
Extending Stream X-Machines to specify and test systems with timeouts∗

Mercedes G. Merayo
Departamento de Sistemas Informáticos y Computación

Universidad Complutense de Madrid, Madrid, Spain
mgmerayo@fdi.ucm.es

Robert M. Hierons
Department of Information Systems and Computing

Brunel University, Uxbridge, Middlesex, UB8 3PH United Kingdom
rob.hierons@brunel.ac.uk

Manuel Núñez
Departamento de Sistemas Informáticos y Computación

Universidad Complutense de Madrid, Madrid, Spain
mn@sip.ucm.es

Abstract

Stream X-machines are a kind of extended finite state ma-
chine used to specify real systems where communication be-
tween the components is modeled by using a shared mem-
ory. In this paper we introduce an extension of the Stream
X-machines formalism in order to specify delays/timeouts.
The time spent by a system waiting for the environment to
react has the capability of affecting the set of available out-
puts of the system. So, a relation focusing on functional as-
pects must explicitly take into account the possible timeouts.
We also propose a formal testing methodology allowing to
systematically test a system with respect to a specification.
Finally, we introduce a test derivation algorithm. Given a
specification, the derived test suite is sound and complete,
that is, a system under test successfully passes the test suite
if and only if this system conforms to the specification.

1 Introduction

Real-time can be found in several branches of the indus-
trial world, such as aeronautics, medicine, and transporta-
tion, where reliability is a must since human lives are in-
volved. In order to improve the reliability of the developed
systems, it is necessary to apply formal methodologies that

∗Research partially supported by the Spanish MEC project
WEST/FAST (TIN2006-15578-C02-01) and the Marie Curie project
MRTN-CT-2003-505121/TAROT.

consider time requirements. In most models, temporal re-
quirements usually refer to time that a system consumes for
performing operations. However, another kind of time con-
straint can affect systems: Timeouts. A timeout is a speci-
fied period of time that will be allowed to elapse in a system
waiting for an interaction with it; if the period ends and no
action has been produced, the state of the system changes
and its reactions to the actions that are received from the
environment may be different.

Formal methods allow us not only to represent with pre-
cision the systems that we are going to study but also to rea-
son about them with mathematical precision and rigor. It is
widely recognized that formal methods and testing are com-
plementary techniques ([22, 30, 5, 31, 12]) since they help
to check the correctness of systems and provide a frame-
work for testing. The application of formal testing tech-
niques requires to identify the critical aspects of the system,
that is, those aspects that will make the difference between
correct and incorrect behavior. While the relevant aspects
of some systems only concern what they do, in some other
systems it is equally relevant how they do what they do. In
order to perform this task, several techniques, algorithms,
and semantic frameworks have been introduced in the lit-
erature. In particular, the testing community has shown
a growing interest to take into account time aspects (e.g.
[23, 9, 15, 32, 10, 28, 21, 4, 26]).

One approach to formally specify systems is to use X-
machines [16]. They can be seen as a form of finite state
machine where the transitions are labeled with relations
over a basic data set. This set of relations is called the

2008 Sixth IEEE International Conference on Software Engineering and Formal Methods

978-0-7695-3437-4/08 $25.00 © 2008 IEEE

DOI 10.1109/SEFM.2008.15

201

2008 Sixth IEEE International Conference on Software Engineering and Formal Methods

978-0-7695-3437-4/08 $25.00 © 2008 IEEE

DOI 10.1109/SEFM.2008.15

201

2008 Sixth IEEE International Conference on Software Engineering and Formal Methods

978-0-7695-3437-4/08 $25.00 © 2008 IEEE

DOI 10.1109/SEFM.2008.15

201

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 09:36 from IEEE Xplore. Restrictions apply.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/336003?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

type of the machine and represents the operations that can
perform. Several classes of X-machines have been defined
and studied, in particular, Stream X-machines. Stream X-
machines have an internal memory and the input, the cur-
rent state, and the current value of the internal memory
determine the next state, the output and how the memory
is updated. The main advantages of using this model for
representing systems is that it is flexible and allows the
integration of control and data processing. This formal-
ism has been used to specify systems in different areas
([17, 2, 20, 19]) and several testing techniques have been
developed.

The standard Stream X-machines test generation algo-
rithm is based on the W-method introduced by [8] in the
context of finite state machines. The method presents some
restrictions: (a) specification and implementation must be
deterministic (b) the functions associated with the transi-
tions are correctly implemented and (c) it assumes that cer-
tain conditions, called design for test conditions, hold. Un-
der these assumptions the set of tests generated by this
method is guaranteed to determine the correctness of the
system [18, 17]. This integration of specification and test
generation is one of the most significant benefits of using
deterministic stream X-machines in software development.
Since this method was developed, it has been extended for
reducing the imposed conditions (for a survey see [3]).

In this paper we study systems presenting timeouts. In
order to concentrate on the special features introduced by
timeouts, we do not explicitly consider other time aspects.
For example, it is usual to associate time with the perfor-
mance of actions. Nevertheless, once we have a model
where timeouts are included it is not technically difficult
to extend it to consider also time durations. We consider a
suitable extension of the classical Stream X-machine model
to allow a specifier to explicitly denote timeouts of a sys-
tem, taking advantage of the power that this model provides.
Moreover, in order to have a more expressive formalism,
we remove most of the restrictions that are usually assumed
in Stream X-machines. For example, we do not impose a
bound on the number of states of the system under test (re-
quired to apply [8]). More importantly, we do not require
that systems have the property of output-distinguishability,
requiring that any two different functions cannot generate
the same output for a given input and memory value.

