
Acta Cybernetica 21 (2013) 205–222.

Distinguishing Experiments for Timed

Nondeterministic Finite State Machines*

Khaled El-Fakih†, Maxim Gromov‡, Natalia Shabaldina‡,
and Nina Yevtushenko‡

Abstract

The problem of constructing distinguishing experiments is a fundamental
problem in the area of finite state machines (FSMs), especially for FSM-based
testing. In this paper, the problem is studied for timed nondeterministic FSMs
(TFSMs) with output delays. Given two TFSMs, we derive the TFSM inter-
section of these machines and show that the machines can be distinguished
using an appropriate (untimed) FSM abstraction of the TFSM intersection.
The FSM abstraction is derived by constructing appropriate partitions for
the input and output time domains of the TFSM intersection. Using the
obtained abstraction, a traditional FSM-based preset algorithm can be used
for deriving a separating sequence for the given TFSMs if these machines are
separable. Moreover, as sometimes two non-separable TFSMs can still be
distinguished by an adaptive experiment, based on the FSM abstraction we
present an algorithm for deriving an r-distinguishing TFSM that represents
a corresponding adaptive experiment.

Keywords: nondeterministic untimed and timed finite state machines, pre-
set and adaptive distinguishing experiments, state identification

1 Introduction

Finite State Machines (FSMs) are widely used for modeling systems in many ap-
plication domains. For instance, (Mealy) FSMs are used as the underlying models
for formal description techniques such as SDL and UML State Diagrams. In many
cases, the behavior of a given machine can be considered as a mapping of input se-
quences (sequences of input symbols) to corresponding output sequences (sequences

*This work was partially supported by AUS FRG-III and Russian ministry of Science and High
Education (contract No. 14.B37.21.0622)

†American University of Sharjah, Department of Computer Science and Engineering, PO Box
26666, Sharjah, UAE, Tel: (971) 06 5152492, Mobile: (971) 050 3073091 Fax: (971) 6 515 2979,
E-mail: kelfakih@aus.edu

‡Tomsk State University, 36 Lenin Str., Tomsk, 634050, Russia, E-mail: gromov@sibmail.com,
NataliaMailBox@mail.ru, ninayevtushenko@yahoo.com

DOI: 10.14232/actacyb.21.2.2013.1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Szeged

https://core.ac.uk/display/147082366?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

206 Khaled El-Fakih et al.

of output symbols). A machine is deterministic if it produces a single output se-
quence in response to an input sequence and a machine is nondeterministic if it can
produce several output sequences in response to an input sequence. Nondetermin-
ism may occur due to various reasons such as limited controllability, abstraction
level, modeling concurrency and real time systems, etc. [1, 7, 21].

When distinguishing FSMs, we have a machine under test about which we lack
some information, and we want to deduce this information by conducting experi-
ments on this machine. An experiment consists of applying input sequences to the
machine, observing corresponding output responses and drawing some conclusions
about the machine under test. An experiment is simple if a single input sequence
is applied to a machine under experiment; otherwise, the experiment is referred
to as a multi experiment. An experiment is preset if input sequences are known
before starting the experiment and an experiment is adaptive if at each step of the
experiment the next input is selected based on previously observed outputs. Distin-
guishing experiments with FSMs are widely used as a basis for solving fundamental
testing problems such as the fault detection (or conformance testing) and/or the
machine identification problems. For related surveys and algorithms on FSM-based
distinguishing experiments, the reader may refer to [2–4,9, 11–13].

Unlike deterministic FSMs, for nondeterministic FSMs, there are a number of
distinguishability relations, other than the equivalence relation, such as the non-
reduction, separability, and r-distinguishability relations [1, 16, 20]. Two machines
can be distinguished by a simple preset experiment if these machines are separable.
The separability relation is defined by Starke in [20] and studied in [1] and [19]. Two
nondeterministic machines are separable if there is an input sequence, called a sepa-
rating sequence, such that the sets of output responses of the machines to the input
sequence are disjoint. Thus, two separable machines can be distinguished by ap-
plying a separating sequence only once. Two complete non-separable machines still
can be distinguished by a simple adaptive experiment if they are r-distinguishable,
i.e., if they have no common complete reduction [17,23]. A machine is a reduction
of another machine if its behavior is contained in the behavior of the other machine.

Currently, models of many systems such as telecommunication systems, plant
and traffic controllers etc, take into account time constraints and correspondingly
timed FSMs are getting a lot of attention. Merayo et al. [5, 14, 15] consider a
timed possibly nondeterministic FSM model where time constrains limit a time
elapsed when an output has to be produced after an input has been applied to
the FSM. Hierons et al. [8] introduce a timed stochastic FSM model. Gromov et
al. [6] consider a timed complete nondeterministic FSM model where transitions are
guarded by time constraints over a single clock. The clock is reset at the execution of
a transition. In this paper, we consider a model similar to that in [6], yet extended to
deal with non-zero output delays sometimes called output timeouts. The considered
model can be regarded as a temporal extension of FSMs where a transition is fired
only if a given input is given in time (bounded by given lower and upper bounds)
that is counted from the moment when a current state is reached. Firing a transition
also takes time between the reception of the input and the emission of the output,
i.e., the output delay represents the transition execution/processing time. In the

Distinguishing Experiments for Timed Nondeterministic . . . 207

considered model, the identification of input and output time domains of a state can
be done independent of time domains of other states, and thus, there are technical
benefits in using the considered model for distinguishability and testing.

Given two possibly nondeterministic timed FSMs, we study the problem of
deriving an input sequence that distinguishes these machines. At the first step,
the TFSM intersection of the given two machines is derived from which an FSM
abstraction is then constructed. It is shown that distinguishing experiments for the
given timed FSMs can be determined based on the constructed FSM abstraction. In
particular, we show how a traditional preset FSM-based method can be adapted for
the FSM abstraction of the intersection when deriving a separating sequence for two
given timed FSMs. In addition, using the FSM abstraction we present an algorithm
for deriving an r-distinguishing TFSM that represents an adaptive distinguishing
experiment for the given two TFSMs if the machines are r-distinguishable.

This paper extends a related preliminary work in [6] to TFSMs which can have
non-zero output delays. Moreover, the presented work provides a simpler strat-
egy for deriving distinguishing experiments. In particular, in [6] two TFSMs are
distinguished based on their intersection using more complex algorithms that in-
herit ideas from traditional untimed FSM methods mixed with the derivation of
appropriate partitions of input domains for handling time constraints. The strat-
egy proposed in this paper is based on a corresponding (untimed) FSM abstraction
of the intersection of two TFSMs and this allows simpler adaptation of existing
traditional FSM-based methods for distinguishing TFSMs. The methods presented
in this paper and in [6] produce experiments of the same length as the FSM ab-
straction has the same number of states as the TFSM intersection of the given two
machines.

We note that another possible strategy for distinguishing two given TFSMs us-
ing algorithms for untimed machines is to first build an FSM abstraction for each
of the given machines, derive the intersection of the obtained FSM abstractions,
and afterwards, tune traditional FSM-based methods for deriving distinguishing
sequences and their corresponding timed sequences using the obtained FSM inter-
section and the given TFSMs. However, in this case, the number of (abstract)
inputs and outputs of the FSM abstractions and their intersection are larger than
those derived using our proposed strategy. This is due to the fact that in this case
the derivation time domains of inputs and outputs has to be carried out considering
all the states of the given machines whereas it is sufficient to consider, as in our
approach, pairs of states that appear in the intersection of the given machines.

Finally, it is worth stating that in [10] some work has been presented for dis-
tinguishing Timed Input/Output Automata (TIOA) with multiple clocks. Given a
TIOA and a clock model, the product of the given automaton with the clock model
is transformed into a so-called Bisimulation Quotient Graph, and afterwards, the
obtained graph is transformed into a special possibly nondeterministic (untimed)
Mealy machine which is actually a tranducer over sequences of abstract inputs and
outputs written as regular languages. However, a distinguishing sequence derived
from the obtained tranducer in [10] cannot be applied to distinguishing states of the
original timed machine since the regular languages (corresponding to sequences of

208 Khaled El-Fakih et al.

abstract outputs) labeling transitions of the obtained Mealy machine may intersect,
and thus, corresponding states of the initial automaton cannot be separated. In ad-
dition, the obtained Mealy machine can be non-observable, and thus the traditional
FSM method given in [1] cited in [10] cannot be applied.

This paper is organized as follows. Section 2 includes preliminaries and Sec-
tion 3 presents the FSM abstraction and distinguishability algorithms. Section 4
concludes the paper.

2 Preliminaries

An FSM S1 is a 5-tuple ⟨𝑆, 𝐼,𝑂, 𝜆S , 𝑠⟩ , where 𝑆, 𝐼 and 𝑂 are finite sets of states,
inputs and outputs, respectively, 𝑠 is the initial state and 𝜆S ⊆ 𝑆 × 𝐼 ×𝑂 × 𝑆 is a
transition relation. A timed FSM (TFSM) S or simply a timed machine is a 5-tuple
⟨𝑆, 𝐼,𝑂, 𝜆S , 𝑠⟩ with the transition relation 𝜆S ⊆ 𝑆×(𝐼×Π)×(𝑂×ℵ)×𝑆, where Π is
the set of input time guards and ℵ is the set of output time guards for representing
output delays. Each guard 𝑔 ∈ Π = ⌈𝑚𝑖𝑛,𝑚𝑎𝑥⌉ (each guard 𝑓 ∈ ℵ = ⌈𝑚𝑖𝑛,𝑚𝑎𝑥⌉)
where 𝑚𝑖𝑛 is a nonnegative integer, while 𝑚𝑎𝑥 is a nonnegative integer or the
infinity, 𝑚𝑖𝑛 6 𝑚𝑎𝑥, and ⌈∈ {(, [} while ⌉ ∈ {),]}. From the practical point of
view, we assume that all the output guards have a finite upper bound B. For every
pair ⟨𝑠, 𝑖⟩ ∈ 𝑆×𝐼, we use 𝐺⟨𝑠,𝑖⟩ to denote the collection of input time guards 𝑔 such
that there is a transition ⟨𝑠, ⟨𝑖, 𝑔⟩, ⟨𝑜, 𝑓⟩, 𝑠′⟩ ∈ 𝜆S and for every pair ⟨𝑠, 𝑜⟩ ∈ 𝑆 × 𝑂
we use 𝐺⟨𝑠,𝑜⟩ to denote the collection of output time guards 𝑓 such that there is a
transition ⟨𝑠, ⟨𝑖, 𝑔⟩, ⟨𝑜, 𝑓⟩, 𝑠′⟩ ∈ 𝜆S .

