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Abstract

With the increased sophistication of cyber attacks, organizations are under constant
threat of data breaches, disruption of business processes and reputation loss. As
preventive measures are not infallible, organizations have started to more closely
monitor their devices and network infrastructure for malicious activity. By swift
detection of an attack at an early stage, organizations can take mitigating actions
limiting the impact to their organization. This detection can be done internally or
is outsourced to a Security Operations Center (SOC). The SOC deploys automated
detectors that monitor devices and network traffic for suspicious events, which
are subsequently sent to the SOC. Here, security operators manually analyze these
events, verify whether they constitute an attack and, if required, take action.

Analyzing security events is not straightforward and requires highly skilled op-
erators. We identified three major challenges that operators face during analysis:

1. Operators need to invest time to keep up with the latest developments in at-
tack patterns to accurately identify threats and find appropriate mitigations.

2. Operators analyze a vast number of events, which often leads to alert fatigue
where operators investigate somany events it impairs their ability to correctly
distinguish malicious behavior from falsely flagged events.

3. Operators require sufficient contextual information to assess security events.

This work aims to better understand security events and applies that knowledge to
develop approaches that assist (semi-)automated analysis. Concretely, we first in-
vestigate the process of sharing threat intelligence through reports describing high-
level tactics and techniques used by attackers. In doing so, we develop a natural
language processing framework that automatically extracts actionable threat intel-
ligence and classifies it into the ATT&CK knowledge base, a framework describing
threat models and methodologies. Second, we study the event investigation process
known as triaging. Here, we develop an approach that semi-automatically analy-
ses security events in the context of other security events to determine the overall
risk level. Third, we deeper investigate security events on the network level and
devise an approach that clusters encrypted network traffic according to the appli-
cation that produced it. This allows security operators a deeper understanding of
network traffic and allows them to more effectively block malicious activity. Finally,
we perform a case study where we apply the methods developed in this work to the
domain of identity and access management policies to identify misconfigurations.
This case study demonstrates the potential for our methods in future work.

Combining these findings, we conclude that these approaches bring us a step
closer to understanding security events and providing adequate responses.
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Samenvatting

De hedendaagse cyberaanvallen vormen een constante bedreiging voor organisa-
ties en kunnen leiden tot datalekken, procesverstoring en verlies van reputatie.
Omdat preventieve oplossingen niet waterdicht zijn, controleren bedrijven hun IT-
infrastructuur steeds nauwkeuriger op kwaadaardige activiteiten. Wanneer aanval-
len sneller worden opgespoord kunnen organisaties sneller ingrijpen wat de schade
beperkt. Deze controle wordt intern gedaan of uitbesteed aan een Security Ope-
rations Center (SOC). Dit SOC plaatst detectoren die apparaten en netwerkverkeer
controleren op verdachte activiteit en vervolgens doorspelen aan het SOC. De ac-
tiviteit wordt handmatig door security-analisten geanalyseerd om te bepalen of er
sprake is van een aanval. Indien nodig wordt hierop actie ondernomen.

Het onderzoeken van deze activiteit is niet eenvoudig en vereist bekwame ana-
listen. In dit werk hebben wij drie uitdagingen voor analisten geïdentificeerd:

1. Analisten moeten tijd investeren om op de hoogte te blijven van de laatste
ontwikkelingen in aanvalstechnieken. Hierdoor kunnen zij dreigingen nauw-
keuriger identificeren en schade beter beperken.

2. Analisten moeten grote hoeveelheden aan activiteiten onderzoeken, wat kan
leiden tot analyse-vermoeidheid. Deze vermoeidheid vermindert het vermo-
gen om kwaadaardig gedrag te herkennen.

3. Analisten vereisen toegang tot voldoende contextuele data om verdachte ac-
tiviteiten te kunnen beoordelen.

Dit proefschrift streeft ernaar verdachte activiteiten beter te begrijpen en past die
kennis toe op het ontwikkelen van methodes die (semi)automatische analyse van
deze activiteiten verbeteren. Meer specifiek onderzoeken wij eerst het proces waar
analisten documenten delen die dreigingsinformatie over gebruikte kwaadaardige
technieken bevatten. In dit onderzoek ontwikkelen wij een raamwerk voor het
verwerken van documenten geschreven in security-specifieke natuurlijke taal. Dit
raamwerk vindt automatisch dreigingsinformatie en classificeert deze in deATT&CK
databank die informatie bevat over dreigingen en gebruikte kwaadaardige technie-
ken. Ten tweede bestuderen wij de initiële analyse van activiteiten in een SOC,
wat bekend staat als triage. Hiervoor ontwikkelen wij een methode voor het se-
miautomatisch analyseren van security activiteiten in de grotere context van ander
geobserveerd gedrag. Deze analyse stelt ons in staat het risico van kwaadaardige
activiteiten sneller en nauwkeuriger in te schatten. Ons derde onderzoek duikt die-
per in het bieden van extra context voor applicaties die over versleuteld netwerk-
verkeer communiceren. We ontwikkelen een methode die versleuteld netwerkver-
keer per applicatie groepeert. Dit biedt een hulpmiddel voor security-analisten om
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kwaadaardige activiteiten effectiever op te sporen en tegen te gaan. Ten slotte on-
derzoeken wij een casus waarin de methodes van ons onderzoek worden toegepast
op gebruikersbeheer en toegangscontrole voor het detecteren van misconfiguraties.
Deze casus toont de inzetbaarheid van ons werk in toekomstig onderzoek.

Tezamen laten onze bevindingen zien dat de ontwikkelde methodes ons meer
inzicht geven in security activiteiten en bijdragen aan het adequaat handelen van
analisten.
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Chapter 1

Introduction

Over the past decades, cyber attacks have become increasingly prevalent. To mit-
igate their impact, industry and academia have developed a plethora of detection
solutions. These solutions allow security operators to quickly and efficiently iden-
tify various threats. However, existing approaches often focus on individual threats
that are commonly part of a larger attack. This focus on detecting individual steps
in what is known as a “kill chain” makes it difficult for operators to assess the full
impact of an attack and determine and prioritize mitigation approaches. In this
work, we introduce a context-based approach to analyze cyber security events that
allows us to more reliably identify attacks on IT infrastructure. Besides improved
automated detection capabilities, context allows us to better explain detections and
decisions made by these automated systems to security operators.

1.1 Security Monitoring

To mitigate threats in enterprise infrastructures, organizations started to monitor
their machines and networks for suspicious behavior. Large organizations with
specialized security teams perform this monitoring in-house. However, with the
increased complexity of attacks, specialized companies started to offer monitoring
services. In either case, the (part of the) organization performing the monitoring
is called the Security Operations Center (SOC), see Figure 1.1. To perform their
tasks, the SOC collects data (e.g., system logs and network traffic) detailing device
and network activity. Subsequently, this data is fed through an Intrusion Detection
System (IDS) that analyzes various data sources, and flags suspicious activity as a
security event. This automated analysis can be based on given rules, heuristics or
data-driven algorithms. While these security events are essential in finding threats,
they may trigger for suspicious, but ultimately benign behavior as well. Therefore,
to create accurate detection approaches and assess the security events that they pro-
duce, security operators collect Cyber Threat Intelligence (CTI). This CTI describes
threat behavior in the form of either Tactics, Techniques and Procedures (TTP) or
Indicators of Compromise (IoCs). Where TTP describes the high-level behavior of
threat actors, IoCs specify malicious indicators such as IP addresses, URLs or file
hashes. IoCs can often be directly translated into detection rules, whereas TTPs are
often used to prioritize and assess produced security events.

In an ideal world, all suspicious logs that are flagged as security events are ma-
licious and appropriate action can be taken. However, suspicious events are not
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Chapter 1. Introduction

Figure 1.1: Simplified overview of Security Operations Center.

necessarily malicious. To illustrate, assume an event was triggered due to beacon-
ing, i.e., periodic network activity. This beaconing activity might be triggered by a
malware sample that is trying to connect to its command and control server. How-
ever, periodic activity can also be caused by a benign application trying to poll for
updates. Hence, while beaconing is definitely a suspicious security event, it is not
necessarily malicious. Therefore, security events are often checked by a humanwho
decides whether a security event constitutes an alert and therefore requires action,
or whether it can be discarded as being benign. This initial discerning betweenmali-
cious and benign security events is called triaging [20, 21, 99] and is a labor-intensive
and error-prone process. Moreover, the vast amount of events that must be triaged
can lead to a condition called alert fatigue, where security operators are shown so
many (benign) security events that it reduces their ability to correctly identify ma-
licious events. This work is an effort to better understand both the security events
and their triaging process and provide models that can assist in automation, expla-
nation of decisions and performance improvements. However, to understand these
steps, we first provide a background of the current workflow of SOCs, and explore
some of the work that has been done in the automation of security monitoring and
identify open problems therein.

1.1.1 Intrusion Detection

Tomonitor IT infrastructures for threats, organizations use IDSs, which can analyze
activity on individual hosts (HIDS) or in the network (NIDS) also sometimes known
as a network security monitor (NSM). These IDS monitor data that are produced
by system activity via rules [85, 179], heuristics [5, 7], or data-driven (anomaly de-
tection) models [76, 140]. In general, rule- and heuristic-based systems are widely
adopted by the industry due to their extendable setup and easy interpretability by
security operators. Conversely, academia focuses more on data-driven models as
they are potentially able to detect treats that have not been manually defined. As
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1.1. Security Monitoring

Figure 1.2: SOC Tier Structure. Common division of analysis tasks of security
events based on operator tiers (image adapted from [118]).

the behavior of data-driven models is less well understood, this is an active research
area. In practice, however, monitoring setups often use a combination of detection
techniques to cover a large variety of threats. As it is detrimental to the security
of an organization if threats are missed, these IDSs often try to detect all security
events, meaning that they sometimes incorrectly detect benign behavior as well, i.e.,
produce false positives. Therefore, security events produced by an IDS cannot be
taken as ground truth and should be analyzed by operators in a SOC before appro-
priate action is taken.

1.1.2 Security Operations Center

Upon detection by an IDS, security events are sent to a central SOC for further
analysis. Due to the vast number of (false) security events that a SOC receives,
the first step is to prioritize events and filter out false positives. We recall that this
process of assessing the maliciousness of security events is known as alert triaging.

However, alert triaging is not the only action taken by a SOC. Due to the vast
number of security events, SOCs often work with operators in different tiers that
perform either triaging (Tier 1), incident response (Tier 2), or threat analysis (Tier
3) [118] as shown in Figure 1.2. Security event triaging is the first step in this pro-
cess and aims to quickly filter false positives from actual malicious events. Discarded
events are ignored, whereas malicious events are escalated and treated as security
incidents or alerts. Next, an incident responder analyzes the alert to fully under-
stand what happened and contacts the affected organization to carry out an appro-
priate response. Whenever large or unknown threats are detected, a threat analyst
attempts to coordinate an appropriate response and may update the IDS with new
rules, heuristics or models to better detect the threat.

As alert triaging is the first step, it sees the largest number of alerts and is there-

17



Chapter 1. Introduction

fore the most time-consuming task within a SOC. Due to the high workload on
operators, triaging often leads to a condition called alert fatigue, where security
operators fail to respond to alerts because of the sheer volume they receive each
day [99]. Therefore, academic literature focuses on improving the efficiency of Tier
1 security operators by improving the precision of IDS detectors; prioritizing secu-
rity events based on the type of detected event; and automating the workflow that
operators take when triaging events. In this latter workflow, operators focus not
only on individual security events but analyze them in the context of other events.

1.1.3 Contextual Analysis

Where IDSs detect individual security events, a larger attack often consists of mul-
tiple steps that can each trigger multiple events. The collective steps of an attack
are known as a kill chain and can be used by security operators to improve their
triaging by correlating events. Furthermore, once a kill chain has been identified,
the security operators can better predict the possible next steps of an attacker and
improve their incident response. Kill chains can be described in terms of Tactics,
Techniques and Procedures (TTPs) and are described by various frameworks. The
MITRE ATT&CK framework [199] has become the de facto standard for describing
goals (tactics) and techniques by which they are accomplished, as well as providing
additional information such as tools that are used and various APTs that are known
to carry out these attacks. Figure 1.3 gives a simplified overview of entities and
relations described by the MITRE ATT&CK framework. While such frameworks
help security operators in their analyses of security events, the process of translat-
ing contextual knowledge and correlating it with observed events remains a manual
effort.

1.1.4 Cyber Threat Intelligence

Where contextual frameworks can assist in the analysis of security events, this
knowledge must be shared among experts to provide effective countermeasures.
Low-level intelligence such as IoCs are often shared through platforms such as
MISP [167]. However, as our goal is to improve the workflow of SOC operators,
our focus is on high-level CTI that describes TTPs. This high-level kill chain in-
formation is often shared through security reports, blog posts and white papers
collectively known as CTI reports. These reports may include IoCs, but focus more
on the kill chains of individual attacks and provide additional contextual informa-
tion about the adversarial groups, tools and techniques that these adversaries use
to obtain certain tactics. By exchanging these CTI reports security operators can
share knowledge of attacks they observed in their own environments. Additionally,
by reading other reports, operators can learn to better recognize attack patterns
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Figure 1.3: Simplified structure of MITRE ATT&CK framework. The MITRE
ATT&CK framework defines Tactics, Techniques and Procedures (TTPs) as well as
their relations, that have been observed in the wild.

seen by other experts, and potentially create additional detectors to identify these
attacks. These CTI reports are often written in highly technical, natural language
that is understood by experts, but difficult to interpret by laymen and machines. In
an effort to make CTI reports more searchable, and to explicitly define the relations
between different parts of an attack, the threat intelligence community created the
Structured Threat Information Expression (STIX) language and serialization format
to exchange CTI [155]. STIX allows users to express CTI in the form of JSON objects
that have specified relations with other objects and can be tagged with metadata.
STIX can be used to tag CTI reports with e.g., concepts from the MITRE ATT&CK
framework, to allow security operators to quickly identify relevant reports. In an
ideal world, all CTI reports are shared in combination with metadata tagging the
report with relevant concepts from frameworks such as MITRE’s ATT&CK. How-
ever, this requires additional effort from already overloaded security operators, who
would have to manually tag reports. Therefore, CTI reports often do not include ex-
plicit information about the MITRE ATT&CK concepts they cover.

1.2 Open problems & Research Questions

The goal of this work is to better understand security events and the way they are
triaged to improve the detection capabilities of a SOC. We aim to integrate con-
textual kill chain information in the analysis of security events. To this end, we
introduce novel techniques that aim to improve the workflow of a SOC in terms of
information sharing, automated event analysis, detection of security events as well
as supporting preventive approaches. Together, these contributions aim to answer
our main research question:
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Main RQ. To what extent can we leverage high-level contextual knowledge of
cyber kill chains into security event analysis?

To address this research question, we focus specifically on three different open
problems and perform one case study in an adjacent domain. First, to understand se-
curity events in a broader context, security operators share knowledge about known
attacks. We recall that CTI reports are written in natural language, making them
easy to understand for humans with the appropriate technical knowledge. How-
ever, this same natural language makes it difficult to automatically scan, classify and
extract structured threat information from such reports. Therefore, to assist secu-
rity operators in searching and identifying relevant reports, we introduce a natural
language processing (NLP) framework that specializes in the extraction of cyber-
specific information from CTI reports. In doing so, we aim to answer the following
research question:

RQ 1. To what extent can we automate knowledge extraction from CTI
reports and classify it into existing TTP frameworks?

While CTI reports contain valuable information for detecting threats and triag-
ing events, attacks that are not described in reports may be missed. Therefore, to
fully understand security events in the context of an attack, and thereby assist se-
curity operators in event triaging, we propose an approach for contextual analysis
of security events. Until now, such contextual analyses are either done manually,
leading to alert fatigue, or are implemented as static rules [181] making it difficult to
cover all possible attack chains. Instead of imposing rules as a top-down approach,
we explore the possibility of bottom-up approaches, infering kill chain patterns from
observed security events. By automatically correlating security events and propos-
ing a human-in-the-loop approach for triaging groups of similarly correlated events,
we try to answer the following research question:

RQ 2. To what extent can we reduce the manual workload of triaging
security events based on contextual information?

While providing a workload reduction for security operators might increase
their efficiency, a main assumption is that there is enough contextual information
available to assess given security events. However, most IDS detectors focus on pro-
ducing events for either known threats (using rules and signatures) or anomalies
(using heuristics and anomaly detectors). Events produced by rules and signatures
are inherently linked to specific malicious behavior. While they are relatively easy
to assess in a SOC, they do not cover all malicious behavior. Conversely, anomaly
detectors can identify unknown behavior and trigger security events for them. How-
ever, anomalies are not necessarily malicious and malicious behavior may not even
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be anomalous. Therefore, security events produced by anomaly detectors are much
more difficult to assess. In the case of host-based anomaly detection, one can collect
additional information through an Endpoint Detection and Response (EDR) solu-
tion. However, with the advent of bring-your-own-device policies security opera-
tors lost access to a large portion of devices within their infrastructure. Therefore,
they have to resort to detecting suspicious behavior from the network, which does
not provide detailed contextual information. To overcome this limitation, we inves-
tigate the following research question:

RQ 3. To what extent can we identify malicious applications based on
network traffic?

Finally, we observe that the open problems and research questions focus on
faster, more accurate detection of malicious activity. However, our developed con-
textual identification and explanation approaches could potentially benefit adjacent
domains as well. To kick off potential future research directions we perform a case
study of context-based analysis in Identity andAccessManagement (IAM) solutions.
These IAM solutions provide organizations with tools to set policies that restrict
unauthorized access while still allowing designated roles within an organization to
carry out their tasks. As IAM policies control access, they are essential when re-
ducing the potential attack surface and can lead to disastrous consequences when
policies are misconfigured. Due to the high level of knowledge required for design-
ing these policies, checking if policies are misconfigured is either a highly manual
approach or can only be done reactively, after an incident occurred. Therefore, in
our final case study, we explore to what extent context-based analysis can assist in
preventing misconfigurations in IAM Policies.

1.3 Contributions & Thesis Overview

Figure 1.4 provides an overview of the research areas discussed in this thesis. We
begin with the investigation of cyber threat intelligence (CTI) in Chapter 2. Here, we
focus on automating the analysis of CTI reports with the help of natural language
processing (NLP) and extracting knowledge that helps us classify described attacks
in the MITRE ATT&CK framework. To this end, we propose a framework called
“EAGLE” that addresses the main challenges of NLP in the domain of security and
provides a plug-and-play solution for the automated processing of CTI reports. This
approach assists security event detection by providing a context-based explanation
for observed events.

