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One of the main challenges in security today is defending against malware attacks. As trends and anecdotal

evidence show, preventing these attacks, regardless of their indiscriminate or targeted nature, has proven

di�cult: intrusions happen and devices get compromised, even at security-conscious organizations. As a
consequence, an alternative line of work has focused on detecting and disrupting the individual steps which

follow an initial compromise and that are essential for the successful progression of the attack. In particular,

a number of approaches and techniques have been proposed to identify the command and control (C&C)
channel which a compromised system establishes to communicate with its controller.

A major oversight with many of these detection techniques is the design’s resilience to evasion attempts

by the well-motivated attacker. C2 detection techniques make widespread use of a machine learning (ML)
component. Therefore, to analyse the evasion resilience of these detection techniques we first systematize

works in the field of C&C detection, and then, using existing models from the literature, go on to systematize
attacks against the machine learning components used in these approaches.
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1. INTRODUCTION
In this survey, we focus on the evasion resilience of the machine learning component(s)
of command and control detection systems. Malware detection and mitigation is an
established problem. In the last several years, the number of attacks, their sophistica-
tion, and potential impact have grown substantially. On one hand, indiscriminate at-
tacks have continued to flourish: these attacks are financially motivated, are responsi-
ble for the compromise of large numbers of machines, and result in the theft of financial
data, such as credit card numbers and online banking account credentials [Franklin
et al. 2007], or used in carrying out attacks including Distributed Denial of Service
(DDoS). Opportunist attacks usually result in the formation of a botnet, a coordinated
collection of infected hosts under the control of an attacker.
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At the same time, targeted attacks have emerged as a new threat. These attacks
target specific organizations or individuals with the intent of obtaining confidential
data, such as contracts, business plans, and manufacturing designs [Gardiner et al.
2014].

Statistics and anecdotal evidence indicate that preventing attacks, either indiscrim-
inate or targeted, is difficult. For example, news reports have indicated that even secu-
rity conscious, well funded organizations have fallen victims to attacks [Gardiner et al.
2014].

Considering the difficulties in effectively preventing attacks, defenders have looked
at ways of detecting and disrupting the individual steps that follow an initial compro-
mise and which are essential for the successful progression of an attack. This is the
so-called kill chain approach to defence [Hutchins et al. 2010]. In particular, consid-
erable effort has been spent in identifying the establishment of Command & Control
(C&C) channels, i.e. the communication channel through which attackers control com-
promised devices and receive feedback from them (for example any collected sensitive
information).

A typical detection system consists of three main components: data collection, fea-
ture extraction and a separation module. We discuss this in more detail in Section 3,
but we provide a brief overview here. Data collection represents the measurement step
- the collection of input to the system, for example netflow data from an network mon-
itor. The feature extraction step processes this data into a form that is usable by the
separation module. The output of this will usually be a set of data points representing
entities that need to be separated, such as hosts on the network or observed domain
names.

The separation module is responsible for making decisions based upon the data. This
can take two approaches - one being to label data points as either benign or malicious
(most systems will provide lower level detail for malicious points), the other is to group
data points that share similar properties. This module is usually an implementation of
a machine learning (ML) algorithm (in most cases, an existing, well known algorithm
taken from the literature). The versions of these algorithms in use are not designed
for an adversarial environment. Detection techniques using these algorithms do not
consider the case where an adversary is actively attempting to avoid detection.

While some detection papers are providing discussion on evasion resistance, there is
rarely any practical evaluation of the system’s evasion resilient properties. Meanwhile,
there is a growing collection of literature discussing attacks against various machine
learning algorithms. In Section 6, we bring out attack papers against a number of
machine learning algorithms that are commonly used in C&C detection papers.

To achieve these goals, we start by providing a generalised model for C&C detection
in section 3. Next, we review approaches for the detection of C&C activity, categorizing
the different techniques in use (section 4). We then switch to an analysis of different
techniques that attackers may use to evade existing defences by first looking at how to
categorize attacks (section 5) and then by looking at existing literature in the space of
attacks against machine learning (section 6), and finally identify open challenges and
areas of research (Section 7).
Contributions:

— We provide a comprehensive review of C&C detection techniques (Section 4).
— We identify weaknesses of the C&C detection systems by systematizing attacks

against the machine learning components (Sections 5 and 6), making use of models
defined in the field of adversarial machine learning.

— We reason why secure ML algorithms are not in use in C&C detection systems
(Section 7).
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Fig. 1. Malware attack life cycle.

— We identify open research challenges in the use of ML for C&C detection (Sec-
tion 7.6).

2. THE COMMAND AND CONTROL DETECTION PROBLEM
2.1. Malware phases
Today, malware attacks are both indiscriminate, in the form of botnets, and targeted,
evasive, and aimed at obtaining and exfiltrating sensitive data from specific individu-
als or organisations. How are these attacks carried out in practice? While the specific
attack steps and their naming may vary across publications, the literature agrees on
the general structure of malware attacks, which is commonly represented as a se-
quence of steps similar to those of Figure 1.

The command & control (C&C) phase is where the adversaries leverage the com-
promise of a system. More precisely, compromised systems are forced to establish a
communication channel back to the adversary through which they can be directly
controlled. The C&C channel enables an attacker to establish a “hands-on-keyboard”
presence on the infected system (via so-called remote access tools), to install addi-
tional specialized malware modules, and to perform additional malicious actions (e.g.
spread to other machines or start a denial of service attack). This channel can either
be centralised with a single (or small set of) control servers access by the malware, or
decentralised in a peer-to-peer botnet where there is no central server present.

2.2. Focus of this paper
In this survey, we focus on the evasion resilience of the machine learning component(s)
of command and control detection systems. Note that while we focus on the C&C phase,
the data exfiltration stage uses many of the same channels as the C&C stage and so
detection systems often cover both phases.

Command and control detection systems are distinct from host-based detection sys-
tems. A C&C detection system will usually operate at a network gateway, where net-
work traffic is collected, rather than on a per-host basis. The detection problem is
particularly challenging due to the vast amount of legitimate network traffic gener-
ated by normal network use (in a medium to large organisation this could easily reach
terabytes a day). In the case of targeted malware attacks, the C&C traffic may only
represent a minute percentage of the total traffic volume.

A further issue, in particular in the case of targeted attacks, is the desire of the
attacker to remain undetected. While indiscriminate attacks (for example botnets)
are relatively difficult to hide in the general case, it can be assumed that the well-
motivated targeted attacker will put effort into evading the particular detection meth-
ods in use.

A common feature of almost all C&C detection systems is the machine learning
component used to make decisions about packets, or hosts, through the use of clas-
sifying or clustering techniques. While detection systems do not purely comprise of a
machine learning algorithm, it is one of the core components. It may not be possible
for an attacker to evade the other stages of detection (as discussed in Section 3), so the
logical next step is to attack the core machine learning component. However, in the
research describing the design of such detection systems, there is little, if any, consid-
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Fig. 2. Generalised architecture of C&C detection systems

eration given to the security of the machine learning component. Meanwhile, there is
an increasing volume of literature describing attacks against the ML algorithms used
in these systems. While the attacks are often described in the non-specific scenario,
many of the attacks could be transferable to the C&C case.

3. GENERALISED ARCHITECTURE FOR C&C DETECTION
We now present a generalised architecture for a typical C&C detection system, shown
in Figure 2, and give a brief description of each component. This is a representation of
a deployed system, where any training phases have already occurred.

3.1. Architecture
Data generators (A). The data generators represent the entities that produce the
data evaluated by the detection system. These can take many forms. In the most
common case, these will be individual hosts within a network that generate traffic,
which can be assumed to be producing both malicious and benign data points. The
data generators could also be honeynets or sandboxes, running malware in a con-
trolled condition to extract it’s behaviour. In a large network, there could be tens or
hundreds of thousands of traffic generators.
Data aggregator (B). The data aggregator collects data from the individual data
generators into a single stream. The aggregator could be a network monitor on the
edge of a large network, or on the ISP. Depending on the size of the monitored
network, the aggregator may be hierarchical and be made up of different levels of
aggregators at different vantage points. The aggregator could be the monitor around
the honeynet/sandbox. It could also be covering external services, such as DNS.
The data aggregator will usually apply the first round of filtering on the data. The
major round of processing will be the removal of unwanted data. The unwanted
data will be anything not needed for detection, and will typically be components
such as the payload of packets. For example, if the aggregator is a traffic monitor,
the monitor will often output the data as netflow records, and may apply sampling
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(sflow) in order to control the amount of data collected due to storage/processing
limitations.
It is important to note that the aggregator is outside of the detection system. The ag-
gregator may be serving multiple detection systems, as well as network monitoring
tools, simultaneously, and as such will be configured accordingly.
Pre-processing (C). The pre-processing step represents any processing of the data
before the data goes through the feature extraction step. This could take many
forms, for example removing data that is not useful for detection from packet data.
Feature extraction (D). This step extracts the features required for the machine
learning component from the data to convert the processed data into a format that
can be used by the selected algorithm. The features that are extracted are a design
choice of the system, chosen to maximise the detection accuracy.
Optional: Data reduction (E). Some systems will often make use of extra steps in
order to reduce the size of the data, and remove possible false positives. There are
many techniques for doing this, but one of the most common is the use of whitelists
in order to remove known benign data points, blacklists to remove known benign
points (such as malicious domains) or use of a simple signature-based filter to re-
move known, easy-to-detect malware.
Separation Module (F). The separation module is the key component of the detec-
tion system, and is responsible for separating the input data points into a minimum
of the broad classes of “benign” and “malicious”. In many systems this goes further,
by splitting the two into finer categories, for example matching a malicious data
point to a specific malware variant.
The separation module can take many forms. In some cases it may simply be an
anomaly detector that identifies unusual behaviour compared to past behaviour. In
the majority of cases it will be some form of machine learning algorithm, either
supervised or unsupervised. For example, a supervised approach will use labelled
data or signatures in order to assign categories to the new data points, while in the
unsupervised approach clustering would be applied in order to separate the data.
The separation module may apply multiple ML algorithms in multiple stages to
achieve its goal.
If a classifier is in use, the classifier would have been trained using a labelled set
of data before deployment. If an on-line clustering algorithm is in use, this module
will include already clustered data to which the new point is added.
Past knowledge (G). The past knowledge component is used for supervised ap-
proaches and represents the existing information which is fed into the system in or-
der to classify the new data. In the case of an anomaly detection algorithm, the past
knowledge would be previous behaviour that can be used for comparison purposes.
If a classifier is used for the separation module, this could be a labelled dataset used
to train the classifier, or a set of signatures. If a clustering algorithm is used, this
past knowledge can be used to identify malicious and benign clusters.
Output (H). The system will usually, at the highest level, output two sets of points:
malicious and benign. However, in many cases the separation will be more fine
grained, with data points assigned more specific classes (for example malware vari-
ant) in the supervised example, or groups of similar data points in the unsupervised
example. In some cases, in particular in the case of an IDS, alerts will be outputted
that identify hosts/entities that need to be investigated. These alerts may include
extra information to assist network administrators in their investigations.

4. REVIEW OF CURRENT C&C DETECTION APPROACHES
Given the range of C&C design techniques, there is much interest in the design of
techniques to localise C&C communication traffic by exploiting its special nature.
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C&C detection falls broadly into three categories: signature-based, classifier-based and
clustering–based. Signature-based detection systems attempt to recognise known pat-
terns of behaviour in new behaviour, classifiers attempt to label samples using a model
trained on past data, while clustering-based detection methods attempt to divide the
malicious behaviour from the legitimate through statistical means.

We do not go into explicit discussion about C&C techniques in this survey, however
we refer the reader to [Gardiner et al. 2014] for a survey on C&C techniques, including
all those mentioned in this section.

4.1. Evaluation criteria
There are two primary measures of the success of a C&C detection system, the true
positive (TP) rate and the false positive (FP) rate. The true positive rate measures the
percentage of malicious samples that are labelled correctly as malware, while the false
positive rate measures the number of legitimate samples that are incorrectly labelled
as malware. There are of course other metrics used to evaluate machine learning,
however the TP and FP rates are the most commonly provided amongst C&C detection
literature and so we use these for comparison purposes. We also link the detection
systems with the attacks against machine learning algorithms presented in Section 6.