The behavior of a TFSM S can be described as follows. If ⟨𝑠, ⟨𝑖, 𝑔⟩, ⟨𝑜, 𝑓⟩, 𝑠′⟩ ∈
∈ 𝜆S , where 𝑔 = ⌈𝑚1,𝑚2⌉ and 𝑓 = ⌈𝑛1, 𝑛2⌉, we say that TFSM S being at state
𝑠 accepts input 𝑖 applied at time 𝑡 ∈ ⌈𝑚1,𝑚2⌉ measured from the moment TFSM
S entered state 𝑠; the clock then is set to zero, and S responds with (or produces)
output 𝑜 after 𝑡′ time units, 𝑡′ ∈ ⌈𝑛1, 𝑛2⌉, and time is set to zero as S enters state
𝑠′.

A TFSM S is observable if for each two transitions
⟨𝑠, ⟨𝑖, ⌈𝑚1,𝑚2⌉⟩, ⟨𝑜, ⌈𝑛1, 𝑛2⌉⟩, 𝑠′⟩ ∈ 𝜆S and ⟨𝑠, ⟨𝑖, ⌈𝑚′

1,𝑚
′
2⌉⟩, ⟨𝑜, ⌈𝑛′

1, 𝑛
′
2⌉⟩, 𝑠′′⟩ ∈ 𝜆S

it holds that if ⌈𝑚1,𝑚2⌉ ∩ ⌈𝑚′
1,𝑚

′
2⌉ ≠ ∅ and ⌈𝑛1, 𝑛2⌉ ∩ ⌈𝑛′

1, 𝑛
′
2⌉ ≠ ∅, then 𝑜′ = 𝑜

implies 𝑠′ = 𝑠′′. In this paper, we consider only observable TFSMs as similar to
untimed FSMs, for every unobservable timed machine there exists an observable
timed machine that has the same behavior.

TFSM S is (time) deterministic if for each two transitions
⟨𝑠, ⟨𝑖, ⌈𝑚1,𝑚2⌉⟩, ⟨𝑜, ⌈𝑛1, 𝑛2⌉⟩, 𝑠′⟩ ∈ 𝜆S , ⟨𝑠, ⟨𝑖, ⌈𝑚′

1,𝑚
′
2⌉⟩, ⟨𝑜′, ⌈𝑛′

1, 𝑛
′
2⌉⟩, 𝑠′′⟩ ∈ 𝜆S ,

⌈𝑚1,𝑚2⌉ ∩ ⌈𝑚′
1,𝑚

′
2⌉ = ∅. Otherwise, S is (time) nondeterministic.

TFSM S is complete if each input is a defined at each state and for each pair
⟨𝑠, 𝑖⟩ ∈ 𝑆 × 𝐼 of S , it holds that the union of all 𝑔 ∈ 𝐺⟨𝑠,𝑖⟩ equals [0,∞); otherwise,
the machine is called partial. A partial machine can be completed by adding appro-
priate self-loop transitions. In particular, for every time domain 𝑔 where an input 𝑖

1If there is no ambiguity we will use the notation S for an FSM and 𝑆 for its set of states.

Distinguishing Experiments for Timed Nondeterministic . . . 209

at state 𝑠 is not defined, a self-loop transition ⟨𝑠, ⟨𝑖, 𝑔⟩, ⟨𝑜, [0,∞)⟩, 𝑠⟩ is added. Con-
sequently, in this paper, we study distinguishing experiments with nondeterministic
complete TFSMs.

Given TFSMs S = ⟨𝑆, 𝐼,𝑂, 𝜆S , 𝑠⟩ and P = ⟨𝑃, 𝐼,𝑂, 𝜆P , 𝑝⟩, the intersection S∩P
is the largest connected submachine of the TFSM ⟨𝑆 × 𝑃, 𝐼,𝑂, 𝜆S∩P , ⟨𝑠, 𝑝⟩⟩ where
⟨⟨𝑠, 𝑝⟩, ⟨𝑖, ⌈𝑚1,𝑚2⌉⟩, ⟨𝑜, ⌈𝑛1, 𝑛2⌉⟩, ⟨𝑠′, 𝑝′⟩⟩ ∈ 𝜆𝑆∩𝑃 if and only if there are transitions
⟨𝑠, ⟨𝑖, ⌈𝑚′

1,𝑚
′
2⌉⟩, ⟨𝑜, ⌈𝑛′

1, 𝑛
′
2⌉⟩, 𝑠′⟩ ∈ 𝜆S and ⟨𝑝, ⟨𝑖, ⌈𝑚′′

1 ,𝑚
′′
2⌉⟩, ⟨𝑜, ⌈𝑛′′

1 , 𝑛
′′
2⌉⟩, 𝑝′⟩ ∈ 𝜆P

such that ⌈𝑚′
1,𝑚

′
2⌉ ∩ ⌈𝑚′′

1 ,𝑚
′′
2⌉ = ⌈𝑚1,𝑚2⌉ and ⌈𝑛′

1, 𝑛
′
2⌉ ∩ ⌈𝑛′′

1 , 𝑛
′′
2⌉ = ⌈𝑛1, 𝑛2⌉. As

a running example, consider TFSM S (Figure 1) with the initial state 1 (hereafter
denoted S1) and the TFSM S with the initial state 3 (hereafter denoted S3). In
the figures, a transition ⟨𝑠, ⟨𝑖, ⌈𝑚1,𝑚2⌉⟩, ⟨𝑜, ⌈𝑛1, 𝑛2⌉⟩, 𝑠′⟩ is depicted as 𝑠 (column),
𝑖 (row), and corresponding entry (⌈𝑚1,𝑚2⌉), 𝑠′/⟨𝑜, ⌈𝑛1, 𝑛2⌉⟩. The intersection Q =
= S1 ∩ S3 is shown in Figure 2.

S 1 2 3 4

𝑖1

(𝑡 6 2), 1/⟨𝑜1, 𝑡 < 3⟩ (𝑡 6 2), 1/⟨𝑜1, 0 6 𝑡 < 5⟩ (𝑡 6 2), 3/⟨𝑜1, 𝑡 > 2⟩ (𝑡 6 3), 3/⟨𝑜2, 0 6 𝑡 < 5⟩
(𝑡 6 3), 2/⟨𝑜2, 0 6 𝑡 < 5⟩ (2 < 𝑡 6 3), 2/⟨𝑜1, 0 6 𝑡 < 5⟩ (𝑡 > 3), 1/⟨𝑜1, 0 6 𝑡 < 5⟩ (𝑡 > 3), 1/⟨𝑜1, 0 6 𝑡 < 5⟩
(𝑡 > 2), 3/⟨𝑜1, 0 6 𝑡 < 5⟩ (𝑡 > 3), 3/⟨𝑜1, 0 < 𝑡 < 5⟩ (2 < 𝑡 6 3), 2/⟨𝑜1, 𝑡 < 2⟩

(2 < 𝑡 6 3), 4/⟨𝑜2, 0 6 𝑡 < 5⟩

𝑖2

(𝑡 6 2), 1/⟨𝑜1, 0 6 𝑡 < 5⟩ (𝑡 6 1), 1/⟨𝑜2, 0 6 𝑡 < 5⟩ (𝑡 6 2), 3/⟨𝑜1, 0 6 𝑡 < 5⟩ (𝑡 6 1), 3/⟨𝑜2, 0 6 𝑡 < 5⟩
(𝑡 > 2), 3/⟨𝑜1, 0 6 𝑡 < 5⟩ (1 < 𝑡 < 2), 2/⟨𝑜2, 0 6 𝑡 < 5⟩ (𝑡 > 2), 1/⟨𝑜1, 0 6 𝑡 < 5⟩ (𝑡 > 1), 2/⟨𝑜2, 0 6 𝑡 < 5⟩

(𝑡 > 2), 4/⟨𝑜2, 0 6 𝑡 < 5⟩

Figure 1: TFSM S , TFSM S1 is S with initial state 1, and TFSM S3 is S with
initial state 3

S1 ∩ S3 ⟨1, 3⟩ ⟨3, 2⟩ ⟨2, 4⟩ ⟨2, 2⟩

𝑖1

(𝑡 6 2), ⟨1, 3⟩/⟨𝑜1, 2 < 𝑡 < 3⟩ (𝑡 6 2), ⟨3, 1⟩/⟨𝑜1, 0 < 𝑡 < 5⟩ (𝑡 6 2), ⟨1, 1⟩/⟨𝑜1, 0 6 𝑡 < 5⟩
(2 < 𝑡 6 3), ⟨3, 2⟩/⟨𝑜1, 𝑡 < 2⟩ (2 < 𝑡 6 3), ⟨2, 2⟩/⟨𝑜1, 𝑡 < 2⟩ (2 < 𝑡 6 3), ⟨2, 2⟩/⟨𝑜1, 0 6 𝑡 < 5⟩
(𝑡 > 3), ⟨3, 1⟩/⟨𝑜1, 0 6 𝑡 < 5⟩ (𝑡 > 3), ⟨1, 3⟩/⟨𝑜1, 0 6 𝑡 < 5⟩ (𝑡 > 3), ⟨3, 3⟩/⟨𝑜1, 0 6 𝑡 < 5⟩
(2 < 𝑡 6 3), ⟨2, 4⟩/⟨𝑜2, 0 6 𝑡 < 5⟩