We assume that specifications and implementations can
be modeled by means of Stream X-machines with timeouts,
and propose a formal testing methodology to systematically
test a system with respect to a specification. Since we re-
move most of the restrictions on machines, we cannot ap-
ply the classical testing framework for Stream X-machines.
Specifically, we consider the testing framework [25] in the
context of the the machines presented in this paper. Testing
a system requires using a specific notion of correctness. We

have to consider that the sequences of inputs/outpus pro-
duced by the system under test are allowed in the specifi-
cation, that is, the implementation does not invent anything
for those inputs that are specified in the specification. In
addition, we have to take into account the possible time-
outs. For example, a sequence of inputs/outputs could be
accepted only after different timeouts have been triggered.

The rest of the paper is organized as follows. In Section 2
we introduce our model to represent Stream X-machines
with timeouts. In Section 3 we introduce a notion of con-
formance for our framework. In Section 4 we show how
our machines can be tested. In Section 5 we give a test
derivation algorithm and we prove that the derived test suite
is sound and complete. In Section 6 we review previous
works on testing timed systems. Finally, in Section 7 we
present our conclusions.

2 Extending Stream X-machines with time-
outs

In this section we introduce our extension of the classical
stream X-machine model in order to deal with systems that
can evolve by raising timeouts. Intuitively, if after a given
amount of time and depending on the current state, we do
not receive any input action then the machine will change
its current state. Thus, we need to add new features to the
formalism so that this kind of time constraints of a system
can be properly specified. We use a discrete time domain to
model timeouts. In particular, we will sometimes enumerate
the elements of Time simply as 0, 1, 2 and so on. During the
rest of the paper we will use the following notation.

Definition 1 A tuple of elements (a1, a2 . . . , an) will be
denoted by ā. We say that â = [a1, a2) is an inter-
val if a1, a2 ∈ IN and a1 ≤ a2. A tuple of intervals
(p̂1, . . . , p̂n) will be denoted by p̆. Let t̄ = (t1, . . . , tn)
and q̆ = (q̂1, . . . , q̂n). We write

• t̄ ∈ q̆ if for all 1 ≤ j ≤ n we have tj ∈ q̂j ;

• πi(t̄), for all 1 ≤ i ≤ n, denotes the value ti.

��

Definition 2 A Timeout stream X-machine, in short
TOSXM, is a tuple X = (I, O, S, M, Φ, F, TO, sin, min)
where I is the set of input actions, O is the set of out-
put actions, S is a finite set of states, M is the memory,
Φ, called the type of X , is a finite set of partial func-
tions, ranging from M × I to O × M called processing
functions, F : S × Φ −→ S is the next state function,
TO : S −→ S × (Time ∪ ∞) is the timeout function,
sin ∈ S is the initial state, and min ∈ Mem is the initial
memory value.

202202202

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 09:36 from IEEE Xplore. Restrictions apply.

A transition is a tuple (s, φ, s′) where s, s′ ∈ S are the
initial and final state of the transition, and φ ∈ Φ is the
processing function associated with the transition. ��

Intuitively, we can think of a TOSXM as a state transition
diagram where arcs are labelled by processing functions.
Each function receives an input and current memory values
and produces an output modifying the memory.

For each state s ∈ S, the application of the timeout func-
tion TO(s) returns a pair (s′, t) indicating the time that the
machine can remain at the state s waiting for an input ac-
tion, and the state to which the machine evolves if no input
is received in time. We assume that TO(s) = (s′, t) im-
plies s
= s′, that is, timeouts always produce a change of
the state. We indicate the absence of a timeout in a given
state by setting the corresponding time value to ∞. Next
we present some definitions regarding stream X-machines
that will be used throughout the paper.

Definition 3 A TOSXM X = (I, O, S, M, Φ, F, sin, min)
is deterministic if for all φ, φ′ ∈ Φ if there exists s ∈ S such
that (s, φ), (s, φ′) ∈ dom(F) then φ = φ′ or dom(φ) ∩
dom(φ′) = ∅. We say that X is completely specified if for
all s ∈ S, m ∈ M , and i ∈ I , there exists φ ∈ Φ such that
(m, i) ∈ dom(φ) and (s, φ) ∈ dom(F). ��

A TOSXM is deterministic if given a state s, for any in-
put value and any memory value there is only one process-
ing function that can be applied. In turn, a TOSXM is com-
pletely specified if for all s ∈ S, m ∈ M , and i ∈ I there
is always a possible transition. If a deterministic TOSXM
is completely specified then there is only one transition for
any s ∈ S, m ∈ M , and i ∈ I . Next we introduce a partial
function that establishes the relation between a pair (mem-
ory values, input sequence) and a pair (output sequence,
updated memory values) produced by the application of a
sequence of processing functions.

Definition 4 Let X = (I, O, S, M, Φ, F, sin, min) be
a TOSXM. Given a sequence φ̄ ∈ Φ∗, we consider
‖ φ̄ ‖: M × I∗ → O∗ × M to be a partial function
inductively defined in the following way:

‖ ε ‖= {((m, ε), (ε, m)) | m ∈ M}

‖ φ̄φ ‖=

{
((m, īi), (ōo, m′))

∣∣∣∣∣
∃ m′′ ∈ M :
((m, ī), (ō, m′′)) ∈‖ φ̄ ‖
∧ ((m′′, i), (o, m′)) ∈ φ

}

��

In the previous definition we have used the notation
(a, b) ∈ f instead of the more standard f(a) = b.