4.2. Measurement and data collection
When detecting malware C&C, the selection of which data to collect and analyse is
extremely important. For example, various detection methods require different lev-
els of detail in the data. As networks scale, it will get progressively challenging to
store all traffic — a requirement of most enterprise C&C detection techniques. Thus,
if C&C traffic traces go unrecorded, then detection systems cannot work. While some
techniques have been proposed to overcome the scalability limitations by developing
sampling techniques, they do so without considering evasion resilience requirements.
Also, little attention has been paid to tuning measurement in response to C&C evasion.

Effective monitoring and data collection are crucial for detection techniques. Traffic
monitoring is performed by routers, commonly using Netflow [Cisco Systems Inc. 2016]
feature or the sFlow feature. Alternatively, standalone measurement devices observing
traffic via network mirroring devices or splitters (optical or electrical) are more flexible
than in-router methods [Cranor et al. 2003]. In both cases, traffic traces are exported
to collectors which store the traces.

There are monitoring systems that claim to be able to store all of the data. This will
be affected by scalability issues. Even if all of the data can be stored (which is not
guaranteed on larger networks), the processing of the data (such as applying an C&C
detection technique) is far less scalable and will almost certainly encounter issues on
a large system.

4.3. Signature-based methods
In signature-based detection methods, malware C&C is detected by looking for known
patterns of behaviour. Signatures are generated for known malware samples, and then
new traffic is compared to these signatures [Jacob et al. 2011].

Signatures are generated by analysing confirmed C&C traffic collected from various
sources. The primary sources are honeynets and sandboxes. Malware is run in con-
trolled conditions, and its activity recorded. Most aspects of the malware’s network
behaviour can be included in a signature, from statistical properties such as flow sizes,
to detailed information such as packet contents.

4.3.1. Communication pattern detection. Malware variants often have very particular pro-
tocols when it comes to communication. These are often noticeably different compared
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to legitimate traffic, both in packet contents and in the behaviour of the communica-
tion. This makes signature based detection methods very good for detecting known
variants of malware. Many different pieces of malware may also be based upon a com-
mon component, meaning that a single signature can be used to detect multiple pieces
of similar malware. A popular method for detection is to produce signatures based
upon the contents of packets. It is often the case that packets of data involved in the
C&C of malware will be almost identical across multiple hosts. Even though some
malware families use encryption in their communications, that encryption is usually
a simple, lightweight algorithm (as the encryption is often for obscurity rather than
security), so there are similarities among different ciphertexts. For example, in the
work of Rieck et al. [2010], in which n-gram based signatures are generated for the
payloads of malware that is run under controlled conditions in a sandbox. Signatures
are also generated for legitimate traffic, and with this method the system can achieve
detection rates of close to 95%, with a false positive rate of close to zero when running
on a network gateway. Rossow and Dietrich [2013] extend this idea by providing a sys-
tem for handling encrypted C&C channels. They leverage the fact that many malware
variants use hard-coded, simple keys, and so they extract these keys through reverse
engineering and attempt to decrypt all packets before pattern matching is applied.

Zand et al. [2014] propose a system for automatically generating text-based signa-
tures for botnet detection. The system works by extracting common strings from ob-
served traffic, and then ranking the collected strings by first clustering network traces,
and then calculating the information gain for each string based upon the entropy of it’s
appearance in clusters. The highly-ranked strings can then be used for generating sig-
natures. The system is tested on traffic collected from 1.4 million malware samples.
After manually analysing the top 100 strings, the system found 29 good signatures, 41
signatures for benign traffic and 30 unknown, which is an improvement on previous
work [Kim and Karp 2004].

Further to this, Rafique and Caballero [2013] proposed a system for large-scale auto-
matic signature generation. The system uses network traces collected from sandboxes
and produces signatures for groups of similar malware, covering numerous protocols.
This system is able to identify numerous malware examples with a high TP rate, and
experiences a low false positive rate due to the specificness of the signatures gener-
ated. The signatures are designed to be exported to intrusion detection systems such
as Snort for use in on-line detection.

BotHunter [Gu et al. 2007] is a system for identifying compromised hosts based upon
the actions they perform, more specifically the pattern of infection and initial connec-
tion to a C&C server. There are 5 steps to this pattern: inbound scan, inbound exploit,
binary download, outbound C&C communication and outbound infection scanning (for
propagation). These steps are identified as being a good generalisation of the typical
infection model for a botnet. Detection is performed by looking for combinations of
these actions within a certain time period. Tested on a live campus network and the
system is able to achieve a 95% TP rate and low false positive rate.

4.3.2. DNS traffic analysis. There has been a large amount of work which attempts to
provide a detection mechanism that can identify domains associated with malware at
the DNS level. As we have seen, DNS is used by a large amount of malware that makes
use of a centralised command and control structure.

Nelms et al. [2013] propose ExecScent, a system for identifying malicious domains
within network traffic. The system uses traces of known malware samples to create
signatures. The signatures are not just based upon domains, but also the full HTTP
requests associated with them. This system is unique, however, in that to reduce false
positives the signatures are tailored to the network that they will be used on, based
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upon the background network traffic. This accounts for the variance in the behaviour
on different networks.

4.3.3. Malicious server detection. A slightly different approach is to attempt to detect the
servers used for command and control directly. One approach for this is to use probing.
Nappa at al. [2014] propose Cyberprobe, a system for automatically generating signa-
tures for malware families by collecting traffic within a honeynets (and collecting data
from public sources), clustering the traffic and creating a set of signatures for each clus-
ter. The signatures are used to create probes. The system then probes IPs, and matches
the responses to signatures to identify malicious servers. The system is extremely scal-
able, and can perform a scan of the whole IPv4 address space. Xu et al. [2014] provide
a follow-up piece of work which creates the signatures by applying dynamic binary
analysis to malware samples. This has the benefit that signatures can be extracted
without a working server (a limitation of network trace-based approaches). Both of
these approaches were successful in identifying multiple new servers for certain mal-
ware families, with 0% FP rates.

4.4. Classifier based methods
In a similar fashion to signature-based methods, classifier-based methods use past
observations to assign labels to new samples. A classifier is trained using a dataset of
labelled data with each point represented by a set of features. The labels for each data
point in the dataset are known, making this an example of supervised learning.

The training data can be collected from many sources. Again, malicious data can be
collected fro honeypots and sandboxes, or cam be collected from actual traffic that has
been identified as malicious. Legitimate data is often collected from live network traffic
that has any known maliciousness removed, or taken from known public sources. For
example, sets of legitimate domains can be found by looking at the Alexa rankings.

4.4.1. Communication pattern detection. Rahbarinia et al. [2013] provide a two-step sys-
tem for identifying hosts participating in malicious P2P behaviour. First, a boosted
decision tree classifier identifies hosts that exhibit any P2P behaviour. Then, a 2-
step process identifies the P2P network that the host belongs to. A classifier is trained
for each different P2P application (the actual classifier is interchangeable, although
they test with the KNN, gaussian and parzen classifiers), and then the host traffic
is passed through all classifiers. If one classifier outputs a score above a threshold, the
host is viewed as running that application. A random forest classifier is used to solve
cases where two applications are matched. The first stage is able to identify P2P hosts
with a TP rate of up to 90%, which can be boosted to 98.6% if the random forest clas-
sifier is used with a short time window. The effectiveness of the application classifiers
varies effectiveness. For example, the legitimate applications and Zeus botnet can be
identified with a 90% TP rate and at most 3% FP rate. The Storm and Waledac botnets
achieve lower TP rates at 45% and 40% respectively, but with lower FP rates. The total
misclassification error is 0.68%.

4.4.2. DNS traffic analysis. Exposure [Bilge et al. 2011] is a system for applying large-
scale, passive DNS traffic analysis in order to identify malicious domains (not lim-
ited to those related to C&C behaviour, rather those involved in any malicious be-
haviour). The system extracts 15 features (time-based, DNS-based, TTL-based and do-
main name based). A training set is built using sources of known benign and malicious
domains (Alexa ranking, blacklists etc). This is then used to train the J48 classifier
(an implementation of C4.5 decision trees). The system is tested on 100 billion DNS
queries, using 10-fold cross validation. The system achieves detection rates of up to
98.5%, with a false positive rate of around 1%. The authors state that an adversary
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could possible evade the system through the use of rate-limiting DNS queries from
infected hosts or by using uniform TTL values, although it is argued that these are
unlikely to occur as they will lead to a drop in the performance of the malware.

Kopis [Antonakakis et al. 2011] makes use of the global view of the upper DNS hi-
erarchy. In Kopis, a classifier is built that, instead of looking at the domains’ IP and
name, looks at the hosts that make the DNS requests. This leverages the fact that
malware-related domains are likely to have an inconsistent, varied pool of requesting
hosts, compared to a legitimate domain which will be much more consistent. The geo-
graphic location is also taken into account: requesters inside large networks are given
higher weighting as a large network is more likely to contain infected machines. A
feature set representing this information is used to train a random forest classifier.
When tested on 5 months of data taken from two authoritative name servers, the sys-
tem achieved up to a 98% TP rate with a 0.5% FP rate, and was even able to identify a
new botnet based in China, which was later removed from the internet.

While not explicitly analysing DNS traffic, Ma et al. [2009] test the effectiveness of
three popular classifiers (bayes, SVM and logistic regression (LR)) in identifying
malicious domains. Datasets were created by combining blacklist data (for malicious
domains) and online directory data (for benign domains) and then producing a dataset
using a number of automatically extracted features. When tested using a 50-50 train-
ing/testing split, the SVM and LR algorithms achieved error rates of 1-3%. The in-
teresting point is that the Bayes classifier, often chosen for its speed and scalability,
achieved a higher error rate of 2.5-5%. The authors also tested the case where test
data from a different dataset (different directory and blacklist)to the dataset that was
used for training is used. The error rate was increased to 44%, which shows that in
some cases training and testing on data from the same source may not give accurate
real-world results.

4.4.3. Malicious server detection. Probing is not the only technique used for detecting
servers. Bilge et al. [2012] propose DISCLOSURE, a system for identifying malicious
servers from netflow data, extracting features related to flow sizes, client access pat-
terns and temporal behaviour. In particular, the system is designed to work on very
large (ISP level) datasets, for which sampling may have been applied. Labelled netflow
records are used to train a random forest classifier, which is able to achieve detection
rates of 60-70%, with false positive rates of 0.5-1%. To reduce false positives, informa-
tion about ASs (autonomous systems) is taken from three public malicious server lists
(FIRE, EXPOSURE and Google Safe Browsing), and a reputation score is calculated
for each AS using the information from all three sources. Servers found on networks
with an AS score below a threshold are assumed to be false positives and so are ig-
nored, as the associated network is assumed to not participate in malicious activities.
The authors also test the evasion resilience of the system, by creating simulated net-
flow traffic for two botnets that introduce random delays between network connections,
and random padding to vary flow lengths, making the botnets appear more like benign
servers. By feeding this netflow data into their classifier, they were able to a) success-
fully detect the botnets, b) improve general detection rates and c) detect botnets that
were not previously detected by their system (the netflow data that the detection was
applied to was different to the data inputted into the classifier).

4.5. Clustering based methods
The main disadvantage of using a signature or classifier based detection method is
that these systems are usually not as effective at detecting new, or updated, malware
due to an inherent assumption of stationary data. As malware changes freuquently,
every time a new variant of malware is discovered, or an existing piece updates itself,
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the signatures have to be recreated or the classifier retrained. If the new variant is
not discovered, then it is unlikely to be detected by these systems. Clustering based
systems can account for unknown behaviour. In these systems, the algorithms attempt
to separate different patterns of behaviour, without necessarily knowing itself what is
malicious or benign. The output of clustering is often used to produce signatures.