𝑖2

(𝑡 6 2), ⟨1, 3⟩/⟨𝑜1, 0 6 𝑡 < 5⟩ (𝑡 6 1), ⟨1, 3⟩/⟨𝑜2, 0 6 𝑡 < 5⟩ (𝑡 6 1), ⟨1, 1⟩/⟨𝑜2, 0 6 𝑡 < 5⟩
(𝑡 > 2), ⟨3, 1⟩/⟨𝑜1, 0 6 𝑡 < 5⟩ (1 < 𝑡 < 2), ⟨2, 2⟩/⟨𝑜2, 0 6 𝑡 < 5⟩ (1 < 𝑡 < 2), ⟨2, 2⟩/⟨𝑜2, 0 6 𝑡 < 5⟩

(𝑡 > 2), ⟨4, 2⟩/⟨𝑜2, 0 6 𝑡 < 5⟩ (𝑡 > 2), ⟨4, 4⟩/⟨𝑜2, 0 6 𝑡 < ∞⟩

Figure 2: The intersection TFSM Q = S1 ∩ S3

Given a TFSM S , a pair ⟨𝑖, 𝑡⟩/⟨𝑜, 𝑡′⟩, where 𝑖 ∈ 𝐼, 𝑜 ∈ 𝑂, 𝑡 and 𝑡′ are non-
negative rational numbers, is a timed input-output pair where ⟨𝑖, 𝑡⟩ is a timed input
that states that input 𝑖 is applied at time 𝑡 measured from the moment when the
machine entered its current state and ⟨𝑜, 𝑡′⟩ is a timed output that states that output
𝑜 is produced at time 𝑡′ measured from the moment when the timed input ⟨𝑖, 𝑡⟩ has
been applied.

Consider a TFSM S and a timed input-output pair ⟨𝑖, 𝑡⟩/⟨𝑜, 𝑡′⟩. Given a
state 𝑠, there is a clocked transition ⟨𝑠, ⟨𝑖, 𝑡⟩, ⟨𝑜, 𝑡′⟩, 𝑠′⟩ in S if 𝜆S has a transi-
tion ⟨𝑠, ⟨𝑖, 𝑔⟩, ⟨𝑜, 𝑓⟩, 𝑠′⟩ ∈ 𝜆S such that 𝑡 ∈ 𝑔 and 𝑡′ ∈ 𝑓 . A timed input-output
pair ⟨𝑖, 𝑡⟩/⟨𝑜, 𝑡′⟩ is a timed input-output pair at state 𝑠 if there exists a clocked
transition ⟨𝑠, ⟨𝑖, 𝑡⟩, ⟨𝑜, 𝑡′⟩, 𝑠′⟩ in S .

210 Khaled El-Fakih et al.

A sequence of timed input-output pairs is a timed trace. A timed trace 𝛼/𝛽 =
= ⟨𝑖1, 𝑡1⟩/⟨𝑜1, 𝑡′1⟩, . . . , ⟨𝑖𝑘, 𝑡𝑘⟩/⟨𝑜𝑘, 𝑡′𝑘⟩ is a timed trace at state 𝑠 if there exist states
𝑠1, . . . , 𝑠𝑘+1 such that 𝑠1 = 𝑠 and for each 𝑗 = 1, . . . , 𝑘, there exists a clocked
transition ⟨𝑠𝑗 , ⟨𝑖𝑗 , 𝑡𝑗⟩, ⟨𝑜𝑗 , 𝑡′𝑗⟩, 𝑠𝑗+1⟩ in S .

By the above definition, given a timed trace 𝛼/𝛽 =
= ⟨𝑖1, 𝑡1⟩/⟨𝑜1, 𝑡′1⟩, . . . , ⟨𝑖𝑘, 𝑡𝑘⟩/⟨𝑜𝑘, 𝑡′𝑘⟩ at state 𝑠, we assume that the input
sequence 𝛼 is applied to the TFSM in the following way. For each 𝑗, 1 6 𝑗 6 𝑘,
the input 𝑖𝑗 is applied at the time instance 𝑡𝑗 measured from the time when the
TFSM entered the state 𝑠𝑗 , the clock starts advancing from 0 and the output 𝑜𝑗 is
produced at time 𝑡′𝑗 .

A timed input sequence 𝛼 is defined at state 𝑠 if and only if at state 𝑠 there
exists a timed trace 𝛼/𝛽 for some timed output sequence 𝛽.

A TFSM S = ⟨𝑆, 𝐼,𝑂, 𝜆S , 𝑠⟩ is a submachine of TFSM P = ⟨𝑃, 𝐼,𝑂, 𝜆P , 𝑝⟩ if
𝑆 ⊆ 𝑃 , 𝑠 = 𝑝, and each clocked transition ⟨𝑠, ⟨𝑖, 𝑡⟩, ⟨𝑜, 𝑡′⟩, 𝑠′⟩ of S is a clocked
transition of P.

Two complete TFSMs S and P are separable if there exists a timed input se-
quence for both TFSMs such that the sets of timed output responses to this input
sequence do not intersect and in addition, S and P are r-distinguishable if for each
complete TFSM M it holds that there exists a timed input sequence 𝛼 such that
the set of output responses of M to 𝛼 is not a subset of responses of S to 𝛼 or of
responses of P to 𝛼.

3 Distinguishing Timed Finite State Machines

Given two TFSMs S and P, in order to distinguish these machines, as usual, we
first derive the TFSM intersection Q = S ∩ P. Given the intersection Q, an ab-
stract FSM A(Q) is then constructed for which we can apply the traditional FSM
distinguishability algorithms when deriving distinguishing sequences over abstract
inputs; the distinguishing sequences are then transformed into timed sequences over
timed inputs using the established correspondence between Q and A(Q).

3.1 Deriving an FSM Abstraction

Given TFSM Q = S ∩ P, an FSM abstraction A(Q) of Q is derived as follows. For
each input 𝑖 ∈ 𝐼 of Q, the collection 𝐺𝑖 of time guards over all states with an input
𝑖 and the corresponding partition Π𝑖 over [0,∞) is constructed. There is an input
⟨𝑖, 𝑔⟩ in the abstraction if and only if 𝑔 ∈ Π𝑖. More precisely, given input 𝑖 ∈ 𝐼,
let 𝐺 = {𝑗1 = 0, 𝑗2, . . . , 𝑗𝑚}, 𝑗𝑎 < 𝑗𝑎+1, 𝑎 = 1, . . . ,𝑚− 1, be the finite ordered set
of boundaries of guards of collection 𝐺𝑖. The finite set Π𝑖 is defined as the (finite)
set {(𝑗1, 𝑗2), . . . , (𝑗𝑚−1, 𝑗𝑚), (𝑗𝑚,∞), {𝑗1}, {𝑗2}, {𝑗3}, . . . {𝑗𝑚}}, i.e., the set Π𝑖 has
singletons all boundaries and all (infinite) domains with consecutive boundaries of
the set 𝐺. For each state 𝑞 ∈ 𝑄 and each 𝑔𝑗 ∈ Π𝑖, the abstraction A(Q) has a
transition from state 𝑞 under abstract input ⟨𝑖, 𝑔𝑗⟩ if and only if it holds that there
exists a transition ⟨𝑞, ⟨𝑖, 𝑔⟩, ⟨𝑜, 𝑓⟩, 𝑞′⟩ ∈ 𝜆Q such that 𝑔 contains 𝑔𝑗 . For our running

Distinguishing Experiments for Timed Nondeterministic . . . 211

example, Π𝑖1 of TFSM Q in Figure 2 equals {{0}, (0, 2), {2}, (2, 3), {3}, (3,∞)} and
Π𝑖2 = {{0}, (0, 1), {1}, (1, 2), {2}, (2,∞)}.

Proposition 1. Given a TFSM Q = ⟨𝑄, 𝐼,𝑂, 𝜆Q, 𝑞⟩, an input 𝑖 ∈ 𝐼 and a set Π𝑖

of time domains for the input 𝑖, let 𝑔 ∈ Π𝑖 and 𝑡1, 𝑡2 ∈ 𝑔. For each 𝑞 ∈ 𝑄, there
is a clocked transition ⟨𝑞, ⟨𝑖, 𝑡1⟩, ⟨𝑜, 𝑓⟩, 𝑞′⟩ ∈ 𝜆Q if and only if there is a clocked
transition ⟨𝑞, ⟨𝑖, 𝑡2⟩, ⟨𝑜, 𝑓⟩, 𝑞′⟩ ∈ 𝜆Q.

Similarly, the partition Π𝑜 of output guards is derived. For each output 𝑜 ∈ 𝑂 of
Q, the collection 𝐹𝑜 based on the collections 𝐹⟨𝑞,𝑜⟩ over all states where the output
𝑜 can be produced is derived. An output 𝑜 can be produced at time instances 𝑡 ∈ 𝑓
if and only if there exists a state 𝑞 and pair ⟨𝑖, 𝑔⟩ such that ⟨𝑞, ⟨𝑖, 𝑔⟩, ⟨𝑜, 𝑓⟩, 𝑞′⟩ ∈
∈ 𝜆Q . Let now 𝐹 = {𝑗1 = 0, 𝑗2, . . . , 𝑗𝑚}, 𝑗𝑎 < 𝑗𝑎+1, 𝑎 = 1, . . . ,𝑚− 1, be the finite
ordered set of boundaries of guards of the collection 𝐹𝑜. Based on 𝐹 the (finite) set
Π𝑜 = {(𝑗1, 𝑗2), . . . , (𝑗𝑚−1, 𝑗𝑚), (𝑗𝑚,B), {𝑗1}, {𝑗2}, {𝑗3}, . . . , {𝑗𝑚}} is built, i.e., the
set Π𝑜 has singletons for all boundaries and all (infinite) domains with consecutive
boundaries of the set 𝐹 where the output 𝑜 can be produced. In our running
example, Π𝑜1 of TFSM Q (Figure 2) equals {{0}, (0, 2), {2}, (2, 3), {3}, (3, 5)} and
Π𝑜2 = {{0}, (0, 5)}.