Let us note that when we consider a deterministic
TOSXM each computation from the initial state to any other

state is completely determined by the input sequence and
the initial memory value. The following notion allow us to
compose several transitions possibly preceded by timeouts.

Definition 5 Let X = (I, O, S, M, Φ, F, TO, sin, min) be
a TOSXM. A tuple (s0, φ, s, t̂) is a step of X if there exist
k ≥ 0 states s1, . . . , sk ∈ S, such that for all 1 ≤ j ≤
k we have TO(sj−1) = (sj , tj), F (sk, φ) = s and t̂ =[∑k

j=1 tj ,
∑k

j=1 tj + π2(TO(sk)
)

.

We say that (t̂1/φ1, . . . , t̂r/φr) is an evo-
lution of X if there exist r steps of X
(sin, φ1, s1, t̂1), . . . , (sr−1, φr, sr, t̂r). We denote the
set of evolutions of X by Evol(X). ��

Intuitively, a step is a transition preceded by zero or more
timeouts. The interval t̂ indicates the time values where the
input action could be received. An evolution is a sequence
of processing functions corresponding to the transitions of
a chain of steps. The first of these steps begins with the
initial state of the machine. These steps include the time
interval, indicated by the different intervals t̂j , when an in-
put could be accepted. As we will explain later when we
introduce our implementation relation, evolutions need to
include time information. Specifically, they must contain
information related to the triggered timeouts. This is due
to the fact that timeouts influence the different processing
function sequences that TOSXMs can perform. This infor-
mation is encoded into the intervals.

We will sometimes refer to the tuple
(t̂1/φ1, . . . , t̂r/φr) ∈ Evol(X) as (t̆, φ̄), where
t̆ = (t̂1, . . . , t̂r) and φ̄ = (φ1, . . . , φr).

Example 1 Let us consider the machine depicted in Fig-
ure 1 in which the initial state is s1. Next, we give some
of the steps that the machine can generate. For example,
(s1, φ1, s2, [0, 3)), represents a transition where no timeouts
precede it. The processing function φ1 can be performed
before 3 time units pass (this is indicated by the interval
[0, 3)), if an input belonging to its domain is received. The
second example, (s1, φ3, s4, [3, 7))) is built from the time-
out associated to the state s1 and the transition outgoing
from s3. The step represents that if the machine is at state
s1 and after 3 time units no input is received then the time-
out associated with that state will be triggered and the state
will change to s3. After this, the machine can accept an in-
put that belongs to the domain of the processing function
φ3 before 4 time units pass, that is, the timeout assigned to
the state s3. Therefore, during the time interval [3, 7) if the
machine receives an appropriate input it will emit an output
and the state will change to s4. Similarly, we can obtain the
step (s1, φ1, s1, [7,∞)), using the timeouts corresponding
to s1 and s3 and the transition outgoing from s6.

Now, we present an example of evolution built from two
steps: ([7,∞)/φ1, [3, 7)/φ3). ��

203203203

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 09:36 from IEEE Xplore. Restrictions apply.

s1 s2

s3 s4 s5

s6

φ1

3 1

φ3 φ1

4
φ3

φ2

φ1

φ4
I = {a, b} S = {s1, . . . , s6}
O = {x, y, z} Φ = {φ1, φ2, φ3, φ4}
M = {1, 0} sin = s1 min = 0

φ1(0, a) = (z, 1) φ3(0, a) = (x, 1)
φ1(0, b) = (y, 1) φ3(0, b) = (y, 0)
φ1(1, a) = (x, 0) φ3(1, a) = (z, 0)
φ1(1, b) = (x, 1) φ3(1, b) = (x, 0)
φ2(1, a) = (z, 0) φ4(0, b) = (y, 1)
φ2(1, b) = (z, 0) φ4(0, a) = (x, 1)

F and TO are graphically represented.

Figure 1. Example of Timeout Stream X-machine.

Definition 6 Let X = (I, O, S, M, Φ, F, TO, sin, min) be
a TOSXM and e = (t̂1/φ1, . . . , t̂r/φr) be an evolution of
X . We say that the tuple (t1/φ1, . . . , tr/φr) is an instanced
evolution of e if for all 1 ≤ j ≤ r we have tj ∈ t̂j .

We denote by InsEvol(X) the set of instanced evolu-
tions of X . ��

Instanced evolutions will be used to consider the con-
crete time when actions are performed. We will sometimes
refer to the tuple (t1/φ1, . . . , tr/φr) ∈ InsEvol(X) as
(t̄, φ̄), where t̄ = (t1, . . . , tr) and φ̄ = (φ1, . . . , φr).

Example 2 If we consider the evolution
([7,∞)/φ1, [3, 7)/φ3) showed in the previous exam-
ple we have that the tuples (8/φ1, 5/φ3) and (12/φ1, 3/φ3)
are two of its instanced evolutions. ��

A TOSXM gives rise to a relation between the input se-
quences applied to the machine and the output sequences
that it produces. This relation is given by the execution of
a sequence of processing functions, from the initial state of
the machine, that allows to obtain an output sequence in
response to an input sequence. In our formalism, we will
require, for dealing with the specified timeouts, to extend
this relation to take into account the times when the ma-
chine receives an interaction from the environment. Thus,
we introduce a new notion of correspondence between input
sequences, time sequences and output sequences.