One particular issue in detecting malware in large organisations is the problem of
”dirty” logs. This refers to the large variety in logs that are kept by different systems
which are often incompatible and inconsistent, plus may also contain a large amount
of duplication between different sets of logs. Yen at al. [2013] propose a solution to this
in the form of Beehive. In Beehive, log data is first normalised; for example hosts are
all mapped to IP addresses and timestamps are all converted to UTC. A set of features
are then extracted for each host, which can be tuned to the setting, but as an example
contain traffic volume information and enterprise policy breaches (for example access-
ing blocked pages). A iterative variant of k-means clustering is then applied which
results in a set of outliers which are then labelled as suspicious. These hosts are then
subject to manual investigation. When tested on a large enterprise network, the sys-
tem produced alerts which were 25% malicious, 45% policy violations and 35% labelled
as other.

Zhang et al. [2014] propose a system for detecting P2P botnets that differs from pre-
vious attempts in that it is unsupervised, meaning no knowledge of existing malicious
behaviour is required. The system first applies clustering of flows in order to identify
hosts that have taken part in P2P activity, and then applies two layers of filtering and
then hierarchical clustering in order to group hosts that are taking part in a mali-
cious P2P network. They show that it can separate malicious P2P traffic from benign
with a 100% TP rate, and a low 0.02% FP rate.

In Botgrab, Yahyazadeh and Abadi [2014] also cluster flows using a custom online
flow clustering algorithm, but then apply a reputation engine to identify hosts that
have a negative reputation. Reputation is based upon participation in coordinated ac-
tivities, an indication of botnet membership. The reputation engine can be combined
with knowledge of hosts participating in malicious activities (for example DDoS) to
achieve a true positive rate of at least 97% and FP rate of at most 2.3% (if malicious
activities knowledge is not used this is reduced to 92% and 2.02%).

Yen and Reiter [2008] propose TĀMD, a system for identifying candidate groups of
infected computers within a network by aggregating similar flows. Three aggregators
extract aggregates of hosts based upon communication destinations, packet payloads
and the host platform (OS). In particular, the destination aggregator makes use of a
k-means clustering variant. This system is able to identify all of the malicious hosts
in most cases (when VM outputs are inserted into background traffic), except for an
IRC botnet which achieved a 87% detection rate.

4.5.1. DNS traffic analysis. We have already discussed signature and classifier based
detection systems that make use of DNS traffic analysis. We will now explore sys-
tems that use clustering based methods. One proposed detection method is to make
use of the reputation of domain names to decide if they are related to malicious ac-
tivities [Antonakakis et al. 2010]. In this system (Notos), domains are clustered first
by the IP addresses associated with them, and secondly according to similarities in
the syntactic structure of the domain names themselves. The k-means clustering al-
gorithm is used. These clusters are then classified as malicious or not based upon a
collection of whitelists and blacklists: domains in a cluster that contains blacklist do-
mains are likely to be malicious themselves. This system is run on local DNS servers
and can achieve a true positive rate of 96% and a low false positive rate.
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In an attempt to identify domains accessed as the result of a DGA, Schiavoni et
al. [2014] apply clustering to domains extracted from DNS queries. The system first
filters and removes domains that are human pronounceable, The remaining domains
are then clustered with those collected from blacklists using the DBSCAN clustering
algorithm, using features related to the IPs that the domains resolve to. These clusters
are used to extract fingerprints, which are used to match new domains to known DGAs.
When tested on a 3-month dataset taken from the DNSDB, with Conficker, Torpig and
Bamital domains inserted, the system could filter out 50%, 35% and 62% of the DGA
domains respectively, resulting in recall between 81 and 94%. The system also contains
an intelligence module, that is able to track the evolution of IPs that groups of domains
point to in order to monitor changes in botnet behaviour.

4.5.2. Fast flux detection. In a fast flux network (FFSN) the command and control
server is hidden behind a proxy of numerous compromised hosts. Performing DNS
queries on the domain of the server will return a large, and constantly changing, set of
IP addresses. As you may expect, this type of behaviour is relatively easy to detect.

There are some differences between fast-flux service networks (FFSNs) and content
delivery networks (CDNs) [Holz et al. 2008]. To detect a FFSN is a simple process,
due to the two characteristics of an FFSN: short TTL values in DNS responses and
non-overlapping DNS responses.

It is also possible to automatically detect which domains belong to the same FFSN.
In Fluxbuster, Perdisci et al. [2012] apply hierarchical clustering to domains so they
are grouped according to overlap in the returned IP addresses. By then comparing the
clusters to previously labelled data, they can be classified (using the random forest
classifier as flux or non-flux, revealing domains that make use of the same network.
Tested on five months of live traffic data, the system is able to identify domains with a
less than 1% FP rate,

4.6. Hybrid detection systems
BotMiner [Gu et al. 2008] is a system for detecting infected hosts without previous
knowledge of specific botnets. In this system, bots are identified by clustering hosts
that exhibit similar communication and (suspected) malicious activities. Activities
are monitored using custom signatures for the Snort IDS. The clustering (x-means)
groups hosts according to the botnet that they belong to, using the fact that hosts
within the same botnet are likely to exhibit similar communication patterns, and will
usually perform activities synchronously (such as DDoS attacks). When tested on 10
days of university traffic, with the traffic of 8 botnets inserted, the system achieved a
100% TP rate for 6 out of the 8 botnets, with the other two achieving TP rates of 99%
and 75%. The system achieves a low false positive rate.

Antonakakis et al. [2012] describe a system for identifying previously unseen do-
main generation algorithms (DGAs) by taking advantage of the fact that DGAs result
in large amounts of Non-Existent Domains (NXDomain) responses, and bots within
the same botnet will generate similar NXDomain traffic. The system has a 3 step pro-
cess. First, domains are clustered in two different ways using the x-means algorithm,
first by string-based features of the domain name, and secondly by domains which
share source hosts. These two sets of clusters are then combined through intersection,
and any clusters small enough discarded. These clusters are then passed to a filter-
ing step, that makes use of a multi-class variant of the Alternating Decision Trees
(ADT) classifier (trained on previously discovered DGAs) to remove known DGAs. The
system then produces a Hidden Markov Model (HMM) for each DGA that can be used
to evaluate single domain names. When tested on the traffic data from a US ISP over
a 15 month period 360,700 NXDomains were discovered, queried by 187,600 distinct
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hosts. The system identified 12 DGAs, of which 6 were new. For assigning domains to
known DGA algorithms using the HMMs, TP rates of 99.7% and FP rates of 0.1% can
be achieved.

4.7. Graph-based detection
A slightly different approach for detection is to make use of graph based

detection approaches. These are becoming important due to the ability of
graphs to be able to naturally represent communication patterns. While
these approaches do not directly relate to the discussion on ML attacks, we
include to provide examples of upcoming non machine learning based detec-
tion methods.

Several works [Collins and Reiter 2007; Iliofotou et al. 2008; Iliofotou et al.
2009; Zhao et al. 2009; Jelasity and Bilicki 2009] have applied graph analy-
sis to detect botnets. The technique of Collins and Reiter [Collins and Reiter
2007] detects anomalies induced in a graph of protocol specific flows by a bot-
net control traffic. They suggest that a botnet can be detected based on the
observation that an attacker will increase the number of connected graph
components due to a sudden growth of edges between unlikely neighbour-
ing nodes. While it depends on being able to accurately model valid network
growth, this is a powerful approach because it avoids depending on proto-
col semantics or packet statistics. However this work only makes minimal
use of spatial relationship information. Additionally, the need for historical
record keeping makes it challenging in scenarios where the victim network
is already infected when it seeks help and hasn’t stored past traffic data. Il-
liofotou et al. [2008; 2009] also exploit dynamicity of traffic graphs to classify
network flows in order to detect P2P networks. It uses static (spatial) and
dynamic (temporal) metrics centred on node and edge level metrics in ad-
dition to the largest-connected-component-size as a graph level metric. Bot-
grep [Nagaraja et al. 2010] proposes a data mining technique to discover P2P
graphs based on searching for expander graphs using random walks. Boty-
acc [Nagaraja 2014] performs a similar operation, by producing a dual graph
of the communication graph, applying the Laplace-Beltrami operator to re-
duce the dimensionality of the data and the applying random walks to ex-
tract P2P networks. This can achieve detection rates of up to 99%, with an
false positive rate below 0.1%.

Invernizzi et al. [2014] make use of a graph-based approach in order to
detect the binary download stage of the malware infection process in large
scale networks. Information collected from HTTP traffic is used to build
undirected neighbourhood graphs, where nodes represent IP addresses, do-
main names, FQDNs, URLs, URL paths, file names, and downloaded files
(represented as hashes). A graph is generated for each host that exhibits
malware-related behaviour (such as domain-fluxing). Graphs are then as-
signed a metric, based upon the graph properties, on the likelihood that the
candidate is malicious. When tested on a week-long ISP dataset, the system
can achieve 60% precision and 90% recall on the malicious class, and 99.69%
precision and 98.14% recall on the benign class, and is successful in identify-
ing a large number of malicious downloads.

Manadhata et al. [2014] incorporate belief propagation into a graph model
for detecting malicious domains. An undirected graph is produced, where
nodes are hosts and domains, and edges go from hosts to domains they access.
Using a ground truth instantiated from public whitelists and blacklists, be-
lief propagation is applied until stabilisation occurs, with a domain labelled
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Table I. Performance, and ML technique, of a variety of detection systems. Final two colums represent section numbers in this
survey (NGE = not explicitly given in paper)

System Target TP Rate FP Rate ML Algorithms Confirmed
ML At-
tacks

Possible
ML At-
tacks

Notos [Anton-
akakis et al. 2010]

Domains 96.8% 0.38% k-means clustering 6.2.1, 6.2.2,
6.4.1, 6.4.1

Kopis [Anton-
akakis et al. 2011]

Domains 73.6-
98.4%

0.3-0.5% Random Forest classi-
fier

6.1.1, 6.1.2,
6.1.3

6.3.3

Exposure [Bilge
et al. 2011]

Domains 98.5% 1% J48 decision trees
(C4.5 variant)

6.1.1, 6.1.2,
6.3.3

Pheonix [Schiavoni
et al. 2014]

DGA NGE
(80-94%
recall)

NGE DBSCAN clustering 6.2.1, 6.2.2,
6.4.2

Antonakakis et al.
DGA [2012]

DGA 99.7% 0.1% x-means clustering,
Alternating decision
trees

6.2.1, 6.1.1,
6.2.2, 6.4.1

FluxBuster [Perdisci
et al. 2012]

FFSN NGE <1% Hierarchical cluster-
ing, C4.5 decision
trees

6.2.1, 6.4.1,
6.4.2

6.2.2

Zhang et al. [2011] P2P 100% 0.02% Flow clustering
(distance-based)

6.2.2, 6.2.1,
6.4.1, 6.4.2

Zhang et al. [2014] Stealthy
P2P

100% 0.2% BIRCH clustering, Hi-
erarchical clustering

6.2.1, 6.4.1,
6.4.2

6.2.2

PeerRush [Rah-
barinia et al. 2013]

P2P 90% <3% Decision trees, KNN,
Gaussian and Parzen
classifiers, Random
Forest classifier

6.1.1, 6.1.2,
6.1.3, 6.2.2

Firma [Rafique
and Caballero
2013]

Multi-
protocol
C&C

NGE 0.00001%
(live
traffic)

Custom clustering 6.2.1, 6.2.2,
6.4.1, 6.4.2

Botgrab [Yahyazadeh
and Abadi 2014]

Hosts 97% 2.3% Custom online flow
clustering

6.2.1, 6.2.2,
6.4.1, 6.4.2

Beehive [Yen et al.
2013]

Hosts NGE NGE k-means variant 6.2.1, 6.2.2,
6.4.1, 6.4.2

TĀMD [Yen and
Reiter 2008]

Hosts 87-100% NGE k-means clustering 6.2.1, 6.2.2,
6.4.1, 6.4.1

BotMiner [Gu et al.
2008]

Hosts 75-100% NGE (low,
0.03%)

x-means clustering,
signatures (SNORT)

6.2.1, 6.2.2,
6.4.1, 6.3.3,
6.4.1

Disclosure [Bilge
et al. 2012]

Servers 60-70% 0.5-1% Random Forest classi-
fier

6.1.1, 6.1.2
6.1.3

as malicious if the final belief value is above a threshold. This can achieve a
TP-rate of 95.2% and an FP rate of 0.68%. They also show that the system can
be run in near real time (processing 3 hours of data takes 16 minutes) mean-
ing that malicious domains could be detected within 16 minutes of them first
appearing.

