile backhaul infrastructure. Clearly, a cost effective fiber supported all-packet-based mobile backhaul radio access network (RAN) architecture that is compatible with these inherently distributed 4G RAN architectures is needed to efficiently scale current mobile backhaul networks. However, deploying a green fiber-based mobile backhaul infrastructure is a costly proposition mainly due to the significant cost associated with digging the trenches in which the fiber is to be laid. These, along with the inevitable trend towards all-IP/Ethernet transport protocols and packet switched networks, have prompted many carriers around the world to consider the potential of utilizing the existing fiber-based Passive Optical Network (PON) access infrastructure as an all-packet-based converged fixed-mobile optical access networking transport architecture to backhaul both mobile and typical wireline traffic. Passive Optical Network (PON)-based fiber-to-the-curb/home (FTTC/FTTH) access networks are being deployed around the globe based on two Time-Division Multiplexed (TDM) standards: ITU G.984 Gigabit PON (GPON) and IEEE 802.ah Ethernet PON (EPON). A PON connects a group of Optical Network Units (ONUs) located at the subscriber premises to an Optical Line Terminal (OLT) located at the service provider\u27s facility. It is the purpose of this thesis to examine the technological requirements and assess the performance analysis and feasibility for deploying TDM-based next-generation (NG) PON solutions in the access arena as multiservice, all packet-based 4G mobile backhaul RAN and/or converged fixed-mobile optical networking architecture. Specifically, this work proposes and devises a simple and cost-effective 10G-EPON-based 4G mobile backhaul RAN architecture that efficiently transports and supports a wide range of existing and emerging fixed-mobile advanced multimedia applications and services along with the diverse quality of service (QoS), rate, and reliability requirements set by these services. The techno-economics merits of utilizing PON-based 4G RAN architecture versus that of traditional 4G (mobile WiMAX and LTE) RAN will be thoroughly examine and quantified. To achieve our objective, we utilize the existing fiber-based PON access infrastructure with novel ring-based distribution access network and wireless-enabled OLT and ONUs as the multiservice packet-based 4G mobile backhaul RAN infrastructure. Specifically, to simplify the implementation of such a complex undertaking, this work is divided into two sequential phases. In the first phase, we examine and quantify the overall performance of the standalone ring-based 10G-EPON architecture (just the wireline part without overlaying/incorporating the wireless part (4G RAN)) via modeling and simulations. We then assemble the basic building blocks, components, and sub-systems required to build up a proof-of-concept prototype testbed for the standalone ring-based EPON architecture. The testbed will be used to verify and demonstrate the performance of the standalone architecture, specifically, in terms of power budget, scalability, and reach. In the second phase, we develop an integrated framework for the efficient interworking between the two wireline PON and 4G mobile access technologies, particularly, in terms of unified network control and management (NCM) operations. Specifically, we address the key technical challenges associated with tailoring a typically centralized PON-based access architecture to interwork with and support a distributed 4G RAN architecture and associated radio NCM operations. This is achieved via introducing and developing several salient-networking innovations that collectively enable the standalone EPON architecture to support a fully distributed 4G mobile backhaul RAN and/or a truly unified NG-PON-4G access networking architecture. These include a fully distributed control plane that enables intercommunication among the access nodes (ONUs/BSs) as well as signaling, scheduling algorithms, and handoff procedures that operate in a distributed manner. Overall, the proposed NG-PON architecture constitutes a complete networking paradigm shift from the typically centralized PON\u27s architecture and OLT-based NCM operations to a new disruptive fully distributed PON\u27s architecture and NCM operations in which all the typically centralized OLT-based PON\u27s NCM operations are migrated to and independently implemented by the access nodes (ONUs) in a distributed manner. This requires migrating most of the typically centralized wireline and radio control and user-plane functionalities such as dynamic bandwidth allocation (DBA), queue management and packet scheduling, handover control, radio resource management, admission control, etc., typically implemented in today\u27s OLT/RNC, to the access nodes (ONUs/4G BSs). It is shown that the overall performance of the proposed EPON-based 4G backhaul including both the RAN and Mobile Packet Core (MPC) {Evolved Packet Core (EPC) per 3GPP LTE\u27s standard} is significantly augmented compared to that of the typical 4G RAN, specifically, in terms of handoff capability, signaling overhead, overall network throughput and latency, and QoS support. Furthermore, the proposed architecture enables redistributing some of the intelligence and NCM operations currently centralized in the MPC platform out into the access nodes of the mobile RAN. Specifically, as this work will show, it enables offloading sizable fraction of the mobile signaling as well as actual local upstream traffic transport and processing (LTE bearers switch/set-up, retain, and tear-down and associated signaling commands from the BSs to the EPC and vice-versa) from the EPC to the access nodes (ONUs/BSs). This has a significant impact on the performance of the EPC. First, it frees up a sizable fraction of the badly needed network resources as well as processing on the overloaded centralized serving nodes (AGW) in the MPC. Second, it frees up capacity and sessions on the typically congested mobile backhaul from the BSs to the EPC and vice-versa