Next, in Chapter 3 we approach security event analysis from the contextual
viewpoint of a triaging security operator. Here, we introduce DeepCASE, a semi-
supervised deep learning approach, that identifies malicious security events in rela-
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Figure 1.4: Thesis Overview. This thesis covers 1) Threat Intelligence Processing,
our approach to automatically analyze CTI reports and extract actionable threat
intelligence. 2) DeepCASE, which learns attack patterns by performing contextual
analysis of security events. 3) FlowPrint, which zooms in on generating security
events for new, previously unseen applications. 4) The Misdet case study applies
our contextual approach as a preventive measure by analyzing security policies.

tion to other, contextual events. By automatically discovering correlations between
security events, we provide an explainable approach that vastly reduces the work-
load of security operators.

While contextual detection vastly improves the workflow of security operators,
the fundamental assumption that SOCswork on is that IDSs produce security events
for suspicious detected behavior. Chapter 4 introduces FlowPrint, our approach
that attempts to detect not only suspicious behavior but raises events for individual
applications that are visible from the network. By identifying traffic on an applica-
tion level, we provide better contextual insights to security operators when detect-
ing threats. Moreover, because of our semi-supervised approach to detection, we
cover both known and previously unseen applications, making this technique extra
powerful in the context of attacks, where not all applications are known in advance.

After this in-depth analysis of security events from various angles, we shift
our focus from the detection of events and explore a case study in which we use
a context-based approach outside of the detection domain. In Chapter 5, we lever-
age the contextual knowledge of an IT infrastructure to identify misconfigurations
in IAM Policies. By doing so, we show the potential of context-based solutions in
preventing incorrect access to resources within cloud environments (in our case
AWS), and thereby reduce the attack surface of adversaries.

Finally, in Chapter 6, we reflect on the approaches introduced in this thesis,
summarizing the results and discussing future research directions.
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Chapter 2

Threat Intelligence Processing - Unleashing the

Real Power of Natural Language Processing for

Cyber Threat Intelligence

We start by investigating cyber threat intelligence (CTI) reports and the way we can
automatically extract information that is relevant for security operators. To this end,
we answer the following research question:

RQ 1. To what extent can we automate knowledge extraction from CTI
reports and classify it into existing TTP frameworks?

CTI plays a critical role in sharing knowledge about new and evolving threats
among security experts. However, with the increased prevalence and sophistication
of threat actors, intelligence has expanded from simple indicators of compromise to
extensive reports describing high-level attack steps. This higher-level view makes
CTI significantly more valuable, but also harder to interpret and process. Recent
advances in Natural Language Processing (NLP) have made it possible to automate
large parts of knowledge extraction from these CTI reports. While several works
have proposed the adoption of a variety of NLP techniques, applications have fo-
cused on highly specialized techniques, leading to insufficient, unexplainable, and
often unreproducible results. In this chapter, we systematize recent advances in NLP
to understand the problems they tackle and use these insights to review and con-
textualize existing research on the application of NLP for cyber threat intelligence.
Moreover, we propose a unified and customizable plug-and-play framework EA-
GLE, that enables both researchers and industry to combine and apply well-known
NLP techniques when processing threat intelligence. We evaluate the contribu-
tion of NLP techniques included in our framework on the task of extracting MITRE
ATT&CK techniques from CTI reports and identify current limitations and future
research directions.
This chapter is based on the publication: [4] Thijs van Ede et al. “Threat Intelligence Processing -
Unleashing the Real Power of Natural Language Processing for Cyber Threat Intelligence”. In: (Under
submission). 2023
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2.1 Introduction

In our ever-evolving threat landscape, security specialists try to keep upwith chang-
ing threats. To do so, they require cyber threat intelligence (CTI) to inform them
of malware developments and methods to detect and mitigate threats. CTI comes
in different forms: technical metadata known as indicators of compromise (IoCs),
which include malicious file names and hashes, URLs, IP addresses, and registry
keys. Moreover, high-level vulnerability descriptions (CVEs), as well as documents
describing tactics, techniques and procedures (TTPs), attackers, tools and mitiga-
tions for given attacks are widely shared types of CTI. With the increasingly com-
plex nature of threats, these latter high-level textual descriptions of attacks became
more prevalent in the form of reports often published aswhite papers and blog posts.

While these reports are crucial in understanding threat developments, they of-
ten must be interpreted by a human to extract this knowledge and transform it
into structured data that security systems can understand. Scholars and industry
have proposed various models, standards, and ontologies to represent the concepts
and semantic relations of these high-level descriptions as knowledge graphs [113,
146–148, 155, 167, 199]. The STIX 2.1 [155] format has widely been adopted as a
standard format by many organizations to describe cyber threat intelligence as it
provides a generic and extendable framework. However, many other, more spe-
cific models and ontologies exist (often expressed in STIX 2.1), such as used by
MISP [167] to express objects clustered into galaxies and MITRE’s ATT&CK [199],
D3FEND [113], CAPEC [146], CWE [148] and CVE [147] frameworks. Organiza-
tions use such knowledge graphs for example to link detected IoCs to specific types
of threats to find appropriate mitigation strategies.

The problem is that most shared CTI documents are not annotated with struc-
tured information. Therefore, while these documents are a flexible form for humans
to share and understand security threats, they have to be manually analyzed to ex-
tract knowledge that can be used by automated security systems. As this is currently
a laborious manual process, we would ideally require a system that automatically
interprets CTI documents and extracts knowledge in a structured form that can be
used by machines to reason about the provided CTI.

Nowadays, natural language processing (NLP) has shown incredible capabilities
in knowledge extraction [72, 170]. Hence, many security researchers have proposed
solutions to analyze security texts using these NLP techniques [88, 89, 107, 128, 130,
184, 185, 225]. However, due to the rapid advances in NLP techniques and their use
in the domain of security, it becomes difficult to understand the difference between
approaches, identify why these approaches work, and reason which further steps
must be taken to improve the knowledge extraction from security texts. To solve
these challenges, our work makes the following contributions:
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• Systematization of Knowledge by surveying and classifying existing work
that uses NLP to perform knowledge extraction from CTI reports, and by pro-
viding guidelines and insights into future directions to improve and integrate
NLP solutions into security systems.

• Methodological unified framework EAGLE to combine and adapt NLP ap-
proaches for security-specific texts.

• Technical implementation of EAGLE in a customizable plug-and-play frame-
work to bootstrap future research to solve security-specific NLP challenges.

2.2 Dissecting NLP

To understand the challenges faced when processing threat intelligence, we dissect
the widely accepted generic NLP challenges [136] and common generic solutions
through a running domain-specific example. However, first, we define our goal of
threat intelligence processing as identifying the steps and relations between steps of
a cyber attack that are described in security reports such as CTI reports and CVE
descriptions. An NLP approach that solves this goal takes as input a security report
and extracts knowledge that describes the individual steps of the attack described
by the security report. The main objective of such an approach is to identify the:

1. entities (e.g., attackers, targets, malicious software),

2. actions that each of these entities perform, and

3. relations between entities and actions.

As we will show in Section 2.3, approaches may include and adapt standard
NLP techniques to identify entities, actions and relations or use data-driven models
to classify or generate texts. In any case, understanding the generic challenges in
NLP helps to systematize existing work and understand and possibly improve the
steps that these approaches take. The NLP challenges discussed in this section form
the basis of our plug-and-play framework EAGLE as shown in Figure 2.1.

2.2.1 Naive matching

As specified previously, the goal of threat intelligence processing is to identify en-
tities, actions and relations within the text of security reports. A naive way of doing
so is by searching for known patterns representing entities, actions and relations
between them. However, first, this approach would require a vast database of pat-
terns to deal with all the quirks of natural language. Second, any pattern that is not
explicitly defined would be missed. To illustrate this, consider the following text
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Figure 2.1: Threat Intelligence Processing. The proposed EAGLE framework
takes security reports as input and uses NLP components combined with a knowl-
edge base to extract entities, actions and relations. In our evaluation, we classify
this extracted knowledge into the MITRE ATT&CK framework.

snippet from a security report that we will use as a running example to motivate
each step of the NLP framework:

In one of the Ryuk attacks reconnaissance of the networkwas done using
the tool AdFind by executing a script called “adf.bat”. This script was also
used in the attack where Hive ransomware was deployed as well as in the
Conti attack [...] (Northwave Security)

Next, we search for known entities and action patterns, e.g.:

1. Entities: Ryuk, AdFind, Hive, Conti, ransomware, *.bat.

2. Actions: attack, reconnaissance, execution.

Automatically matching these patterns with the security report would lead to sev-
eral complications due to mismatches in syntax and semantics. E.g., execution does
not match execute (syntax) and we don’t want to match execution in the sentence
“The execution of the prisoner.”(semantics). Moreover, we have not yet defined rela-
tions between entities and actions as it is notoriously difficult to provide an exten-
sive list. We further discuss this and other complications that will arise in the next
sections.

2.2.2 Tokenization

How should “adf.bat” be detected? A human would say the filename is adf.bat.
However, “ is a valid filename character, so should this be included during detection?
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Or should we not match at all, because looking at full words separated by spaces,
“adf.bat” ends in ” which does not match our pattern?

These issues arise because simple pattern matching does not perform tokeniza-
tion [215], the act of identifying individual words, numbers, punctuation, and some-
times prefixes and suffixes as individual tokens. In this work, we also refer to tok-
enization in the act of detecting sentence boundaries.

Tokenization is mostly considered a solved problem in NLP by maintaining dic-
tionaries of known words and regular expressions such as WordNet [143] and de-
tecting the remaining tokens based on rules for splitting on whitespaces and punc-
tuation.

However, specific cases in security reports, notably indicators of compromise
(IoCs), lead to problems when applying these generic techniques in the security do-
main. E.g., URLs and file paths contain (back)slashes which are often considered
separate tokens by generic models, and IPs and URLs contain periods which are
normally used to indicate sentence boundaries. In the security domain, these IoCs
have a meaning as a token itself and should thus be tokenized differently. Therefore,
our framework proposes to extend regular tokenization techniques with regular ex-
pressions covering well-known IoCs (e.g., IP addresses, hashes, filenames and paths)
that define token boundaries.

2.2.3 Part-of-speech tagging

Going back to the first sentence of our example, we may find that attacks is found
as an action. However, in this case, Ryuk attacks is a noun, not a verb, and therefore
should not be treated as an action, but would more likely be an entity.

To solve this problem, before trying to identify known patterns, we would like
to identify verbs, nouns, adjectives, and any other part-of-speech [71]. This allows
us to identify verbs as actions, and nouns or proper nouns as entities.

As with tokenization, part-of-speech (POS) tagging is a nearly solved problem
for most languages, where current improvements focus on reaching near-perfect
prediction [135]. State-of-the-art solutions use features such as capitalization, tense
detection, pre- and suffixes [205] as well as inter-word dependencies [204] to assign
POS tags.

However, security-specific tokens as found in security reports may exhibit in-
correct tagging. E.g., in the sentence:

The “at” command was used to schedule a task.

The token at, is likely misclassified as an adposition because generic NLP techniques
often detect closed POS classes such as adpositions through an exhaustive list of op-
tions. In this case, generic NLP techniques do not have domain-specific knowledge
of tools used by attackers and fail to recognize that in this case at should be treated
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as a proper noun, because it refers to a scheduling tool. In our unified framework,
we propose to solve this problem by adding information from a knowledge base
such as the MITRE ATT&CK framework [199] to existing POS taggers to improve
their performance on security reports.

2.2.4 Lemmatization and stemming

In our previous example for detecting attack, we did not find an exact match, but
instead (loosely) matched the attacks token. Nevertheless, when searching a text for
the action attack, one still expects to find inflected forms i.e., attacks and attacking.
Similarly, searching the conjugated form of execution, one expects to find the verb
execute and its inflected forms executes or executing.

To allow automated detection, we need to find a base form of each token in the
text, which allows us to match it. In NLP, there are two techniques that are related
to and attempt to solve this problem: lemmatization and stemming.

Lemmatization uses a combination of rules and exceptions to find the lemma,
also known as the dictionary form of each token [35, 166]. This has the advantage
that meaning is preserved, e.g., execution in the sentence:

The ransomware execution succeeded.

will point to a different lemma than in the sentence:

The prisoner awaits execution.

Because in the first sentence, its meaning is to carry out, while in the second sen-
tence, the meaning of execution is to put to death. Preserving this difference is ad-
vantageous when searching for entities and action patterns as we prefer to match
tokens with the same meaning. However, lemmatization also restricts itself to to-
kens with the same POS tags. This means that the verb execute, and noun execution
will have different lemmas. Hence, lemmatization alone is insufficient for perform-
ing detection.

In contrast, stemming attempts to overcome this problem by attempting to re-
duce inflected words or sometimes even derived words to their base form without
the need to have a common POS tag or even meaning. Oftentimes, this means that
stemming is based on rules, e.g., remove the -ion suffix of nouns, or -ing suffix of
gerunds. Hence, for the noun execution and verb executing both stems point to execut
(without the ’e’, as it does not have to be a valid word). However, as a disadvantage,
both meanings of execution in the example above will have the same stem execut as
well.

We propose to combine lemmatization and stemming techniques with infor-
mation from a knowledge base such as the MITRE ATT&CK framework to ensure
security-related terms can be matched based on their root form while maintaining
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meaning. This means that we automatically identify all related derivatives for con-
cepts within such a knowledge base, and give them the same stem as the concept
in the knowledge base. Additionally, we show that IoCs in security reports require
a special form of lemmatization because they are often defanged. Defanged IoCs
are sanitized in such a way that their representation is different from the original
IoC, but to a human, it is still readable as an IoC. Examples are IP addresses or URLs
where parts of the address have beenmodified, e.g., 10.0.0.1 becomes 10[.]0.0.1.
This is done so that signature algorithms don’t detect security reports as being ma-
licious themselves and to prevent readers of the report from accidentally accessing
those IoCs.

2.2.5 Related word detection

While lemmatization and stemming already greatly improve the coverage when
identifying entities and actions, they are limited to words that are defined as search
patterns. E.g., if the first sentence of our example was changed to:

In one of the Ryuk attacks exploration of the network was done
using the tool AdFind by executing a script called “adf.bat”.

a security operator would likely say that the meaning of the sentence remains the
same. Oftentimes, it is infeasible to create an exhaustive list of search patterns to
cover all possible phrasings for detection. Therefore, we argue any framework used
for detecting concepts, should also include the option to detect tokens with a similar
meaning. This work explores the use of both knowledge bases and unsupervised
learning methods to automatically find related words in the text to further increase
the coverage of detection (Section 2.4.4).

2.2.6 Parsing

Until now, our running example has only dealt with the detection of entities and
actions. However, as mentioned previously, we would also like to infer relations
between these entities and actions to model their interaction. That is, we would like
to parse the dependencies [67, 70] of tokens within a sentence to identify the subject
and object of the sentence [119, 153]. This would allow us to infer the relation
between entities and actions.

While generic NLP methods [51, 104, 129, 154] work reasonably well on text
from security reports, performance is improved by better tokenization and POS
tagging as essential parts of the NLP framework. Figure 2.2 shows how parsing
allows us to infer dependencies within sentences and detect objects and subjects.
However, we still require domain-specific knowledge to identify which relations
are meaningful to security operators. Hence, we show that parsing methods can be
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Figure 2.2: Example of parsed sentence. When parsing the sentence “In one of
the Ryuk attacks reconnaissance of the network was done using the tool AdFind by
executing a script called “adf.bat”.”, we find one subject and three objects.

used in combination with knowledge graphs such as the MITRE ATT&CK frame-
work, to determine which relations are meaningful and should be included in the
final output.

2.2.7 Coreference resolution

The parsing step of the previous example is necessary to infer meanings between
tokens within a single sentence. However, security reports often have implicit ref-
erences between different sentences as well. In the second line of our example, This
script refers to adf.bat. However, by naively analyzing the second sentence by itself,
we would miss that both Hive ransomware and the Conti attack deploy adf.bat as
well because the script is not explicitly mentioned. Therefore, we require a way to
resolve pronouns (e.g., she/he/it) and other referring expressions to make sure that
they can be detected as the entities or actions they refer to. InNLP, this task is known
as coreference resolution, and it is commonly performed by neural networks [112,
123]. To enhance detection, we propose to apply existing coreference resolution
techniques to extend the coverage over entities, actions and relations. This task is
rather generic, as long as the POS tags of tokens in the text are correctly attributed.
While the task of coreference resolution is vital in increasing the coverage of secu-
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rity reports, we show that a framework does not require a security-specific solution
for this problem.

2.2.8 Named Entity Recognition

In our running example, we predefined entities and actions that we would like to
identify within security reports. However, the list used in our example is far from
complete. Instead, we require a more comprehensive model for locating and identi-
fying entities, actions and relations.

Within NLP, this process of detecting any entity (in our case, this includes ac-
tions and relations) is called Named Entity Recognition (NER). While there exist
generic NER models for detecting entities such as persons, locations or organiza-
tions [126], for the most part, and especially in the case of security reports, NER is
a domain-specific task. There are many techniques to perform NER, many of which
rely on machine learning classification that can be trained on labeled datasets [121,
126]. Unfortunately, for security reports, there currently does not exist any labeled
dataset identifying entities, actions or relations that we can use to train a NER clas-
sification or detection model.

Therefore, instead, we propose to perform NER by combining the aforemen-
tioned framework components with basic search patterns in the form of:

1. regular expressions for IoCs,

2. entities defined in a knowledge base1, and

3. actions defined in a knowledge base1.

This allows us to detect predefined entities and actions accurately in a generic
way using proper tokenization, POS tagging, lemmatization and stemming. Fur-
thermore, related word detection and coreference resolution will allow us to extend
detection to include tokens with the same meaning. And finally, parsing will allow
us to automatically infer the relations between entities and actions.

2.3 State-of-the-art

In the previous section, we identified the challenges when applying generic NLP
solutions to CTI documents. Existing research into NLP for CTI documents already
suggests specialized approaches to identify and extract relevant information from
security-related texts, overcoming many of these challenges. In this section, we
create a taxonomy that classifies solutions into three categories:

1In our case the MITRE ATT&CK framework .
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Table 2.1: Framework components implemented by related work.

Approach Tokenization POS detection Lemmatization Related word Parsing Coreference NER

Se
m
an
tic

AttacKG [128] ❍ ❍ ❍ ✕ ❍ ❍ ●

Extractor [184] ● ● ● ❍ ● ❍ ●

iACE [130] ❍ ✕ ✕ ✕ ❍ ✕ ●

ThreatRaptor [89] ● ❍ ✕ ✕ ❍ ❍ ●

TTPDrill [107] ● ● ✕ ● ❍ ✕ ●

H
yb

rid

CASIE [185] ❍ ❍ ❍ ✕ ● ✕ ●

ThreatKG [88] ● ✕ ✕ ✕ ● ❍ ●

TIMiner [225] ❍ ✕ ❍ ● ❍ ✕ ●

D
at
a-
dr
iv
en

Type Approach

C AITI [219] ❍ ✕ ✕ ✕ ✕ ✕ ✕

C Ditdetector [220] ❍ ✕ ✕ ✕ ✕ ✕ ✕

C rcATT [124] ● ✕ ● ✕ ✕ ✕ ✕

R Purba et al. [168] ● ● ❍ ● ✕ ✕ ✕

R SECCMiner [152] ❍ ❍ ✕ ● ❍ ✕ ✕

G BERT-like [18, 72, 134, 172] ❍ ✕ ❍ ✕ ✕ ✕ ✕

Gen. GPT-like [158, 170] ❍ ✕ ❍ ✕ ✕ ✕ ✕

✕ action is not present or not mentioned. C Classification
❍ action is present, but not domain-specific. R Clustering
● action is present and domain-specific. G Generic

1. Semantic models infer the semantic meaning of the CTI texts based on rules
and heuristics over token attributes such as POS tags, lemmas, and parsed
dependencies.