5. CATEGORIZING ATTACKS AGAINST MACHINE LEARNING
As is evident in Section 4, many (if not most) detection systems make use of a machine
learning algorithm (or set of algorithms) as the main component of the system for
either identifying or isolating C&C traffic. Before we discuss specific attacks against
the machine learning algorithms in section 6, we first discuss how to categorise attacks
using various models from the literature. We also point out some of the weaknesses of
the ML algorithms, and define the general threat model.
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5.1. Weakness of ML algorithms
Early command and control detection systems were designed for detection of indis-
criminate malware attacks, however the world has since changed. There has been an
increase in more sophisticated, targeted malware attacks that specifically try to evade
specific detection/ML systems. According to Verizon [Verizon RISK Team 2013], these
now make up 25% of all attacks. The ML algorithms used in the early detection sys-
tems as discussed in Section 4 is in their design intentions. The ML algorithms were
designed for use in situations where an adversary is not trying to have an impact on
the outcome of the algorithm. The same machine learning algorithms are still in use,
even in work published within the last year, whereas the attack field has evolved from
indiscriminate to targeted attackers. Even though the security community [Barreno
et al. 2010; Barreno et al. 2008] agree that a threat model should be constructed be-
fore the learning component is designed, this step is missing from the ML component
design step in almost all detection systems. Performance of the learning component
in ideal conditions is usually the primary consideration when choosing an algorithm.
An interesting paper from Mersinal et al. [2015] discovers through surveying that IT
security professionals (non-academics) are risk adverse, and will generally favour se-
curity over operability. This contradicts what we see in C&C detection papers, where
performance in terms of both processing time and TP and FP rates is the driving force
behind the choice of algorithm, with a lack of proper security considerations.

5.2. Attacker
The attacks described in this section are, in most cases, too advanced for the indiscrim-
inate attacker, for example an independent botmaster using a purchased rootkit. For
the indiscriminate attacker, the target for attack is in the most case individuals and
small businesses who are unlikely to have any sort of detection system past simple,
consumer anti virus products that can be easily evaded.

For the well-resourced and well motivated (e.g. state sponsored) targeted attacker,
these attacks are well within their capability. These attackers are knowledgeable pro-
fessionals who can put in the effort required to carry out the attacks, due to the large
“profit” (in terms of money, information and disruption depending on the target) that
may be gained.

5.3. Categorising attacks
Barreno et al. [2006; 2011] devise a set of properties for categorising attacks against
machine learning algorithms (in particular, supervised-learning algorithms) (Table II).
Their categorisation takes into account the goals of the attack in terms of the specificity
(targeted or indiscriminate), the security violation being instigated (integrity or
availability) and the influence of the attack (causative or exploratory).

5.4. Attack goals
At the broadest level, the attacker will have one of two goals:

— The attacker will want to achieve anonymity in the sense that they want to hide
their presence.

— The attacker wants to compromise the integrity of the detection technique so that
it becomes unusable.

While both attacks will achieve the same end goal of the attacker avoiding detection,
in the second case the defenders will be aware that they are under attack, alerting
them to the attacker’s presence. In the first case, however, the attacker’s presence is
not revealed.
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Table II. Properties of attacks against supervised learning classifiers according to Bar-
reno et al. [2006]

Description

Influence Causative Alter the training process through in-
fluence over the training data

Exploratory Do not change training data, but use
techniques such as probing or offline
analysis to discover information

Specificity Targeted Focus a particular point, or set of
points

Indiscriminate Attacker has flexible goal, such as to
increase false positives

Security Violation Integrity Results in intrusion points being la-
belled as normal (false negatives)

Availability Results in many classification errors
that increases both false negatives and
false positives, resulting in system be-
coming unusable.

Feature Set Training 
Dataset

Classifier Algorithm

O

F
FTC

TCFC

FT

C

T

Fig. 3. Levels of attacker knowledge according to Srndic and Laskov [Šrndic and Laskov 2014]. O indicates
attacker has little knowledge of any component.

These goals can be expressed more precisely using the Barreno model, and subse-
quent expansion by Biggio et al. [2014b]. Biggio et al. expand the Barreno model to
represent attacks against classifiers, but similar goals apply to attacks against clus-
tering algorithms. The Biggio model makes use of the specificity and security violation
classifications from the Barreno model, with the addition of the “privacy” security vio-
lation, indicating a case where an attack will try to gain information from the classifier.

5.5. Attacker knowledge
One of the main considerations when discussing an attacker is the level of knowledge
that an attacker has about the target system. In their attack against the PDFRate
system, Šrndic and Laskov [2014] split this into knowledge about the classifier (and it’s
parameters), the feature set in use and the training set. The attack knowledge is then
a combinations of these, with knowledge of all three being the “perfect” case. This is
illustrated in Figure 3. There is also the case that the attacker can gain no knowledge
at all. This model can be transferred to the clustering example, by replacing “training
dataset” with “test dataset” and “classifier algorithm” with “clustering algorithm”. It is
worth noting, however, that knowledge of the test dataset in a clustering algorithm is
different to that of the training data used in a classifier. The training data used within
a classifier is pre-existing and may be publicly available so could easily be gained by
the attacker. However, the input to a clustering algorithm (test dataset) includes all

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16

the new data (in the network example the new traffic data) so is more likely to only be
estimated by the attacker.

Biggio et al. [2014b]. classify attacker knowledge specifically for the classification
setting with more detail. As well as knowledge of the (1) training data and (2) feature
set, they also incorporate the knowledge of the (3) learning algorithm and its decision
function, (4) the decision function and its parameters and (5) the feedback available
from the classifier (for example the class labels applied to sample queries from the
attacker).

The attacker knowledge can vary between systems. There is a difference in systems
that stem from published research, to commercially designed systems. Research pa-
pers that describe the design of systems are likely to, at a minimum, contain the ML
algorithm in use, plus also the training/test data used (which may be publicly avail-
able) and at least a subset of the features used. Any production system that is released
as open source software reveals the ML algorithm and feature set, although the train-
ing data may be user specific. For commercial, closed source software, probing attacks
or reverse engineering can be used in order to discover at least partial information
about the system [Corona et al. 2013].

The targeted attacker can improve their knowledge through research and social en-
gineering techniques. For example, the motivated attacker could learn of contracts
between an organisation and detection system provider, leading them to learn the de-
tection system in use.

5.6. Attacker Capability
It is also important to consider the capability of the attacker. We assume that the
attacker has no access to the control (ML) algorithm itself, rather they are limited to
modifying the input (training or testing) data.

The ability of the attacker to change the data is in part limited by the specific ap-
plication under consideration. For example, in the case of PDF files certain features
can be changed freely, while changing some features has a direct impact on other fea-
tures [Šrndic and Laskov 2014].

Biggio et al. [2014b] define the capability of an attacker (against classification algo-
rithms) using four measures:

(1) The attacker influence in terms of causative or exploratory.
(2) Whether (and to what extent) the attack affects the class priors.
(3) The amount of and which samples (training and testing) can be controlled in each

class.
(4) Which features, and to what extent, can be modified by the adversary.

This is also applicable to the clustering scenario (minus (2)).

5.7. Key terms
Some key terms that we will use throughout the rest of this section are as follows:

Learner. This refers to the machine learning algorithm
Surrogate learner. A surrogate learner is a copy of the learner produced by the ad-
versary for testing attacks before they are carried out against the target. The sur-
rogate has differing levels of completeness based upon the attacker knowledge. For
example, the dataset in use could be an estimation of the one used by the target, or
the learning algorithm, if unknown, could be substituted.
Production learner. The production learner is the instance of the learner in use by
the target.
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6. A SURVEY OF ATTACKS AGAINST MACHINE LEARNING ALGORITHMS
In this section we discuss attacks, taken from from the literature, against the machine
learning algorithms used in the malware C&C detection systems found in Table I.
We group attacks by their goal (evasion or poisoning), and by the group of algorithms
affected (classifiers or clustering). We then present a number of techniques for each,
give examples of demonstrated attacks from the literature and discuss any limitations
of the attacks. Attacks are categorized according to the models defined in section 5. In
section 7 we discuss the impact of these attacks in C&C detection problems.

We also look at some of the existing host-based techniques used by current malware
to evade detection.

6.1. Evasion attacks - classifiers
6.1.1. Mimicry attack. Wagner and Soto [2002] introduced the idea of a mimicry attack,

an attack in which the goal is to craft an attack point that appears as a benign point,
hence is an example of an exploratory, integrity attack, that can be either targeted
or indiscriminate. The attack either aims to move the attack point into the benign
area (indiscriminate), or attempts to mimic a particular benign point (targeted). The
attack attempts to modify the features of the attack point such that an anomaly de-
tector or classifier labels the point as benign. The attack is limited by the ability of
the attacker to modify the features under consideration by the learner. This attack
typically does not require knowledge about the classification algorithm in use, as the
attack is focused on exploiting knowledge of the distribution of malicious and benign
points.

Affected algorithms. The mimicry attack works by effectively reducing the distance
between the attack point and benign points. The attack has been demonstrated against
the random forest, Bayes and SVM classifiers. As random forest is a multiple decision
tree based classifier, the attack should also be effective against single decision tree-
based algorithms such as C4.5. Biggio et al. [2013] demonstrate a gradient descent
attack which theoretically works against any classifier with a differentiable discrimi-
nant function, including SVMs and neural networks.

Demonstrated attacks. Wagner and Soto [2002] demonstrate the mimicry attack
against a host-based IDS, with a goal of identifying any traces of system calls that
are accepted by the IDS, but still carry out some malicious activity. The attack can be
performed by either adding no-ops (system calls that have no side effect on the sys-
tem) or by removing system calls that cause alarms by replacing them with a different
sequence of calls, that achieve the same end result (in exploiting the system). An exam-
ple of this is to replace a sequence that opens up a root shell, with one that adds a new
root user to the shadow file. The attack is mimicry due to the fact that the attackers
find a sequence of calls that are accepted (labelled as benign) by the IDS, and so the
attack “mimics” a legitimate sequence of system calls. The attack is tested against the
pH IDS [Somayaji and Forrest 2000], by modifying the autowx attack script exploit.
The attack is shown to be able to successfully evade the IDS.

Šrndic and Laskov [2014] demonstrate a mimicry attack against PDFRate [Smutz
and Stavrou 2012], a system for the detection of malicious PDF files. PDFRate uses
the random forest classifier to assign a score to PDF files, indicating their mali-
ciousness. The system extracts 202 features by reading the file at the byte level, and
applying regular expressions to extract the feature values. By inserting data into to
the space between the cross-reference table and the trailer in the PDF file, attacks
can be performed that will influence the output of PDFRate, but will not affect the
rendering of the file in a normal pdf reader, which will parse the file and skip that
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data. To perform a mimicry attack, the modifiable features are set to match those of a
benign file. The attack, using a surrogate classifier, tries different benign files until one
is found that suitably reduces the score outputted by the surrogate. The paper focuses
on attacks where the feature set is known (around 70% of the features are described
in the original paper). Attacks are tested first on a local version of PDFRate that is
built using the available knowledge based upon the adversary, and then the best strat-
egy is applied and the result uploaded to PDFRate, with a goal of reducing the score
assigned to the file. The attacker can modify the values of 35 features and increment
a further 33. This is partly limited by the inter-dependability of the features. The at-
tacks when applied onto files, which are then uploaded to PDFRate, can reduce the
outputted score by 28-42% for attacks. Interestingly, when using a surrogate classi-
fier using SVM rather than random forest, and then uploading the attack points to
PDFRate, the scores outputted by PDFRate are still significantly reduced.