Proposition 2. Given a TFSM Q = ⟨𝑄, 𝐼,𝑂, 𝜆Q, 𝑞⟩, an output 𝑜 ∈ 𝑂 and a set Π𝑜

of output domains for the output 𝑜, let 𝑓 ∈ Π𝑜 and 𝑡′, 𝑡′′ ∈ 𝑓 . For each 𝑞 ∈ 𝑄 and
a timed input ⟨𝑖, 𝑡⟩, either TFSM Q cannot produce both timed outputs ⟨𝑜, 𝑡′⟩ and
⟨𝑜, 𝑡′′⟩ at state 𝑞 under ⟨𝑖, 𝑡⟩ or there is a clocked transition ⟨𝑞, ⟨𝑖, 𝑡⟩, ⟨𝑜, 𝑡′⟩, 𝑞′⟩ ∈ 𝜆Q

if and only if there is a clocked transition ⟨𝑞, ⟨𝑖, 𝑡⟩, ⟨𝑜, 𝑡′′⟩, 𝑞′⟩ ∈ 𝜆Q.

Given TFSMs S and P, the TFSM intersection Q = ⟨𝑄, 𝐼,𝑂, 𝜆Q , 𝑞⟩ of
S and P, and partitions Π𝑖 and Π𝑜, a corresponding abstract FSM A(Q) =
= ⟨𝑄, 𝐼A(Q), 𝑂A(Q), 𝜆A, 𝑞⟩ of the intersection can be derived as follows. The FSM
A(Q) has the same set of states and the same initial state as Q, and A(Q) has
(abstract) inputs 𝐼A(Q) = {⟨𝑖, 𝑔⟩ : 𝑖 ∈ 𝐼, 𝑔 ∈ Π𝑖}, (abstract) outputs 𝑂A(Q) =
= {⟨𝑜, 𝑓⟩ : 𝑜 ∈ 𝑂, 𝑓 ∈ Π𝑜} and transition relation 𝜆A; there is a transition
⟨𝑞, ⟨𝑖, 𝑔⟩, ⟨𝑜, 𝑓⟩, 𝑞′⟩ in 𝜆A if and only if there is a transition ⟨𝑞, ⟨𝑖, 𝑔′⟩, ⟨𝑜, 𝑓 ′⟩, 𝑞′⟩ ∈ 𝜆Q

such that 𝑔 ⊆ 𝑔′ and 𝑓 ⊆ 𝑓 ′. Considering the running example, abstract inputs of
A(Q) are the pairs from {𝑖1} × Π𝑖1 and {𝑖2} × Π𝑖2 and abstract outputs are the
pairs from {𝑜1} × Π𝑜1 and {𝑜2} × Π𝑜2 . A fragment of A(Q) for the TFSM Q in
Figure 2 is shown in Figure 3.

Based on the above construction, the following statements can be established.

Proposition 3. The following statements hold.

1. (a) If TFSMs S and P are observable then TFSM Q = S ∩ P is observable.
(b) TFSM Q is observable if and only if FSM A(Q) is observable.

2. Given a state 𝑞 of TFSM Q, a timed input-output pair ⟨𝑖, 𝑡⟩/⟨𝑜, 𝑡′⟩ is defined
at state 𝑞 if and only if there exists a transition ⟨𝑞, ⟨𝑖, 𝑔⟩, ⟨𝑜, 𝑓⟩, 𝑞′⟩ in the
abstract FSM such that 𝑡 ∈ 𝑔 and 𝑡′ ∈ 𝑓 . Moreover, given a defined (abstract)

212 Khaled El-Fakih et al.

input-output pair ⟨𝑖, 𝑔⟩/⟨𝑜, 𝑓⟩ at state 𝑞 of the FSM A(Q), 𝑡1, 𝑡2 ∈ 𝑔, 𝑡′1, 𝑡
′
2 ∈ 𝑓 ,

there is a clocked transition ⟨𝑞, ⟨𝑖, 𝑡1⟩, ⟨𝑜, 𝑡′1⟩, 𝑞′⟩ ∈ 𝜆Q if and only if there is a
clocked transition ⟨𝑞, ⟨𝑖, 𝑡2⟩, ⟨𝑜, 𝑡′2⟩, 𝑞′⟩ ∈ 𝜆Q.

3. Given an abstract input-output sequence ⟨𝑖1, 𝑔1⟩/⟨𝑜1, 𝑓1⟩ . . . ⟨𝑖𝑘, 𝑔𝑘⟩/⟨𝑜𝑘, 𝑓𝑘⟩
at state 𝑞 of the FSM A(Q), each timed input-output sequence
⟨𝑖1, 𝑡1⟩/⟨𝑜1, 𝑡′1⟩ . . . ⟨𝑖𝑘, 𝑡𝑘⟩/⟨𝑜𝑘, 𝑡′𝑘⟩ such that 𝑡𝑗 ∈ 𝑔𝑗, 𝑡′𝑗 ∈ 𝑓𝑗, 𝑗 = 1, . . . , 𝑘,
is a timed input-output sequence at state 𝑞 of TFSM Q, and vice versa, given
a timed trace ⟨𝑖1, 𝑡1⟩/⟨𝑜1, 𝑡′1⟩ . . . ⟨𝑖𝑘, 𝑡𝑘⟩/⟨𝑜𝑘, 𝑡′𝑘⟩ at state 𝑞 of TFSM Q there
always exists a defined input sequence ⟨𝑖1, 𝑔1⟩/⟨𝑜1, 𝑓1⟩ . . . ⟨𝑖𝑘, 𝑔𝑘⟩/⟨𝑜𝑘, 𝑓𝑘⟩ at
state 𝑞 of the FSM A(Q) such that 𝑡𝑗 ∈ 𝑔𝑗, 𝑡

′
𝑗 ∈ 𝑓𝑗, 𝑗 = 1, . . . , 𝑘.

4. TFSM Q has a timed trace ⟨𝑖1, 𝑡1⟩/⟨𝑜1, 𝑡′1⟩ . . . ⟨𝑖𝑘, 𝑡𝑘⟩/⟨𝑜𝑘, 𝑡′𝑘⟩ at state 𝑞 if and
only if the FSM A(Q) has a trace ⟨𝑖1, 𝑔1⟩/⟨𝑜1, 𝑓1⟩ . . . ⟨𝑖𝑘, 𝑔𝑘⟩/⟨𝑜𝑘, 𝑓𝑘⟩ such that
𝑡𝑗 ∈ 𝑔𝑗, 𝑡

′
𝑗 ∈ 𝑓𝑗, 𝑗 = 1, . . . , 𝑘, at state 𝑠.

Proof. 1. (a) If TFSMs S and P are observable, then for every two timed transi-
tions ⟨𝑠, ⟨𝑖, 𝑡⟩, ⟨𝑜, 𝑡′⟩, 𝑠′⟩ ∈ 𝜆S , ⟨𝑠, ⟨𝑖, 𝑡⟩, ⟨𝑜, 𝑡′⟩, 𝑠′′⟩ ∈ 𝜆S (or ⟨𝑝, ⟨𝑖, 𝑡⟩, ⟨𝑜, 𝑡′⟩, 𝑝′⟩ ∈
𝜆P , ⟨𝑝, ⟨𝑖, 𝑡⟩, ⟨𝑜, 𝑡′⟩, 𝑝′′⟩ ∈ 𝜆P) it holds that 𝑠′ = 𝑠′′ (or correspondingly 𝑝′ =
= 𝑝′′). Thus, there are no timed transitions ⟨⟨𝑠, 𝑝⟩, ⟨𝑖, 𝑡⟩, ⟨𝑜, 𝑡′⟩, ⟨𝑠′, 𝑝′⟩⟩ ∈ 𝜆Q

and ⟨⟨𝑠, 𝑝⟩, ⟨𝑖, 𝑡⟩, ⟨𝑜, 𝑡′⟩, ⟨𝑠′′, 𝑝′′⟩⟩ ∈ 𝜆Q such that ⟨𝑠′, 𝑝′⟩ ≠ ⟨𝑠′′, 𝑝′′⟩.

(b) TFSM Q is observable if and only if for every two timed transitions
⟨𝑞, ⟨𝑖, 𝑡⟩, ⟨𝑜, 𝑡′⟩, 𝑞′⟩ ∈ 𝜆Q and ⟨𝑞, ⟨𝑖, 𝑡⟩, ⟨𝑜, 𝑡′⟩, 𝑞′′⟩ ∈ 𝜆Q it holds that 𝑞′ = 𝑞′′.
Correspondingly, by construction of the FSM A(Q), for each defined input
⟨𝑖, 𝑔⟩ at state 𝑞 of the FSM A(Q) it holds that there are no two transitions
⟨𝑞, ⟨𝑖, 𝑔⟩, ⟨𝑜, 𝑓⟩, 𝑞′⟩ ∈ 𝜆A and ⟨𝑞, ⟨𝑖, 𝑔′⟩, ⟨𝑜, 𝑓 ′⟩, 𝑞′′⟩ ∈ 𝜆A such that 𝑔 ∩ 𝑔′ ̸= ∅,
𝑓 ∩ 𝑓 ′ ̸= ∅ while 𝑞′ ̸= 𝑞′′, i.e., FSM A(Q) is observable if and only if TFSM
Q is observable.