2. Data-driven models use machine learning models to automatically classify
tokens, sentences or parts of the text into categories defined by given frame-
works or ontologies.

3. Generative models are built with the purpose to generate rather than clas-
sify text. This class of approaches is relevant for interpreting CTI documents
especially when used as a question-and-answering system.

Furthermore, our taxonomy describes to what extent these existing works solve
our identified challenges and discuss open problems for each category. Table 2.1
shows the state-of-the-art works classified according to both our taxonomy and the
different NLP problems they address.

2.3.1 Semantic models

Semantic models focus on named entity recognition by inferring the meaning of
words in the text through dictionaries, rule-based heuristics and (automatic) related-
word detection. This means that they often start with manually created patterns
specifying the entities that should be detected. Semantic models have the advan-
tage that they are explainable and easily fine-tuned due to the specific dictionaries
and heuristics that are used for detection. Furthermore, they often have a fine level
of granularity in being able to pinpoint the exact phrase or words leading to de-
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tection. Finally, semantic models often have a high precision as detected entities
are clearly delineated by the model’s configuration. The disadvantage of semantic
models is that they often struggle with new or loosely defined entities, due to the
lack of dictionary entries or rules describing those entities. Furthermore, the fine-
grained detection of semantic models is less suited for high-level classification tasks
as classes may not be directly visible in the text as individual entities but may be
inferred from the overall meaning of the text.

Related works

Security-oriented works that employ semantic NLP models focus mainly on de-
tecting IoCs [88, 89, 128, 130, 184, 225], or Tactics, Techniques and Procedures
(TTPs) [88, 107, 128, 184, 185, 225] such as those defined byNIST [111] orMITRE [199].
The common objective shared by semantic models is understanding the relations be-
tween recognized entities, which is shown by their focus on parsing. This allows
them to extract knowledge that details individual attack steps and the relations be-
tween them from one or more reports. We distinguish between purely semantic
approaches that rely on regular expressions and dictionaries [89, 107, 128, 130, 184]
or heuristics [128] and hybrid approaches that perform NER through data-driven
classification, but leverage parsing to infer meaning between detected entities [88,
185, 225].

2.3.2 Data-driven models

In contrast to semantic models, data-driven models are not imbued with knowledge
of domain-specific entities or sentence structures. Instead, they learn which tokens
and structures correlate to classes by observing labeled data. To this end, data-driven
models learn embeddings (vector representations) for each token in the corpus [141,
164, 210]. Embeddings may be used to identify individual tokens for named entity
recognition, or they may be combined to identify and extract entire sentences [72],
paragraphs or even documents [124]. Within data-driven models, we distinguish
three sub-categories:

1. Classificationmodels take token representations and train supervisedmod-
els to predict texts [124, 219, 220].

2. Clusteringmodels perform unsupervised grouping of token representations
to find other related tokens or phrases [152, 168].

3. Generic models are first trained on generic unsupervised NLP tasks such
as prediction of masked token values [72, 134]. The output of these models
can be extended for domain-specific downstream tasks [72, 172] such as text
classification.
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The advantage of data-driven models is that they do not require exhaustive knowl-
edge of tokens and sentence structures used in a specific domain. This means that
data-driven models often observe more flexibility when dealing with small changes
in expressions that convey the same meaning. Moreover, new tokens and sentence
structures can be retrained when new data becomes available. However, the dis-
advantage of these models is that they often require vast amounts of labeled data
to train their increasingly complex models. While training data itself may in some
cases be obtained fairly easily, the corresponding labels for accurate classification
are often much more costly to acquire [88]. Generic models attempt to alleviate
this problem by first training on unsupervised tasks such as language masking or
next sentence prediction [72] where the text itself is masked or modified to obtain
labels. This way, the language model itself can be trained from the raw texts, not
requiring any domain-specific labels, which bootstraps the model to require fewer
labeled data points when training its classification model. Nevertheless, for many
security-specific tasks, the amount of available labeled data is limited, inhibiting the
full potential of data-driven models.

Classification models

Classification has been used to determine whether a text is relevant to analyze [168,
220], or, once it is determined to be relevant, classified into different TTP cate-
gories [88, 124, 185, 219, 225]. Hybrid approaches [88, 185, 225] classify individual
tokens or parts of sentences, whereas purely data-driven approaches classify para-
graphs or entire documents [124, 219, 220]. While requiring less a priori knowledge
of CTI texts, data-driven classification approaches rely on vast labeled datasets, lim-
iting their application.

Clustering models

Clustering models [152, 168] find relevant tokens or sentences in CTI reports. These
can be used to reduce large reports into their most relevant sentences or find token-
s/sentences that are related to previously detected concepts. Therefore, these tech-
niques are often used in combination with semantic or data-driven classification
models that can detect these relevant sentences in large corpora.

Generic models

To overcome the requirement of large labeled datasets for data-driven classifica-
tion models, BERT [72] introduced a generic NLP model trained to predict values of
masked tokens in English sentences and predict whether sentence pairs are logical
follow-ups. The idea is that, once the neural network is trained on these generic lan-
guage tasks, one can extend BERT on so-called “downstream tasks” for a domain-
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specific purpose. AITI [219] builds on top of BERT’s output to predict whether
sentences include threat intelligence. BERT derivatives such as RoBERTa [134] im-
prove the performance on various downstream tasks. More recently, cyber-specific
BERT derivatives such as CyBERT [172] and SecBERT [109] focused on improv-
ing BERT’s performance on technical cyber threat intelligence language. However,
these generic models still need to be fine-tuned on tasks such as identifying relevant
entities in threat reports.

2.3.3 Generative models

Finally, we have generativemodels, which take the unsupervised approach of generic
data-driven NLP models one step further by predicting possible continuations of
text. In the security domain, this can be used to assist security experts in writing
reports [173]. However, more recently, generative models have gained attention in
identifying relevant information in texts by employing these models in a Question
and Answering (Q&A) setting [171]. In this setting, one provides the generative
model with a piece of text and a question regarding that text. The generative model
then attempts to formulate the most likely continuation, in this case, an answer, to
the posed question. Large, generic generative language models such as GPT-3 [46]
and ChatGPT [158] have shown interesting results in answering security-related
questions about texts.

However, there are severe pitfalls with these models that must be overcome be-
fore they can be useful in the security domain. First, due to the black-box approaches
that are used to generate new text, it is difficult to assess whether the generated out-
put is meaningful for domain-specific scenarios. Combined with the lack of labels,
understanding and adapting generative models to increase performance is almost
exclusively limited to providing different training data. Second, existing genera-
tive (Q&A) models are built for generic text and therefore it remains to be seen to
what extent domain-specific responses are accurate. Therefore, to perform well in
the highly specialized context of security, models must be fine-tuned on security-
specific inputs. Additionally, existing model architectures are large2 and require
vast amounts of data (beyond what is openly available in the context of security) to
train or even fine-tune. Despite being fully unsupervised and therefore not requir-
ing labels, the amount of available domain-specific texts to train these models may
be a limiting factor. Finally, text produced by generative models is either written in
natural language which has to be interpreted, or the models have to be prompted
to output data in structured formats. The former is not a problem when the output
should be interpreted by humans, but when the output should be interpreted by
machines, it should still be parsed with either a semantic or classification model.

2GPT-3 requires training of 175 billion parameters
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2.4 EAGLE Framework

In Section 2.2 we motivated the different framework components required for the
semantic processing of CTI reports. Furthermore, we have seen that state-of-the-art
works already take into account many components to increase their performance
(Table 2.1). However, most approaches address only a limited set of challenges or
use out-of-the-box NLP solutions to implement individual framework components,
with the exception of NER. As NER can be strengthened by proper implementation
of other components, it is important to ensure every component performs well on
domain-specific CTI reports. In this section, we propose a unified framework that
attempts to address previous challenges through adjustable components, which in
turn allow us to improve existing NER solutions, and even experiment with new
ways to perform NER.

2.4.1 Tokenization

Tokenization for generic English text uses rules and exceptions for tokenization on
how to deal with punctuation, affixes and word boundaries. In security reports,
generic tokenization methods work well for most tokens as they are written in nat-
ural text. However, IoCs often pose difficulties for generic rules and require special
ways of parsing. Depending on the ruleset used for tokenization periods in an IP
address or URL may be parsed as the end of a sentence, or a stand-alone token (e.g.,
127.0.0.1 is parsed as the seven tokens [127] [.] [0] [.] [0] [.] [1]). Simi-
larly, hyphenated IoCs such as CVE-2021-45105will be treated as 5 separate tokens
[CVE] [-] [2021] [-] [45105].While IoCs could theoretically be processed as
multiple tokens, further analysis such as POS detection is simplified when we treat
them as a single token. Rather than treating an IP address as a sequence of [NUM,
PUNCT, NUM, PUNCT, NUM, PUNCT, NUM], intuitively, it makes much more sense to treat
it as a single NOUN. Hence, to allow for this further processing, we must first identify
IoCs as individual tokens.

To detect IoCs as tokens, we create regular expressions for the IoCs3. These reg-
ular expressions are based on the official specification for the various IoCs. However,
these regular expressions alone are not sufficient for security reports. We found,
by examining a small sample set of 50 security reports that 13 of them included
so-called defanged IoCs [48]. By defanging an IoC, writers of security texts try to
prevent signature-based security solutions from detecting reports themselves asma-
licious. E.g., by transforming IoCs such as IP address 127.0.0.1 into 127[.]0.0.1 which
will not match any known signature. However, this also means that to detect IoCs,
we must deal with defanged IoCs as well. We use the fangs identified by Good-
FATR [48]: encapsulating the ".", ":", and "@" by different brackets [({})] and/or

3Available at https://doi.org/10.4121/f28346c4-09eb-49e2-bcbc-6bb07bde1970.
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replacing it with the words dot/at in IPv4, IPv6, URLs, emails and filenames, and
replacing the scheme or backslash in URLs (e.g., hxxp:// instead of http://). In Sec-
tion 2.6.3 we show the increased performance in detecting IoCs.

2.4.2 Part-of-speech tagging

Once individual tokens are identified, we want to ensure that each token has a cor-
rect POS tag. POS tags are often assigned using a combination of rules for closed
class tags and machine learning models that detect open class tokens.

Closed class POS tags can be detected using fixed lists, e.g. adpositions (in, to,
during) or rules, e.g., numbers (anything consisting of digits, possibly with a pe-
riod or comma). Domain-specific tokens that fall into these categories, such as the
scheduling software "at" (which is also an adposition), should be listed as exceptions
in case the context indicates that they should be treated as a (proper) noun.

Open-class POS tags such as nouns, verbs and adjectives must be inferred from
their context and are often detected using machine learning algorithms. While un-
known domain-specific tokens that fall into open-class POS tags can generally be
detected quite well, there are pitfalls for security-related texts. Specifically, names
of software or adversarial groups that are not capitalized (e.g., ftp, ssh, ipconfig or
admin@338) may be incorrectly detected as nouns instead of proper nouns. To solve
this issue, we automatically create a list of exceptions based on the concepts defined
in the MITRE ATT&CK knowledge base and include them in our framework. We
do have to be careful here to not be too liberal in assigning different POS tags. For
example, the Trojan software Elise is also called Page, however, should we label
every instance of page as a proper noun, then the page in web page will be incor-
rectly labeled. Hence, we only apply this list of exceptions to known, uncapitalized
groups and software. The performance of our improved POS tagging is shown in
Section 2.6.3.

2.4.3 Lemmatization and Stemming

Now that we have identified the POS tags, we can reduce each token to its base
form that we can use for detecting entities and actions within security reports. By
reducing each token to such a base form, we increase our coverage during NER. To
do so, we extend traditional lemmatization by including all tokens with the same
derivational root. This means that rather than reducing a term such as "persistence"
to its lemma "persistence", we find all derivationally related words such as "persis-
tent"/"persist" and reduce them all to a common basic form, e.g. "persist". To this
end, we search the lexical database WordNet [143] for any token that has a similar
derivational root and choose the shortest form of all tokens with the same deriva-
tional root as the base.
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Indicators of Compromise

In Section 2.4.1 we paid special attention to tokenizing IoCs and the act of defang-
ing. We introduce two forms of stemming for IoCs. First, a “refanged” version of de-
fanged IoCs (e.g., refanging 127[.]0.0.1 becomes 127.0.0.1) which can be used
to uniquely identify IoCs. Second, a textual description of the IoC type (e.g., the
lemma of 127[.]0.0.1 becomes “IP_address”) that is used by related word detec-
tion (Section 2.4.4) and named entity recognition (Section 2.4.7) to match tokens.

2.4.4 Related word detection

When detecting named entities, it is trivial to detect tokens and phrases that have
been explicitly defined. However, we often want to detect tokens and phrases with
a similar meaning as well. Using data-driven approaches, tokens with similar mean-
ings can be inferred from large enough labeled datasets. However, as we have seen,
these datasets are largely non-existent in the domain of threat intelligence. There-
fore, to assist named entity recognition, we propose two methods to identify tokens
that are related to explicitly defined tokens. First, a manual dictionary approach,
SecNet, lists known synonyms of security-related terms. Second, we automatically
infer related words by creating word embeddings for security terms and finding
similar embeddings in a trained corpus.

SecNet

For generic English text, the lexical databaseWordNet [143] was created that defines
semantic relations such as synonyms, hypernyms and hyponyms. While WordNet
is a generic database, it does include various security-related terms and relations.
However, many terms and especially relations are not relevant in the security con-
text. E.g., WordNet lists the following definitions (in the form of synonym sets) for
the term “execution”:

1. Putting a condemned person to death.
2. The act of performing; of doing something successfully; using knowledge as distinguished

from merely possessing it.
3. (comp. science) The process of carrying out an instruction by a computer.
4. (law) The completion of a legal instrument (such as a contract or deed) by signing it (and

perhaps sealing and delivering it) so that it becomes legally binding and enforceable.
5. A routine court order that attempts to enforce the judgment that has been granted to a plaintiff

by authorizing a sheriff to carry it out.
6. The act of accomplishing some aim or executing some order.
7. Unlawful premeditated killing of a human being by a human being.
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In this case, we are interested in Definition 3, which includes the term “instruc-
tion execution” as a synonym. This is in sharp contrast with e.g., non-security Def-
inition 1 which lists “capital punishment” and “death penalty” as synonyms. We
create our own subset of WordNet, called SecNet4 by automatically selecting all
terms that occur both in WordNet and the MITRE ATT&CK framework and manu-
ally selecting the synonym sets (i.e., definitions) related to the security context. We
identified 3,200 unique terms in the MITRE ATT&CK framework, of which 1,237
contained one or more synonyms in WordNet. For overlapping terms, we found a
total of 2,369 matching synonym sets that include a total of 1,428 unique terms in
5,465 synonym relations.

Word embeddings

Related words defined in SecNet include relations that are true only for both generic
English text and security-specific texts. However, this approach misses relations
that are domain-specific but not generally true for English text or relations for words
that are so domain-specific that they do not occur in generic databases such asWord-
Net. An examplemight be “drop” and “infect” which do not seem to be related at first
sight. However, a “dropper” (with the lemma “drop“) is a type of Trojan designed
to install malware, i.e. to “infect” a machine. Moreover, tokens that are not present
in generic databases such as abbreviations for Command and Control: “C&C” and
“C2” are related, but are not present in SecNet either. Producing a domain-specific
relation database requires costly manual labor to fully cover all possible phrasings of
entities that we want to detect in reports in the wild. Therefore, instead, we propose
to extend SecNet using unsupervised data-driven related word detection.

Literature uses word embeddings [37, 72, 141, 164] to represent tokens as vec-
tors. The idea is that this vector embeds the meaning of a token and can therefore
be used to identify related tokens based on a similarity function, which in language
processing is nearly always defined by the cosine similarity:

𝑆𝑐𝑜𝑠 (𝐴, 𝐵) =
𝐴 · 𝐵

∥𝐴∥ ∥𝐵∥ (2.1)

Word embeddings are initialized as random vectors for each lemma and then
learned by training a neural network where the values of these embedding vectors
are updated as part of backpropagation. In our work we test three approaches to ob-
tainword embeddings: NLM [37],Word2Vec-CBOWandWord2Vec-Skipgram [141].
Next, we train these word embeddings over our corpus (Section 2.5) and use the co-
sine similarity (Equation 2.1) to find the top 𝑛 (in our work 𝑛 = 5) most similar
tokens for each token present in the MITRE ATT&CK framework. We consider

4Available at https://doi.org/10.4121/f28346c4-09eb-49e2-bcbc-6bb07bde1970.
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these 𝑛 tokens to be related words which we use in Section 2.4.7 to detect named
entities.

2.4.5 Parsing

Parsing determines the semantic relations between words within sentences. This
allows us to detect objects and subjects within sentences but also dictates whether
in the sentence:

“The analyst detected the adversary using network scanning.”

it was the analyst who performed the network scanning or the adversary. Save
highly ambiguous edge-cases such as the previous example, generic NLP parsing
methods trained as classifiers on large corpora [68, 104, 117, 136, 153] seem to per-
form rather well, even on the technical language used in cyber threat intelligence.
This is especially useful because retraining such methods on security-specific data
requires dependency-labeled corpora, which to the best of our knowledge do not
exist in the domain of cyber threat intelligence. Hence, we propose to use standard
NLP parsing techniques, specifically our framework uses the SpaCy parser due to
its state-of-the-art performance [104, 153].

2.4.6 Coreference resolution

Similar to parsing, most coreference resolution approaches [42, 112, 123, 194] intro-
duce neural networks trained on large datasets of labeled coreferences. These net-
works rely on word embeddings but may include POS tags and parsed dependencies
as additional information to increase their performance. We found that coreference
resolution in the domain of CTI is not fundamentally different from any other do-
main as long as entities such as IoCs and domain-specific terms are properly tok-
enized, POS-tagged, and parsed. Therefore, for coreference resolution, we propose
to use standard techniques. In this work, we use SpaCy’s coreferee [106].