Biggio et al. [2013] demonstrate a mimicry attack with a gradient descent component
against the SVM classifier and a neural network. The attack is considered in both
the perfect knowledge (PK) situation, where the attacker knows all components of the
classifier, and the limited knowledge (LK), where they only know which classifier is
in use and the feature set, but not the training data or trained classifier (although
they can produce an estimated surrogate training set). The attack modifies feature
values until the attack point changes label. This is performed using a gradient descent
approach with a component that favours points that imitate benign points. Including
the mimicry attack makes the attack sub-optimal (when compared to the non-mimicry
version described in section 6.1.2). The attack is tested on two datasets, a dataset
of handwritten digits (represented as grey scale images) for the perfect knowledge
case using a linear SVM classifier, and for the case of malicious PDF detection (with
features extracted according to previous work by Maiorca et al. [2012]) in both the
PK and SK cases, using both SVM and neural networks. The handwritten digits were
modified by changing the grey scale pixel values, which the PDF files were modified
by adding objects (and therefore keywords). In the handwritten digits example using
SVM with the linear kernel, the attack when containing the mimicry component is
slower (requiring more iterations), but can cause the digits to appear as another, and
in the limited knowledge case could lead to a higher probability of evading the target
classifier, requiring up to 50 modifications to achieve a false negative (FN) rate of 1. In
the malicious PDF example, using linear SVM, the mimicry attack is effective in both
the PK and LK cases. 50 modifications (iterations of the gradient descent) increases
the FN rate to 1 or 0.75 for the PK and LK cases respectively. For the RBF kernel, 15
modifications still increases the FN rate up to around 0.8 in the PK case, or 0.6 in the
LK case.. The neural network is more susceptible to the mimicry attack, requiring only
20 modifications in the perfect knowledge case to result in an FN rate of 1, while in the
limited knowledge case an FN rate of 0.5 can be achieved with 50 modifications. When
not using the mimicry component, 50 modifications in the PK case only results in a FN
rate of 0.2. It is explained that as the pure gradient descent only finds a local minimal,
this may not be enough to evade, however when incorporating the mimicry component
the attack point is drawn towards an area densely populated by benign points.

Traffic morphing, which shares similarities with the mimicry attack, has been shown
to be effective against the Bayes classifier. Wright et al. [2009] show that it can be
enough to simply emulate the traffic feature(s) that is the focus of the detection system.
They show that this works in the case of identifying web pages by traffic volume using
the bayes classifier, for which the accuracy can be reduced from 98% to 4%, or 63% if
the classifier is trained with attack samples.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:19

Attack limitations. The attack is limited in two ways. First, there could be features
that are not modifiable to the extent required to perform the attack. There is also a
limit on how far the malicious sample can be changed — the sample still needs to
serve it’s original, malicious purpose. For example, in network traffic destination IP
addresses cannot be chosen arbitrarily. The attack also requires knowledge of what is
seen as normal in the production learner, which may not be available (although this
can usually be estimated).

6.1.2. Gradient descent attacks. The gradient descent attack is a relatively common at-
tack within the literature. The gradient descent attack is applied to both classifiers
and clustering algorithms, and applies a gradient descent function in order to find a
state for the attack point that achieves the desired result (point misclassified). Gra-
dient descent is an optimisation algorithm that aims to minimise functions by itera-
tively moving a point (by changing parameter values) in the negative direction of the
function gradient. In the evasion case, these are examples of exploratory integrity
attacks. The typical approach is to generate an attack point and test its effectiveness
on a surrogate learner. If the point is not sufficient, the gradient descent is applied, a
new point generated and that tested until the desired result is achieved. In some cases,
the gradient descent can be combined with a mimicry component to launch a targeted
attack.

Affected algorithms. Because the gradient descent attack is not targeting a partic-
ular design component of classifiers, the attack is applicable to most classifiers. The
attack finds any attack point that achieves the desired result for the attacker. For ex-
ample, the technique used by Biggio et al. [Biggio et al. 2013], while only tested using
SVM and neural networks, is theoretically applicable to any classifier with a differen-
tiable discriminant function. We found example works (discussed below) against the
SVM and random forest classifiers, as well as neural networks.

Demonstrated attacks. Šrndic and Laskov [2014] apply a gradient descent-kernel
density estimation (GD-KDE) attack against the PDFRate system for detecting mali-
cious PDF files (as described in section 6.1.1). The GD-KDE attack is used as a compar-
ison to the mimicry attack. The GD-KDE attack is used to generate attack points using
a surrogate classifier. They assume that the attacker does not know the classifier, and
so replace the random forest classifier in their surrogate with an SVM classifier. The
GD-KDE attack is able to reduce the score outputted by PDFRate by 29-35%, demon-
strating the effectiveness against both the SVM and random forest classifiers.

Biggio et al. [2013] propose an attack based upon gradient descent that works at
test time that theoretically works against any classifier with a differentiable discrim-
inant function, including SVM and neural networks. The gradient descent can be
combined with a mimicry component, as we discussed in section 6.1.1. When tested on
the handwritten digits dataset in the perfect knowledge (PK) case using a linear SVM
classifier, the attack is able to successfully change the outputted label with a limited
number of iterations. In the malicious PDF detection example the attack is able to
increase the FN rate to close to 1, with under 15 modifications to the attack point for
the linear SVM with perfect knowledge (full knowledge of classifier, feature set and
training data). With limited knowledge (knowledge of classifier and feature set only),
40 modifications are required, but 15 modifications still increases the FN rate up to
0.8. The results are only marginally worst for the RBF kernel. The neural network is
more robust, 50 modification only increase the FN rate to around 0.3 for the perfect
knowledge case, and 0.1 for the limited knowledge case. The authors mention that the
gradient descent often does not successfully find an attack point for the neural network
as for the majority of samples the local minimum found by the gradient descent is too
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far from the decision boundary to cause misclassification, and so the gradient descent
terminates early.

Attack limitations. As with the mimicry attack, this attack is limited by the amount
the attacker can modify the feature values. The attack also requires enough knowledge
in order to be able to build a surrogate classifier in order to test candidate attack points.
The more accurate the surrogate, the higher the chance of success of the attack.

6.1.3. Other attacks.

Genetic programming. Xu et al. [2016] apply a genetic programming approach to
evading PDF malware classifiers, more specifically PDFRate [Smutz and Stavrou
2012] and Hidost [Šrndic and Laskov 2013] systems. PDFRate makes use of the Ran-
dom Forest classifier (as described in section 6.1.1), while Hidost makes use of SVM.
Hidost, according to its authors, is robust against adversaries, only suffering from 2 ad-
ditional false positives (out of 5000 samples) under the “strongest conceivable mimicry
attack”. In contrast to previous work, the attack assumes no knowledge on behalf of
the attacker, with the attacker only having access to a black box implementation of the
target (the deployed system). Also in contrast to previous work, where it is assumed
attackers can only increase feature values (in order to maintain malicious behaviour),
the attacker in this scenario is able to modify feature values in many ways. The attack
works by generating attack traces that represent series of operations of the original
file to cause misclassification. Traces are computed using an iterative approach, with
random operations applied to the file (such as inserting a page from a benign file). The
modifications are evaluated using a fitness function, which incorporates the score from
the target detector, and whether or not the file still carries out its intended malicious
behaviour (evaluated using an oracle in the form of a sandbox). The attack is instanti-
ated by taking a set of malicious files as an initial population, and then applying the
modifications. Previously found successful traces are applied to some files to create
new starting points to aid in finding attacks. The attack is tested on 1348 malicious
pdf files, and is shown to be able to evade both PDFRate and Hidost with a 100% suc-
cess rate. Attack traces generated for Hidost, but submitted to PDFRate, were able to
evade detection in 77.6% of cases, whereas in the reverse case only 2 seeds were able
to evade detection. The authors speculate this is due to the different feature sets in
use by each system.

6.2. Evasion attacks - clustering
6.2.1. Mimicry attacks. The mimicry attack works by effectively reducing the distance

between the attack point and benign points. While the attack has primarily been
demonstrated against classifiers, it should also be effective against any clustering that
uses a distance function. For example, the attack would be effective against the hi-
erarchical clustering algorithm. The required effort on behalf of the attacker will in
part depend on the cut parameter in use (this is the level in the hierarchy from which
clusters are read, the lower the cut the more fine-grained the clustering), which in
part dictates the distance between, and number of, clusters. The mimicry attack could
also be used against the k-means clustering algorithm. The main limitation against
k-means is that if a sufficiently high value of k is used, then the output clusters will
be tight, meaning that the attack point will have to mimic the target point almost
completely.

Demonstrated attacks. Biggio et al. [2013] define an obfuscation attack against
single-linkage hierarchical clustering that is functionally equivalent to a mimicry
attack. The attack works by selecting a target cluster, that the attack point should be
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clustered with. A line is then drawn between the original attack point, and the near-
est point within the target cluster, and the new attack point is chosen from a point
on this line no more than a maximum distance from the original attack point. This is
tested in the perfect knowledge (full knowledge of the algorithm, features and data)
case, using the MNIST handwritten digit dataset of greyscale images (as discussed in
section 6.1.1). The attack is able to successfully merge attack samples into the target
cluster with limited modifications.

6.2.2. Gradient descent attacks. The gradient-descent approach can also be used in an
evasion attack for clustering algorithms. As with the classification example, the at-
tacker will require a surrogate classifier. The attacker will then need to move the data
point they wish to hide until it is merged into a benign cluster. As before, this is a
exploratory integrity attack. The attack requires a large amount of knowledge to be
successful, in particular relating to the shape of the benign data. The attack should be
effective against any distance based clustering algorithm as long as the local optimum
attack point that is found is close enough to a benign cluster.

Attack limitations. For best results, the attacker will require knowledge of the be-
nign data that the attack point will be clustered with. Without any knowledge of the
other test data, the local optimum attack point may not be close enough to benign clus-
ters to be successfully merged. The attacker could estimate this data using previous
data which they have access to, however this will potentially reduce the effectiveness
of the attack (depending on how much the test data compares to the surrogate dataset).

Knowledge of the parameters of the clustering algorithm may also have an impact.
For example, the threshold used within hierarchical clustering dictates how close the
attack point will need to be to the benign points to successfully merge. Similarly, the
k value used in k-means will dictate how fine grained the clustering is - a larger k
value will require the attack point being closer to the benign points. If the attacker
were to compute the attack point with different parameter values to the test clustering
algorithms, the attack may not be successful.

6.3. Poisoning attacks - classifiers
6.3.1. Label Flipping attacks. Label flipping attacks are a form of poisoning attack with

a goal of introducing label noise into the training data by flipping labels. The attacker
is able to cause an amount of the legitimate samples to be labelled as malicious in
the training data, or an amount of the malicious samples to be labelled as legitimate.
The amount is down to the capability of the attacker. Label flipping is an example of a
causative integrity/availability attack that attempts to maximise classification er-
ror. There have been many attempts at designing ML algorithms to provide robustness
against random label noise arising from noisy data sets, but these designs do not con-
sider the adversarial case where the attacker attempts to maximise the classification
error. The extent to which labels can be flipped is restricted by a budget (the number
of labels that can be flipped).

In the real world, the attacker would need to have an impact on the data collec-
tion phase. There are a number of ways they could do this. One of the most common
methods for collecting malware data is through the use of honeypots and sandboxes.
Malware has been shown to be able to identify when it is being run in a virtual environ-
ment (see section 6.6 “Evading dynamic analysis systems”), so the malware could be
programmed to engage only in legitimate behaviour when in a sandbox, which would
then create legitimate samples that are labelled as malicious.
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Affected algorithms. As discussed below, the attack has been demonstrated on the
SVM classifier, although it should affect any classification algorithms affected by label
noise.

Demonstrated attacks. Xiao et al. [2012] discuss a causative attack against SVMs
which makes use of label flipping in order to poison the training set. In this attack, the
adversary flips labels of training points, constrained by a budget, with attack points
chosen to inflict the maximum loss. On an artificial, two-dimensional dataset the at-
tack is able to increase the error rate up to 32% (on a binary class dataset with a 50/50
split), which is not far from reducing the classifier to a random guess. When tested on
a set of 10 real world datasets (downloaded from the LIBSVM website), the attack is
able to reduce the classifier to a random guess (a 50% error rate) by flipping 10% of
the labels of the training set. An interesting observation is that the attack is tested on
an SVM classier trained with both a linear kernel, and an RBF kernel, and is found
to be much more susceptible to attack when using the RBF kernel. The authors specu-
late that this due to the fact that when using the RBF kernel instances are mapped to
the infinite dimensional feature space, and so instances are more sparsely distributed.
Therefore flipping a label has a greater effect on the hyperplane. This indicates that
even variations on an ML algorithm have different tolerances to attack. The attack is
also effective to a lesser degree against the label noise robust SVM (LN-SVM) algo-
rithm [Biggio et al. 2011].