2. Statement 2 of the above proposition is a direct corollary to the definition of
time domains.

3. Statement 3 can be shown by induction on the length of a defined input
sequence.

4. Statement 4 is implied by the definition of the FSM A(Q) and Statement 3.

We recall that an abstract FSM A(Q) and TFSM Q have the same number
of states, while, A(Q) has more transitions as it has more inputs. However, the
number of transitions of an A(Q) is polynomial w.r.t. the number of transitions of
Q as it mainly depends on the number of (abstract) inputs 𝐼A(Q) which is of order
|𝐼| ·𝑚 where 𝑚 is the maximum number of items of partitions Π𝑖.

Distinguishing Experiments for Timed Nondeterministic . . . 213

3.2 Deriving an r-distinguishing TFSM

In order to check whether nondeterministic machines S and P can be distinguished
by an adaptive experiment a so-called r-distinguishing machine can be used. The
derivation of such a machine is described in [5,16] for complete untimed FSMs and
in [6] for complete TFSMs S and P without output delays. In this paper, such a
machine is derived based on the abstraction A(Q) for TFSMs S and P with output
delays.

Similar to FSMs [5, 16, 17], an adaptive experiment is represented by a special
acyclic so-called single-input output-complete TFSM. Given complete observable
TFSMs S = ⟨𝑆, 𝐼,𝑂, 𝜆S , 𝑠⟩ and P = ⟨𝑃, 𝐼,𝑂, 𝜆P , 𝑝⟩, let R = ⟨𝑅, 𝐼,𝑂, 𝜆R , 𝑟⟩ be an
acyclic initially connected TFSM such that the set 𝑅 of states has two designated
deadlock states called 𝑟S and 𝑟P . If after the experiment the machine R reaches
state 𝑟S then the TFSM under experiment is S while if the final state is 𝑟P then
the TFSM under experiment is P. Only one timed input ⟨𝑖, 𝑡⟩ is defined at each
other state of R with all possible outputs, i.e., TFSM R represents an adaptive
experiment with a TFSM over input alphabet 𝐼 and output alphabet 𝑂. TFSM
R is an r-distinguishing TFSM R(S,P) of S and P (or TFSM R(S,P) r-distinguishes
TFSM S and P) if for each state ⟨𝑠, 𝑟⟩ of the intersection S ∩ R(S,P) it holds that
𝑟 ̸= 𝑟P and for each ⟨𝑝, 𝑟⟩ of the intersection P ∩ R(S,P) it holds that 𝑟 ̸= 𝑟S .

Similar to FSMs [16], here, we define the notion of 𝑘-undefined states in order
to derive R(S ,P) using A(Q). Given (complete observable) TFSMs S and P, Q =
S ∩ P, and FSM abstraction A(Q), state 𝑞 = ⟨𝑠, 𝑝⟩ of A(Q) is 1-undefined if there
exists an undefined (abstract) input ⟨𝑖, 𝑔⟩ at state 𝑞. Consider 𝑘 > 1 and assume
that all (𝑘−1)-undefined states of A(Q) are determined. State 𝑞 = ⟨𝑠, 𝑝⟩ of A(Q) is
𝑘-undefined if 𝑞 is (𝑘−1)-undefined or there exists an abstract input ⟨𝑖, 𝑔⟩ defined at
state 𝑞 such that for each transition ⟨𝑞, ⟨𝑖, 𝑔⟩, ⟨𝑜, 𝑓⟩, 𝑞′⟩ ∈ 𝜆A, each state 𝑞′ is (𝑘−1)-
undefined. It can be shown as in [16], that given complete observable TFSMs S
and P, these TMSMs are r-distinguishable iff there exists an integer 𝑘 such that
the initial state of the abstraction A(Q) is 𝑘-undefined for some 𝑘 > 0.

We use Algorithm 1 in order to derive an r-distinguishing TFSM for two given
TFSMs S and P based on the abstract FSM A(Q) of Q = S ∩ P. If an r-
distinguishing FSM over abstract inputs of A(Q) is derived, then the machine is
converted to corresponding timed inputs in order to represent an r-distinguishing
TFSM for TFSMs S and P.

Based on the TFSM R(S,P) an adaptive experiment for distinguishing TFSMs
S and P can be performed in the following way. Given TFSM under test, which
is either TFSM S or P, the experiment starts at the initial state 𝑟 = 𝑞 of TFSM
R(S,P). At any state of R(S,P) only one timed input ⟨𝑖, 𝑡⟩ is defined, in addition, any
state of R(S,P) is always reached at time 𝑡 = 0. Thus, when reaching a current state
𝑟 of R(S,P) the clock advances from 0 and the only defined input ⟨𝑖, 𝑡⟩ is applied to
a TFSM under test. In response, the TFSM under test produces a timed output
⟨𝑜, 𝑡′⟩, 𝑡′ ∈ 𝑓 , and accordingly the TFSM R(S,P) moves from a current state 𝑟 to
the next state 𝑟′ according to the clocked transition ⟨𝑟, ⟨𝑖, [𝑡, 𝑡]⟩, ⟨𝑜, 𝑓⟩, 𝑟′⟩. The
procedure terminates when the TFSM R(S,P) reaches one of the deadlock states 𝑟S

214 Khaled El-Fakih et al.

Algorithm 1 Deriving an r-distinguishing TFSM of two TFSMs

Input: Complete observable TFSMs S = ⟨𝑆, 𝐼,𝑂, 𝜆S , 𝑠⟩ and P = ⟨𝑃, 𝐼,𝑂, 𝜆P , 𝑝⟩
Output: A distinguishing TFSM R(S,P) if TFSMs S and P are r-distinguishable
1: Q := S ∩ P;
2: derive the FSM abstraction A(Q);
3: R := ⟨𝑅, 𝐼,𝑂, 𝜆R⟩, where initially 𝜆R is empty and 𝑅 contains two deadlock

states 𝑟S and 𝑟P ;
4: 𝑘 := 1;
5: 𝑄𝑘 := 𝑄; //𝑄 is the set of states of TFSM Q which are pairs of states of S

and P
6: while (𝑞 ∈ 𝑄𝑘 and the set 𝑄𝑘 has 𝑘-undefined states) do
7: determine all states of the set 𝑄𝑘 which are 𝑘-undefined in A(Q);
8: for all 𝑘-undefined states 𝑞 = ⟨𝑠, 𝑝⟩ of the set 𝑄𝑘 do
9: if (k == 1) then

10: determine an abstract input ⟨𝑖, 𝑔⟩ such that it is undefined at state 𝑞;
11: else
12: determine an abstract input ⟨𝑖, 𝑔⟩ such that for each transition

⟨𝑞, ⟨𝑖, 𝑔⟩, ⟨𝑜, 𝑓⟩, 𝑞′⟩ ∈ 𝜆Q , state 𝑞′ is (𝑘 − 1)-undefined;
13: end if
14: add state 𝑞 into the set 𝑅;
15: for all abstract outputs ⟨𝑜, 𝑓⟩ do
16: if there is a transition ⟨𝑞, ⟨𝑖, 𝑔⟩, 𝑜, 𝑓 , 𝑞′⟩ ∈ 𝜆A then //implies that 𝑘 > 1
17: add to 𝜆R the tuple ⟨(𝑞, ⟨𝑖, [𝑡, 𝑡]⟩, ⟨𝑜, 𝑓⟩, 𝑞′⟩, 𝑡 ∈ 𝑔;
18: else
19: add to 𝜆R the tuple ⟨𝑞, ⟨𝑖, [𝑡, 𝑡]⟩, ⟨𝑜, 𝑓⟩, 𝑟S⟩ if for each 𝑡 ∈ 𝑔 the output

𝑜 can be produced by S for time instances 𝑡′ ∈ 𝑓 ;
20: add to 𝜆R the tuple ⟨𝑞, ⟨𝑖, [𝑡, 𝑡]⟩, ⟨𝑜, 𝑓⟩, 𝑟P⟩ if for each 𝑡 ∈ 𝑔 the output

𝑜 can be produced by P for time instances 𝑡′ ∈ 𝑓 ;
21: end if
22: end for
23: delete state 𝑞 from the set 𝑄𝑘;
24: end for
25: 𝑘 := 𝑘 + 1; 𝑄𝑘 := 𝑄𝑘−1;
26: end while
27: if 𝑞 ̸∈ 𝑄𝑘 then
28: convert the tuple 𝑅 = ⟨𝑅, 𝐼,𝑂, 𝜆R⟩ into a TFSM R by claiming state 𝑞 as the

initial state of the TFSM and augment R (if it is necessary) to an output-
complete TFSM by adding transitions to deadlock states;

29: return the largest initially connected submachine of TFSM R as the TFSM
R(S,P);

30: else
31: return TFSMs S and P are not r-distinguishable.
32: end if

Distinguishing Experiments for Timed Nondeterministic . . . 215

or 𝑟P . Correspondingly, if state 𝑟S (𝑟P) of R(S,P) is reached then the TFSM under
test is S (P).

Similar to [6], it can be shown that each trace of a TFSM R(S,P) obtained in the
above algorithm is of order |𝑆| · |𝑃 | where 𝑆 and 𝑃 are the sets of states of TFSMs
S and P, respectively and only one trace of R(S,P) is used when performing the
experiment. In this paper, as for other distinguishing experiments, the complexity
of an adaptive experiment is measured using the height of the experiment, i.e., the
length of a longest trace to a deadlock state in the (acyclic) TFSM R(S,P). As
TFSM R(S,P) has at most |𝑆| · |𝑃 | states, this length, and thus, the complexity of
an adaptive experiment, is at most |𝑆| · |𝑃 | and this upper bound is reachable as
this upper bound is reachable for two untimed FSMs [22].