2.4.7 Named Entity Recognition

Using the previously introduced components, we can detect named entities that lie
at the core of our knowledge extraction. Note that in this work, we focus on de-
tecting entities and actions described in the MITRE ATT&CK framework. Here, we
distinguish two cases: First, single token entities, e.g., “Ryuk” or “reconnaissance”
can be detected using lemmas, related words and coreference resolution. Second,
subphrases consisting of multiple tokens that do not necessarily occur as fixed sub-
phrases, e.g. “Credential Access” in the phrase “The attacker gained access to the
credential database.” These latter subphrases often require POS tagging and parsing
on top of the techniques used for single token entities.
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Figure 2.3: Single token NER. This example searches for dictionary values “execu-
tion” and “ransomware”, finds all related words for those values and produces the
lemmas for searching. Subsequently, when performing NER on the sentence “The
APT ran a cryptolocker.”, we compute the lemmas for each token in the sentence
and match it against the lemmas in our training dictionary. This detects “run” as a
form of “execution” and “cryptolock” as a form of “ransomware”.

Single token entities

Identifying single token entities is relatively straightforward using our previous
framework components. Given a dictionary of targets to recognize, we compute all
related words for those targets (see Section 2.4.4). Next, we take the lemma and POS
of all targets and their related words, as potential matches. Now, when we want to
detect these targets in a sample text, we pass the text through our framework, which
tokenizes the text and computes all relevant features (POS, lemmas, dependencies,
etc.). Finally, we match the (lemma, POS)-tuples in our text to the trained targets to
identify named entities. Figure 2.3 illustrates this process of detecting single token
entities.

Subphrase

A more challenging technique is the detection of entities spanning multiple tokens,
i.e. a subphrase. Here we have to find a balance between extending single token
entity detection to detecting exact (complete and in the same order) subphrases and
detecting any occurrence and order of partial subphrases in the text. Detecting ex-
act subphrases is likely to be precise, but would miss entities where the order is
changed, or additional words are introduced. E.g., “Privilege Escalation” would not
be detected in the sentence “The adversary escalated privileges.” (different order) or
“The privileges of the adversary were escalated.” (contains additional tokens within
subphrases). Conversely, being too permissive by allowing any order or sub-phrase
to occur separately may lead to a higher recall, but will detect false positives. E.g.,
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Figure 2.4: NER parse trees. Parse trees of the sentences 1) “The adversary esca-
lated privileges.”; 2) “The privileges of the adversary were escalated.”; and 3) “The
user controlled their program through the command-line interface.” In cases where
we should detect a match (1 and 2), target tokens are directly related, whereas non-
desired matches (3) do not show a direct relation.

“Command and Control” may be detected in the sentence “The user controlled their
program through the command-line interface.” Therefore, we propose to leverage
information of POS tags and parsed dependencies to more accurately detect sub-
phrases.

Figure 2.4 shows the parse trees of our three examples. Here we find that sub-
phrases that should be detectedmore often show a direct relation in their parse three,
whereas false positively detected subphrases often do not show direct relations. We
propose to leverage direct dependencies to detect subphrases and discard indirect
and non-dependent subphrases for detection. Naturally, one can apply heuristics
based on the distance of subphrases tokens within the parse tree to further optimize
recognition, but we consider this beyond the scope of this work.

We note that in our third example, we conveniently left out the token “and”
when detecting “Command and Control”. We experimentally found that tokens such
as “and”, “in”, and “through” in subphrases contain limited information for detec-
tion. Such tokens can easily be identified by their POS tags. Therefore, we propose
to limit our NER searches in both target subphrases and parsed dependency trees by
excluding tokens with POS tags ADP, AUX, CCONJ, DET, PART, PRON, SCONJ. Again, ex-
ceptions may apply for given subphrases, so certain subphrases may require tuning
which POS tags to include in the search.
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2.5 Datasets

To evaluate and understand the intricacies of the complete framework, we evalu-
ate it using real-world CTI reports. While there exist many publicly available CTI
sources, these sources are scattered across the web, making it difficult to find them.
Additionally, these reports come in many different flavors (e.g., (white) papers or
blog posts with different layouts), making it difficult to extract their contents in a
unified way. Furthermore, these reports are often not labeled with anymetadata and
are therefore difficult to use for classification or regression tasks. These challenges
lead to limited data availability for NLP of CTI reports. For this research, we scraped
two publicly-available datasets (see description below) that can kickstart research
into CTI text processing by collecting the raw text of 6,732 unique reports5. Addi-
tionally, we worked with the company Accenture to test the EAGLE framework
on their proprietary CTI dataset.

2.5.1 MITRE CTI dataset.

MITRE’s ATT&CK framework provides an open-access knowledge base of adver-
sary tactics and techniques [199]. This knowledge base is based on real-world obser-
vations documented in blogs and white papers of security organizations that are ref-
erenced within the framework. We collected all references in the MITRE ATT&CK
v10.1 framework for a total of 2858 URLs from 755 different sources. Of all URLs,
2,827 were still accessible at the time of collection and were scraped to obtain the
threat reports in plain text form. We randomly selected 10 reports consisting of a
total of 2,248 sentences and 33,503 tokens. We manually labeled each token (see
Section 2.6.1) in these reports according to whether they (partly) describe a MITRE
ATT&CK concept. These labeled reports are used in Section 2.6 to evaluate the
performance of EAGLE.

2.5.2 ChainSmith dataset.

ChainSmith [226], the previous work on detecting IoCs in CTI reports, collected
4,082 references to CTI reports. Unfortunately, their public dataset only includes
the references, but did not include the raw text of the reports. Therefore, we re-
scraped all references of which 3,905 were still accessible. In addition to the sources,
the ChainSmith dataset also includes IoCs that were detected by ChainSmith. We
note that this is not the ground truth, but rather the predictions of ChainSmith.
To allow for a better evaluation, we randomly selected 50 reports from this dataset

5Code, data and labels for this research are available at https://doi.org/10.4121/
f28346c4-09eb-49e2-bcbc-6bb07bde1970. Due to copyright on CTI reports, we publish only our
manually labeled reports and include scripts to automatically collect the other datasets.
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and manually extracted all IoCs. We use both the manual ground truth and the
IoCs detected by ChainSmith in Section 2.6.3 to evaluate and compare our own IoC
detection method. Additionally, we include the ChainSmith dataset in the training
of embedders for related word detection.

2.5.3 Accenture dataset.

In addition to the MITRE CTI dataset, we collaborated with Accenture to eval-
uate the performance of EAGLE on their internal CTI reports. They provided us
with a total of 271 CTI reports where labels were given to the overall report. Fur-
thermore, 5 randomly chosen reports were manually labeled per token to the corre-
sponding MITRE ATT&CK concept by aAccenture expert, just as with the MITRE
CTI dataset. This dataset is used to explore the effect of writing styles in reports on
the performance of the framework.

2.6 Evaluation

We have proposed a framework that includes the necessary components to per-
form accurate extraction of MITRE ATT&CK concepts in CTI reports. To evaluate
this framework, we created a prototype of EAGLE6, and use this prototype to gain
a deeper understanding of its individual components by answering three research
questions:

RQ 1.1 To what extent does each framework component affect the performance of
entity detection?

RQ 1.2 How and to what extent can we influence the performance of individual
components?

RQ 1.3 To what extent is performance affected in practice on different datasets?

We start our evaluation by describing the setup of experiments in Section 2.6.1.
Next, Section 2.6.2 performs an Ablation study to answer RQ 1.1. Then, we eval-
uate individual components to answer RQ 1.2 in Section 2.6.3. Additionally, we
addressRQ 1.3 by measuring the performance on different datasets in Section 2.6.4.
Finally, we perform a runtime evaluation of the framework in Section 2.6.5.

2.6.1 Experimental Setup

We implemented a prototype of the EAGLE framework in Python based on the
SpaCy framework7. In our evaluation, we also use the official implementation of

6Available at https://doi.org/10.4121/f28346c4-09eb-49e2-bcbc-6bb07bde1970.
7Available at https://doi.org/10.4121/f28346c4-09eb-49e2-bcbc-6bb07bde1970.
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TRAM8 and implement TTPDrill by adapting the EAGLE framework to use the TTP-
Drill ontology. We perform our main evaluation on manually labeled CTI reports
from the MITRE CTI dataset. The full MITRE CTI dataset, Accenture dataset and
ChainSmith dataset are additionally used to evaluate EAGLE in specific scenarios
and to evaluate individual components.

Metrics

In our experiments, we focus on precision (Eq. 2.2), recall (Eq. 2.3) and F1-score
(Eq. 2.4) which are based on the number of true positive (TP), false positive (FP) and
false negative (FN) values. TP values are defined as correctly detected entities; FP
as incorrectly detected entities; and FN as undetected entities. We deliberately do
not include true negative values and related metrics such as accuracy as this would
include any token that is correctly not detected. As the majority of tokens in CTI
reports do not refer to MITRE ATT&CK concepts, this would give high results that
are meaningless.

precision =
TP

TP + FP
(2.2)

recall =
TP

TP + FN
(2.3)

F1-score =
2TP

TP + FP + FN
(2.4)

Additionally, we note that in some of our experiments, complete ground truth
was not available, which is the exact problem that our framework attempts to ad-
dress. When working with limited ground truth, i.e., when only partial labels are
available (Sections 2.6.4), we report all values, but focus only on the recall as preci-
sion and F1-score cannot be accurately established.

Dataset labeling

To evaluate EAGLE we manually labeled a total of 15 reports (10 for the MITRE
CTI dataset and 5 for the Accenture dataset) on a per-token basis. Labeling is a
highly manual task and may be dependent on the knowledge of the expert perform-
ing the labeling. Therefore, we let EAGLE, TRAM and TTPDrill [107] detect MITRE
ATT&CK concepts and provided them as suggestions to the expert. Next, the ex-
pert accepted, discarded, added and modified the suggestions to the best of their
knowledge to create a ground-truth dataset. While this approach may bias expert
judgment, it simulates a more realistic scenario in which experts use tools such as
EAGLE to assist them during labeling.

8https://github.com/center-for-threat-informed-defense/tram
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Table 2.2: Performance EAGLE compared with TRAM and TTPDrill.

Approach Precision Recall F1-score

EAGLE 86.17% 86.84% 86.51%

TTPDrill 27.10% 55.01% 36.31%
TRAM 66.67% 8.96% 15.79%
TRAM conf. ≥ 0.375 75.00% 4.48% 8.45%
TRAM conf. ≥ 0.500 100.00% 2.99% 5.80%

Assisted labeling assessment. When labeling the 10 MITRE CTI reports, we
used the EAGLE framework, TTPDrill and TRAM to suggest labels. Both EAGLE and
TTPDrill identified subphrases or even individual tokens as entities of the MITRE
ATT&CK framework. For these cases, we define a true positive if the exact sub-
phrase was accepted by the expert labeling. Additionally, for TTPDrill, we ignore
missed predictions due to differences in MITRE ATT&CK version used for train-
ing (TTPDrill used version 6, and our experiments used version 10.1). Conversely,
TRAM performs its detection for each sentence rather than tokens or subphrases.
Therefore, for TRAM, we define a true positive if the detected MITRE ATT&CK
concept exists in the same sentence as the expert label 9.

Table 2.2 shows the performance of all approaches. For a deeper investigation of
TTPDrill, we refer to Section 2.6.3. We do find that TRAM achieves a higher preci-
sion than the semantic EAGLE framework when setting an appropriate confidence
level. However, it has a low recall, meaning it misses several sentences describing
potential ATT&CK patterns. As TRAM is a classification-based approach, it has the
advantage that it can be trained by supplying user-provided labels of sentences. In
our labeling, we used the pre-trained version of TRAM. We discuss in Section 2.7.1
how classification-based solutions such as TRAMmay be integrated into a semantic
framework to further improve detection.

2.6.2 Ablation study

To measure the influence of individual framework components in the detection pro-
cess, we performed an ablation study. Here, we ran the full EAGLE framework on
the manually labeled MITRE CTI dataset. Additionally, we performed a series of
experiments where we disabled a single component of the framework in each it-
eration, except the tokenization and NER components as they are always required

9Because TRAM uses a different tokenizer, sentence boundaries may be different, for these cases
we define a true positive as being detected in any of the overlapping sentences between TRAM and
expert labeling.
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Table 2.3: Ablation study. Measuring the effect of individual framework compo-
nents.

Approach Precision Recall F1-score

EAGLE 86.17% 86.84% 86.51%

Naive matching 90.50% 60.39% 72.44%

No POS 85.95% 83.43% 84.67%
No Lemmatization 88.05% 69.90% 77.93%
No Related words 88.28% 78.83% 83.29%
No Parsing 85.84% 82.48% 84.13%
No Coreference 86.17% 86.80% 86.48%

to perform named entity recognition. Additionally, we performed a Naive match-
ing to show the performance when using only tokenization and NER and provide a
baseline for evaluating the added value of each component.

Table 2.3 shows the overall result of this experiment, whereas Table 2.4 gives a
more complete overview of the full ablation study, grouped per MITRE ATT&CK
category. First, we surprisingly find that precision is marginally higher compared
to the full framework when lemmatization and related word matching are removed.
We attribute this to the lower recall as entities that require certain framework com-
ponents for detection are slightly harder to detect, and therefore lower the precision.

Second, we focus on recall, where a lower value indicates missed ATT&CK con-
cepts. We find a significant difference of 26.45% points between the full framework
and naive matching.

Upon closer investigation, we found that lemmatization and related word detec-
tion contributed to a significant increase in recall for single-token entities (e.g., “ex-
ecution”, “execute”, “executes”). Interestingly, ATT&CK groups and software were
hardly affected by any of these framework components as their writing styles rarely
differ between their ATT&CK definition and CTI reports.

Conversely, the POS detection and parsing components were responsible for an
increase in multi-token, i.e. subphrase detection. Parsing allows for different token
ordering when detecting suphrases. In fact, upon investigation, 65.38% of multi-
token subphrases appeared in the text exactly as defined by MITRE. Section 2.6.2
gives more details about this experiment. POS detection assists multi-token sub-
phrase detection as it allows us to exclude tokens that convey less information (e.g.,
adpositions, conjunctions, determiners, see Section 2.4.7) from detection. This al-
lows us to detect subphrases such as “Exfiltration Over C2 Channel” (T1041) using
only “Exfiltration”, “C2” and “Channel”, while leaving out less important parts of
the subphrase, in this case “Over”.
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Table 2.4: Ablation study per concept. The full results of the ablation study, in-
cluding sub-results per MITRE ATT&CK category.

EAGLE

Precision Recall F1-score

Average 86.17% 86.84% 86.51%

Tactics 80.94% 91.97% 86.10%
Techniques 84.24% 82.33% 83.27%
Groups 99.45% 95.74% 97.56%
Software 83.16% 92.59% 87.62%
Mitigations 50.00% 100.00% 66.67%

Naive matching No POS

Precision Recall F1-score Precision Recall F1-score

Average 90.50% 60.39% 72.44% 85.95% 83.43% 84.67%

Tactics 74.23% 52.55% 61.54% 96.54% 88.32% 92.25%
Techniques 92.61% 49.00% 64.09% 81.33% 77.32% 79.28%
Groups 100.00% 95.74% 97.83% 99.32% 94.81% 97.01%
Software 94.19% 90.05% 92.07% 84.93% 92.59% 88.59%
Mitigations 66.67% 28.57% 40.00% 60.00% 42.86% 50.00%

No Lemmatization No Related words

Precision Recall F1-score Precision Recall F1-score

Average 88.05% 69.90% 77.93% 88.28% 78.83% 83.29%

Tactics 77.97% 67.15% 72.16% 79.20% 76.89% 78.02%
Techniques 86.85% 61.48% 71.99% 87.06% 73.53% 79.72%
Groups 100.00% 95.74% 97.83% 99.45% 95.74% 97.56%
Software 94.59% 89.12% 91.78% 95.82% 90.28% 92.97%
Mitigations 75.00% 42.86% 54.55% 87.50% 100.00% 93.33%

No Parsing No Coreference

Precision Recall F1-score Precision Recall F1-score

Average 85.84% 82.48% 84.12% 86.17% 86.80% 86.48%

Tactics 80.36% 86.62% 83.37% 80.94% 91.97% 86.10%
Techniques 83.44% 76.10% 79.60% 84.23% 82.26% 83.23%
Groups 99.45% 95.74% 97.56% 99.45% 95.74% 97.56%
Software 92.87% 93.52% 93.19% 92.81% 92.59% 92.70%
Mitigations 85.71% 85.71% 85.71% 70.00% 100.00% 82.35%
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Figure 2.5: Exact subphrase occurences. gives the % of subphrases that occur
exactly as defined by MITRE ATT&CK based on length. indicates the % of
occurences of subphrases of that length.

Multi-token subphrases

Figure 2.5 shows the percentage of multi-token subphrases that appeared in the text
exactly as defined in the ATT&CK framework as a function of their length. We note
that some subphrases rarely differ in ordering (e.g., Command and Control), whereas
other subphrases can be ordered differently depending on the phrasing of the author
(e.g., process injection vs. injects [into] process).

2.6.3 Component analysis

The ablation study in Section 2.6.2 suggested that different framework components
contribute mainly to increasing recall. In this section, we take a closer look at indi-
vidual components and how their performance is influenced by other factors.

Tokenization

The EAGLE framework includes indicators of compromise (IoCs) as individual to-
kens on top of generic tokenization. To evaluate the performance of this IoC detec-
tion, we compare it with ChainSmith on their IoC dataset.

Our IoC detection is based on regular expressions for various IoCs. Unfortu-
nately, to the best of our knowledge, no ground-truth dataset of IoCs occurring
in natural text exists apart from the reports that we labeled manually10. Hence, to

10Existing IoCs, e.g., those shared on the MISP platform do not contain IoCs occurring in natural
text. Therefore, this would not provide a realistic scenario.

49



Chapter 2. Threat Intelligence Processing

evaluate the performance of our regular expressions and compare themwith Chain-
Smith, we use the 50 reports from the ChainSmith dataset for which we manually
extracted all IoC examples as ground truth. While this evaluation gives us a good
indication of the performance of both EAGLE and ChainSmith, the dataset is rather
small. Therefore, we perform a second experiment in which we extract IoCs from all
3,905 reports in the ChainSmith dataset using both EAGLE and ChainSmith. Next,
we sample 200 IoCs that were detected by both systems, 200 that were only detected
by EAGLE and 200 that were only detected by ChainSmith and manually check if
these samples are indeed valid IoCs. Finally, we investigate how generalizable this
experiment is over larger datasets.