Attack limitations. The primary limitation of the attack is the budget limiting the
number of points in the training set that can have their labels flipped. The more re-
strictive the budget, the more restricted the attack. The attack also requires some
knowledge on behalf of the attacker of the classifier and training data in use. If this
information is limited, then the attack becomes far more difficult for the attacker.

6.3.2. Gradient descent attacks. Gradient descent-based poisoning attacks impact the
availability of the learner. These are causative attacks, which can be either tar-
geted or indiscriminate in nature.

As opposed to the evasion case (see sections 6.1.2 and 6.2.2), where attack points are
moved in order to be misclassified, in the posioning case the gradient descent attack
inserts attack points into the training data chosen to maximise the impact on the clas-
sifier performance, with a goal of reducing performance to the level that the classifier
is unusable. The common approach is to start with a benign point, flip it’s label and
move it (according to the gradient descent function) to maximise the objective function.

Affected algorithms. The gradient descent-based poisoning attack has been demon-
strated against the SVM.

Poisoning attacks work by effectively introducing adversarial noise into the training
data. In that sense, a gradient descent-based attack is theoretically effective against
any classification algorithm that is not tolerant to noise. Even if an algorithm is toler-
ant to random noise, it may be possible to apply the attack in a controlled manner and
still successfully carry out the attack, although the complexity will be increased.

Demonstrated attacks. Biggio and Laskov. [2012] use a poisoning attack to attack
SVM. The attack assumes knowledge of the training set used by the learner. The at-
tacker inserts attack points by flipping the label of a point in the target class to create
an initial attack point, and then applies a gradient descent to find an optimal attack
point which is then added to the training set. When evaluated on an artificial, two-
dimensional dataset the attack can achieve a classification error of up to 0.06 for a
linear kernel, and 0.035 for the RBF kernel. The attack is also tested on the handwrit-
ten digit dataset mentioned previously, using an SVM with the linear kernel, which
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achieves a classification error of 0.1 to 0.3 after 200 iterations of the gradient descent
algorithm.

Attack limitations. The attack is limited by the amount of noise that the attacker
can inject. One example is the attackers ability to cause data points to be labelled as
they require. For example, when attacking a spam filter, the spam label usually arises
from the user, and so the attacker is reliant on the oracle labelling the points in the
way the attacker desires.

6.3.3. Dictionary attacks. A dictionary attack is a specific form of poisoning attack that
can be carried out against classifiers trained using token-based features. In this at-
tack, malicious data is inserted into the training set that contains tokens (for example
words) that feature in benign data. The intention is that the malicious data will be
discovered, and included in future training sets. The goal is then to cause benign data
to be misclassified as malicious, indicating a causative availability attack. This can
both be indiscriminate (any benign point can be misclassified) or targeted (the at-
tacks want to cause a particular benign sample to be misclassified). Nelson et al. [2008]
provide attacks against SpamBayes1, a system for identifying spam email messages.
Two causative availability attacks are proposed against the system. The first, an in-
discriminate dictionary attack, sends emails to a destination covered by SpamBayes
which contains words likely to appear in legitimate emails. These spam emails will be
included in the training data when the system is retrained (which happens periodi-
cally), increasing the likelihood that legitimate emails will be labelled as spam. In the
optimal case, the emails will contain the full English dictionary. As a refinement, the
email can just contain a dictionary closer to the victims word distribution.

The second attack, a targeted attack, assumes knowledge of a specific email that the
attacker does not want the intended recipient to read, by causing it to appear in the
victims spam folder. This attack involves including words specific to that email in the
attack emails, hence the attack effectiveness is limited by the attackers knowledge of
the structure of the target email. In the optimal case, this will be the full dictionary
attack, which will contain all of the target words.

When tested on a large dataset, the attacks are proved to be effective. The dictionary
attack, when attack emails make up 1% of the dataset (achievable by a large scale
attacker), can cause 90% of the legitimate emails to be labelled as unsure or spam.
The targeted attack can, with 30% knowledge of the target email, change classification
in 60% of cases.

The SpamBayes algorithm is shared by BogoFilter 2 and SpamAssassin 3, and so the
proposed attacks should have a large impact on these systems as well.

6.4. Poisoning attacks - clustering
6.4.1. Bridging attacks. Bridging attacks are a form of poisoning attack that has been

demonstrated against clustering algorithms. As with the other poisoning algorithms,
they are examples of causative integrity/availability attacks.

The attack introduces points into the space between clusters, with a goal of caus-
ing clusters to split and merge. In hierarchical clustering, introducing points between
clusters causes the inter-cluster distance to be affected, which can then cause clusters
to merge.

1http://spambayes.sourceforge.net/
2http://bogofilter.sourceforge.net/
3http://http://spamassassin.apache.org/
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Affected algorithms. The attack has been demonstrated against variant of the hier-
archical clustering algorithm. The attack should be effective against any clustering
algorithm that use the inter-cluster distance. The attack may have an effect against
centroid-based algorithms such as k-means clustering, although to a lesser extent.
The introduction of points between clusters will have an effect on the final placement
of centroids, which could cause points to be clustered with points which they would not
have previously been clustered with. The clusters are unlikely to merge (depending on
the structure of the data and initial location of the centroids), but if the attack points
are chosen carefully the attack points could cause clusters to merge.

Demonstrated attacks. The Malheur system is the target of work by Biggio et
al. [2014]. Malheur [Rieck et al. 2011] applies single (or complete) linkage hier-
archical clustering to MIST malware behaviour reports, which contain sequences of
host-based system events, where individual execution flows of threads and processes
are grouped in a single, sequential report.

The paper assumes the scenario in which the attacker has perfect knowledge, and
reduces the attack to an optimisation problem, in which the objective function to be
maximised is the distance of the clusters formed when under attack from the clusters
formed in absence of the attack. The attack goal is to cause clusters to merge until the
system becomes unusable. The attack is run on a local version of the system, where all
possible attack points are considered, and only the one that has the largest impact is
used. The attack is applied iteratively, continuously adding points until the objective
function is maximised. The attacks also propose two variations, which are less com-
putationally expensive as they instead estimate the effect of the attack points, rather
than re-run the clustering algorithm. To generate attack samples, an existing malware
sample is taken and features are manipulated by increasing their value (in order to
maintain the malicious capability of the samples).

When tested on two datasets, the same dataset used in the original Malheur paper
and a new malware dataset collected by the authors, the bridge attack is able to reduce
the number of clusters from 40 to 5 with only 2% of injected samples. The estimation-
based approaches require more injected samples, but are far less computationally ex-
pensive. To verify the results, two random based attacks (one that generates an attack
point at random, one that chooses the best of a number of random attack points), are
shown to be ineffective. Finally, an attack that works as the bridge attack, but min-
imises the F-measure, achieves comparable results to the bridge attack.

Very similar attacks are applied to three different datasets in [Biggio et al. 2013]:
the banana-shaped dataset from PRTOOLS, a malware C&C dataset and a dataset
of handwritten digits. As before, perfect knowledge on behalf on the attacker is as-
sumed. The attacks aims to cause clusters to split or merge to impact on the availabil-
ity of the algorithm. The attacks are compared against a random approach. On the ba-
nana shaped dataset, the bridge attacks are found to outperform the random attacks.
The best approach results in a lower number of final clusters than in the unpoisoned
dataset. On the malware dataset, the results are similar. On the digits dataset, the
random approaches are shown to be ineffective. The three bridge based approaches
cause significant fragmentation of the final clusters.

Attack limitations. To achieve maximum results, the attack requires perfect knowl-
edge of the target classifier, which can be an unrealistic assumption in the real world.
The attack could still be successful if a surrogate data set is used to approximate the
target classifier, although this has not been explored in the literature. The attacker
only requires knowledge of one other cluster in order to perform the bridge attack.
This cluster could be estimated with a high accuracy (for example the traffic to “face-
book.com” will be similar wherever it appears so may be reliably estimated).
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6.4.2. Gradient descent attacks. As with classifiers, gradient descent poisoning attacks
on clustering algorithms are causative availability attacks. In the clustering case,
attack points are inserted to cause clusters to split and possibly merge with others,
reducing of the accuracy the clustering. Attack points are created and the most effec-
tive points are found by maximising the objective function using a gradient descent
approach.

Affected algorithms. This class of attack has been demonstrated against hierarchi-
cal clustering.

As this type of attack exploits the distance function used within the clustering al-
gorithms, it is theoretically applicable to other types of clustering, such as k-means.
However, whereas a single attack point can be sufficient to cause a cluster to split in
algorithms that use intra-cluster distance (such as hierarchical clustering), to cause
a split in centroid-based algorithms would likely require a larger number of attack
points to significantly shift the centroids.

Demonstrated attacks. The complete-linkage variant of hierarchical cluster-
ing is also attacked by Biggio et al. [2014]. The attack is again a poisoning attack with
perfect knowledge on behalf of the attacker. In this attack, attack points are added
to the edge of clusters with a goal of causing the cluster to split, and possibly merge
with another. As before, the attack is run iteratively with the goal of maximising the
objective function (which represents the distance between the clustering output under
attack compared to not under attack). There are also two variants that use estima-
tion to reduce the number of iterations required. This attack is tested against three
datasets (taken from [Biggio et al. 2013]). In the first, taken from PRTools the extend
attack causes the clustering to result in a smaller number of more distinct clusters.
The second dataset, which contains malware C&C behaviour represented by 6 fea-
tures, gives similar results. Finally, a dataset of handwritten digits, represented by
28x28 grey-scale images converted into 784 dimensional data, is used. In this case, the
estimation attacks are more effective than the fully-iterative attack.

Attack limitations. As in the classification case, the attack is limited by the amount
of noise that the attacker can inject. Depending on the density of the data, the attacker
may be required to introduce a large number of attack points to cause significant degra-
dation in performance.

6.5. Other attacks
6.5.1. Attacks on automatic signature generation (ASG). Perdisci et al. [2006a] propose an

attack against Polygraph [Newsome et al. 2005], a system for automatically generat-
ing signatures for the detection of polymorphic worms. The attack assumes that an
attacker who controls host A, and wants to infect host B, will send a malicious flow
containing the attack code. The hope is that host B will be used for collecting flows for
input into Polygraph.

The attack works by sending extra flows along with all malicious flows, that are con-
structed to not actually perform any attack, but contain specifically crafted data that
will cause the generated signatures to only include data related to the protocol frame-
work, rather than invariants related to the worm, effectively rendering the signature
useless. The false flows are generated by taking a copy of the malicious flow, and ap-
plying a number of transformations over it. These include randomly permuting bytes
and injecting substrings from legitimate flows.

The attack is tested on a recreation of Polygraph using the Apache Knacker exploit
for the polymorphic worm, with flows collected from the university network for use as
innocuous traffic. The original Polygraph paper claims that 80% noise is required to
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affect the system, but the authors find that 1 false flow per malicious flow can result
in useless signatures up to 44% of the time. If two flows are used, this increases to up
to 85%.

Newsome et al. [2006] propose a causative integrity attack against conjunction
learners (of which Polygraph is an example), dubbed red herring attacks. The attack
involves including spurious features into attack samples, that will be included in sig-
natures. To evade detection, the attacker then stops including the extra features. This
attack only works on conjunction learners, and is not effective against other machine
learning algorithms such as Bayes. For Bayes learners, they propose a causative avail-
ability attack, dubbed the correlated outlier attack. In this attack, the attack sample
includes spurious features that appear in legitimate samples. This increases the Bayes
score of legitimate samples, leading to a choice of either high false positives or false
negatives.

