752 research outputs found

    Command & Control: Understanding, Denying and Detecting - A review of malware C2 techniques, detection and defences

    Full text link
    In this survey, we first briefly review the current state of cyber attacks, highlighting significant recent changes in how and why such attacks are performed. We then investigate the mechanics of malware command and control (C2) establishment: we provide a comprehensive review of the techniques used by attackers to set up such a channel and to hide its presence from the attacked parties and the security tools they use. We then switch to the defensive side of the problem, and review approaches that have been proposed for the detection and disruption of C2 channels. We also map such techniques to widely-adopted security controls, emphasizing gaps or limitations (and success stories) in current best practices.Comment: Work commissioned by CPNI, available at c2report.org. 38 pages. Listing abstract compressed from version appearing in repor

    Security Monitoring of HTTP Traffic Using Extended Flows

    Get PDF
    In this paper, we present an analysis of HTTP traffic in a large-scale environment which uses network flow monitoring extended by parsing HTTP requests. In contrast to previously published analyses, we were the first to classify patterns of HTTP traffic which are relevant to network security. We described three classes of HTTP traffic which contain brute-force password attacks, connections to proxies, HTTP scanners, and web crawlers. Using the classification, we were able to detect up to 16 previously undetectable brute-force password attacks and 19 HTTP scans per day in our campus network. The activity of proxy servers and web crawlers was also observed. Symptoms of these attacks may be detected by other methods based on traditional flow monitoring, but detection using the analysis of HTTP requests is more straightforward. We, thus, confirm the added value of extended flow monitoring in comparison to the traditional method

    Android-IoT Malware Classification and Detection Approach Using Deep URL Features Analysis

    Get PDF
    Currently, malware attacks pose a high risk to compromise the security of Android-IoT apps. These threats have the potential to steal critical information, causing economic, social, and financial harm. Because of their constant availability on the network, Android apps are easily attacked by URL-based traffic. In this paper, an Android malware classification and detection approach using deep and broad URL feature mining is proposed. This study entails the development of a novel traffic data preprocessing and transformation method that can detect malicious apps using network traffic analysis. The encrypted URL-based traffic is mined to decrypt the transmitted data. To extract the sequenced features, the N-gram analysis method is used, and afterward, the singular value decomposition (SVD) method is utilized to reduce the features while preserving the actual semantics. The latent features are extracted using the latent semantic analysis tool. Finally, CNN-LSTM, a multi-view deep learning approach, is designed for effective malware classification and detection

    An innovative custom cyber security solution for protecting enterprises and corporates’ assets

    Get PDF
    Anti-virus software has been the main defense against malicious application and will remain so in the future. However the strength of an anti-virus product will depend on having an updated virus signature and the heuristic engine to detect future and unknown virus. The time gap between an exploit appearing on the internet and the user receiving an update for their anti-virus signature database on their machine is very crucial. Having a diverse multi-Engine anti-virus scanner in the infrastructure with the capability for custom signature definition as part of a defence in-depth strategy will help to close that gap. This paper presents a technique of deploying more than one anti-virus solution at different layers and using custom anti-virus signature which is deployed in a custom proxy solution as part of a defence in-depth strategy

    On the security of machine learning in malware C & C detection:a survey

    Get PDF
    One of the main challenges in security today is defending against malware attacks. As trends and anecdotal evidence show, preventing these attacks, regardless of their indiscriminate or targeted nature, has proven difficult: intrusions happen and devices get compromised, even at security-conscious organizations. As a consequence, an alternative line of work has focused on detecting and disrupting the individual steps that follow an initial compromise and are essential for the successful progression of the attack. In particular, several approaches and techniques have been proposed to identify the command and control (C&C) channel that a compromised system establishes to communicate with its controller. A major oversight of many of these detection techniques is the design's resilience to evasion attempts by the well-motivated attacker. C&C detection techniques make widespread use of a machine learning (ML) component. Therefore, to analyze the evasion resilience of these detection techniques, we first systematize works in the field of C&C detection and then, using existing models from the literature, go on to systematize attacks against the ML components used in these approaches
    • …
    corecore