Table 2.5 shows the results of these evaluations. We find that, while ChainSmith
has a slightly higher precision on the manual dataset 11, it has a significantly lower
recall in both experiments. This means that many of the actual IoCs in the docu-
ments go undetected. Upon closer investigation, we found that the main source of
missed IoCs byChainSmith is due to URLs that do not start with a scheme prefix (e.g.,
http[s]://). Our regular expressions still detect URLs as our detection is based on
top-level domains instead. Therefore a URL such as againstvirysscanxp.comwas
detected by EAGLE, but not by ChainSmith. Conversely, the incorrectly triggered
IoCs mainly consisted of Android application names ending with a valid top-level
domain, (e.g., com.software.app) which were misclassified as URLs. Due to the
similarity of Android application naming conventions and URLs, this is a fundamen-
tal limitation of using regular expressions for IoC detection. Nevertheless, EAGLE
detects many more IoCs while only having a slightly reduced precision.

IoC confidence. Using the binomial proportion confidence interval [213], we ex-
trapolate a confidence interval of the performance for EAGLE and ChainSmith in
detection IoCs over the entire dataset. Table 2.6 shows the results of this evaluation.
We find that the confidence intervals suggest that the evaluation in Section 2.6.3
generalizes to larger datasets.

Part-of-speech tagging

While our ablation study showed that POS tagging improves the performance of en-
tity detection, we have not yet evaluated the contribution of adding POS exceptions
based on an attached knowledge base. Table 2.7 compares the performance of EA-
GLE with our ablation study where POS is completely disabled, and EAGLE using
SpaCy’s generic POS approach. We find that adding knowledge-based POS rules on
top of the regular POS component add minimal improvements. This indicates that

11Although the 95% confidence interval in Table 2.6 shows that there is a non-negligible probability
that EAGLE actually has an equal or higher precision than ChainSmith.
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Table 2.5: Evaluation of IoC detection on ChainSmith dataset. The Ground
Truth experiment used the 50 manually labeled reports as ground truth. During
the manual experiment, we extracted all IoCs using EAGLE and ChainSmith and
manually classified 600 IoCs (200 detected by both, 200 detected by EAGLE only,
and 200 detected by ChainSmith only) to extrapolate the performance. See Table 2.6
for the confidence intervals.

Detector

Expected performance

Precision Recall F1-score

Ground Eagle 95.79% 97.52% 96.64%

Truth ChainSmith 88.07% 69.98% 77.99%

Manual
Eagle 96.39% 99.01% 97.68%

ChainSmith 98.42% 61.41% 75.63%

Table 2.6: 95% confidence intervals of Eagle and ChainSmith during manual

detection experiment. Confidence intervals were computed using the binomial
proportion confidence interval [213] from the 600 manually classified IoCs.

Detector 95% confidence interval

Precision Recall F1-score

Eagle 94.10% – 98.68% 98.83% – 99.18% 96.41% – 98.93%
ChainSmith 98.15% – 98.68% 60.13% – 62.69% 74.58% – 76.67%

51



Chapter 2. Threat Intelligence Processing

Table 2.7: Comparison of different approaches to POS tagging, lemmatiza-

tion and dependency parsing. We compare the full EAGLE framework, with the
framework where components are replaced by a generic NLP component, and with
a complete ablation (removal) of each component.

Approach Precision Recall F1-score

EAGLE 86.17% 86.84% 86.51%

POS Generic 86.13% 86.80% 86.46%
Ablation 85.95% 83.43% 84.67%

Lemma Generic 86.21% 79.90% 82.93%
Ablation 88.05% 69.90% 77.93%

Parse Anywhere 74.73% 86.30% 80.10%
Ablation 85.84% 82.48% 84.13%

while POS detection is important, it does not seem to be a domain-specific problem
and that further improvements should focus on other framework components.

Lemmatization and stemming

Similar to the POS tagging component, we measured the influence when adding
knowledge-based lemmatization on top of SpaCy’s default lemmatization by com-
paring it to the full framework as well as completely disabling the lemmatization
component. Table 2.7 shows that the addition of lemmatization rules improves the
recall by a notable 6.94% points. This suggests that further adding or refining lemma-
tization rules could improve the performance of the overall framework.

Related word detection

As related word detection is a fully custom component, the ablation study already
shows its complete influence. Here, we have seen the influence of related words
according to a manually annotated subset of Wordnet. However, related words may
also be learned using word embeddings. Furthermore, existing approaches such
as TTPDrill [107] offer systematic ontologies that can be integrated to find new
subphrases describing specific MITRE ATT&CK concepts.

Embedders. To find related words, we generate token embeddings for the MITRE
CTI and ChainSmith datasets using the Word2vec-CBOW, Word2vec-Skipgram and
NLM embedders. Next, we find the closest neighbors of produced embeddings us-
ing the cosine similarity to find similar, related tokens. We evaluate the correctness
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of these found related words by comparing them with related words defined in the
relatedwords [175] database. As some tokens in our text do not occur in the relat-
edwords database due to their domain-specific nature, we limited the evaluation to
tokens that occur both in our dataset and the relatedwords database.

Figure 2.6 shows the result of this experiment when embedders were trained on
the (a) ChainSmith and (b) MITRE CTI datasets. While the overall performance is far
from good enough to be used in a fully automated way, this Figure does show a trend
when tokens occur more frequently. The idea is that the more often a token occurs
in the text, an embedder can learn a more accurate representation of this token,
and in turn, find related words with better performance. Therefore, future work
should investigate the adoption of embedder-based related words when trained on
larger datasets. While annotated datasets are sparse in the CTI domain, we recall
that embedders do not require labeled reports, but can be trained unsupervised on
raw text, lowering the bar for further research.

Subphrases. Besides using embedders, state-of-the-art has proposed different on-
tologies [107] describing TTP, or even automatically mine subphrases that can be
used for detection [152]. To measure the effect of using different subphrases for
detection, we adapted the EAGLE framework to use subphrases suggested by the
TTPDrill ontology instead of the descriptions from the MITRE ATT&CK frame-
work.

Table 2.8 shows the results of using the TTPDrill ontology compared to the de-
scriptions of the MITRE ATT&CK framework. We note that the TTPDrill ontol-
ogy is limited to 263 ATT&CK techniques from version 6 of the framework, not
covering any other ATT&CK categories. Hence, we compare the results to EA-
GLE using only ATT&CK techniques (equivalent to Techniques in Table 2.9). We
find that using different subphrases has a tremendous effect on the performance of
the EAGLE framework, both in terms of precision and recall. Therefore, we argue
that major care must be taken when creating such subphrases. Interestingly, TTP-
Drill performed significantly better than EAGLE in detecting T1105 (Ingress Tool
Transfer), T1027 (Obfuscated Files or Information), T1192 (Spearphishing Link) and
T1193 (Spearphishing Attachment). We believe this is due to the broader coverage
of manually defined detection subphrases of TTPDrill that provide it an edge over
ATT&CK descriptions. Therefore, we believe that carefully crafted subphrases such
as TTPDrill’s ontology can improve performance.

Parsing

In Section 2.6.2, we have shown that parsing offers increased flexibility when detect-
ing multi-token entities compared to detecting exact phrases. However, we do not
necessarily have to be so strict to require exact subphrases, instead, we may detect
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Figure 2.6: Correct synonyms compared to relatedwords database plotted per

token frequency. When a token occurs more often in the text, embedders have
more examples to train with and the found synonyms become better.
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Table 2.8: TTPDrill subphrases. Compared with TRAM and TTPDrill.

Approach Precision Recall F1-score

ATT&CK descriptions 84.24% 82.33% 83.27%
TTPDrill ontology 27.10% 55.01% 36.31%

any sentence that includes some combination of tokens in the subphrase. Table 2.7
compares our parsing approach, with detecting subphrases occurring in any form
within a sentence, and with exact matching as shown during the ablation study. We
find that matching any combination occurring within a sentence almost matches the
recall of using our parsed approach, however, this comes at the cost of a significant
loss in precision. This is due to incorrectly classified subphrases such as shown in
Figure 2.4 (3).

2.6.4 Data dependence

We have provided an extensive evaluation using the manually labeled MITRE CTI
dataset. However, because this dataset is closely related to the MITRE ATT&CK
framework, performance may be skewed. In this section, we explore the perfor-
mance of the EAGLE framework in more detail per ATT&CK category, and when
working with different datasets.

Category effects

In Table 2.3 we showed the overall performance of the EAGLE framework. However,
performance differed per MITRE ATT&CK category. Table 2.9 details the perfor-
mance of the EAGLE framework per ATT&CK category. We observe that Groups
have high levels of detection due to the limited variance and writing styles. One
would expect similar results for Software, however, due to lemmatization, common
tokens such as “Internet” are reduced to “net”. While “net” is a software utility men-
tioned in the ATT&CK framework (S0039), “Internet” should not be detected as such.
For both Tactics and Techniques, we observe behavior that can be explained from
experiments discussed in Section 2.6.3. Finally, the Mitigations were not mentioned
often enough in our reports to give meaningful insights.

Accenture dataset

The experiments in Tables 2.3 and 2.9 were performed using the MITRE CTI dataset.
Naturally, this data closelymatches terminology used in theMITREATT&CK frame-
work. To evaluate the effect of different author styles, we askedAccenture to apply
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Table 2.9: Performance EAGLE framework. Broken down by individual
ATT&CK components.

Approach Precision Recall F1-score No. samples

Average 86.17% 86.84% 86.51% 2,788

Tactics 80.94% 91.97% 86.10% 500
Techniques 84.24% 82.33% 83.27% 1,626
Groups 99.45% 95.74% 97.56% 189
Software 83.16% 92.59% 87.62% 463
Mitigations 50.00% 100.00% 66.67% 10

Table 2.10: Performance of EAGLE over Accenture dataset.

Experiment Precision Recall F1-score

Accenture overall 41.60% 32.97% 36.79%
Accenture manual 46.30% 69.44% 55.56%

our framework to their internal CTI reports. We compared the results of our frame-
work to internal labels added by experts for the overall report. Additionally, we
asked an expert to sample 5 of these reports and perform a per-token analysis to
evaluate how well EAGLE performs for detecting ATT&CK concepts on the most
fine-grained level.

Table 2.10 shows the results from this experiment. We see that the performance
compared to the MITRE CTI dataset has dropped significantly. We attribute this
partly to differences in writing styles, which indicates that NER detection could
benefit from additional entity descriptions for improved detection. However, in-
terestingly, manual verification shows that labels produced by our framework for
individual tokens achieve a significantly higher recall. This indicates that experts
attaching overall labels to CTI reports may have overlooked several ATT&CK con-
cepts, showing the added benefits of automatic threat intelligence processing frame-
works in manual labeling tasks. For a further discussion on integrating EAGLE into
a security operator workflow, we refer to Section 2.7.

MITRE ATT&CK descriptions

Another way to evaluate the effectiveness of EAGLE is by feeding it the descriptions
of ATT&CK concepts as provided by MITRE themselves. While this is a highly
biased experiment, due to overlapping writing styles, it is used in related litera-
ture [18] as it allows for easy reproducibility of results.
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Table 2.11: Performance of EAGLE over descriptions of MITRE ATT&CK

framework. The label of the description was used as ground truth. However, de-
scriptions often also contain references to other MITRE ATT&CK concepts. There-
fore, in this Table, we focus on recall.

Experiment Precision Recall F1-score

Average 21.88% 93.83% 35.49%
Tactics 1.58% 100.00% 3.11%
Techniques 19.52% 92.14% 32.21%
Groups 37.42% 100.00% 54.56%
Software 57.56% 99.47% 72.92%
Mitigations 10.24% 29.55% 15.20%

Table 2.11 shows the performance of EAGLE on MITRE ATT&CK descriptions.
As descriptions often contain references to other tactics, techniques, software or
groups which are not included as ground-truth labels, we focus on the recall in this
experiment. From the Table, we find that primarily Mitigations and to a smaller
extent Techniques were detected with less recall. Upon inspection, we found that
this was due to the strictness of our parsing approach. E.g., Mitigation “Operating
System Configuration” (M1028) is described as:

Make configuration changes related to the operating system or a
common feature of the operating system that result in systemhardening
against techniques.

Because the description talks about “configuration changes” rather than “op-
erating system configuration”, EAGLE misses the detection. For a more detailed
evaluation and discussion of the parsing component, we refer to Section 2.6.3.

2.6.5 Runtime evaluation

We performed a runtime analysis of the 10 labeled reports in the MITRE CTI dataset
to investigate the time performance of the framework. For this experiment, we
note that each component uses both generic NLP techniques and domain-specific
techniques that are added by our framework. Figure 2.7 gives an overview of this
runtime analysis of each component within the EAGLE pipeline. We find that the
domain-specific additions on top of a generic NLP pipeline increase the time con-
sumption by 4.44%. Moreover, the majority of the time (78.86%) is spent by the
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Figure 2.7: Runtime analysis. Runtime analysis of different EAGLE components
as an average per report over the 10 labeled MITRE CTI dataset reports. We make a
distinction between (shared) generic NLP techniques used by the components and
domain-specific techniques applied in components.

machine-learning transformer component that assigns POS tags and performs pars-
ing. This transformer is only executed once to create vector representations of to-
kens that are used by the POS and parsing components to perform their tasks. Faster
alternatives to this approach based on heuristics exist12, but reduce the performance
of respective components.

2.7 Discussion

2.7.1 Semantic frameworks.

We have shown that semantic frameworks such as EAGLE provide an explainable
way to identify MITRE ATT&CK concepts in CTI reports. However, large language
models (LLMs) such as BERT [72] for classification and GPT [170] for text genera-
tion provide interesting opportunities to combine detection performance with the
explainability of semantic approaches. Transformer models (the underlying neural

12https://spacy.io/models/en
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network architectures of BERT and GPT) are already proposed to implement indi-
vidual framework components such as POS detection, lemmatization and depen-
dency parsing [207]. Moreover, when large amounts of labeled data are available,
such transformer models may be trained as classifiers substituting our proposed
NER component or as an additional component on top of our NER detector.

2.7.2 Data-driven models.

More interestingly, the semantic pipeline components could be used to provide both
explainability and potentially improved performance of data-driven approaches.
Currently, fully classification-based approaches for performing NER [27] only pro-
vide explainability in the form of attention, pointing to the individual tokens in the
text that contributed most heavily to a classification decision. Instead, integrating
these approaches with a semantic pipeline increases the explainability of these clas-
sification models. The current challenge in using data-driven models is that they re-
quire large amounts of (labeled) data to be trained with, which is often not available.
This is illustrated in our work by the use of embedders for related work detection,
which seems promising when trained with a sufficient amount of data. In short, it
will be interesting to explore to what extent data-driven classification models can
be adapted and integrated with explainable semantic frameworks, especially when
they can be trained on large amounts of data. This way, NER performance may
be increased, classifiers may use more explainable features, and further process-
ing is still possible due to the availability of other framework components. Hence,
combining data-driven approaches with a semantic framework may offer improved
performance while still maintaining explainability.

2.7.3 Practical application.

In its current form, the EAGLE framework produces helpful suggestions for secu-
rity experts to identify useful information within CTI reports. However, the per-
formance is not high enough to run fully autonomously. Therefore, we expect the
EAGLE framework to be used by experts as an assistant, similar to the way we used
EAGLE, TRAM and TTPDrill to create ground-truth labels. The added benefit of
running in parallel with a human operator is that missed classifications and incor-
rect detections may be spotted by humans, and, subsequently be given as feedback
to the framework. Operators may introduce exceptions by setting stricter limits on
required POS tags, and lemmatization rules or they may add or modify subphrases
used for detection. This way, over time, the EAGLE framework can adapt to the
specific needs of operators and thereby provide a useful tool for sharing CTI.
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2.7.4 Extendability.

While the EAGLE framework provides an extensive basis on which to build CTI-
processing solutions, it is not complete. Currently, the EAGLE framework identi-
fies MITRE ATT&CK techniques described in CTI reports and uses parsing to find
relations between these entities. However, different tasks require different repre-
sentations and levels of detail within these relations. E.g., generating a knowledge-
graph representation of a CTI report may require subject-verb-object (SVO) tuples
that connect subject and object nodes through their verb action [182]. Addition-
ally, temporal relations between attack steps are captured using both POS detec-
tion and dependency parsing but require additional processing to be incorporated
into the framework output. While the EAGLE framework itself does not directly
address these potential tasks, it offers the framework components necessary to per-
form these tasks fostering future research into the processing of CTI reports for
various downstream tasks.

2.8 Conclusion

In this chapter, we systematized the use of natural language processing (NLP) for
processing Cyber Threat Intelligence (CTI) reports. To understand the components
required to perform this task, we provided an extensive background into existing
NLP techniques and surveyed state-of-the-art threat intelligence processing papers
to identify the NLP challenges they address. Using this knowledge, we proposed
a methodological, unified framework EAGLE, that can be used by researchers and
industry as a basis to bootstrap future research to solve security-specific NLP chal-
lenges. We have demonstrated the effect of different NLP components in the task
of knowledge extraction from CTI reports. Moreover, we have provided an in-
depth study of the individual components of our framework and showed how they
can be modified and improved, to allow others to adapt the framework to specific
tasks. By providing our open-source framework at https://doi.org/10.4121/
f28346c4-09eb-49e2-bcbc-6bb07bde1970, we hope to foster new research and
applications in the domain of cyber threat intelligence.
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Chapter 3

DeepCASE: Semi-Supervised Contextual Anal-

ysis of Security Events

Now that we understand the exchange and automatic knowledge extraction from
Cyber Threat Intelligence, we look at how this knowledge is used to decide whether
detected security events are part of an attack. To this end, we look at automating the
initial step in this decision process by answering the following research question:

RQ 2. To what extent can we reduce the manual workload of triaging
security events based on contextual information?

Security monitoring systems detect potentially malicious activities in IT infras-
tructures, by either looking for known signatures or for anomalous behaviors. Secu-
rity operators investigate resulting events to determine whether they pose a threat
to their organization. Often, a single event may be insufficient to determine whether
a certain activity is indeed malicious. Therefore, a security operator frequently
needs to correlate multiple events to identify if they pose a real threat. Unfortu-
nately, the vast number of events that need to be correlated often overload security
operators, forcing them to ignore some events and, thereby, potentially miss attacks.
This Chapter studies how to automatically correlate security events and, thus, auto-
mate parts of the security operator workload. We design and evaluate DeepCASE, a
system that leverages the context around events to determine which events require
further inspection. This approach reduces the number of events that need to be in-
spected. In addition, the context provides valuable insights into why certain events
are classified as malicious. We show that our approach automatically filters 86.72%
of the events and reduces the manual workload of security operators by 90.53%,
while underestimating the risk of potential threats in less than 0.001% of cases.
This chapter is based on the publication: [1] Thijs van Ede et al. “DeepCASE: Semi-supervised con-
textual analysis of security events”. In: 2022 IEEE Symposium on Security and Privacy (SP). IEEE. 2022,
pp. 522–539
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3.1 Introduction

Modern IT infrastructures face constant attacks and are, therefore, continuously
monitored. Activities from devices and strategic points within the network are
collected and processed by various systems such as Network Security Monitors
(NSM, e.g., Zeek [161]) or Intrusion Detection Systems (IDS, e.g., Suricata [85] or
Snort [179]). These systems contain security event detectors that collect information
about security events (e.g., a new contacted host, the use of self-signed certificates,
or ports being scanned), which they send to a central Security Operations Center
(SOC). In a SOC, events are subsequently triaged by a combination of lower tier se-
curity operators and automated rules that combine events into alerts [227]. High
priority alerts are then escalated to senior security operators who investigate each
alert, and, depending on the threat and impact, take necessary actions [118]. De-
spite these filtering steps, security operators still have to manually deal with a large
number of events and alerts on a daily basis.