Definition 7 Let X = (I, O, S, M, Φ, F, sin, min) be
a deterministic TOSXM. The function computed by X
fX : I∗ × Time∗ → O∗ is defined as follows:

fX =

⎧⎨
⎩(̄i, ō, t̄)

∣∣∣∣∣∣
∃ m ∈ M, φ̄ ∈ Φ∗ :
(t̄, φ̄) ∈ InsEvol(X) ∧
((min, ī), (ō, m)) ∈‖ φ̄ ‖

⎫⎬
⎭

��

Let us note that if the machine X is deterministic and
completely specified then fX is total.

3 A notion of conformance

In order to properly define how to test an implementa-
tion against a specification it is necessary to state what it
means for an implementation to conform to a specification.
It is usual when testing from a stream X-machine to assume
that the implementation under test (IUT) behaves like an
unknown stream X-machine. As usual we will assume that
both, implementation and specification, are given by com-
pletely specified and deterministic TOSXMs, but the result
can be extended to deal with non-deterministic machines
by adapting [13] to the framework developed in this paper.

Next, we introduce the implementation relation conff .
Let us note that the time spent by a system waiting for the
environment to react has the capability of affecting the set
of available outputs of the system. This is because this time
may trigger a change of the state by raising one or more
timeouts. So, our implementation relation must explicitly
take into account the maximal time the system may stay in
each state. This time is given by the timeout of the state.
Thus, we require that the implementation always complies
in a certain manner with the timeouts established by the
specification. This is illustrated in the following example.

Example 3 Let us consider the schematic machines de-
picted in Figure 2. These diagrams represent simplified
TOSXMs. We consider the following notation: A transition
with a label t indicates that a timeout will be applied at time
t, that is, if after t time units no input is received then the
timeout is executed.

We will have that M ′ is not conforming to M ′′. If an
input is received before 3 units of time pass, the function

204204204

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 09:36 from IEEE Xplore. Restrictions apply.

M ′

φ1

3
φ2

M ′′

φ2

M ′′′

φ1

φ3

φ4

2

1

φ5

φ6

I = {a}
O = {x, y, z}
M = {1, 0}
φ1(1, a) = (y, 0) φ1(0, a) = (y, 0)
φ2(1, a) = (x, 0) φ2(0, a) = (z, 0)
φ3(1, a) = (y, 0) φ4(0, a) = (y, 1)
φ5(1, a) = (x, 1) φ6(0, a) = (z, 0)

Figure 2. Examples of conformance.

φ1 will be performed by M ′. However, after the same de-
lay M ′′ will perform φ2. The outputs produced by the ma-
chines will be different for any memory value. We can say
the same regarding the conformance of M ′′ with respect to
M ′. The function φ2 is allowed by M ′ only in the case that
the input has been received after 3 time units. So, under our
conformance framework, M ′′ does not conform to M ′. On
the contrary, this is not the case when considering the con-
formance of M ′ with respect to M ′′′. The outputs produced
by M ′ when it receives the input a are equal to the ones ac-
cepted by M ′′′ at any time. So, M ′ conforms to M ′′′. ��

Definition 8 Let S and I be two TOSXMs. We say that I
conforms to S, denoted by I conff S, if fI = fS. ��

4 Definition and application of tests

In our setting, tests represent sequences of inputs applied
to an IUT. Once an output is received, it is necessary to
check that whether it belongs to the set of expected ones
or not. In addition to checking the functional behavior of
the IUT, tests have also to detect whether wrong timed be-
haviors appear. Tests will include delays before offering
input actions. The purpose of delays is to induce timeouts
in the tested machine. In this way, we may indirectly check
whether the timeouts imposed by the specification are re-
flected in the IUT by offering input actions after a specific
delay. Let us note that we cannot observe when the IUT
takes a timeout. However, it is still possible to check the
IUT behavior after different delays.

Definition 9 A test is a tuple T =
(S, I, O, T r, s0, SI , SO, SF , SP , W) where S is the
set of states, I and O are disjoint sets of input and
output actions, respectively, Tr ⊆ S × (I ∪ O) × S is
the transition relation, s0 ∈ S is the initial state, and
the sets SI , SO, SF , SP ⊆ S are a partition of S. The
transition relation and the sets of states fulfill the following
conditions:

• SI is the set of input states. We have that s0 ∈ SI . For
all input states s ∈ SI there exists a unique outgoing
transition (s, a, s′) ∈ Tr. For this transition we have
that a ∈ I and s′ ∈ SO.

• SO is the set of output states. For all output states s ∈
SO we have that for all o ∈ O there exists a unique
state s′ such that (s, o, s′) ∈ Tr. In this case, s′ /∈ SO .
Moreover, there do not exist i ∈ I and s′ ∈ S such that
(s, i, s′) ∈ Tr.

• SF and SP are the sets of fail and pass states, respec-
tively. We say that these states are terminal. Thus, for
all state s ∈ SF ∪ SP we have that there do not exist
a ∈ I ∪ O and s′ ∈ S such that (s, a, s′) ∈ Tr.

Finally, the function W : SI −→ Time associates delays
with input states.

We say that a test T is valid if the graph induced by T is
a tree with root at the initial state s0. In the rest of the paper
we consider only valid tests.

Let σ = i1/o1, . . . , ir/or. We write T
σ=⇒ sT if sT ∈

SF ∪SP and there exist states s12, s21, s22, . . . sr1, sr2 ∈ S
such that {(s0, i1, s12), (sr2, or, s

T)} ⊆ Tr, for all 2 ≤
j ≤ r we have (sj1, ij , sj2) ∈ Tr, and for all 1 ≤ j ≤ r−1
we have (sj2, oj , s(j+1)1) ∈ Tr.