    ANALYSIS OF DATA & COMPUTER NETWORKS IN STUDENTS' RESIDENTIAL AREA IN UNIVERSITI TEKNOLOGI PETRONAS

    Get PDF
    In Universiti Teknologi Petronas (UTP), most of the students depend on the Internet and computer network connection to gain academics information and share educational resources. Even though the Internet connections and computers networks are provided, the service always experience interruption, such as slow Internet access, viruses and worms distribution, and network abuse by irresponsible students. Since UTP organization keeps on expanding, the need for a better service in UTP increases. Several approaches were put into practice to address the problems. Research on data and computer network was performed to understand the network technology applied in UTP. A questionnaire forms were distributed among the students to obtain feedback and statistical data about UTP's network in Students' Residential Area. The studies concentrate only on Students' Residential Area as it is where most of the users reside. From the survey, it can be observed that 99% of the students access the network almost 24 hours a day. In 2005, the 2 Mbps allocated bandwidth was utilized 100% almost continuously but in 2006, the bottleneck of Internet access has reduced significantly since the bandwidth allocated have been increased to 8 Mbps. Server degradation due to irresponsible acts by users also adds burden to the main server. In general, if the proposal to ITMS (Information Technology & Media Services) Department for them to improve their Quality of Service (QoS) and established UTP Computer Emergency Response Team (UCert), most of the issues addressed in this report can be solved

    A New Media Access Control Protocol For VANET: Priority R-ALOHA (PR-ALOHA)

    Get PDF
    More practical applications of Media Access Control (MAC) protocols arise as the world turns increasingly wireless. Low delay, high throughput and reliable communication are essential requirements for standard performance in safety applications (e.g., lane changes warning, pre-crash warning and electronic brake lights). In particular, multi-priority protocols are important in Vehicular Ad Hoc Networks (VANETs), specifically in Inter-Vehicle Communication (IVC) where safety messages are given higher priority and transmitted faster than normal messages. The R-ALOHA protocol is considered one of the few promising protocols for VANETs because it is simple to implement and suitable for medium access control in Ad Hoc wireless networks. However, R-ALOHA lacks the property of prioritizing the different messages. In this dissertation, a new two-level priority MAC protocol called Priority R-ALOHA (PR-ALOHA) is presented to overcome the lack of priority problem in R-ALOHA. The two levels are low priority and high priority where priority is introduced by reserving specific time slots in the frame exclusively for high priority messages. This effectively increases the number of slots that a high priority message may compete for and thus decreases its delay. A two-dimensional Markov model coupled with Monte Carlo simulation is introduced to investigate the dynamic behavior of PR-ALOHA in steady and transient states. Modeling and simulation results of PR-ALOHA show that PR-ALOHA improves the performance of high priority traffic with limited effect on normal network traffic. Then, a dynamic slot allocation algorithm is introduced to PR-ALOH to optimize slot usage. Finally, a mobility model is introduced to emulate the behavior of the vehicles on the road where the performance of the PR-ALOHA with variable parameters, such as the length of the highway, the vehicle transmission range and the number of vehicles on the road have been investigated. Based on the findings of this dissertation, PR-ALOHA combined with dynamic slot allocation and mobility has a potential in applications like IVC where it can prevent car accidents through faster channel access and rapid transfer of warning messages to surrounding vehicles