The workload of security operators is determined by the quality of the security
event detectors. These security systems are expected to flag any suspicious activity
to ensure that most malicious activity is detected. However, not all suspicious events
aremalicious, leading to an overwhelming number of unnecessary alerts for security
operators to investigate. To put this into perspective, a 2019 survey by Cisco [58]
reported that 41% of 3,540 organizations examined receive over 10,000 alerts per
day. Of those alerts, only 50.7% were investigated due to the limited capacity of the
security operators, and only 24.1% of investigated alerts were considered an actual
attack. A similar 2018 report by Demisto found that companies deal with an average
of 174,000 alerts per week, of which only 12,000 were investigated [69]. Moreover,
state-of-the-art academic work by Symantec Research Labs uses real-world datasets
with an average of 170 security events per device per day [191], which shows that
even for a few hundred machines, the number of security events easily becomes
overwhelming. This illustrates the vast number of alerts that security operators
have to deal with. This high workload leads to a condition called alert fatigue, where
security operators fail to respond to alerts because of the sheer volume they receive
each day [99].

In the literature, several works have been proposed to tackle alert fatigue. These
works either focus on 1) reducing the number of generated security events by im-
proving individual detectors [56, 101] or 2) prioritizing alerts, a method called alert
triaging [20, 21, 99]. While reducing the number of security events per detector
is useful, it might result in missing a significant portion of the alerts for malicious
events. In addition, such a solution needs to be optimized for each detector. As or-
ganizations typically use different detectors from various vendors, optimizing at a
detector level becomes infeasible.

In contrast, alert triaging shows promising results in reducing the workload
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of security operators for a more broad range of detectors. Unfortunately, existing
triaging approaches still exhibit several limitations. Some works focus on prioritiz-
ing individual alerts based on threat indicators associated with each alert [20, 21].
In this case, complex attacks containing many relatively innocent security events
remain undetected, while single high impact events are emphasized, despite often
being produced by benign processes. More fundamentally, these approaches fail to
analyze alerts in combination with other (suspicious) activities in the infrastruc-
ture. After all, threat detectors are specialized in finding suspicious behaviors, such
as large file uploads or policy violations. However, we argue that suspicious be-
haviors can, sometimes, be legitimate when viewed together with other activity. To
illustrate, consider a scenario where an attacker sends a phishing email containing a
link to a website that downloads an executable infecting the machine with a packed
botnet malware sample. Security detectors may raise security events for 1) a link
to a website with a recently registered domain [212]; 2) a data download using a
self-signed certificate [206]; 3) a packed executable [15]; and 4) beaconing activ-
ity [105]. When these events occur together, they raise suspicion; however, each
individual security event could be benign. After all, these events may be caused by
1) a startup launching its new website; 2) a development webserver where the TLS
certificate has not yet been properly initialized; 3) software packed for compression
or to protect intellectual property [15]; 4) applications periodically checking servers
for updates. It is only when we look at this sequence of events as a whole that we
can be confident of an attack. Therefore, techniques prioritizing individual alerts
still leave the contextual analysis of alerts up to security operators.

We propose to reduce the workload of security operators by automating the
process of analyzing security events from NSM and IDS systems in combination
with other triggered events. Figure 3.1 gives an overview of this approach. The core
idea is that besides examining the security event itself, we also analyze the security
events preceding it. We call these preceding security events the context in which
an event is triggered. We refer to an event in combination with its context as an
event sequence. Analyzing the context helps us understand what activity triggered
the events. This allows us to better distinguish between an event that is benign (e.g.,
a self-signed TLS certificate presented by a development server) and a very similar,
yet malicious, event in the context of an attack. Moreover, it allows us to present
fewer and more detailed alerts to security operators, which drastically reduces their
workload.

Using additional information to assess security events is not entirely new. SOC
teams frequently use SIEM (security information and event management) products
that include hand-crafted expert rules to combine events into alerts for known at-
tack strategies [64]. Other systems, such as Zeek [161], even offer programmable
interfaces for security operators to create these rules themselves. However, these
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Figure 3.1: DeepCASE setup. 1. Agents or probes summarize activity from moni-
tored devices and send it to a network securitymonitor (NSM) or intrusion detection
system (IDS). 2. These NSMs or IDSs contain several detectors that identify security-
relevant events (e.g., Repeated SSH login attempt or Observed signature for
malware X). Normally, a security operator would investigate and deal with these
events. Our work proposes DeepCASE as an intermediate step. Here, each event is
analyzed in a context, defined by the preceding events from the same device. To-
gether they form an event sequence. Our goal is to correlate relevant events within
each sequence and present them to the security operator as one alert.

approaches require expert knowledge and cover only event sequences that have
been manually defined. Academic work, such as NoDoze [99] and later works [98,
100], attempt to automate this process by leveraging process-level data to recon-
struct the activity that triggered an alert. However, this approach relies on process-
level information only available in host-based detection systems. In contrast, our
work focuses on placing events into context by analyzing only preceding security
events. This allows our approach to have wider application, as many detectors (e.g.,
network-level detectors) or even entire environments (e.g., bring-your-own-device
settings) do not have access to process-level information.

Contextual analysis of security events is practical only if it is able to handle 1)
complex relations within sequences of events, triggered by 2) evolving threats, while
3) remaining explainable to security operators. Therefore, this chapter specifically
addresses these three challenges, which make contextual analysis non-trivial.

Complex relations. Malicious activity often involves several steps that can lead
to a sequence of events [142]. Conversely, benign applications may accidentally
trigger security event detectors leading to false alerts. Since modern devices often
run multiple benign applications simultaneously, the actual malicious behavior can
easily get lost within this sequence of events. Thus, contextual analysis must be
able to identify relevant context events from the complex event sequences received
at the SOC.
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Evolving. Both the attacks and benign applications that trigger security events
evolve over time: benign applications get updated, and adversaries develop novel
malware and attack techniques. Additionally, companies introduce new detectors or
replace old ones to keep upwith new threats or gainmore insight into the suspicious
activity in their IT infrastructure [75]. Ideally, a contextual analysis mechanism
should be able to learn new event sequences; and adapt its detection capabilities for
new attacks with minimal input from a security operator.

Explainable. Finally, reducing the workload of security operators requires filter-
ing alerts and their corresponding events. When filtered incorrectly, we may miss
attacks. Therefore, contextual analysis should provide concrete information as to
why certain event sequences are discarded whilst others are marked for further in-
vestigation.

To reduce the workload of security operators while tackling all three challenges,
we introduce DeepCASE. Our approach leverages a deep learning model designed
to expose complex relations between both new and previously observed event se-
quences. These sequences are subsequently grouped based on a similarity function,
providing concrete information about why various event sequences are treated the
same. Now, the operators need to inspect only a few security event sequenceswithin
each group to determine if action should be taken, which significantly reduces their
workload. In summary, we make the following contributions:

• We introduce a semi-supervised deep learning approach for explaining and
classifying security events in relation to their context.

• We implement this approach in a prototype calledDeepCASE, which is a deep
learning system for interpreting events within their context.

• We show that DeepCASE is able to reduce the workload of security operators
by 90.53% on a real-world dataset containing all security events of 20 interna-
tional organizations collected over a period of 5 months.

We make both our prototype of DeepCASE and implementations of state-of-the-
art work used in our evaluation available at https://doi.org/10.4121/86c12ba1-
7709-45c3-ade3-897552f98ca3.

3.2 Security model

We consider a set of machines and network endpoints that are monitored by a net-
work security monitor (NSM), such as Zeek [161], or an intrusion detection system
(IDS), such as Suricata or SnortIDS. First, these systems collect and summarize ac-
tivities observed within the IT infrastructure (e.g., HTTP Request from <SRC> to
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Figure 3.2: DeepCASE overview of the contextual analysis. (A) DeepCASE
takes sequences of security events from each device as input. (B) Next, theContext
Builder identifies relevant contextual security events (represented by the dashed
squares), builds an attention vector for each sequence, and uses this vector to com-
pute the correlation of each contextual event. (C) The Interpreter compares all
correlated contextual events and groups them into similar clusters. (D) A security
operator analyses and labels the clusters instead of individual events, saving time.
(E) Once a security operator labels clusters, similar sequences (based on the combi-
nation of contextual events and attention vector) can be automatically classified by
comparing them with known clusters.

<DST> (URI: /index.html)). When summarizing activities, these systems often
already handle application-layer protocols such as SSH, HTTP, and FTP and are
able to reconstruct transported files. However, these activities have no notion of
being benign, malicious or suspicious, as they simply describe what happens within
the infrastructure. On top of these activities, monitoring solutions provide several
detectors that detect suspicious events, which are sent to a central SOC where a
security operator can investigate the event. These detectors may be based on sig-
natures, policies, anomaly detection, or even customizable rules. Examples include
Malicious file download (signature); Unusual JA3 fingerprint (anomaly); or
Self-signed TLS certificate on high port (policy violation). Figure 3.1 gives
an overview of this setup.

Our goal is to analyze all events sent to the SOC and select which events are
part of an attack and should be shown to operators. Conversely, events unrelated to
an attack should be filtered. After all, a security event may be caused by an adver-
sary attacking the system or may be accidentally triggered by a benign application
running on the host. We assume that detectors include information about each host
involved in an event, either by leveraging an installed agent (host-based detection),
or by deriving the host from the IP address and the logs of a DHCP server (network-
based detection), a common assumption in enterprise networks [3].

DeepCASE determines whether an event 𝑒𝑖 is part of an attack given the security
context [𝑒0, ...𝑒𝑖−1] for this event. The context for event 𝑒𝑖 are the 𝑛 most recent
events that occur on the same host as 𝑒𝑖 , at most 𝑡 seconds before 𝑒𝑖 . If there are
fewer than 𝑛 events, the context is simply a shorter sequence.
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3.3 Approach

WeproposeDeepCASE to reduce theworkload of security operators. Intuitively, our
approach searches for correlations within event sequences generated for a specific
device. More precisely, we are looking for correlations between events in the con-
text of an event 𝑒𝑖 and 𝑒𝑖 itself that indicate whether 𝑒𝑖 was produced by malicious
activity. Once found, we cluster similar event sequences and present them to a secu-
rity operator who determines whether this combination of events poses a threat to
the IT infrastructure. DeepCASE then learns this decision and automatically applies
it to similar event sequences found in future event sequences. This semi-automatic
approach automatically handles known correlations such that security operators
can focus on new threats. Figure 3.2 shows the overview of DeepCASE. First, we
take sequences of security events gathered from all detectors, grouped per moni-
tored device in chronological order. Second, for each security event the Context
Builder searches for correlations within its context, and captures those relations in
what we call an attention vector. We note that events from a device may be triggered
by different processes or interactions, therefore, a naïve analysis of the context may
not find relevant correlations. The Context Builder uses a deep learning model
along with an attention mechanism to identify the correlation between events and
their context to generate this attention vector. Subsequently, from the attention vec-
tor the Context Builder computes the total attention for each contextual event.
Third, the Interpreter groups the sequences into clusters based on the total atten-
tion for each distinct contextual event in a sequence. These clusters can be inspected
by a security operator. In manual mode, the security operator classifies each cluster
by sampling and inspecting the underlying decision factors (which are provided by
the attention mechanism). If the cluster is classified as malicious, the operator can
take necessary action for all security sequences within the cluster and, at the same
time, the system learns this new cluster. This saves time, as a security operator can
assess groups of event sequences rather than individual events. Conversely, when
running in semi-automatic mode, DeepCASE compares attention vectors with pre-
viously classified clusters and automatically warns the security operator in case a
sequence matches a known cluster. By filtering events from the well-known clus-
ters, a large part of the security assessment can be automated.

3.3.1 Sequencing events

We first collect all security events generated by detectors in the monitored IT infras-
tructure. These are then passed to Context Builder, which analyzes chronological
sequences of events to identify relevant contextual events and uses them to build
attention vectors. To reduce the search space for relevant contextual events, we take
each event and create a sliding window of 𝑛 preceding events (in our case 10) from
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the same device, which form the context. To remove uncorrelated events, we limit
the time difference between the event and events in its context to 𝑡 = 86, 400 seconds
(1 day).

3.3.2 The CONTEXT BUILDER

The Context Builder identifies relevant contextual events to build an attention
vector. Here, relevance means that our approach should identify events triggered
by an attack and discriminate them from events accidentally triggered by benign
applications or benign user behavior. To complicate matters, as laid out in our three
challenges, the Context Builder should be able to deal with unpredictable, com-
plex relations within event sequences without resorting to a black-box technique.
In addition, our approach should be easily updatable to deal with evolving threats
and changes in the monitored infrastructure.

To this end, we design a specific kind of recurrent neural network that uses
an attention mechanism [33]. Such an attention mechanism is borrowed from the
domain of natural language processing (NLP). That domain uses attention to focus
a neural network on relevant parts of an input sequence with respect to the desired
output [46, 72, 210]. Ourwork uses this attentionmechanism to automatically detect
which events in the context [𝑒0, ..., 𝑒𝑖−1] are correlated with the corresponding event
𝑒𝑖 in the sequence. Using attention has an advantage over existing state-of-the-art
works that use neural networks to analyze sequences of security events [76, 191,
192]: attention can be used to compare the relevance of events in contextual security
sequences, which we leverage in our Interpreter1 (see Section 3.3.3).

Figure 3.3 gives an overview of the Context Builder’s network architecture.
Normally, this architecture would make a prediction of the expected event 𝑒𝑖 by
looking at only the context. However, Context Builder is not designed to predict,
as we already know the entire sequence of events which occurred on each device. In
fact, we train the Context Builder as if it were to predict the event 𝑒𝑖 by looking
at only the contextual events. If it is indeed able to correctly predict the event 𝑒𝑖 , we
can use the attention vector to analyze which parts of the context were relevant for
this prediction. Using such an analysis, the Context Builder identifies contextual
events correlated with 𝑒𝑖 in the form of an attention vector. When the Context
Builder is unable to predict 𝑒𝑖 , we fall back on the security operator and their exist-
ing tools to perform the analysis. This approach uses what is known as an Encoder-
Decoder [54] architecture in combination with an attention mechanism [33]2. At a
high level, this means that the encoder network analyzes all contextual events and
transforms them into a single vector known as the context vector. Next, the attention

1For a discussion regarding the use of attention as a means of explaining the relevance of events
within a sequence we refer the reader to Section 3.6.

2We discuss transformers as an attention mechanism in Section 3.6.
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Figure 3.3: Overview of Context Builder’s neural network architecture. (1) The Context
Builder embeds contextual events 𝑆 = [𝑒0, 𝑒1, ..., 𝑒𝑛] into embedded vectors [𝑒′0, 𝑒

′
1, ..., 𝑒

′
𝑛]. These

embeddings are used to generate a context vector 𝑐0. (2) The attention decoder then takes this context
vector 𝑐0, together with optionally generated previous outputs 𝑒𝑖−1, to learn an attention vector. (3)
The event decoder distributes this attention over the embedded inputs [𝑒′0, 𝑒

′
1, ..., 𝑒

′
𝑛], which is used

as input for the Interpreter. The modified context that follows from this is then used to predict a
probability distribution of the event 𝑒𝑖 .

decoder takes this context vector and transforms it into an attention vector which
specifies a weight (i.e., relevance) of each context event. Then, the event decoder
multiplies this weight with the encoded context to obtain the total relevance for all
contextual events. From here, the decoder computes a probability distribution over
all possible next events. Finally, the system checks whether this “predicted” distri-
bution matches the actual event 𝑒𝑖 , and passes the total attention for each contextual
event to the Interpreter. Section 3.3.3 describes what happens if this prediction is
incorrect. Our analysis is described in more detail below.

Encoder

First, the encoder takes contextual events [𝑒0, 𝑒1, ..., 𝑒𝑛] as input, which in our case is
fixed to 𝑛 = 10 and is left-padded in case there are fewer than 𝑛 context events. We
represent each contextual event as a vector using the embedding layer. Our work
embeds the input using one-hot encoding, but embeddings may even be learned
by the encoder itself [201]. Next, we use a recurrent layer to combine all inputs
into an abstract, internal representation called a context vector, which represents the
entire context as a single fixed-length vector. Note that the intermediate outputs are
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discarded, as we require only the final context vector for further computation. The
Context Builder uses a single layer of Gated Recurrent Units (GRU) [54] to encode
the input into a 128-dimensional context vector. Our empirical results showed that a
GRU and Long Short-Term Memory (LSTM) [103] have similar performance, where
the GRU is slightly faster.

Attention Decoder

Now that the input is encoded into the context vector, the Context Builder de-
codes this vector into an attention vector [𝛼0, 𝛼𝑘 , ..., 𝛼𝑛]. These 𝛼𝑘 values represent
the degree to which each corresponding context event 𝑒𝑘 contains information re-
garding the security event 𝑒𝑖 in the sequence, normalized to 1. The total attention
values for each contextual event are processed by the Interpreter to cluster simi-
lar event sequences. In our implementation, the attention decoder takes the context
vector as input, passes it through a series of linear layers, and applies a softmax func-
tion to normalize the output. Such an architecture allows us to create an attention
vector for the event 𝑒𝑖 .

To describe the context of a particular event 𝑒𝑖 , we associate each contextual
event with its corresponding attention value. To this end, we multiply the atten-
tion vector 𝛼 with the one-hot encoded context sequence 𝑆 ′ = [𝑒′0, 𝑒′1, ..., 𝑒′𝑛], i.e.,
the matrix multiplication in Figure 3.3. This results in an 𝑛 ×𝑚 matrix of events
combined with their attention where 𝑛 is the size of the context sequence and𝑚 is
the size of an encoded event. To capture the events in a single vector, we sum all
𝑛 rows to produce an𝑚-dimensional vector describing the context. Recall that the
attention values are normalized to 1. Hence, intuitively, this is equivalent to simply
summing attention values for each contextual event in case we observe an event
multiple times in the context.