Let T be a test, σ = i1/o1, . . . , ir/or, sT be a state of
T , and t ∈ Timer. We write T

σ=⇒t sT if T
σ=⇒ sT ,

t1 = W (s0) and for all 1 < j ≤ r we have tj = W (sj1).
��

In Figure 3 we show a graphical representation of some
tests. Let us remark that T

σ=⇒ sT , and its variant T
σ=⇒t

sT , imply that sT is a terminal state. Next we define the
application of a test suite to an implementation. We say that
the test suite T is passed if for all test belonging to the suite
we have that the terminal states reached by the composition
of implementation and test are pass states.

Definition 10 Let I be a TOSXM, T be a valid test, sT be
a state of T , σ = (̄i, ō) where ī = (i1, . . . , ir) and ō =

205205205

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 09:36 from IEEE Xplore. Restrictions apply.

4
T1

a

fail

y

5
x

a

fail

y

pass

x

fail

z

fail

z

2
T2

a

fail

x

pass

z

fail

y

1
T3

b

fail

x

0
y

a

fail

x

pass

z

fail

y

fail

z

Figure 3. Examples of Tests.

(o1, . . . , or), and t = (t1, . . . , tr). We write I ‖ T
σ=⇒t sT

if T
σ=⇒t sT and (t̄, σ) ∈ fI . We say that

• I passes the test suite T , denoted by pass(I, T), if
for all test T ∈ T there do not exist σ, sT , t such that
I ‖ T

σ=⇒t sT and sT ∈ SF .

��

5 Test derivation

In this section we present an algorithm to derive tests
from specifications. As usual, the idea underlying our al-
gorithm consists in traversing the specification in order to
get all the possible input/output sequences in an appropriate
way. First, we introduce some additional notation. The fol-
lowing function will be used in the forthcoming derivation
algorithm.

Definition 11 Let X = (I, O, S, M, Φ, F, TO, sin, min)
be a TOSXM. The function afterTO(s, t) computes the
state that will be reached in X if we start in the state s and
t time units pass without receiving an input.

afterTO(s, t) =

{
s π2(TO(s)) > t

afterTO(π1(TO(s)), t − π2(TO(s))) otherwise

Recall that TO(s) denotes the timeout associated with the
state s, that is, a pair containing the reached state after the
performance of the timeout and when the timeout will be
triggered. ��

The algorithm to derive tests from a specification is given
in Figure 4. This algorithm is non-deterministic and its ap-
plication generates a single test. By considering all the pos-
sible non-deterministic choices in the algorithm we extract a

full test suite from the specification. Let us remark that this
set will be, in general, infinite. For a given specification X ,
we denote this test suite by tests(X). Essentially, our al-
gorithm consists in traversing the specification X in all the
possible ways. Next we explain how the algorithm works.
The pending situation (sX , mX , sT) keeps a triple denot-
ing the state that could have been reached in the transversal
of the specification and the corresponding value of mem-
ory that could appear in a state of the test whose definition
(that is, the construction of its outgoing transitions) has not
been yet completed. Specifically, it indicates that we did
not complete the state sT of the test and the situation in the
specification is given by the state sX and the memory value
mX . Let us consider the different steps of the algorithm.
The triple (sX , mX , sT) initially contains the initial situa-
tion of the specification (that is, the initial state and the ini-
tial value of the memory) and the initial state of the test. We
have two possibilities (under the heading cases). The first
possibility simply indicates that the state of the test under
construction becomes a passing state (case 1 of the algo-
rithm). If the second possibility is chosen then it has to be
checked that there exists a delay td, a processing function
φ, and an input i such that the specification can perform an
output after applying the input i after the delay td for the
current memory value (this is formalized in the side con-
dition associated with the second case). If this is the case,
we generate an input transition in the test labelled by i and
having as delay td (steps 2.b–d of the algorithm). Then,
the whole sets of outputs is considered to generate a new
transition in the test for each of these outputs. If the output
is not expected by the specification (step 2.e of the algo-
rithm) then a transition leading to a failing state is created.
This could be simulated by a single branch in the test, la-
belled by else, leading to a failing state. For the expected
output (step 2.f–g of the algorithm) we create a transition
with the corresponding output action. Finally, we update
(sX , mX , sT) (step 2.h of the algorithm), that is, the new

206206206

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 09:36 from IEEE Xplore. Restrictions apply.

Input: A specification X = (I, O, S, M, Φ, F, TO, sin, min)
Output: A test case T = (S′, I, O, T ran′, stin, SI , SO, SF , SP , W).

Initialization:

• S′ := {sin}, T ran′ := SI := SO := SF := SP := ∅.

• (sX , mX , sT) := (sin, min, stin).

Cases: Choose one of the following two options until (sX , mX , sT) = null.

1. Perform:

(a) SP := SP ∪ {sT }.

(b) (sX , mX , sT) := null.

2. If ∃ td ∈ Time, φ ∈ Φ, i ∈ I such that (sM , φ) ∈ dom(F) and (mX , i) ∈ dom(φ)
with sM = afterTO(sX , td), then perform:

(a) Choose td ∈ Time and i ∈ I fulfilling the previous conditions.

(b) sM := afterTO(sX , td); W (sT) := td.

(c) Consider a fresh state s′ /∈ S′ and let S′ := S′ ∪ {s′}.

(d) SI := SI ∪ {sT }; SO := SO ∪ {s′}; Tran′ := Tran′ ∪ {(sT , i, s′)}.