Chung and Mok [2006; 2007] propose “allergy attacks” against the Autograph [Kim
and Karp 2004] signature generator. Allergy attacks have a goal of performing a DOS
attack, by leading the generator to produce signatures that match to normal traffic.
The attack is performed by first sending attack traffic that causes Autograph to mark
the node as suspicious, and then traffic that resembles legitimate traffic. The attack
can be supplemented with a corpus so that it will also affect Polygraph and similar
ASG systems. The authors show that the attack is successful with only a small number
of packets required to cause a target site to be blacklisted.

6.5.2. Attacks on intrusion detection systems. Fogla et al. [2006] propose polymorphic
blending attacks against the PAYL, a byte-frequency based intrusion detection sys-
tem [Wang and Stolfo 2004; Wang et al. 2006]. The attack extends polymorphic attacks
by adding a blending component that, like mimicry attacks, matches the statistics of
mutated attack instances to normal traffic profiles to evade byte frequency-based net-
works anomaly IDS systems. This is done by “encrypting” the packet payloads by using
a substitution table that replaces bytes in the original packet with bytes in the target
distribution. Padding is also added, and packets can be split to match the normal dis-
tribution. The substitution table is sent along with the packet, as well as a “decrypter”
that can recover the original packet. The attack also ensures that the attack distribu-
tion matches the normal distribution despite the table and decrypter being included.
The attack is tested on both the 1-gram and 2-gram variants of PAYL, using the MS03-
022 vulnerability as the base attack. The normal traffic distribution is taken from 1
day collected from a university network, and the training set for PAYL is taken from a
further 14 days. The attacks are tested with target packet lengths of 418,730 and 1460.
The attacks are shown to be effective in reducing the anomaly score outputted by PAYL
to below thresholds that would realistically be used. They also find that increasing the
number of packets used by the attack, meaning smaller individual packets, further re-
duced the anomaly score as the smaller packets could be made to more closely match
the normal distribution. The authors provide a formal analysis of the attack in [Fogla
and Lee 2006].

6.6. Emerging host-based evasion techniques
We will now briefly review some techniques on the host side used by malware in the
wild to evade detection. Recently there has been an increasing amount of malware that
provide methods of evading current detection and analytical systems.

Evading signatures. Traditional defence systems (such as traditional anti-virus and
intrusion detection systems) often rely on signatures to detect attacks or malicious
code. A signature characterizes a known attack by defining its characteristics. For
example, in the context of malware, a signature could be a regular expression that
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matches the bytes found in a specific malicious file. Unfortunately, a number of obfus-
cation techniques have been proposed (and are used extensively) to counter signature-
based detection. For example, polymorphism [Hosmer 2008] is a technique that en-
ables an attacker to mutate an existing malicious binary and create a completely new
version from it, while retaining its original functionality but remaining undetected by
current signatures. The anti-virus vendor Kaspersky recently reported detecting more
than 2 unique malicious samples per second, likely the result of extensive application
of polymorphic techniques [Kaspersky 2013].

Evading dynamic analysis systems. To overcome the limitations of signature-based
analysis of malicious code, researchers use dynamic analysis tools, also called sand-
boxes [Egele et al. 2012]. These tools execute a binary in an instrumented environment
and classify it as either benign or malicious depending on the observed behaviour.

To thwart automated dynamic analysis, malware authors have developed a number
of checks (so-called “red pills”). To detect sandboxes, the checks leverage differences
in execution characteristics between a real host and virtualised environments [Ferrie
2007] or emulated systems [Paleari et al. 2009]. Further, malware may execute its
malicious payload or specific parts of its code only when some “trigger” fires, i.e., only
when some specific precondition is satisfied [Moser et al. 2007]. As another evasion
technique, malware use stalling code [Kolbitsch et al. 2011] which delays execution
of malicious activity just long enough that the automated analysis system stops the
analysis having observed benign activity only, and moves on. This technique simply
leverages the fact that, to analyse a large volume of programs, an analysis system
must bound the time it spends executing a single sample to a limited time (in the
order of few minutes).

Evading reputation systems. Another defensive approach that has gained traction
in the last few years is the use of reputation information for network entities (servers
or domain names). Malware authors have a crude but effective attack against such
reputation blacklists: they use a certain server or domain for malicious purposes only
for a very limited amount of time. Recent data from researchers at Google shows that
this strategy is well in use: they studied domains hosting exploit kits used in drive-by-
downloads and found that their median lifetime is only 2.5 hours [Grier et al. 2012].
Clearly, an effective blacklist should be able to detect the malicious domain and dis-
tribute this knowledge to all the enforcement devices before the domain has been aban-
doned.

7. DISCUSSION
7.1. Why is secure machine learning not in use for C&C detection?
it is unclear why secure machine learning algorithms are not in more widespread use
within the field of C&C detection. Below, we discuss some of the possible reasons why
secure ML is not in use.

Lack of awareness:. A simple and obvious reason is simply a lack of awareness of
secure ML algorithms. Unless one specifically looks towards the secure machine learn-
ing field, they are unlikely to be aware of the more secure algorithms, or even that the
vulnerabilities in the simpler algorithms exist.

Ease of access:. More specifically, we mean access to an implementation of the code,
either through an open source piece of available software, API or an algorithm that is
easy to implement by an academic. Even if a piece of software or API exists, it may
not be available for the desired scenario without large amounts of pre processing on
the data to ensure it is in the correct format. If we compare this with the popular algo-
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rithms such as k-means or SVM, these have many implementations (in both software
and libraries) that can easily be applied to almost any dataset.

Reduced performance:. It may be the case that secure ml algorithms, when compared
with the non-secure counterparts, achieve lower performance in terms of both process-
ing time, and in the key metrics (TPR/FPR and similar). When evaluating detection
systems, these metrics are key selling points that elevate new work above previous.
While this assumption is not true for all works, there are some examples in
the literature.For example, Brückner and Scheffer [2011] demonstrate an in-
crease in execution time in the multi=classifier system from ⇠ 101 to more
than 103 seconds using the largest training set. In terms of accuracy, some
works [Zhang et al. 2015; Biggio et al. 2011] show a reduction in perfor-
mance when not under attack, while others show a slight increase [Biggio
et al. 2010].

Lack of clear security metrics:. When choosing a machine learning algorithm, it is
common to look to the standard performance metrics (true/false positive rates, preci-
sion, recall, computation efficiency and so on). In a non-secure setting, these are usu-
ally sufficient in choosing one algorithm over another. However, as far as we are aware,
there are currently no clear metrics for measuring the evasion resilience of machine
learning algorithms. We feel that a lack of these metrics is one of the reasons why
more secure machine leaning algorithms are not in use — there is currently no way to
see a measurable benefit to their use over the simpler algorithms. This is not a trivial
problem due to the large range in threat models which need to be considered, as the
threat model in use impacts on the achieved level of evasion resilience.

Lack of evidence of attacks:. The reason for not using secure algorithms could
be purely down to the fact that there is little to no evidence of attacks target-
ing machine learning in practical applications. Attackers are likely to evade
detection by not very complex detection systems using simpler attacks. Of
course in the attacker-defender arms race we should expect attackers to be-
come more sophisticated as detection systems become more complex so it is
only a matter of time before attacks against machine learning become more
commonplace.

7.2. Difficulty of applying attacks in C&C
Almost all of the attacks against machine learning algorithms we discussed in sec-
tion 6 were applied to simplified use cases using easily modifiable data points. In many
of the cases, the features could easily be modified to carry out the attack. In the mal-
ware C&C case the features may not be as modifiable as in some other examples. For
example, if we look to a simple C&C channel that sends data to a centralised server
over tcp. Some features, such as any relating to the packet contents (length, n-grams
etc.), or the number and size of packets, are easy to modify by the attacker. However,
other feature values, for example representing IP addresses, port numbers or protocol
flags, are not as easily modifiable, as they could either have an impact on the func-
tionality of the communication channel if changed, or not be under the control of the
attacker.

Carrying out poisoning attacks that require influencing the training data may also
prove to be difficult. The attacker would have to ensure that their attack points are
collected by the system engineers to be included. As an example, this may rely on the
attackers malware being caught in a honeypot, and it may be difficult for an attacker
to ensure this occurs.
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7.2.1. Availability of attacker knowledge. In all of the attacks discussed in section 6 the
attacker requires some level of knowledge in order to perform the attack. The amount
of knowledge required varies between the different attacks. For example, the mimicry
attack can be successful using surrogate datasets and algorithms that do not neces-
sarily match those in use at test time. However, for attacks such as those based upon
gradient descent, more specific knowledge is required for the attack to be effective.

One issue is therefore in the real world how much of this knowledge is available
to the attacker? In part this depends on the target (organisation) of the attacker. The
attacker may be able to work out through social engineering techniques the specific de-
tection systems in use, and therefore gain information about the algorithms, and pos-
sible feature sets in use, either through information published by vendors or through
reverse engineering. If the target system is an off-the-shelf product, the attacker could
simply purchase a copy to use as a surrogate. It is well known that malware authors
test new malware against popular anti-virus systems prior to deployment.

Knowledge of the specific training data in use also depends on the specific target.
The training data may not be made public by the system designers, or the training data
could be tailored to suit a particular customers network (to maximise performance). In
the real world the attacker is far more likely to be able to create a surrogate training
by making use of public datasets and incorporating benign date that is expected to
appear.

7.3. Effectiveness against full C&C detection systems
While machine learning algorithms are a core component of C&C detection systems,
the ML algorithm is not the only step. Many of the systems will apply various levels of
pre- and post-processing to the data, including but not limited to whitelisting/black-
listing, noise reduction and data sampling. Clustering algorithms are often used
as a way to separate data in order to create signatures afterwards, which
may be tolerant to some degree of error. The attack examples discussed in sec-
tion 6 usually focus on a scenario where the test samples only undergo feature ex-
traction, and are then fed directly into the machine learning algorithm. Therefore it
is unclear how much extra steps in the C&C detection system will influence the effec-
tiveness of the discussed attacks. Of course, some of these extra components may also
aid the attacker. For example, Botminer [Gu et al. 2008] (a C&C detection system that
uses x-means clustering as the main ml algorithm) generates some of its input data
through the alerts thrown out by an anomaly detector. In the process of attempting
to attack the clustering algorithm, for example through the use of a mimicry attack,
the attacker may also inadvertently evade the anomaly detector, meaning that they
are far less likely to be detected (in the case of Botminer there are other data sources
although the anomaly detector inputs play a major role).

7.4. Limitations of current detection approaches
In surveying the field of C&C detection approaches, we found a number of limitations.

Limited datasets. Acquiring useful datasets is a well known problem for malware
researchers. Legal requirements often mean that datasets cannot be released once
created, meaning that each new system will usually need to have a dataset created for
it. This data may not be a true representation of a real-world situation, indicating that
the observed performance may not be repeatable in the real-world.

Limited reproducibility of datasets. Typically C&C detection systems are evaluated
using network traces collected from real-world networks, from smaller university net-
works up to the ISP level. These datasets are almost never released for use by others,
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due to contractual agreements and privacy concerns. This makes it difficult to repro-
duce the evaluation of these detection systems.

Testing on known malware. A problem which is especially evident in systems that
rely on classifiers is the problem of testing on a small collection of known malware
samples. These samples are used to generate signatures, and then the traffic from the
same samples used to generate a test dataset. This can lead to higher detection rates
than would be seen in the more realistic situation when the classifier is trained only
on related malware families.

Lack of scalability testing. Due to finite resource both in terms of data availabil-
ity and processing resources, the testing of detection systems is often small-scale in
nature. or large scale but run in batch mode taking a long time. Many of these sys-
tems are designed with the intention of being installed within a corporate network or
even an ISP where the volume of data to be processed may be far larger, and closer to
real time detection is required. Some of the designed systems, while working well in a
small-scale setting, may break down in a larger scale environment.

7.5. Attack defences
We will now cover a few approaches to defending against the attacks discussed in
Section 6. Note that a complete survey on this is out of scope of this work, and sop we
only focus on defences relevant to C2 detection systems. For a more detailed discussion
on defences against attacks we refer the reader to [Biggio et al. 2014a].

