2,331 research outputs found

    Deterministic Timed Finite State Machines: Equivalence Checking and Expressive Power

    Full text link
    There has been a growing interest in defining models of automata enriched with time. For instance, timed automata were introduced as automata extended with clocks. In this paper, we study models of timed finite state machines (TFSMs), i.e., FSMs enriched with time, which accept timed input words and generate timed output words. Here we discuss some models of TFSMs with a single clock: TFSMs with timed guards, TFSMs with timeouts, and TFSMs with both timed guards and timeouts. We solve the problem of equivalence checking for all three models, and we compare their expressive power, characterizing subclasses of TFSMs with timed guards and of TFSMs with timeouts that are equivalent to each other.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    Test Derivation from Timed Automata

    Get PDF
    A real-time system is a discrete system whose state changes occur in real-numbered time [AH97]. For testing real-time systems, specification languages must be extended with constructs for expressing real-time constraints, the implementation relation must be generalized to consider the temporal dimension, and the data structures and algorithms used to generate tests must be revised to operate on a potentially infinite set of states

    Extending stream X-machines to specify and test systems with timeouts

    Get PDF
    Stream X-machines are a kind of extended finite state machine used to specify real systems where communication between the components is modeled by using a shared memory.In this paper we introduce an extension of the Stream X-machines formalism in order to specify delays/timeouts.The time spent by a system waiting for the environment to react has the capability of affecting the set of available outputs of the system. So, a relation focusing on functional aspects must explicitly take into account the possible timeouts.We also propose a formal testing methodology allowing to systematically test a system with respect to a specification. Finally, we introduce a test derivation algorithm. Given a specification, the derived test suite is sound and complete, that is, a system under test successfully passes the test suite if and only if this system conforms to the specification

    Testing timed systems modeled by stream X-machines

    Get PDF
    Stream X-machines have been used to specify real systems where complex data structures. They are a variety of extended finite state machine where a shared memory is used to represent communications between the components of systems. In this paper we introduce an extension of the Stream X-machines formalism in order to specify systems that present temporal requirements. We add time in two different ways. First, we consider that (output) actions take time to be performed. Second, our formalism allows to specify timeouts. Timeouts represent the time a system can wait for the environment to react without changing its internal state. Since timeous affect the set of available actions of the system, a relation focusing on the functional behavior of systems, that is, the actions that they can perform, must explicitly take into account the possible timeouts. In this paper we also propose a formal testing methodology allowing to systematically test a system with respect to a specification. Finally, we introduce a test derivation algorithm. Given a specification, the derived test suite is sound and complete, that is, a system under test successfully passes the test suite if and only if this system conforms to the specification

    Distinguishing experiments for timed nondeterministic finite state machine

    Get PDF
    The problem of constructing distinguishing experiments is a fundamental problem in the area of finite state machines (FSMs), especially for FSM-based testing. In this paper, the problem is studied for timed nondeterministic FSMs (TFSMs) with output delays. Given two TFSMs, we derive the TFSM intersection of these machines and show that the machines can be distinguished using an appropriate (untimed) FSM abstraction of the TFSM intersection. The FSM abstraction is derived by constructing appropriate partitions for the input and output time domains of the TFSM intersection. Using the obtained abstraction, a traditional FSM-based preset algorithm can be used for deriving a separating sequence for the given TFSMs if these machines are separable. Moreover, as sometimes two non-separable TFSMs can still be distinguished by an adaptive experiment, based on the FSM abstraction we present an algorithm for deriving an r-distinguishing TFSM that represents a corresponding adaptive experiment
    • ā€¦
    corecore