(e) For all o
= π1(φ(mX , i)) do

• Consider a fresh state s′′ /∈ S′ and let S′ := S′ ∪ {s′′}.

• SF := SF ∪ {s′′}; Tran′ := Tran′ ∪ {(s′, o, s′′)}.

(f) Consider a fresh state s′′ /∈ S′ and let S′ := S′ ∪ {s′′}.

(g) Tran′ := Tran′ ∪ {(s′, π1(φ(mX , i)), s′′)}.

(h) (sX , mX , sT) := (F (sM , φ), π2(φ(mX , i)), s′′).

Figure 4. Derivation of test cases from a specification.

pending situation after traversing the transition correspond-
ing to the processing function φ. Let us note that finite tests
are constructed simply by considering a step where the sec-
ond case is not applied.

Example 4 Next we show how our test generation algo-
rithm works. In Figure 3 we present some tests derived
from the specification presented in Figure 1. We suppose
that the initial memory value of the TOSXM is 0.

In order to generate the test T1, a delay of 4 time units
is applied in the step 2.a of the algorithm and the input a is
chosen. A transition labelled by this input is generated in
the test. Due to the timeout associated with the initial state,
the machine would have changed the state to s3. Then, the
processing function φ3 is considered in order to determine
the expected output and the new memory value. The pro-
cessing function φ3 produces the output x when a is ap-
plied and the memory value is 0. Thus, a transition for the
output x is created in the test (step 2.f–g of the algorithm).

Moreover, two transitions leading to a fail state are created
for the outputs y and z respectively (step 2.e of the algo-
rithm). After this, a delay of 5 time units is established for
this input state and the input a is selected again. Then, the
corresponding transitions are created in the test for the ac-
cepted/forbidden outputs in the specification. Finally, the
step 1 of the algorithm is applied in order to conclude the
generation of this test. Only one pass state is created. The
tests T1 and T2 consider the same input, a, in the first tran-
sition. The difference lies in the delays that have been con-
sidered for each of them, 4 and 2 time units, respectively.
This fact makes that for the test T2 the output z, produced
by the function φ1, leads to a pass state. ��

Let us comment on the finiteness of our algorithm. If we
do not impose any restriction on the implementation (e.g., a
bound on the number of states) we cannot determine some
important information such as the maximal length of the
sequences that the implementation can perform. In other

207207207

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 09:36 from IEEE Xplore. Restrictions apply.

words, we would need a coverage criterion to generate a fi-
nite test suite. Since we do not assume any criteria, all we
can do is to say that the derived test suite is the (possibly
infinite) suite that would allow us to prove completeness.
Obviously, one can impose restrictions such as “generate
n tests” or “generate all the tests with m inputs” and com-
pleteness will be obtained up to that coverage criterion.

Moreover, if we asume a bound n on the number of states
of the IUT, and we consider specification having at most m
states, then we can adapt [14] to the current framework to
conclude that we can restrict ourselves to tests having at
most mṅ + 1 inputs.

The next result relates, for a specification S and an im-
plementation I , implementation relation and application of
test suites.

Theorem 1 Let S and I be two TOSXMs. We have that:

• I conff S iff I passes tests(S).

Proof :
First, let us show that I passes tests(S) implies

I conff S. We will use the contrapositive, that is, we will
suppose that Iconff S does not hold and we will prove that
I does not pass tests(S). Let us consider that I conff S
does not hold. Then, we automatically infer that there exist
ī = (i1, . . . , ir) and t̄ = (t1, . . . , tr) such that fI (̄i, t̄)
=
fS (̄i, t̄). Thus, the sequences of outputs produced by I
and S as response to the sequence of inputs ī applied af-
ter the delays established in the sequence t̄, are different.
We assume that the difference between them lies in the
last output, that is, fI (̄i, t̄) = (o1, . . . , or) and fS (̄i, t̄) =
(o1, . . . , o

′
r) with or
= o′r. We will show that there exists a

test T = (S, I, O, T r, s, SI , SO, SF , SP , W) ∈ tests(S)

such that T
σ=⇒t̄ sT , with sT ∈ SP , and T

σ′
=⇒t̄ uT ,

with uT ∈ SF where σ = (i1/o1, . . . , ir/or) and σ′ =
(i1/o1, . . . , ir/o′r). By constructing such a test T we obtain
I ‖ T

σ=⇒t̄ uT , for a fail state uT . Thus, we conclude S
does not pass tests(S). We will build this test T by ap-
plying the algorithm given in Figure 4. The algorithm will
be resolved in the following way:

1. for 1 ≤ j ≤ r do

• Apply case 2 for the input action ij selecting
td := tj .

endfor

2. Apply the first case for the last element (sX , mX , sT).

Let us remark that step 1.(a) corresponds to continue the
construction of the test in the state reached by the transition
labelled by oj−1 (in the case of j = 1 we mean the initial
state of the test).

Since (σ′, t̄)
∈ fS , the last application of the second case
for the output o′r must be necessarily associated to the step
2.(e). So, the previous algorithm generates a test T such

that T
σ′

=⇒t̄ uT , with uT ∈ SF . Since (σ′, t̄) ∈ fI we have

that I ‖ T
σ′

=⇒t̄ uT . Given the fact that T ∈ tests(S) we
deduce that pass(I,tests(S)) does not hold. Thus, we
conclude I does not pass tests(S).

Let us show now that I conff S implies I passes
tests(S). Again by contrapositive, we will assume that
I does not pass tests(S) and we will conclude that
I conff S does not hold.