Example 1. Consider the running example and TFSMs S1 and S3 with the initial
states 1 and 3, respectively. We add into 𝑅 two deadlock states 𝑟S1

and 𝑟S3
with

subscripts indicating the initial states of the machines. The intersection Q = S1∩S3

is shown in Figure 2. The FSM abstraction A(Q) is constructed from Q by having
the same states and splitting every transition of Q using the abstract inputs and
outputs given above. A fragment of A(Q) for states ⟨1, 3⟩ and ⟨3, 2⟩ under the
input 𝑖1 of the intersection Q is shown in Figure 3. In particular, Figure 3 includes
the transitions at states ⟨1, 3⟩ and ⟨3, 2⟩ under 𝑖1 of Q (in Figure 2) and their
corresponding transitions in A(Q) derived using the partitions Π𝑖1 , Π𝑜1 and Π𝑜2

given above. By applying Algorithm 1, initially, 𝑘 = 1, the set 𝑄1 = 𝑄 includes all

A(Q) ⟨1, 3⟩ ⟨3, 2⟩

𝑖1

(𝑡 = 0), ⟨1, 3⟩/⟨𝑜1, 2 < 𝑡 < 3⟩; (0 < 𝑡 < 2), ⟨1, 3⟩/⟨𝑜1, 2 < 𝑡 < 3⟩ (𝑡 = 0), ⟨3, 1⟩/⟨𝑜1, 2 < 𝑡 < 3⟩; (𝑡 = 0), ⟨3, 1⟩/⟨𝑜1, 𝑡 = 3⟩
(𝑡 = 2), ⟨1, 3⟩/⟨𝑜1, 2 < 𝑡 < 3⟩; (2 < 𝑡 < 3), ⟨3, 2⟩/⟨𝑜1, 𝑡 = 2⟩ (𝑡 = 0), ⟨3, 1⟩/⟨𝑜1, 3 < 𝑡 < 5⟩; (0 < 𝑡 < 1), ⟨3, 1⟩/⟨𝑜1, 2 < 𝑡 < 3⟩
(2 < 𝑡 < 3), ⟨3, 2⟩/⟨𝑜1, 0 < 𝑡 < 2⟩; (𝑡 = 3), ⟨3, 2⟩/⟨𝑜1, 𝑡 = 0⟩ (0 < 𝑡 < 1), ⟨3, 1⟩/⟨𝑜1, 𝑡 = 3⟩; (0 < 𝑡 < 1), ⟨3, 1⟩/⟨𝑜1, 3 < 𝑡 < 5⟩
(𝑡 = 3), ⟨3, 2⟩/⟨𝑜1, 0 < 𝑡 < 2⟩; (𝑡 > 3), ⟨3, 1⟩/⟨𝑜1, 𝑡 = 0⟩ (𝑡 = 2), ⟨3, 1⟩/⟨𝑜1, 2 < 𝑡 < 3⟩; (𝑡 = 2), ⟨3, 1⟩/⟨𝑜1, 𝑡 = 3⟩
(𝑡 > 3), ⟨3, 1⟩/⟨𝑜1, 0 < 𝑡 < 2⟩; (𝑡 > 3), ⟨3, 1⟩/⟨𝑜1, 𝑡 = 2⟩ (𝑡 = 2), ⟨3, 1⟩/⟨𝑜1, 3 < 𝑡 < 5⟩; (2 < 𝑡 < 3), ⟨2, 2⟩/⟨𝑜1, 𝑡 = 0⟩
(𝑡 > 3), ⟨3, 1⟩/⟨𝑜1, 2 < 𝑡 < 3⟩; (𝑡 > 3), ⟨3, 1⟩/⟨𝑜1, 𝑡 = 3⟩ (2 < 𝑡 < 3), ⟨2, 2⟩/⟨𝑜1, 0 < 𝑡 < 2⟩; (𝑡 = 3), ⟨2, 2⟩/⟨𝑜1, 𝑡 = 0⟩
(𝑡 > 3), ⟨3, 1⟩/⟨𝑜1, 3 < 𝑡 < 5⟩; (2 < 𝑡 < 3), ⟨2, 4⟩/⟨02, 𝑡 = 0⟩ (𝑡 = 3), ⟨2, 2⟩/⟨𝑜1, 0 < 𝑡 < 2⟩; (𝑡 > 3), ⟨1, 3⟩/⟨𝑜1, 𝑡 = 0⟩
(2 < 𝑡 < 3), ⟨2, 4⟩/⟨02, 0 < 𝑡 < 5⟩; (𝑡 = 3), ⟨2, 4⟩/⟨𝑜2, 𝑡 = 0⟩ (𝑡 > 3), ⟨1, 3⟩/⟨𝑜1, 0 < 𝑡 < 2⟩; (𝑡 > 3), ⟨1, 3⟩/⟨𝑜1, 𝑡 = 2⟩
(𝑡 = 3), ⟨2, 4⟩/⟨02, 0 < 𝑡 < 5⟩ (𝑡 > 3), ⟨1, 3⟩/⟨𝑜1, 2 < 𝑡 < 3⟩; (𝑡 > 3), ⟨1, 3⟩/⟨𝑜1, 𝑡 = 3⟩

(𝑡 > 3), ⟨1, 3⟩/⟨𝑜1, 3 < 𝑡 < 5⟩

Figure 3: Fragment of the abstract FSM A(Q)

states of TFSM Q with the initial state ⟨1, 3⟩. States 3 and 2 of state ⟨3, 2⟩ in 𝑄1

are 1-r-distinguishable by abstract input ⟨𝑖2, 1⟩ and states 2 and 4 of state ⟨2, 4⟩ in
𝑄1 are 1-r-distinguishable by ⟨𝑖1, 2⟩. Thus, we add states ⟨3, 2⟩ and ⟨2, 4⟩ into the
set 𝑅, that initially contains only deadlock states 𝑟S1 and 𝑟S3 , remove these states
from 𝑄1, obtain 𝑄2 as 𝑄1 ∖ {⟨3, 2⟩, ⟨2, 4⟩}, and add into (initially empty) 𝜆R the
tuples

⟨⟨3, 2⟩, ⟨𝑖2, [1, 1]⟩, ⟨𝑜1, [0, 0]⟩, 𝑟S1⟩,
⟨⟨3, 2⟩, ⟨𝑖2, [1, 1]⟩, ⟨𝑜1, (0, 2)⟩, 𝑟S1⟩,
⟨⟨3, 2⟩, ⟨𝑖2, [1, 1]⟩, ⟨𝑜1, [2, 2]⟩, 𝑟S1

⟩,
⟨⟨3, 2⟩, ⟨𝑖2, [1, 1]⟩, ⟨𝑜1, (2, 3)⟩, 𝑟S1

⟩,
⟨⟨3, 2⟩, ⟨𝑖2, [1, 1]⟩, ⟨𝑜1, [3, 3]⟩, 𝑟S1

⟩,
⟨⟨3, 2⟩, ⟨𝑖2, [1, 1]⟩, ⟨𝑜1, (3, 5)⟩, 𝑟S1⟩,

216 Khaled El-Fakih et al.

and add the tuples

⟨⟨2, 4⟩, ⟨𝑖2, [2, 2]⟩, ⟨𝑜1, [0, 0]⟩, 𝑟S1
⟩,

⟨⟨2, 4⟩, ⟨𝑖2, [2, 2]⟩, ⟨𝑜1, (0, 2)⟩, 𝑟S1
⟩,

⟨⟨2, 4⟩, ⟨𝑖2, [2, 2]⟩, ⟨𝑜1, [2, 2]⟩, 𝑟S1
⟩,

⟨⟨2, 4⟩, ⟨𝑖2, [2, 2]⟩, ⟨𝑜1, (2, 3)⟩, 𝑟S1⟩,
⟨⟨2, 4⟩, ⟨𝑖2, [2, 2]⟩, ⟨𝑜1, [3, 3]⟩, 𝑟S1⟩,
⟨⟨2, 4⟩, ⟨𝑖2, [2, 2]⟩, ⟨𝑜1, (3, 5)⟩, 𝑟S1

⟩,
⟨⟨2, 4⟩, ⟨𝑖2, [2, 2]⟩, ⟨𝑜2, [0, 0]⟩, 𝑟S3

⟩,
⟨⟨2, 4⟩, ⟨𝑖2, [2, 2]⟩, ⟨𝑜2, (0, 5)⟩, 𝑟S3

⟩.

Afterwards, in a second iteration of the loop, we observe that states 1 and 3
of state ⟨1, 3⟩ in 𝑄2 are 2-r-distinguishable. In fact, the abstract input ⟨𝑖1, 3⟩
when applied at state ⟨1, 3⟩ of A(Q) reaches only states ⟨3, 2⟩ and ⟨2, 4⟩ which
are both 1-undefined. Thus, we add state ⟨1, 3⟩ into 𝑅, add into 𝜆R the tuples
⟨⟨1, 3⟩, ⟨𝑖1, [3, 3]⟩, ⟨𝑜1, [0, 0]⟩, ⟨2, 4⟩⟩, ⟨⟨1, 3⟩, ⟨𝑖1, [3, 3]⟩, ⟨𝑜1, (0, 2)⟩, ⟨3, 2⟩⟩, and add the
tuples, ⟨⟨1, 3⟩, ⟨𝑖1, [3, 3]⟩, ⟨𝑜2, [0, 0]⟩, ⟨2, 4⟩⟩, ⟨⟨1, 3⟩, ⟨𝑖1, [3, 3]⟩, ⟨𝑜2, (0, 5)⟩, ⟨3, 2⟩⟩. Af-
terwards by deleting ⟨1, 3⟩, which is the initial state of A(Q), from 𝑄2 we stop.
Convert the tuple R into TFSM R(S1,S3) with initial state ⟨1, 3⟩ and obtain a par-
tial TFSM as shown in Figure 4.

