35,868 research outputs found

    A practical multi-sensor activity recognition system for home-based care

    Get PDF
    To cope with the increasing number of aging population, a type of care which can help prevent or postpone entry into institutional care is preferable. Activity recognition can be used for home-based care in order to help elderly people to remain at home as long as possible. This paper proposes a practical multi-sensor activity recognition system for home-based care utilizing on-body sensors. Seven types of sensors are investigated on their contributions toward activity classification. We collected a real data set through the experiments participated by a group of elderly people. Seven classification models are developed to explore contribution of each sensor. We conduct a comparison study of four feature selection techniques using the developed models and the collected data. The experimental results show our proposed system is superior to previous works achieving 97% accuracy. The study also demonstrates how the developed activity recognition model can be applied to promote a home-based care and enhance decision support system in health care

    Multi-sensor activity recognition of an elderly person.

    Get PDF
    The rapid increase in the number of ageing population brings major issues to health care including a rise in care cost, high demand in long- term care, burden to caregivers, and insufficient and ineffective care. Activity recognition can be used as the key part of the intelligent sys- tems to allow elderly people to live independently at homes, reduce care cost and burden to the caregivers, provide assurance for the fam- ilies, and promote better care. However, current activity recognition systems mainly focus on the technical aspect i.e. systems accuracy and neglects the practical aspects such as acceptance, usability, cost and privacy. The practicality of the system is the vital indication whether the system will be adopted. This research aims to develop the activity recognition system which considers both practical and technical aspects using multiple wrist-worn sensors. An extensive literature review in wearable sensor based activity recog- nition and its applications in healthcare have been carried out. Novel multi-sensor activity recognition utilising multiple low-cost, non-intrusive, non-visual wearable sensors is proposed. The sensor fusion is per- formed at feature and classi er levels using the proposed feature se- lection and classi er combination techniques. The multi-sensor ac- tivity recognition data sets have been collected. The rst data set contains data from accelerometer collected from seven young adults. The second data set contains data from accelerometer, altimeter, and temperature sensor collected from 12 elderly people in home environ- ment performing 10 activities. The third data set contains sensor data from accelerometer, gyroscope, temperature sensor, altimeter, barometer, and light sensor worn on the users wrist and a heart rate monitor worn over the users chest. The data set is collected from 12 elderly persons in a real home environment performing 13 activities. This research proposes two feature selection methods, Feature Com- bination (FC) and Maximal Relevancy and Maximal Complementary (MRMC), based on the relationship between feature and classes as well as the relationship between a group of features and classes. The experimental studies show that the proposed techniques can select an optimum set of features from irrelevant, overlapped, and partly over- lapped features. The studies also show that FC and MRMC obtain higher classi cation performances than popular techniques including MRMR, NMIFS, and Clamping. Two classi er combination tech- niques based on Genetic Algorithm (GA) are proposed. The rst technique called GA based Fusion Weight (GAFW), uses GA nd the optimum fusion weights. The results indicate that 99% of classi er fusion using GAFW achieves equal or higher accuracy than using only the best classi er. While other fusion weight techniques cannot guar- antee accuracy improvement, GAFW is a more suitable method for determining fusion weight regardless which fusion techniques are used. Another algorithm called GA based Combination Model (GACM) is proposed to nd the optimal combination between classi er, weight function, and classi er combiners. The algorithm does not only nd the model which has the minimum classi cation error but also select the one that is simpler. Other criteria e.g. select the classi er with low computation can also be easily added to the algorithm. The re- sults show that in general GACM can nd the optimum combinations automatically. The comparison against manually selection revealed that there is no statistical signi cant in the performances. Applications of the proposed work in home care and decision support system are discussed The results of this research will have a signi cant impact on the future health care where people can be health monitored from their homes to promote healthy living, detect any changes in behaviour, and improve quality of care

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing

    Activity Recognition using Hierarchical Hidden Markov Models on Streaming Sensor Data