Let us consider that pass(I,tests(S)) does not hold.
This means that there exists a test T ∈ tests(S) and
some σ = (i1/o1, . . . , ir/or), sT ∈ SF , and t̄ such that
I ‖ T

σ=⇒t̄ sT . Then, there exists t̄ such that T
σ=⇒t̄ sT .

According to our derivation algorithm, a branch of a de-
rived test leads to a fail state only if its associated output
action is not expected in the specification. Let us note that
our algorithm allows to create a fail state only as the result
of the application of the second case, when the output is
not allowed by the specification. Due to the fact that we
only consider deterministic and completely specified ma-
chines, there exists an output action o′r, such that fS (̄i, t̄) =
(o1, . . . , o

′
r) where ī = (i1, . . . , ir). Given the fact that

fI (̄i, t̄) = (o1, . . . , or), we have that fS (̄i, t̄)
= fI (̄i, t̄).
Thus, we conclude I conff S does not hold.

��

6 Related work

In terms of related work, our language is based on
Stream X-machines, which have been extensively used by
the formal testing community. This paper continues the
work in [24] where a notion of stochastic time was added to
the classical formalism. If we combine, following [25], this
previous work and the work reported in this paper, we can
obtain a temporal formalisms where we can express both
timeouts and action durations. Even though our way to deal
with timeouts is completely different to that in timed au-
tomata [1], it is worth to mention that our notion of timeout
is related to having invariants associated with states of a
timed automata as described in [32]: Once the value of a
clock variable exceeds the invariant, the system produces a
prescribed output and enters a new state.

Due to the intrinsical difficulty behind testing timed sys-
tems, different approaches have been studied, falling into
one or more of the following categories: (a) Only some be-
haviors, out of those that are relevant for the correctness of
the implementation, are tested (see e.g. [11, 6]). In these
cases, methods to choose those tests that seem to have a
higher capability to find errors are proposed, though they
are usually heuristic or are based on restricting the behavior

208208208

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 09:36 from IEEE Xplore. Restrictions apply.

to be tested to some specific test purposes; (b) a complete
finite test suite is derived from the specification, that is, if
all tests in the finite suite are passed then the implemen-
tation is correct (see e.g. [7, 32]). Usually, the finiteness
of this suite requires to introduce strong assumptions about
the implementation, both to deal with functional require-
ments (e.g. to assume that the maximal number of states
in the implementation is known) and timed requirements
(e.g. urgency of outputs, discretization of time). In gen-
eral, the applicability of the derived test suite is not feasible
because the number of derived tests is astronomic; and (c)
a complete infinite test suite is extracted from the specifi-
cation (see e.g. [23, 29, 27, 4, 26]). In particular, a test
derivation algorithm is defined in such a way that, for all
implementation behaviors that must be tested before grant-
ing the correctness, a suitable test for checking this behav-
ior is added by the algorithm after executing it some finite
time. In this sense, such an algorithm is complete (that is, it
provides full fault coverage with respect to the considered
testing relation) in the limit. The interest of these methods
is that, on the one hand, weaker assumptions are required
in these methodologies and, on the other hand, it is neces-
sary to have a method to find and construct any required
test if we want to select some of these tests according to
some criteria. That is, methods that are exhaustive in the
limit are the basis for other non-exhaustive but more practi-
cal methods. The methodology presented in this paper fits
into the (c) category and, consequently, its aim is to provide
test suites that are complete in the limit while, in turn, no
strong assumptions are required (e.g. about the number of
states of the implementation).

7 Conclusions and future work

In this paper we have presented a formal testing frame-
work for systems where timeouts are critical. The model in-
troduced for specifying the systems is a suitable extension
of the classical concept of stream X-machine. An imple-
mentation relation has been introduced for describing the
notion of correctness of an implementation with respect to
a specification. In addition, we have introduced a notion of
test that can delay the execution of the implementation. Fi-
nally, we have also presented an algorithm to derive sound
and complete test suites with respect to the implementation
relation presented in this paper.

In terms of future work, we would like to take this work
as a first step, together with [24], to define a testing theory
for systems presenting stochastic time together with time-
outs. In addition, we also consider to study different meth-
ods for reducing the size of the generated test suite.

References

[1] R. Alur and D. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183–235, 1994.

[2] J. Barnard. COMX: A design methodology using communi-
cating X–machines. Information and Software Technology,
40(5–6):271–280, 1998.

[3] K. Bogdanov, M. Holcombe, F. Ipate, L. Seed, and S. Vanak.
Testing methods for X-machines: a review. Formal Aspects
of Computing, 18:3–30, 2006.

[4] L. Brandán Briones and E. Brinksma. Testing real-time
multi input-output systems. In 7th Int. Conf. on Formal
Engineering Methods, ICFEM’05, LNCS 3785, pages 264–
279. Springer, 2005.

[5] E. Brinksma and J. Tretmans. Testing transition systems: An
annotated bibliography. In 4th Summer School on Modeling
and Verification of Parallel Processes, MOVEP’00, LNCS
2067, pages 187–195. Springer, 2001.

[6] R. Cardell-Oliver. Conformance tests for real-time systems
with timed automata specifications. Formal Aspects of Com-
puting, 12(5):350–371, 2000.

[7] R. Cardell-Oliver and T. Glover. A practical and com-
plete algorithm for testing real-time systems. In 5th Int.
Symposium on Formal Techniques in Real-Time and Fault-
Tolerant Systems, FTRTFT’98, LNCS 1486, pages 251–260.
Springer, 1998.