R(S1,S3) ⟨1, 3⟩ ⟨3, 2⟩ ⟨2, 4⟩ 𝑟S1 𝑟S3

⟨𝑖1, [3, 3]⟩

⟨3, 2⟩/⟨𝑜1, [0, 0]⟩
⟨3, 2⟩/⟨𝑜1, 0 < 𝑡 < 2⟩
⟨2, 4⟩/⟨𝑜2, [0, 0]⟩
⟨2, 4⟩/⟨𝑜2, 0 < 𝑡 < 5⟩

⟨𝑖1, [2, 2]⟩

𝑟S1/⟨𝑜1, [0, 0]⟩; 𝑟S1/⟨𝑜1, 0 < 𝑡 < 2⟩
𝑟S1/⟨𝑜1, [2, 2]⟩; 𝑟S1/⟨𝑜1, 2 < 𝑡 < 3⟩
𝑟S1

/⟨𝑜1, [3, 3]⟩; 𝑟S1
/⟨𝑜1, 3 < 𝑡 < 5⟩

𝑟S3
/⟨𝑜2, [0, 0]⟩; 𝑟S3

/⟨𝑜2, 0 < 𝑡 < 5⟩

⟨𝑖2, [1]⟩

𝑟S1/⟨𝑜1, [0, 0]⟩; 𝑟S1/⟨𝑜1, 0 < 𝑡 < 2⟩
𝑟S1

/⟨𝑜1, [2, 2]⟩; 𝑟S1
/⟨𝑜1, 2 < 𝑡 < 3⟩

𝑟S1
/⟨𝑜1, [3, 3]⟩; 𝑟S1

/⟨𝑜1, 3 < 𝑡 < 5⟩
𝑟S3

/⟨𝑜2, [0, 0]⟩; 𝑟S3
/⟨𝑜2, 0 < 𝑡 < 5⟩

Figure 4: A part of the TFSM R(S1,S3)

3.3 Deriving a Separating Sequence

In order to derive a separating sequence for two given TFSMs S and P, in the
following, we adapt the algorithm given in [19] to deal with the abstract FSM A(Q)
of Q = S ∩P. Correspondingly, a separating sequence (if exists) will be derived for
TFSMs S and P with output delays. If a separating sequence over abstract inputs
⟨𝑖, 𝑔⟩ is derived from A(Q), then the sequence is replaced by a corresponding timed
sequence, over timed inputs ⟨𝑖, 𝑡⟩, 𝑡 ∈ 𝑔, that is a separating sequence for TFSMs
S and P.

Here we define the following notion used in Algorithm 2. Given state 𝑠 of an
FSM S = ⟨𝑆, 𝐼,𝑂, 𝜆S , 𝑠⟩, state 𝑠′ is an 𝑖-successor of state 𝑠 if there exists is a

Distinguishing Experiments for Timed Nondeterministic . . . 217

Algorithm 2 Deriving a Separating Sequence of Two TFSMs

Input: Complete observable TFSMs S = ⟨𝑆, 𝐼,𝑂, 𝜆S , 𝑠⟩ and P = ⟨𝑃, 𝐼,𝑂, 𝜆P , 𝑝⟩
Output: A (shortest) separating sequence of TFSMs S = ⟨𝑆, 𝐼,𝑂, 𝜆S , 𝑠⟩ and P =

= ⟨𝑃, 𝐼,𝑂, 𝜆P , 𝑝⟩ (if such a sequence exists)
1: derive the intersection Q = S ∩ P;
2: if Q is a complete TFSM then
3: the TFSMs S = ⟨𝑆, 𝐼,𝑂, 𝜆S , 𝑠⟩ and P = ⟨𝑃, 𝐼,𝑂, 𝜆P , 𝑝⟩ are non-separable;
4: end Algorithm 2;
5: end if
6: derive from Q = S ∩ P (with input and output partitions Π𝑖 and Π𝑜), the

abstract FSM A(Q) with abstract inputs and outputs {⟨𝑖, 𝑔⟩ : 𝑖 ∈ 𝐼, 𝑔 ∈ Π𝑖}
and {⟨𝑜, 𝑓⟩ : 𝑜 ∈ 𝑂, 𝑓 ∈ Π𝑜};

7: derive a truncated successor tree of the FSM A(Q). The root of this tree, which
is at the 0th level, is the initial state ⟨𝑠, 𝑝⟩ of A(Q); the nodes of the tree are
labeled with subsets of states of A(Q). Given already derived 𝑗 tree levels,
𝑗 > 0, a non-leaf (intermediate) node of the 𝑗th level labeled with a subset 𝐶
of states of A(Q) and a abstract input ⟨𝑖, 𝑔⟩, there is an outgoing edge from
this non-leaf node labeled with ⟨𝑖, 𝑔⟩ to the node with the subset of the ⟨𝑖, 𝑔⟩-
successors of states of the subset 𝐶. A current node 𝐶𝑢𝑟𝑟𝑒𝑛𝑡, at the 𝑘th level,
𝑘 > 0, labeled with the subset 𝐶 of states, is claimed as a leaf node if one of
the following conditions holds:

8: Rule 1: There exists an input ⟨𝑖, 𝑔⟩ such that each state ⟨𝑠, 𝑝⟩ of the set
𝐶 has no ⟨𝑖, 𝑔⟩-successors in A(Q);

9: Rule 2: There exists a node at the 𝑗th level, 𝑗 < 𝑘, labeled with a subset
𝑅 of states with the property 𝑅 ⊆ 𝐶;

10: if none of the paths of the truncated tree derived at Step 7 is terminated using
Rule 1 then

11: the TFSMs S = ⟨𝑆, 𝐼,𝑂, 𝜆S , 𝑠⟩ and P = ⟨𝑃, 𝐼,𝑂, 𝜆P , 𝑝⟩ are non-separable;
12: end Algorithm 2;
13: end if
14: if there is a leaf node, 𝐿𝑒𝑎𝑓 , labeled with the subset 𝐶 of states such that

for some (abstract) input ⟨𝑖, 𝑔⟩, each state of the set 𝐶 has no ⟨𝑖, 𝑔⟩-successors
then

15: select such a path with minimal length, append an input sequence that la-
bels the path with input ⟨𝑖, 𝑔⟩ and transform the obtained input sequence
replacing each abstract input of the sequence ⟨𝑖, ℎ⟩ by a timed input ⟨𝑖, 𝑡⟩,
𝑡 ∈ ℎ;

16: the obtained timed input sequence is a shortest separating sequence of
TFSMs S and P;

17: end if

transition ⟨𝑠, 𝑖, 𝑜, 𝑠′⟩ in 𝜆S . Generally, for a nondeterministic FSM, the set of 𝑖-
successors of state 𝑠 can have several states. Given a set of states 𝑀 ⊆ 𝑆 of the

218 Khaled El-Fakih et al.

complete FSM S , and an input 𝑖, the set 𝑀 ′ of states is an 𝑖-successor of the set
𝑀 if 𝑀 ′ is the union of the sets of 𝑖-successors over all states of the set 𝑀 .

Similar to [19] it can be shown that Algorithm 2 returns a separating sequence
𝛼 if and only if the TFSMs S and P are separable. The separating sequence 𝛼
can be applied to a TFSM under experiment (S or P) and since the sets of output
responses of TFSMs S and P do not intersect, after getting the output response to
𝛼 the conclusion can be drawn which TFSM is under the experiment. In addition, it
can be shown that the complexity (length of a separating sequence) is exponential
w.r.t. to the number of states of TFSMs S and P as it happens for untimed
FSMs [19]. The length of a separating sequence of two FSMs with 𝑛 and 𝑚 states
is at most 2𝑚𝑛−1 [19] and this upper bound is reachable, and thus, it is reachable
for TFSMs as well.

The above algorithm is based on deriving a successor tree using an (FSM)
abstraction A(Q) of the intersection Q = S∩P. As A(Q) can have more inputs than
Q, we compare the above approach with another approach where a successor tree
can be derived using Q instead [6]. In both approaches, in the worst case, each path
𝑝 from the root node to a leaf node has to be traversed and a number 𝑜 of elementary
operations (Rule 1 and Rule 2) have to be applied at each node of a path. Let 𝑙
be the maximum length of a path, then the complexity of the algorithm equals the
product 𝑝 · 𝑙 · 𝑜. The maximal length 𝑙 is the same for the two approaches and 𝑙
is of the order 𝑂(2𝑚𝑛) for TFSMs S and P with 𝑚 and 𝑛 states, respectively [19].
Further, in both approaches, Rule 1 and Rule 2 of the above algorithm have to
be checked at each node of the derived successor tree where a node is labeled with
the set 𝐶 of states of a corresponding TFSM Q or of the abstraction FSM A(Q).
Checking these rules using Q = S ∩ P is more complex since at each node for each
input 𝑖 and each subset 𝑄𝑘𝑗 of states at the node we have to derive the set Π as
the intersection of Π⟨𝑞, 𝑖⟩ over all states 𝑞 ∈ 𝑄𝑘𝑗 while in the approach based on
A(Q), the intersection is calculated only once when deriving A(Q). As the number
of guards we need to intersect is proportional to the product of the finite upper
bound of guards for input 𝑖 and the number of states of the set 𝑄𝑘𝑗 , in the approach
based on Q = S ∩ P, the number of calculations which have to be performed for
deriving the intersection of guards at each node polynomially grows compared with
the approach based on A(Q). On the other hand, the number of inputs of A(Q)
can be larger than that of Q. If B is the maximum finite bound for a given input
𝑖 over all states then for each 𝑖, the number of (abstract) inputs of A(Q) can be
2 ·B times bigger than that of Q, since in A(Q) time domains for an 𝑖 are derived
based on the corresponding guards for all states of A(Q). As the number 𝑝 of paths
of the successor tree exponentially depends on the number of inputs considered at
each tree node, this implies that the complexity of the approach based on A(Q) will
exponentially grow compared to the approach based on Q, since 𝑝 is of the order
𝑂(|𝐼|𝑙) where |𝐼| is the number of inputs of Q or A(Q), respectively. This difference
between the two approaches can be bypassed by considering for each input 𝑖 only
guards corresponding to a given state of Q when deriving the abstraction A(Q),
i.e., not taken into account guards under this input over other states of Q. In this
case, it can well happen that A(Q) is partially specified. The above algorithm can

Distinguishing Experiments for Timed Nondeterministic . . . 219

be adapted to partial FSM A(Q); however, this is not done in this paper in order to
simplify the presentation of the algorithms and to avoid presenting more complex
FSM related definitions that consider defined and undefined input sequences at
states. If partially specified FSM A(Q) is used, the number 𝑝 will be the same for
both approaches. Generally, the approach based on the partial FSM abstraction
of the intersection performs less computations than the approach based on the
intersection Q instead. However, the best way to assess any abstraction method
is thorough experimental evaluation with large size specifications and this could
be the topic of another paper. It is worth mentioning that though the length of
a separating sequence can reach length 2𝑚𝑛−1 (for TFSMs S and P with 𝑚 and
𝑛 states) [19]; nevertheless, experiments with various size FSM specifications show
that this length usually does not exceed 𝑚𝑛 [18].