    Full text link
    Activity recognition from sensor data deals with various challenges, such as overlapping activities, activity labeling, and activity detection. Although each challenge in the field of recognition has great importance, the most important one refers to online activity recognition. The present study tries to use online hierarchical hidden Markov model to detect an activity on the stream of sensor data which can predict the activity in the environment with any sensor event. The activity recognition samples were labeled by the statistical features such as the duration of activity. The results of our proposed method test on two different datasets of smart homes in the real world showed that one dataset has improved 4% and reached (59%) while the results reached 64.6% for the other data by using the best methods

    Context-awareness for mobile sensing: a survey and future directions

    Get PDF
    The evolution of smartphones together with increasing computational power have empowered developers to create innovative context-aware applications for recognizing user related social and cognitive activities in any situation and at any location. The existence and awareness of the context provides the capability of being conscious of physical environments or situations around mobile device users. This allows network services to respond proactively and intelligently based on such awareness. The key idea behind context-aware applications is to encourage users to collect, analyze and share local sensory knowledge in the purpose for a large scale community use by creating a smart network. The desired network is capable of making autonomous logical decisions to actuate environmental objects, and also assist individuals. However, many open challenges remain, which are mostly arisen due to the middleware services provided in mobile devices have limited resources in terms of power, memory and bandwidth. Thus, it becomes critically important to study how the drawbacks can be elaborated and resolved, and at the same time better understand the opportunities for the research community to contribute to the context-awareness. To this end, this paper surveys the literature over the period of 1991-2014 from the emerging concepts to applications of context-awareness in mobile platforms by providing up-to-date research and future research directions. Moreover, it points out the challenges faced in this regard and enlighten them by proposing possible solutions

    Activities recognition and worker profiling in the intelligent office environment using a fuzzy finite state machine

    Get PDF
    Analysis of the office workers’ activities of daily working in an intelligent office environment can be used to optimize energy consumption and also office workers’ comfort. To achieve this end, it is essential to recognise office workers’ activities including short breaks, meetings and non-computer activities to allow an optimum control strategy to be implemented. In this paper, fuzzy finite state machines are used to model an office worker’s behaviour. The model will incorporate sensory data collected from the environment as the input and some pre-defined fuzzy states are used to develop the model. Experimental results are presented to illustrate the effectiveness of this approach. The activity models of different individual workers as inferred from the sensory devices can be distinguished. However, further investigation is required to create a more complete model

    Linking recorded data with emotive and adaptive computing in an eHealth environment

    Get PDF
    Telecare, and particularly lifestyle monitoring, currently relies on the ability to detect and respond to changes in individual behaviour using data derived from sensors around the home. This means that a significant aspect of behaviour, that of an individuals emotional state, is not accounted for in reaching a conclusion as to the form of response required. The linked concepts of emotive and adaptive computing offer an opportunity to include information about emotional state and the paper considers how current developments in this area have the potential to be integrated within telecare and other areas of eHealth. In doing so, it looks at the development of and current state of the art of both emotive and adaptive computing, including its conceptual background, and places them into an overall eHealth context for application and development

    Human mobility monitoring in very low resolution visual sensor network

    Get PDF
    This paper proposes an automated system for monitoring mobility patterns using a network of very low resolution visual sensors (30 30 pixels). The use of very low resolution sensors reduces privacy concern, cost, computation requirement and power consumption. The core of our proposed system is a robust people tracker that uses low resolution videos provided by the visual sensor network. The distributed processing architecture of our tracking system allows all image processing tasks to be done on the digital signal controller in each visual sensor. In this paper, we experimentally show that reliable tracking of people is possible using very low resolution imagery. We also compare the performance of our tracker against a state-of-the-art tracking method and show that our method outperforms. Moreover, the mobility statistics of tracks such as total distance traveled and average speed derived from trajectories are compared with those derived from ground truth given by Ultra-Wide Band sensors. The results of this comparison show that the trajectories from our system are accurate enough to obtain useful mobility statistics
    corecore