    ANALYSIS OF DATA & COMPUTER NETWORKS IN STUDENTS' RESIDENTIAL AREA IN UNIVERSITI TEKNOLOGI PETRONAS

    Get PDF
    In Universiti Teknologi Petronas (UTP), most of the students depend on the Internet and computer network connection to gain academics information and share educational resources. Even though the Internet connections and computers networks are provided, the service always experience interruption, such as slow Internet access, viruses and worms distribution, and network abuse by irresponsible students. Since UTP organization keeps on expanding, the need for a better service in UTP increases. Several approaches were put into practice to address the problems. Research on data and computer network was performed to understand the network technology applied in UTP. A questionnaire forms were distributed among the students to obtain feedback and statistical data about UTP's network in Students' Residential Area. The studies concentrate only on Students' Residential Area as it is where most of the users reside. From the survey, it can be observed that 99% of the students access the network almost 24 hours a day. In 2005, the 2 Mbps allocated bandwidth was utilized 100% almost continuously but in 2006, the bottleneck of Internet access has reduced significantly since the bandwidth allocated have been increased to 8 Mbps. Server degradation due to irresponsible acts by users also adds burden to the main server. In general, if the proposal to ITMS (Information Technology & Media Services) Department for them to improve their Quality of Service (QoS) and established UTP Computer Emergency Response Team (UCert), most of the issues addressed in this report can be solved

    Telecommunication Systems

    Get PDF
    This book is based on both industrial and academic research efforts in which a number of recent advancements and rare insights into telecommunication systems are well presented. The volume is organized into four parts: "Telecommunication Protocol, Optimization, and Security Frameworks", "Next-Generation Optical Access Technologies", "Convergence of Wireless-Optical Networks" and "Advanced Relay and Antenna Systems for Smart Networks." Chapters within these parts are self-contained and cross-referenced to facilitate further study

    Energy Conservation in Passive Optical Networks: A Tutorial and Survey

    Get PDF
    The Passive Optical Network (PON) has been evolving continuously in terms of architecture and capacity to keep up with the demand for high-speed Internet access in the access network segment. Recently, integration of Software-Defined Networking (SDN), which provides programmable and (logically) centralized network control, with PON has attracted intensive research interest to further enhance PON performance and reduce operational and capital expenditure. Although PON is regarded as an energy-efficient a ccess n etwork s olution, it is a major contributor for increasing energy consumption in the access network segment because of its higher penetration rate than other access network technologies. Over the past several years, the major standardization bodies like IEEE and research communities have engaged in introducing energy-efficient PON solutions. This article familiarizes readers with PON evolution in terms of capacity, architecture, and its integration with virtualization and SDN based control. We present a comprehensive survey of the energy conservation research efforts in PON starting from conventional PON to SDN based PON leveraging virtual and physical network functions. This article also presents contemporary energy-efficient standardization activities in IEEE and ITU. To the best of our knowledge, to date, this article is the first most comprehensive survey on energy saving research and standardization on PON. We summarize the lessons learned from the recent advancements, identify important challenges ahead and outline several future research directions that can contribute to further advancement of energy-efficient PON

    Spectrum Sharing, Latency, and Security in 5G Networks with Application to IoT and Smart Grid

    Get PDF
    The surge of mobile devices, such as smartphones, and tables, demands additional capacity. On the other hand, Internet-of-Things (IoT) and smart grid, which connects numerous sensors, devices, and machines require ubiquitous connectivity and data security. Additionally, some use cases, such as automated manufacturing process, automated transportation, and smart grid, require latency as low as 1 ms, and reliability as high as 99.99\%. To enhance throughput and support massive connectivity, sharing of the unlicensed spectrum (3.5 GHz, 5GHz, and mmWave) is a potential solution. On the other hand, to address the latency, drastic changes in the network architecture is required. The fifth generation (5G) cellular networks will embrace the spectrum sharing and network architecture modifications to address the throughput enhancement, massive connectivity, and low latency. To utilize the unlicensed spectrum, we propose a fixed duty cycle based coexistence of LTE and WiFi, in which the duty cycle of LTE transmission can be adjusted based on the amount of data. In the second approach, a multi-arm bandit learning based coexistence of LTE and WiFi has been developed. The duty cycle of transmission and downlink power are adapted through the exploration and exploitation. This approach improves the aggregated capacity by 33\%, along with cell edge and energy efficiency enhancement. We also investigate the performance of LTE and ZigBee coexistence using smart grid as a scenario. In case of low latency, we summarize the existing works into three domains in the context of 5G networks: core, radio and caching networks. Along with this, fundamental constraints for achieving low latency are identified followed by a general overview of exemplary 5G networks. Besides that, a loop-free, low latency and local-decision based routing protocol is derived in the context of smart grid. This approach ensures low latency and reliable data communication for stationary devices. To address data security in wireless communication, we introduce a geo-location based data encryption, along with node authentication by k-nearest neighbor algorithm. In the second approach, node authentication by the support vector machine, along with public-private key management, is proposed. Both approaches ensure data security without increasing the packet overhead compared to the existing approaches
    corecore