[8] T. Chow. Testing software design modelled by finite state
machines. IEEE Transactions on Software Engineering,
4:178–187, 1978.

[9] D. Clarke and I. Lee. Automatic generation of tests
for timing constraints from requirements. In 3rd Work-
shop on Object-Oriented Real-Time Dependable Systems,
WORDS’97, pages 199–206. IEEE Computer Society Press,
1997.

[10] A. En-Nouaary, R. Dssouli, and F. Khendek. Timed Wp-
method: Testing real time systems. IEEE Transactions on
Software Engineering, 28(11):1024–1039, 2002.

[11] H. Fouchal, E. Petitjean, and S. Salva. An user-oriented
testing of real time systems. In IEEE Workshop on Real-
Time Embedded Systems, RTES’01. IEEE Computer Society
Press, 2001.

[12] R. Hierons, K. Bogdanov, J. Bowen, R. Cleaveland, J. Der-
rick, J. Dick, M. Gheorghe, M. Harman, K. Kapoor,
P. Krause, G. Luettgen, A. Simons, S. Vilkomir, M. Wood-
ward, and H. Zedan. Using formal methods to support test-
ing. ACM Computing Surveys (in press), 2008.

[13] R. Hierons and M. Harman. Testing conformance of a de-
terministic implementation to a non-deterministic stream X-
machine. Theoretical Computer Science, 323(1–3):191–
233, 2004.

[14] R. Hierons, M. Merayo, and M. Núñez. Testing from a
stochastic timed system with a fault model, 2008. Submit-
ted.

[15] T. Higashino, A. Nakata, K. Taniguchi, and A. Cavalli. Gen-
erating test cases for a timed I/O automaton model. In
12th Int. Workshop on Testing of Communicating Systems,
IWTCS’99, pages 197–214. Kluwer Academic Publishers,
1999.

209209209

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 09:36 from IEEE Xplore. Restrictions apply.

[16] M. Holcombe. X–machines as a basis for dynamic system
specification. Software Engineering Journal, 3(2):69–76,
1988.

[17] M. Holcombe and F. Ipate. Correct Systems: Building a
Business Process Solution. Springer, 1998.

[18] F. Ipate and M. Holcombe. An integration testing method
that is proved to find all faults. International Journal of
Computer Mathematics, 63(3-4):159–178, 1997.

[19] P. Kefalas, G. Eleftherakis, and E. Kehris. Communicat-
ing X-machines: a practical approach for formal and modu-
lar specification of large systems. Information and Software
Technology, 45(5):269–280, 2003.

[20] E. Kehris, G. Eleftherakis, and P. Kefalas. Using X–
machines to model and test discrete event simulation pro-
grams. In N. Mastorakis, editor, Systems and Control: The-
ory and Applications, pages 163–171. World Scientific and
Engineering Society Press, 2000.

[21] M. Krichen and S. Tripakis. An expressive and imple-
mentable formal framework for testing real-time systems. In
17th Int. Conf. on Testing of Communicating Systems, Test-
Com’05, LNCS 3502, pages 209–225. Springer, 2005.

[22] D. Lee and M. Yannakakis. Principles and methods of test-
ing finite state machines: A survey. Proceedings of the
IEEE, 84(8):1090–1123, 1996.

[23] D. Mandrioli, S. Morasca, and A. Morzenti. Generating test
cases for real time systems from logic specifications. ACM
Transactions on Computer Systems, 13(4):356–398, 1995.

[24] M. Merayo and M. Núñez. Testing conformance on stochas-
tic stream X-machines. In 5th IEEE Int. Conf. on Software
Engineering and Formal Methods, SEFM’07, pages 227–
236. IEEE Computer Society Press, 2007.

[25] M. Merayo, M. Núñez, and I. Rodrı́guez. Extending EFSMs
to specify and test timed systems with action durations and
timeouts. IEEE Transactions on Computers, 57(6):835–848,
2008.

[26] M. Merayo, M. Núñez, and I. Rodrı́guez. Formal test-
ing from timed finite state machines. Computer Networks,
52(2):432–460, 2008.

[27] M. Núñez and I. Rodrı́guez. Encoding PAMR into (timed)
EFSMs. In 22nd IFIP WG 6.1 Int. Conf. on Formal Tech-
niques for Networked and Distributed Systems, FORTE’02,
LNCS 2529, pages 1–16. Springer, 2002.

[28] M. Núñez and I. Rodrı́guez. Towards testing stochastic
timed systems. In 23rd IFIP WG 6.1 Int. Conf. on For-
mal Techniques for Networked and Distributed Systems,
FORTE’03, LNCS 2767, pages 335–350. Springer, 2003.

[29] J. Peleska and M. Siegel. Test automation of safety-critical
reactive systems. South African Computer Journal, 19:53–
77, 1997.

[30] A. Petrenko. Fault model-driven test derivation from fi-
nite state models: Annotated bibliography. In 4th Summer
School on Modeling and Verification of Parallel Processes,
MOVEP’00, LNCS 2067, pages 196–205. Springer, 2001.

[31] I. Rodrı́guez, M. Merayo, and M. Núñez. HOT L: Hy-
potheses and observations testing logic. Journal of Logic
and Algebraic Programming, 74(2):57–93, 2008.

[32] J. Springintveld, F. Vaandrager, and P. D’Argenio. Test-
ing timed automata. Theoretical Computer Science, 254(1-
2):225–257, 2001. Previously appeared as Technical Re-
port CTIT-97-17, University of Twente, 1997.

210210210

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 09:36 from IEEE Xplore. Restrictions apply.