Defending against ML attacks is a difficult task. Defenders can take both reactive
and proactive approaches [Biggio et al. 2014a]. In a reactive approach, the defender ob-
serves an attack, and then incorporates countermeasures into the existing system. In
a proactive approach, the defender anticipates the adversary’s strategy and develops
countermeasures before deployment. The majority of defences are proactive in nature,
attempting to limit the capability of the adversary before deployment. In particular,
the two common approaches are the use of multi classifiers systems (MCSs), and the
use of ideas from game theory to predict and model the attack at training without
having access to attacker data.

One of the most common approaches to defend against evasion attacks on classi-
fiers is to make use of multi classifier systems (MCSs) [Kolcz and Teo 2009; Zhang
et al. 2015; Biggio et al. 2010], in which the combined output of a number of classifiers
are used to make a decision. The different classifiers vary by either using different
subsets of the feature set or different subsets of the training data. One variation of
MCSs is to make use on one-class classifiers, which can be more effective in identi-
fying attacks. One-class classifiers produce a tight decision surface around the target
objects (for example the benign objects), and output how much a datapoint matches
that target, rather than outputting a label from a set. These work particularly well
when combined with two-class classifiers, as described by Biggio at al. [2015]. They
find that, while two-class classifiers achieve better accuracy when not under attack,
one-class classifiers achieve better accuracy while under attack. The classifiers are all
based on SVMs. By combining two one-class and one two-class classifier, a more robust
MCS is produced. Performance of the MCS is less effected when under attack, n par-
ticular good word insertion (GWI)/bad word obfuscation (BWO) attacks against spam
filters and adding features in PDF files, compared to a single SVM classifier. Perdisci et
al.[2006b] make use of a set of one-class SVM classifiers to provide resistance against
mimicry attacks in payload-based intrusion detection systems (such as PAYL). When
tested against polymorphic blending attacks [Fogla et al. 2006] the SVM-based multi
classifier IDS is able to detect the occurrence of all the attacks with a 0.5% FP rate
(correctly identifying 99.2% of all attack packets). Biggio et al. [2010] evaluate the ro-
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bustness of two approaches to MCSs: bagging (in which each classifier is trained with a
subset of the training data) and the random subspace method (RSM, where each clas-
sifier is trained with all the data, but a subset of the feature set). The two approaches
are tested using linear SVM and logistic regression (LR) in the spam detection sce-
nario, under the GWI-BWO evasion attack (with both perfect and limited knowledge).
When not under attack, the bagging and RSM MCSs almost always outperform the
single classifiers. Under the perfect knowledge attack, the bagging method reduces
the impact of the attack for both the SVM and LR classifiers, while the RSM method
only improved the robustness of LR. In the limited knowledge case, LR is improved
slightly by both the bagging and RSM methods, while SVM is improved by bagging
only under the limited knowledge attack.

Zhang et al. [2015] provide a method for performing feature selection while pro-
viding robustness to evasion attacks. Feature selection, where only a subset of the
possible features are used for training, is used to reduce the time and computational
complexity of the algorithm, and provide better learning on smaller training sets. This
can however lead to further evasion if the adversary is aware of the features that are
selected, due to the fact that there are less features to attack. The proposed method,
wrapper-based adversarial feature selection (WAFS) is based upon the popular for-
ward feature selection and backward feature elimination algorithms. The algorithm
is tested in the spam detection scenario using a linear SVM classifier and in the PDF
malware detection scenario using SVM with the RBF kernel. the algorithm is shown
to produce more robust classifiers when subjected to gradient-descent based evasion
attacks, when compared to the forward feature selection, backward feature selection
and adversarial backward feature selection algorithms.

Kolcz and Teo [2009] use an approach to MCS that involves a feature re-weighting
step, as an alternative to feature selection. In the re-weighting step, the classifier is
trained in two passes. In the first pass, the classifier (SVM or logistic regression (LR)) is
trained, outputting feature weights. In the second pass the classifier is retrained, using
feature weights inverse to the feature importance, derived from the weights outputted
in the previous pass. When tested on spam email detection under GWI/BWO evasion
attacks, a MCS built using 10 LR classifiers, differing by the included features (each
has 50% of the total feature set), is shown to be able to withstand the attack to a
higher degree than standard LR, a single re-weighted LR or fscale-LR (a variant of a
worst-case feature noise injection algorithm).

Game theory has been used in order to incorporate knowledge of attacker capabil-
ity into learning algorithms. Broadly, the goal is to find an equilibrium representing
the optimal strategy against the opponent (where no player benefits from deviating
from the set of actions represented by the equilibrium). One such approach is to in-
corporate Stackleberg games: sequential games in which the follower (adversary) can
observe and react to the leaders (learner) action. Brückner and Scheffer [2011] apply
a Stackleberg prediction game (SPG) to the field of spam email detection. The Stack-
leberg equilibrium is found using an optimisation function. The approach when tested
on four email datasets, is shown to outperform SVM, LR and Nash LR in accurately
identifying spam emails. In a static prediction game, the learner and adversary both
act simultaneously, without prior information on the opponents move. Brückner and
Scheffer [2009] provide a method for finding the unique Nash equilibrium in a static
game, focused on the email spam detection example. The equilibrium is found using
a convex loss function. Brückner et al. [2012] revise [Brückner and Scheffer 2009] to
repair the theorem dictating under which conditions an unique Nash equilibrium for
a game exists, and develop Nash logistic regression (NLR) and Nash SVM (NSVM).
When tested on email spam detection, the Nash LR and SVM variants outperform the
non-Nash variants.
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A different approach is to incorporate attack data into the training set to increase
classifier robustness. Biggio et al. [2011] propose a system that addresses a lack of
attack data for use in training by making use of generative classifier and incorporating
a model of the expected attack into the training phase. The technique is evaluated
in two settings. First, it is evaluated in the biometric identity verification scenario,
where the LLR fusion rule is extended with the model. The extended LLR is shown
to be slightly less effective when compared to standard LLR when not under attack,
but achieve significantly better performance when under attack. The technique is also
tested in the spam filtering case using a modified Naive Bayes text classifier (as used
in SpamBayes) against the GWI/BWO attack. The modified Naive Bayes is shown to
outperform the standard Naive Bayes. In both cases the defence reduces the effect of
the attack rather than provide complete protection.

Machine unlearning [Cao and Yang 2015] is a reactive approach that enables the
defender to remove compromised (poisoned) data from a training set without having
to retrain the classifier. This approach is effective, as long as the defender knows what
to unlearn. Therefore the defender needs some form of attack detection to know what
to unlearn.

Another common approach is to take an existing machine learning algorithm, and
modify it to provide resilience to a particular adversary [Dalvi et al. 2004], for example
through retraining frequently. This approach is limited by the fact that it is an arms
race between the defenders keeping the system up-to-date and attackers producing
new attack variants.

Noise robustness techniques in ML have been around for a number of years. In the
case of clustering, these techniques are generally focused on the handling of outliers
or Gaussian noise [Chintalapudi and Kam 1998; Yang and Wu 2004; Li et al. 2007;
Böhm et al. 2006], whereas in the case of classification the goal is to handle label
noise [Biggio et al. 2011; Bhattacharyya 2004; Denchev et al. 2012]. However, these
techniques are focused on “naturally occurring” noise rather than adversarial noise,
and so the techniques are likely to be circumventable by the well-motivated attacker.

There are of course limitations to the mentioned defences. In almost all cases, the
defences do not provide immunity to the discussed attacks. While total immunity is
impossible without already knowing which attack samples are which, the level of pro-
tection is often not enough. The usual result is that the effect of the attack is reduced,
but the attacks can still be successfully performed, just with more effort on behalf of
the attacker.

In almost all cases, the defences are evaluated against a single attack with one or
two limited datasets. Spam email detection is the motivating example in the majority
of the defence papers mentioned above, with good word insertion/bad word obfuscation
attacks being common. The emails are usually converted into a bag-of-words feature
vector made up of binary values. This evaluation methodology leaves two points to con-
sider. What is the effectiveness of the defences against further attacks? And how well
will the defences work in situations with far more complex, non-binary features such
as in the case of malware C&C detection? There is a lack of evaluation in other secu-
rity applications, such as C&C detection, where ML use is common. Part of this issue is
down to the authors of detection systems themselves, as where they may evaluate with
a few different ML algorithms, the set of algorithms will consist of non-secure variants.
While spam detection and PDF malware detection (one of the other common use cases
in the defence papers) both share similarities to some C&C detection systems, such as
those performing analysis on packet payloads, others, such as those focused on com-
plex features such as packet timings and fields and malware behaviour represent far
more complex problems.
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Some of the defences, namely those based on game theory, rely on the attacker per-
forming as expected by the attacker model. However, in reality the attacker may not
behave as expected, for example using the feedback of the learning algorithm to formu-
late future attacks [Biggio et al. 2014a]. Probabilistic models such as those described
in [Biggio et al. 2011] rely on an accurate prediction of the behaviour of the attacker.
However, as in any security problem, the attacker may orchestrate an attack that has
not been considered.

7.6. Open challenges
We combine the above into two key open challenges:

— The clean slate design of machine learning techniques that incorporate considera-
tions to an adversary are required, as opposed to adding layers on top of existing
non-adversarial ML techniques.

— Although in this survey we have focused on the detection step, a well-resourced
attacker can also evade the measurement step when current sampling techniques
are used [Gardiner and Nagaraja 2014]. There is an need for the development of
evasion-resilient sampling techniques, for example techniques for tuning measure-
ment to respond to C&C detection to maximise the effectiveness of detection tech-
niques.

8. CONCLUSION
Both academia and industry have been fighting malware C&C communication chan-
nels for close to a decade now. From time to time, experts have proclaimed that the
problem has been solved, only to find their confidence has been misplaced due to subse-
quent attacks. With the wide deployment and support for signature-based techniques,
first applied to intrusion detection, research has been focussing on applying machine
learning techniques to C&C detection. Much of the detection effort has focussed on
traffic behaviour which is not intrinsic to the functioning of the botnet. Consequently,
C&C designers will find it trivial to bypass protections based on this assumption. We
first observed attackers moving to decentralised architectures for the benefits of scal-
ability and resilience. Now the attackers are adopting traffic analysis resistance tech-
niques from anonymous communications literature.

A second challenge is the scalable collection of traffic traces. A number of the de-
tection systems discussed in this survey require full, rather than samples, data. With
increasing traffic rates it will soon become hard to store all traffic thus forcing defend-
ers to rely on estimation via sampling techniques. For certain data types, such as DNS
logs, storing all of the data is easily achievable, whereas storing packet payloads is not
scalable. Sampling in itself provides a possible method of evasion for the attacker — if
the attacker can evade sampling, which may be a simpler task, they evade detection
no matter which ML algorithm is in use.

In the light of these challenges, the problem of characterising C&C traffic behaviour
from sampled traffic, requires a shift of perspective. Researchers need to take a step
back to focus on the big picture. First, the challenges of building secure measurement
techniques have not received the necessary attention in the security community – the
’needle-in-the-haystack’ problem is challenging and some approaches have been out-
lined from sampling theory but these do not work in an adversarial setting. Apart from
sampling techniques, the measurement architecture has to be open and extensible, al-
lowing network wide co-ordination to focus measurement resources on attack traffic
rather than trying to work out broad trends as has historically been done.

Next, there has been extensive research into the application of machine-learning
techniques whilst making some critical assumptions: (a) Existing techniques are too
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specialised, so it’s hard to make a good case for deployment of these. Instead, we need
a flexible extensible framework where an ensemble of detection algorithms can be ac-
tivated as needed instead of operating many detection systems in parallel; (b) Most
existing techniques use static datasets whereas detection techniques must operate on
streaming data where fresh updates arrive every few minutes. Efficient techniques
to update previous results with the new data are an important consideration for per-
formance and hence deployment. (c) The use of robust machine-learning techniques
which can withstand variance and high-dimensionality is very important. While the
research direction of applying learning theory is promising, existing solutions are still
impractical. Our analysis and summarisation of current techniques show that perfor-
mance, and especially evasion resilience, are the main barriers to wide adoption. We
stress the significance of these properties in the real world to the security research
community.
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