As A(Q) can have more inputs than Q, here we also compare the approach given
in this paper (Algorithm 1) based on using A(Q) with another approach [6] based
on using Q instead for deriving an adaptive distinguishing sequence (represented as
a distinguishing machine). For both approaches, in the worst-case, the maximum
length 𝑙 of a path from the initial state of the constructed FSM R(S,P) to the
deadlock state 𝑟S or 𝑟P is the same and is of the order 𝑂(𝑚𝑛) for TFSMs S and
P with 𝑚 and 𝑛 states, respectively [5]. In addition, as both approaches are based
on deriving a submachine of a A(Q) or of Q, the number of paths 𝑝 included as
transitions in the tuples of 𝜆R in both approaches is the same, and 𝑝 is of the order
𝑂(2𝑚𝑛) [22]. Moreover, in the approach that is based on the intersection Q, in the
worst case, for a given input, we have to consider all possible time domains ⟨𝑖, 𝑔⟩,
𝑔 ∈ Π, over all states 𝑞 ∈ 𝑄𝑘. As the number of guards we need to intersect when
deriving the set Π is proportional to the product of the finite upper bound of guards
for input 𝑖 and the number of states of the set 𝑄𝑘, the number of calculations which
have to be performed at each step almost coincide in both approaches. However,
unlike the algorithm based on Q, the algorithm based on using A(Q) performs less
computations at each node as the intersection of guards for each input and each
set 𝑄𝑘 of states will be performed only once when deriving A(Q). To the best of
our knowledge, no experiments were conducted for deriving adaptive distinguishing
sequences and it would be interesting to assess the length of adaptive distinguishing
sequences in practice and to evaluate the performance of the above approaches with
respect to large size FSM specifications.

4 Conclusion

In this paper, a method for distinguishing two complete possibly nondeterministic
TFSMs is presented based on an FSM abstraction of the intersection of the two
TFSMs. The abstraction is derived by appropriate partitioning the input and out-
put time domains. It is shown how a traditional preset FSM-based method can
be used for deriving a separating sequence for the given TFSMs using the FSM
abstraction. In addition, using the FSM abstraction, we present an algorithm for
deriving an r-distinguishing TFSM that represents a simple adaptive distinguish-

220 Khaled El-Fakih et al.

ing experiment for two given TFSMs. We compare the complexity of a proposed
approach with that of another approach that is based directly on the intersection
of two given TFSMs and show that in both approaches, similar to untimed FSMs,
when distinguishing two TFSMs with 𝑚 and 𝑛 states, the length of a longest trace
of a corresponding r-distinguishing machine is at most 𝑚𝑛, while the length of a
separating sequence is at most 2𝑚𝑛−1, and these upper bounds are reachable [19,22].

As a future work, it would be interesting to investigate the possibility of adapting
the presented work for distinguishing more than two machines as well as for a TFSM
model with multiple clocks where the main challenge is the derivation of appropriate
partitions of input and output time domains. In addition, it would be interesting
to experiment and assess the performance of the proposed methods using large size
specifications.

Acknowledgements

The authors would like to thank Dr. Zoltán Ésik and the anonymous reviewers for
their helpful comments for improving the manuscript.

References

[1] Alur, Rajeev, Courcoubetis, Costas, and Yannakakis, Mihalis. Distinguishing
tests for nondeterministic and probabilistic machines. In Proceedings of the
twenty-seventh annual ACM symposium on Theory of computing, STOC ’95,
pages 363–372, New York, NY, USA, 1995. ACM.

[2] Bochmann, Gregor V. and Petrenko, Alexandre. Protocol testing: review of
methods and relevance for software testing. In Proceedings of the 1994 ACM
SIGSOFT international symposium on Software testing and analysis, ISSTA
’94, pages 109–124, New York, NY, USA, 1994. ACM.

[3] Dorofeeva, Rita, El-Fakih, Khaled, Maag, Stephane, Cavalli, Ana R., and Yev-
tushenko, Nina. Fsm-based conformance testing methods: A survey annotated
with experimental evaluation. Inf. Softw. Technol., 52(12):1286–1297, Decem-
ber 2010.

[4] Gill, Arthur. Sate-identification experiments in finite automata. Information
and Control, 4(2-3):132–154, 1961.

[5] Gromov, M. L., Evtushenko, N. V., and Kolomeets, A. V. On the synthesis of
adaptive tests for nondeterministic finite state machines. Program. Comput.
Softw., 34(6):322–329, 2008.

[6] Gromov, Maxim, El-Fakih, Khaled, Shabaldina, Natalia, and Yevtushenko,
Nina. Distinguing non-deterministic timed finite state machines. In Proceedings
of the Joint 11th IFIP WG 6.1 International Conference FMOODS ’09 and

Distinguishing Experiments for Timed Nondeterministic . . . 221

29th IFIP WG 6.1 International Conference FORTE ’09 on Formal Techniques
for Distributed Systems, FMOODS ’09/FORTE ’09, pages 137–151, Berlin,
Heidelberg, 2009. Springer-Verlag.

[7] Hierons, Rob M. Testing from a nondeterministic finite state machine using
adaptive state counting. IEEE Trans. Comput., 53(10):1330–1342, October
2004.

[8] Hierons, Robert M., Merayo, Mercedes G., and Núñez, Manuel. Testing from a
stochastic timed system with a fault model. J. Log. Algebr. Program., 78(2):98–
115, 2009.

[9] Kohavi, Zvi. Switching and Finite Automata Theory. McGraw-Hill, 1978.

[10] Krichen, Moez and Tripakis, Stavros. State identification problems for timed
automata. In Proceedings of the 17th IFIP TC6/WG 6.1 international con-
ference on Testing of Communicating Systems, TestCom’05, pages 175–191,
Berlin, Heidelberg, 2005. Springer-Verlag.

[11] Lee, David and Yannakakis, Mihalis. Testing finite-state machines: State
identification and verification. IEEE Trans. Comput., 43(3):306–320, March
1994.

[12] Lee, David and Yannakakis, Mihalis. Principles and methods of testing finite
state machines-a survey. Proceedings of the IEEE, 84(8):1090–1123, 1996.

[13] Mathur, Aditya P. Foundations of Software Testing. Addison-Wesley Profes-
sional, 1st edition, 2008.

[14] Merayo, Mercedes G., Núñez, Manuel, and Rodŕıguez, Ismael. Extending
efsms to specify and test timed systems with action durations and timeouts.
In Proceedings of the 26th IFIP WG 6.1 international conference on Formal
Techniques for Networked and Distributed Systems, FORTE’06, pages 372–387,
Berlin, Heidelberg, 2006. Springer-Verlag.

[15] Merayo, Mercedes G., Núñez, Manuel, and Rodŕıguez, Ismael. Formal testing
from timed finite state machines. Computer Networks, 52(2):432–460, 2008.

[16] Petrenko, Alexandre and Yevtushenko, Nina. Conformance tests as checking
experiments for partial nondeterministic fsm. In Proceedings of the 5th in-
ternational conference on Formal Approaches to Software Testing, FATES’05,
pages 118–133, Berlin, Heidelberg, 2006. Springer-Verlag.

[17] Petrenko, Alexandre and Yevtushenko, Nina. Adaptive testing of deterministic
implementations specified by nondeterministic fsms. In Proceedings of the
23rd IFIP WG 6.1 international conference on Testing software and systems,
ICTSS’11, pages 162–178, Berlin, Heidelberg, 2011. Springer-Verlag.

222 Khaled El-Fakih et al.

[18] Shabaldina, Natalia, El-Fakih, Khaled, and Yevtushenko, Nina. Testing non-
deterministic finite state machines with respect to the separability relation. In
Proceedings of the 19th IFIP TC6/WG6.1 international conference, and 7th
international conference on Testing of Software and Communicating Systems,
TestCom’07/FATES’07, pages 305–318, Berlin, Heidelberg, 2007. Springer-
Verlag.

[19] Spitsyna, Natalia, El-Fakih, Khaled, and Yevtushenko, Nina. Studying the
separability relation between finite state machines. Softw. Test. Verif. Reliab.,
17(4):227–241, December 2007.

[20] Starke, Peter H. Abstract Automata. Elsevier, 1972.

[21] Tanenbaum, Andrew S. Computer networks. Prentice-Hall, 3 edition, 1996.

[22] Yevtushenko, Nina and Spitsyna, Natalia. On the upper of length of sepa-
rating and r-distinguishing sequences for observable nondeterministic FSMs.
In Proceedings of Artificial intelligence systems and computer sciences, pages
124–126, 2005. (in Russian).

[23] Yevtushenko, Nina, Vetrova, Maria, and Petrenko, Alexandre. Analysis and
synthesis of nondeterministic FSMs: operators and relations. Tomsk State
University publishing, 2006. (in Russian).

Received 9th May 2012