Event Decoder

The attention decoder outputs the attention vector which, once combined with the
contextual events, the Interpreter will later interpret and compare with the vec-
tors of other event sequences. However, Context Builder must learn how to de-
code the context vector into an attention vector. The idea behind this learning pro-
cess is simple: assuming the attention vector gives relevant context events a higher
score than irrelevant events, a neural network must be able to predict the following
event 𝑒𝑖 given the context events weighted by the attention vector. Therefore, if
we train the neural network of Context Builder to predict event 𝑒𝑖 , we will au-
tomatically learn how to assign attention to each contextual event. To this end, the
event decoder takes the embedded context events and weights them by performing
an element-wise multiplication with the attention vector. Here an attention value

70



3.3. Approach

of 0 for a context event means that it is ignored in the event decoder, and a value of
1 means that it is the only event that will be considered. Finally, a neural network
predicts the probability distribution for the event 𝑒𝑖 given these weighted contex-
tual events. This is done with a linear layer of dimension 128 with a Rectified Linear
Unit (ReLU) [90] activation function and softmax function to transform the output
into a probability distribution.

Processing event sequences. Before a neural network can be used for predic-
tion tasks, such as predicting the events from their preceding context events, the
network should be trained. Hence, we should show the network an event in combi-
nation with its context. In our approach, however, it is important to recall that we
are not actually interested in predicting the event, as this is already known to us.
Instead, we are interested in the attention vector used to make this prediction pos-
sible. This means that we can simply train the Context Builder with the known
context as input and the known event as a prediction target. After training the Con-
text Builderwith multiple epochs of these inputs, we can use the same contextual
events used for training to find their corresponding attention vectors. This makes
generation of attention from event sequences an unsupervised process.

In order to train the network, we need to compare its generated output 𝑒𝑖 to
a desired output 𝑒𝑖 through a loss function 𝐿(𝑒𝑖 , 𝑒𝑖). Recall that 𝑒𝑖 is a probability
distribution over all possible events. Therefore, ideally, DeepCASE should output a
probability of 1 for the actual event and 0 for all other events. This can be achieved
by using the mean squared error as a loss function, or negative log likelihood when
working with log probabilities. However, this incentivizes the network to produce
outputs with high probabilities, even when it is not sure that the prediction is cor-
rect. To counter this effect, we use label smoothing [200]. Here the desired output 𝑒𝑖
is a vector where the actual event has a probability value of 1−𝛿 and the remaining
probability 𝛿 is scattered over the other events using their frequency distribution.
In this work we use an empirically determined 𝛿 = 0.1 (Section 3.5.2). As 𝑒𝑖 and 𝑒𝑖
are now modeled as distributions, we use the Kullback-Leibler divergence [120] as
a loss function for the backpropagation.

In short, theContextBuilder exploits relations (correlations) between an event
and its context to generate an attention vector that assigns a weight to each event
in the context. Due to its unsupervised nature, it can easily be updated with new
sequences of events [75], making it possible to deal with evolving attack patterns
and IT infrastructures. Most importantly, generating the attention values for each
contextual event provides the Interpreter with concrete information about which
parts of the context are relevant to the corresponding event.

71



Chapter 3. DeepCASE: Contextual Analysis of Security Events

3.3.3 The INTERPRETER

After the Context Builder has computed the attention for each contextual event
in the sequence, the Interpreter uses this information to compare different se-
quences. The idea is that event sequences with similar attention values for the same
events can be treated the same way by security operators.

Attention query

At this point we should recall that interpreting the attention vector makes sense
only if the correct event was predicted. After all, if the Context Builder predicts
an incorrect event, interpreting attention would lead to the wrong conclusion. This
means that for incorrect predictions, we would fall back on manual inspection, lim-
iting the workload reduction for the security operator. To minimize this effect, we
introduce a technique called attention querying.

Intuitively, this technique does not ask the Context Builder to predict the se-
curity event given its context, but instead asks “given the actual security event that
occurred, which attention distribution would have resulted in the correct predic-
tion?” We achieve this attention query by temporarily freezing the weights of the
event decoder and instead making the attention vector variable. Then we use back-
propagation to adjust the attention vector such that the event decoder would result
in the highest prediction for the observed event.

Details. Traditional attention-based neural networks use attention to focus on
specific inputs while predicting an output. Instead, our an attention query3 asks the
neural network “given the actual event that occured, which attention distribution
would have resulted in the correct prediction?” This is a powerful technique that
allows us to automatically learn complex relations within the context of security
events.

The attention query uses backpropagation to optimize the attention vector for
a given input and output to the event decoder. Mathematically, the event decoder is
represented as

𝑦 = 𝑔(𝑓 (𝑊
(

𝑛∑︁
𝑖=0

𝛼𝑖𝑥
′
𝑖

)
+ 𝑏)) (3.1)

where 𝑔(·) is the softmax function, 𝑓 (·) is the ReLU activation function,𝑊 (·) +𝑏
is the linear layer and

∑𝑛
𝑖=0 𝛼𝑖𝑥

′
𝑖 is the matrix multiplication. To find the optimal at-

tention for a given output, we compute the derivative of the loss function 𝐿(𝑦,𝑦)
3We provide a pytorch implementation of the attention query at https://doi.org/10.4121/

86c12ba1-7709-45c3-ade3-897552f98ca3
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Table 3.1: Example sequence of events. This example shows that the attention
will ensure this sequence is clustered in a Beaconing activity cluster.

Event Attention

Login to cryptocurrency mining pool 0.0048
Login to cryptocurrency mining pool 0.0048
Login to cryptocurrency mining pool 0.0047
Login to cryptocurrency mining pool 0.0047
BitCoinMiner 0.0043
BitTorrent 0.0050
Beaconing activity 0.2564
FlyStudio 0.0048
Beaconing activity 0.3336
Beaconing activity 0.3769

with respect to the variables 𝛼 , representing the attention vector as in Equation 3.2.
Finally, we use the Adam optimization algorithm with 100 steps to adjust the at-
tention distribution and find the optimal attention distribution for the observed
event. Note that this increases the number of contextual event sequences that we
can model. However, there can still be cases where the contextual event sequences
do not yield any information regarding the observed event. In these situations, the
output probability for observed event 𝑒𝑖 remains low andwe pass the event to the se-
curity operator for further evaluation. For a full evaluation we refer to Section 3.5.5.

𝛿𝐿(𝑦,𝑦)
𝛿𝛼

=
𝛿𝐿(𝑦,𝑦)
𝛿𝑔(·) · 𝛿𝑔(·)

𝛿 𝑓 (·) ·
𝛿 𝑓 (·)
𝛿𝛼𝑥 ′

· 𝛿𝛼𝑥
′

𝛿𝛼
(3.2)

Example

In Section 3.5.4, we show that naive clustering does not generalize as well as Deep-
CASE which includes the Context Builder. To give a concrete example of this
difference in performance, consider the following sequence of events as listed in
Table 3.1. Here, the attention is heavily focused on the Beaconing activity.
Therefore, using DeepCASE, it will be clustered in a Beaconing activity clus-
ter, whereas the naive clustering approach would place this in a cluster that covers
both Beaconing activity and Cryptocurrency.

Confidence

It is still possible that even after the attention query, the Context Builder was
not able to correctly predict the observed event. We check whether this is the case
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by comparing the predicted probability of 𝑒𝑖 with a confidence threshold 𝜏confidence
(see parameter selection in Section 3.5.2). If the attention query achieved a suffi-
cient confidence level, we take newly found attention as described in Section 3.3.2.
Conversely, if the attention query was not able to pass the confidence threshold,
DeepCASE cannot deal with it and passes the sequence to a security operator for
manual inspection.

Clusters

Now that we have modeled each sequence by combining the attention vector with
their corresponding events, we can compare and group sequences with similar vec-
tors into a cluster. To this end, we define a distance function between the vectors
of total attention per events. Such a function allows us to search for events that oc-
curred in a similar context. We consider two vectors similar if the distance function
𝑑 (𝑥,𝑦) is smaller or equal to the threshold 𝜏similarity. The Interpreter defines its
distance function in terms of the 𝐿1 distance as given in Equation 3.3. The 𝐿1 dis-
tance is preferable to Euclidean distance because it captures more subtle differences
in high-dimensional data. In this work, the dimensionality grows with the number
of different possible events𝑚. Hence, the 𝐿1 distance gives better results.

𝑑 (𝑥,𝑦) = ∥𝑥 − 𝑦∥1 =
𝑚∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖 | (3.3)

Using this distance function, the Interpreter clusters event sequences using
DBSCAN [79]. Here we define the maximum distance 𝑑 (𝑥,𝑦) between points to
be considered part of the same cluster as 𝜖 = 0.1 (Section 3.5.2). Furthermore, we
define the minimum required size of each cluster as 5 (Section 3.5.2). This means
that clusters containing fewer datapoints are passed directly to the security operator.
Next, each cluster is either passed to a security operator for either manual analysis
(Section 3.3.4) or processed further by DeepCASE using semi-automatic analysis
(Section 3.3.5).

3.3.4 Manual analysis

At this point, each cluster represents a set of sequences of events that share simi-
lar contexts. However, we do not yet know whether all sequences within a cluster
should be considered benign or malicious, or whether a cluster contains both be-
nign and malicious event sequences. To solve this problem, we present each cluster
of similar event sequences to an operator who decides how it should be treated.
Section 3.5.5 provides some examples of event clusters generated by DeepCASE.
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Cluster sampling

In the ideal case, all sequences within a cluster should be so similar that analyzing
a single sequence is enough to determine whether all sequences are benign or mali-
cious. However, no system is perfect and even an operator may be uncertain about
certain events and their context. Therefore, we propose that security operators sam-
ple (without replacement) several event sequences from each cluster and analyze
them as if they were normal alerts. Next, the operator classifies each sequence into
benign vs malicious, or using different classification systems such as risk levels, e.g.,
LOW, MEDIUM or HIGH. When all sampled sequences fall into the same category and
the sample size is large enough, we can confidently treat all sequences in a cluster
the same way. Furthermore this classification can be stored into a database that we
can use to semi-automatically classify future event sequences (Section 3.3.5). Con-
versely, if sampled sequences from the same cluster fall into different categories, we
know that this cluster is ambiguous and will need to be inspected completely by a
human operator. By sampling and analyzing a small number of sequences from large
clusters, the workload of security operators is drastically reduced. In Section 3.5.3
we evaluate the workload reduction and performance of this sampling process.

Outliers

We recall that certain event sequences are passed to a security operator because
they cannot be handled by DeepCASE. This happens in two situations.

In the first case, theContext Builder did not pass the 𝜏confidence threshold. Here
we were unable to identify relevant contextual events and our approach does not
provide additional benefit. Instead, analysis should be performed by the security op-
erator, falling back on existing analysis tools. In case of new and unknown threats,
it is only encouraged that security operators manually inspect them to ensure that
no malicious activity slips under the radar. Moreover, the Context Builder is con-
stantly updated with these new event sequences. This means that if they occur more
regularly, the Context Builder eventually becomes more confident in identifying
relevant contextual events in these previously unknown sequences. Therefore, over
time, the number of unidentifiable event sequences will likely decrease.

In the second case, the Interpreter did not find enough similar sequences and
manual inspection is similar to sampling from very small clusters. However, in these
cases there are only a few items to sample and the resulting classification cannot
be generalized to other clusters. The Interpreter may still store these smaller
clusters such that when future similar sequences appear, the cluster can still be built
incrementally. Moreover, manual analysis can still be facilitated by showing the
operator clusters that are outside the similarity threshold 𝜏similarity, but still have
a close similarity to the scrutinized cluster. This provides security operators with
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more information regarding classification of somewhat-related clusters.

3.3.5 Semi-automatic analysis

Once security operators have classified clusters, the Interpreter can automatically
compare the vectors of total attention per event of a new sequence (generated by the
Context Builder) to these known clusters. If the new sequence matches a known
benign cluster, we can automatically discard it without intervention of a human
operator. Conversely, when a new sequence matches a known malicious cluster,
DeepCASE informs the security operator to take action4.

However, as we have seen in the Interpreter (Section 3.3.3) and manual anal-
ysis (Section 3.3.4), some sequences do not match any cluster. This can either be
because 1) Context Builderwas unable to achieve a high-enough confidence level
for the analyzed event sequence, or 2) because there are not enough other similar
sequences to form a cluster. In this case, the semi-automatic analysis notifies the
security operator, who evaluates the sequence as described in Section 3.3.4.

3.4 Dataset

For our evaluations we use both a synthetic dataset for the reproduction of our re-
sults, as well as a large real-world dataset to evaluate the performance of DeepCASE
in practice.

3.4.1 LASTLINE dataset

The real-world Lastline dataset consists of 20 international organizations that use
395 detectors to monitor 388K devices5. This resulted in 10.5M security events for
291 unique types of security events6 collected over a 5-month period. Events in-
clude policy violations (e.g., use of deprecated samba versions, remote desktop pro-
tocols, and the Tor browser), signature hits (e.g., Mirai, Ursnif, and Zeus) as well as
heuristics on suspicious and malicious activity (e.g., beaconing activity, SQL injec-
tion, Shellshock Exploit Attempts and various CVEs). Of the 10.5M security events,
a triaging system selected 2.7M events that were likely to be part of an attack. Of
these 2.7M likely malicious events, 45.1K security events were confirmed to be part
of an attack by security operators, and labeled as ATTACKS. These attacks include

4In some cases it may even be possible to fully automate the response for knownmalicious clusters,
we discuss this use of DeepCASE as basis for SOAR systems in Section 3.6.

5These include devices in a bring-your-own-device setting which were only monitored for a small
part of the 5 months. Therefore, the average number of 10.5M/388K = 27.06 events generated per
device is significantly lower than the earlier reported 170 events per device per day.

6The full list is available at https://doi.org/10.4121/86c12ba1-7709-45c3-ade3-897552f98ca3
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Table 3.2: Details of Lastline dataset. An overview of the number of security
events produced per organization, categorized by risk level.

Risk level

Org. Machines Events INFO LOW MEDIUM HIGH ATTACK

1 4184 24422 24422 0 0 0 0
2 13 2879 2706 173 0 0 0
3 50 878 515 341 3 2 17
4 1376 8888 6553 798 1473 6 58
5 386 2599 1459 639 395 83 23
6 229627 7117123 4858475 2191848 19215 10761 36824
7 881 132416 123841 2358 2366 3848 3
8 2185 59595 57680 1430 224 29 232
9 53381 319975 304394 10615 658 27 4281
10 358 3337 2742 501 58 0 36
11 1973 81523 77316 3174 179 807 47
12 1123 14867 13344 1460 12 1 50
13 4607 191545 180352 6855 3642 134 562
14 14 1953 1883 70 0 0 0
15 188 26202 25927 275 0 0 0
16 23 382 260 74 27 3 18
17 18802 2062074 1850477 145995 32273 30584 2745
18 67749 340819 200296 15844 124379 111 189
19 74 2789 2302 483 0 0 4
20 391 6521 6140 373 3 5 0

known malware, such as the XMRig crypto miner, or remote access Trojans, such as
NanoCore. Another 46.4K events were classified as a HIGH security risk (e.g., success-
ful web attacks and exploitation of known vulnerabilities such as CVE-2019-19781);
184.9K events classified as a MEDIUM risk (e.g., attempted binary downloads or less
exploited vulnerabilities such as CVE-2020-0601) and 2.4M events as LOW risk (e.g.,
the use of BitTorrent or Gaming Clients). The remaining 7.8M events were not
related to security risks, but were used to give security operators additional infor-
mation about device activity, and are therefore labeled as INFO.

Table 3.2 provides a more detailed description of the Lastline dataset used in
our evaluation. This dataset captures security events of 20 international organiza-
tions of different sizes.
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3.4.2 HDFS dataset

We also evaluateDeepCASE on the HDFS dataset [218] used in the evaluation of the
related security log analysis tool DeepLog [76]. This dataset consists of 11.2M sys-
tem log entries generated by over 200 Amazon EC2 nodes. The dataset was labeled
by experts into normal and anomalous events, where 2.9% of events were labeled
as anomalous. Unfortunately, this dataset lacks metadata about the risk level of se-
curity events and is therefore evaluated in terms of workload reduction, but not in
terms of accuracy. Despite containing less information, we use the HDFS dataset to
provide a reproducible comparison with state-of-the-art systems.

3.5 Evaluation

We implemented DeepCASE in Python and compare its performance in workload
reduction and performance metrics (e.g., precision, recall, F1-score) with existing
workload reduction techniques. Table 3.3 gives an overview of the averageworkload
reduction achieved by all compared methods. Table 3.4 provides an overview of
the detection performance, comparing DeepCASE in Semi-automatic mode with all
other approaches. Additionally, we evaluate how well DeepCASE deals with the
three challenges proposed in the introduction, discuss its robustness against evasion
strategies, and perform a runtime analysis to show that DeepCASE is able to handle
real-world events generated by major organizations.

3.5.1 Setup

To evaluate DeepCASE in a realistic scenario, we split our dataset in a part used
to perform manual mode analysis and a part for the semi-automatic mode. The
manual mode always precedes the semi-automatic mode, and, therefore, we use the
first month of data (2M events) in the Lastline dataset to evaluate our manual mode
and the subsequent months to evaluate the semi-automatic mode. The HDFS dataset
was split by the original work into training and test sets, which we use in manual
mode and semi-automatic mode, respectively. We run all our experiments using
the same parameters, which we obtain during a parameter optimization experiment
(Section 3.5.2). Unless otherwise specified, we report the average results of 10 runs
for each experiment. We followed the three research guidelines for evaluating ma-
chine learning-based security systems as detailed in TESSERACT [163]:

• Our experiments have a temporal training consistency, meaning that data for
our manual evaluation comes strictly before the data used in semi-automatic
mode.
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Table 3.3: Workload reduction. Average workload reduction of DeepCASE com-
pared with existing workload reduction methods. We highlight the Overall column
which shows the total workload reduction of security operators.

Workload reduction

Method Alerts
A

Reduction
B

Coverage
C

Overall
D

M
an
ua
l DeepCASE 16, 420 99.13% 94.46% 93.64%

Cluster N-gram 35, 640 98.12% 94.62% 92.83%
Cluster DeepCASE 45, 400 97.68% 97.96% 95.69%

Se
m
i-a

ut
om

at
ic

DeepCASE 51, 800 99.19% 91.27% 90.53%

fully-automatic part N/A 100.00% 86.72% 86.72%
manual part 51, 800 83.83% 34.29% 28.74%

Alert throttling (15 min) 3, 532, 849 49.77% 100.00% 49.77%
Alert throttling (30 min) 2, 889, 607 58.92% 100.00% 58.92%
Alert throttling (60 min) 2, 332, 467 66.84% 100.00% 66.84%
Alert throttling (1 day) 855, 798 87.83% 100.00% 87.83%
Rules AlienVaultE 421, 693 83.78% 36.97% 30.97%
Rules Lastline F 299, 246 89.49% 27.02% 24.18%
Rules Sigma/ZeekE 126, 147 92.87% 25.14% 23.35%
Cluster N-gram N/A 100.00% 75.70% 75.70%
Cluster DeepCASE N/A 100.00% 80.59% 80.59%

A Number of alerts sent to security operators. For DeepCASE and cluster, this
is based on 10 sequences per cluster.

B Computed as the fraction between alerts and covered events (see Formulas).
C Percentage of events covered by alerts (see Formulas).
D Total reduction, alerts + uncovered events compared to total alerts (see For-

mulas).
E Based on the event translations provided at https://doi.org/10.4121/

86c12ba1-7709-45c3-ade3-897552f98ca3.
F These rules were used in creating the ground truth (selected events were

always shown to analysts) and may therefore give an overly optimistic per-
formance.

Formulas

B 1 − Alerts
Covered events

C Covered events
Total events

D 1 − Alerts+Uncovered events
Total events
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Table 3.4: Detection performance. Average detection performance of DeepCASE
in compared with existing workload reduction methods. We highlight the Underest.
columnwhich shows howmany of the covered events are assigned a risk level lower
than their true risk level, which potentially leads to missed attacks.

Performance over covered events

Method Precision Recall F1-score Accuracy Underest.

Se
m
i-a

ut
om

at
ic

DeepCASE 96.39% 91.47% 93.41% 91.47% < 0.01%
fully-automatic part 96.39% 91.47% 93.41% 91.47% < 0.01%
manual part N/A N/A N/A N/A N/A

Alert throttling (15 min) 98.08% 98.04% 98.04% 98.04% 0.79%
Alert throttling (30 min) 97.92% 97.90% 97.90% 97.90% 0.97%
Alert throttling (60 min) 97.83% 97.83% 97.83% 97.83% 1.11%
Alert throttling (1 day) 97.47% 97.49% 97.49% 97.47% 1.34%

Rules AlienVaultE 99.64% 99.63% 99.63% 99.63% 0.16%
Rules Lastline F 100.00%F 100.00%F 100.00%F 100.00%F 0.00%F

Rules Sigma/ZeekE 99.55% 99.51% 99.52% 99.51% 0.17%

Cluster N-gram 96.11% 94.00% 94.59% 94.00% 0.01%
Cluster DeepCASE 95.77% 91.25% 92.80% 91.25% 0.01%

E Based on the event translations provided at https://doi.org/10.4121/
86c12ba1-7709-45c3-ade3-897552f98ca3.

F These rules were used in creating the ground truth (selected events were al-
ways shown to analysts) and may therefore give an overly optimistic perfor-
mance.
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Table 3.5: Parameters. Values of all parameters used in DeepCASE.

Subsystem Parameter Value Section

Sequencing events Sequence length 10 3.5.2
Sequence time 1 day 3.5.2

Context Builder hidden dimension 128 3.5.2
𝛿 0.1 3.5.2

Interpreter
𝜏confidence 0.2 3.5.2
𝜖 0.1 3.5.2
minimum sequences 5 3.5.2

• Data should be collected over a consistent time window, i.e., there should be no
major gaps between collection of data. Our Lastline dataset was collected
over a continuous period of 5 months ensuring time consistency.

• There is a realistic malware-to-goodware ratio in testing. This ratio follows
from the use of a real-world dataset consisting of events collected from 20
organizations.

During the manual mode, the Context Builder learns to produce attention
vectors by training the neural network for 100 epochs and extracting the final at-
tention vector (see Section 3.3.4 for more details). In semi-automatic mode, this
training is only performed when updating the Context Builder (Section 3.5.5).

3.5.2 Parameter selection

DeepCASE uses the parameters listed in Table 3.5. We determined the values of
these parameters by performing a 10-fold grid search on the first 1% of data of the
Lastline dataset sorted by time. This first 1% is split 50:50 into training and test-
ing sets, and is used only for the parameter selection, i.e., it is not used in further
experiments.

Sequencing events

The context is defined by 1) the maximum number of events in the context (length)
and 2) the maximum time difference between an event and its context (time). To
obtain the optimal values, we performed a 10-fold grid search over length values 1,
2, 5, 10, 20 and time values of 1 minute, 1 hour, 1 day, 1 week. For all combinations,
we trained the CONTEXT BUILDERwith a hidden dimension of 128 and a 𝛿 of 0.1, and
we evaluated whether the threshold for the corresponding event was higher than 0.2
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(𝜏confidence). We found that for all input sizes ≥ 5 and times ≥ 1 day, between 95.00%
and 95.02% of events were correctly predicted from their given context. Therefore,
for both length and time values we chose the middle option of 10 events with a
maximum age of 1 day.

The CONTEXT BUILDER

Similar to sequencing events, we performed a 10-fold search for the hidden dimen-
sion of the Context Builder, and evaluated whether the threshold for a correctly
predicted event reached at least 0.2. Here, we searched powers of 2, 21, 22, 23, ...210
and found an optimal value for 27 = 128. The same search over the 𝛿 values of 0.0 to
1.0 with steps of 0.1 yielded an optimal value of 0.1. For the 𝛿 value, the increased
performance was mainly due to correct classification of classes with very few sam-
ples. This follows from the idea of the 𝛿 value, which increases performance at the
cost of a slightly reduced confidence.

The INTERPRETER

Finally, we used the values obtained from the parameter selection of event sequences
and the Context Builder to select parameters for the Interpreter. Here we per-
formed a grid search over the 𝜏confidence values and 𝜖 values, both ranging from 0.1 to
1.0with steps of 0.1. During this experiment, we measured the overall performance
in terms of the F1-score, yielding a 𝜏confidence of 0.2 and 𝜖 of 0.1. For the minimum
sequences, i.e., the minimum number of sequences to be considered a cluster, we
chose 5 to give the security operator enough samples to provide a confident predic-
tion. We elaborate on this choice further in Section 3.5.4.

3.5.3 Workload reduction

In this section we compare the workload reduction of our approach with existing
techniques used by real-world SIEM systems. These techniques include alert throt-
tling and expert rules, as well as more naive, automated methods such as n-gram
analysis and our own clustering approach without use of theContext Builder. For
each technique, we measure the workload reduction in terms of the percentage of
events covered by the raised alerts (coverage), the number of produced alerts com-
pared to these covered events (reduction), and the overall reduction in inspected
events (alerts + events not covered) compared to the total number of events ana-
lyzed. Furthermore, we discuss the performance over covered events in terms of
precision, recall, F1-score, accuracy and percentage of events for which the algo-
rithm underestimated the risk level. Tables 3.3 and 3.4 show the results of all exper-
iments. The remainder of this section discusses how each result was obtained.
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3.5.4 DEEPCASE- manual mode

When used in practice,DeepCASE startswithout any knowledge of event sequences.
At this stage, DeepCASE runs in manual analysis mode (Section 3.3.4), where all
sequences are processed to produce clusters of event sequences (similar events oc-
curring within a similar context). These clusters are then shown to the security
operator, who determines if the sequences in each cluster are benign or malicious.
In this setting, the workload is reduced because an operator does not have to in-
vestigate each individual event; instead, only a small number of samples from each
cluster, and the sequences that could not be handled by DeepCASE. We simulated
this manual mode scenario using the first month of the Lastline events and the
training data of the HDFS dataset.

Coverage

Table 3.3 shows that for the Lastline dataset, 94.46% of the 2M training event se-
quences could be grouped into 1,642 clusters. The remaining 5.54% (110.9K) event
sequences could not be turned into clusters, either becauseDeepCASEwas not con-
fident enough (95.70%, 106.1K cases) or because there were fewer than 5 other se-
quences with a similar context (4.30%, 4.8K cases). These remaining sequences can
be manually inspected or filtered through existing triage systems, which are com-
plementary to our approach.

HDFS dataset. We performed the same evaluation of workload reduction on the
HDFS dataset as shown in Table 3.6. In this overview, the alert throttling is left out
because the dataset does not contain any timestamp information for the alerts. Ad-
ditionally, there is no comparison with rulesets as there are no expert-rules available
for this dataset. Here, we found similar results where DeepCASE covers 96.39% of
sequences with 393 clusters, leading to an overall reduction of 92.26%.

Cluster classification

Each cluster contains security events with a similar context. However, this group-
ing would be useful for the security operator only if each sequence within a cluster
is treated the same way. If a cluster contained both benign and malicious samples,
or different risk levels, our approach would have a limited benefit. Thus, we scruti-
nized all event sequences produced by DeepCASE to evaluate to what extent the se-
quences in each cluster have the same risk classification. We recall from Section 3.4
that the Lastline dataset is labeled into 5 risk categories: INFO, LOW, MEDIUM, HIGH
and ATTACK. Table 3.7 gives an overview of the classification of the clusters. Each
risk level details the number of clusters that contain only contextual sequences of
that single risk level as well as some statistics about the number of sequences per
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Table 3.6: Workload reduction - HDFS. Average workload reduction of Deep-
CASE compared with naive clustering techniques*.

Workload reduction

Method Alerts Reduction Coverage Overall

M
an
ua
l DeepCASE 393 95.71% 96.39% 92.26%

N-gram 1,204 86.58% 94.33% 81.68%
Cluster DeepCASE 446 95.26% 99.01% 94.32%

Se
m
i-

A
ut
om

at
ic DeepCASE N/A 100.00% 96.43% 96.43%

N-gram N/A 100.00% 93.83% 93.83%
Cluster DeepCASE N/A 100.00% 98.82% 98.82%

*The HDFS dataset does not contain any timestamps, nor are there any rules
available. Therefore, we could not compare with alert throttling or rule based
approaches.

cluster. Not all clusters contain security sequences of a single risk level. There-
fore, we also have a SUSPICIOUS category which captures the clusters containing
multiple risk levels. As we can see from Table 3.7, 1,404 of the 1,642 clusters contain
sequences of only a single risk level, corresponding to 67.05% of clustered sequences.
For clusters containing two adjacent risk levels (e.g., LOW and MEDIUM or HIGH and
ATTACK), we find 1,527 of the 1,642 cluster, corresponding to 98.56% of all clustered
sequences. Additionally, the maximum cluster sizes and standard deviation values
are large. This is because there are many smaller clusters and only a few large ones,
i.e., clusters are skewed toward the lower end.

Cluster distribution. Clusters produced by the Interpreter vary in sizes as
some attacks or benign patterns are more frequent than others. Figure 3.4 gives
an overview of the skewed distribution of clusters. We suggest that security oper-
ators sample a fixed number of sequences from each cluster. This means that the
main body of workload reduction is due to large clusters. Other cluster risk levels
show the same skewed distribution.

Homogeneity. To measure the extent to which clustered samples belong to the
same class (in our case risk level) we use the conventional homogeneity score [180].
This score measures the decrease in entropy of a sample class when the cluster is
known. The homogeneity is 0 if all clusters contain multiple different risk levels
and 1 for the ideal case where all clusters contain only samples of the same risk
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Figure 3.4: Cluster size histogram of clusters. Clusters are skewed toward the
smaller sizes. This behavior is observed for all risk levels. In general, the resulting
workload reduction is most beneficial from the largest clusters.

level. Our clusters show a high quality grouping of sequences of the same risk with
a homogeneity score of 0.98.

Sampling

In the real-world scenario, when a cluster is presented to the security operator, they
do not know whether a cluster contains only sequences of a single risk level or mul-
tiple risk levels. This is important information as the operator should be able to
rely on DeepCASE to group threats with a similar level of risk in the same cluster.
During manual mode, the risk level of each cluster must be determined by the op-
erator. To this end, we suggest that the operator samples several event sequences
to determine the cluster’s risk level. In the ideal case where each cluster has a one-
to-one mapping with the risk levels, a security operator would only need to sample
a single event sequence per cluster. However, as we have seen in Section 3.5.4, this
is not the case. Nevertheless, we can measure the number of investigated samples
required for an arbitrary confidence in the risk level of a cluster.

A SUSPICIOUS cluster contains contextual sequences of multiple risk levels.
From Table 3.7 we found that 14.5% of clusters are SUSPICIOUS. Given the sequences
within a cluster, we can compute the probability of identifying a SUSPICIOUS cluster.
We define this as the probability of drawing event sequences of at least two different
risk levels, i.e., 1 minus the probability of drawing sequences of only a single risk
level. Equation 3.4 gives the probability of detecting a suspicious cluster when sam-
pling 𝑘 different security sequences. Here 𝑁 is the total number of event sequences
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Table 3.7: Clusters - Manual mode. Clusters per risk level. Suspicious clusters
contain context sequences with multiple risk levels.

# Sequences

Risk level Clusters Total Average Min Max 𝜎 (SD)

INFO 1,115 1.216M 1090.3 5 583.9K 19.2K
LOW 221 41.8K 189.4 5 5,557 612.9
MEDIUM 18 568 31.6 5 235 55.5
HIGH 17 1989 117.0 6 1,107 270.6
ATTACK 33 1391 42.2 5 402 77.1
SUSPICIOUS 238 619.8K 2604.4 5 280.1K 20.2K

Total 1,642 1.881M 1145.7 5 583.9K 17.6K

within the cluster,𝐶 is the set of event sequences from all risk levels and 𝑐 specifies
the set of sequences for each risk level. Note that we model this as sampling without
replacement as a security operator will not choose two of the same event sequences
to classify. This probability will always be 0 for non-SUSPICIOUS clusters.

𝑃 (suspicious|𝑘) = 1 −
∑︁
𝑐∈𝐶

( |𝑐 |
𝑘

)(
𝑁
𝑘

) (3.4)

To adopt a conservative approach, a security operator can label a cluster by the
highest risk level they have identified from sampling. This way,DeepCASEwill miss
fewer security threats at the cost of a slightly larger number of event sequences that
an operator should investigate. Equation 3.5 gives the probability of sampling at
least one event sequence of the highest risk level given a SUSPICIOUS cluster. Here,
|𝐶 \ℎ | is the number of event sequences from each risk level except the highest risk
level ℎ.

𝑃 (highest risk|𝑘) = 1 −
( |𝐶\ℎ |

𝑘

)(
𝑁
𝑘

) (3.5)

From Figure 3.5, we find that by sampling 10 samples per cluster, the conserva-
tive approach gives a 84.52% confidence for labeling SUSPICIOUS clusters. If a higher
confidence is required for the conservative approach, we found that inspecting 95
samples gives a confidence of 95% and inspecting 262 samples gives 99% confidence.
However, as only 14.5% of clusters are SUSPICIOUS, inspecting 10 samples per clus-
ter corresponds to a 97.76% overall confidence rating for all clusters.
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Figure 3.5: Probability of correctly identifying SUSPICIOUS clusters. Shows
1) the average probability of identifying SUSPICIOUS clusters ( ); 2) the average
probability of finding the highest risk event sequence ( ); and 3) the probability
of detecting a cluster as SUSPICIOUS, or if not SUSPICIOUS, labeling it as the highest
risk sequence ( ), i.e. a conservative clustering approach.

Workload reduction

In short, when runningDeepCASE on the Lastline dataset, inspecting 16.4K (10 se-
quences for 1,642 clusters) event sequences is enough to cover 94.46% (Section 3.5.4)
of all security events with a clustering confidence of 97.76%. To cover 100%, i.e.,
also cover all outliers not handled by DeepCASE, an operator should inspect 127.3K
(16.4K clustered + 110.8K outliers) out of 2M events. This reduces the total work-
load of security operators by 93.64%. For the HDFS dataset, this reduction is slightly
smaller, reducing the workload by 92.26%.

DEEPCASE- semi-automatic mode

After a security operator labeled clusters in the manual mode, DeepCASE can be
run in semi-automatic mode. During this phase, upcoming sequences are compared
against labeled clusters. In case the vectors of total attention per event match, the
sequence of events is automatically labeled according to the matching cluster. De-
pending on the policy of an organization, event sequences labeled higher than a
given risk level are escalated to the security operator who can then remove the
threat. If the event sequence is found to be benign, it is filtered and not shown to
the security operator. Some vectors do not match any of the known clusters, and, as
a result, they will either form new clusters or are outliers that will be passed to the
security operator for manual inspection. In those cases, the security operator will
deal with the sequences as if operating inmanual mode, as described in Section 3.3.4.

Table 3.3 shows the performance of DeepCASE on the Lastline dataset running
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in semi-automatic mode after operating for one month in manual mode. Here, we
see that 86.72% of all event sequences match a known cluster, and can be automat-
ically classified. The remaining 13.28% of event sequences is processed in manual
mode. From Table 3.3 we see that 34.29% of these non-matching sequences formed
new clusters. After this manual step, 8.73% of all sequences could not be clustered,
either because they did not pass the 𝜏confidence threshold (97.91% of cases) or because
there were fewer than 5 samples in a cluster (2.09% of cases). In addition, Table 3.4
shows the performance metrics of DeepCASE. Here we see that the automatic clas-
sification of risk levels gives us a reasonable accuracy and F1-score of 91.47% and
93.41%, respectively. However, we must be careful with such numbers, as misclassi-
fying an event sequence with a lower risk means missing attacks. Conversely, mis-
classifying event sequences as a higher risk is less problematic, and would only give
the security operator more manual work. Despite our goal to reduce the workload
of security operators, we rather overestimate the risk level at the cost of a smaller
workload reduction than miss attacks. The confusion matrix of Table 3.8 shows
that the majority of incorrectly labeled cases overestimate the risk level. In fact,
DeepCASE underestimates only 47 sequences, which is less than 0.001% of cases.

To understand why DeepCASE underestimates 47 of its semi-automatic predic-
tions, we look at some underestimated cases. Of these underestimates, 3 LOW and
35 MEDIUM risks were classified as INFO, 4 HIGH risks were classified as MEDIUM
and 8 ATTACK levels as HIGH risks. The sequences misclassified as INFO are the
most undesirable, as these will be ignored altogether by analysts. These sequences
were part of 4 different clusters: notably the first detection of the Bladabindi back-
door without any prior events was misclassified as INFO as well as several unsuc-
cessful web-application attacks. However, as detections are often only a single
step of an attack, we investigated whether all parts of the attack were misclassi-
fied. Here we found that for all ATTACKS misclassified as INFO, at least one earlier
or later step of the same attack was classified as ATTACK. Other underestimated pre-
dictions were less severe and are still shown to analysts, e.g., when a HIGH risk was
predicted to be MEDIUM. In these cases, the incorrect classification is mostly due to
similar event sequences observed for different machines. Here the sequences for
clusters analyzed in manual mode occurred on machines that were not of vital im-
portance for business continuity. Section 3.6 explores the adjustment of risk level
depending on the importance of machines.

State-of-the-art alert reduction techniques

Instead of raising an alert for each event, many SIEM tools provide options to throt-
tle events as well as options for defining expert rules that aggregate sequences of
events into an individual alert. Here, we compare the performance of both methods
from state-of-the-art tools with that of DeepCASE.
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Table 3.8: Performance - Semi-automatic mode. The top row shows the classi-
fication performance and coverage of semi-automatic analysis. The bottom shows
the confusion matrix of automatically classified samples in the Lastline dataset.

Confusion

Predicted

matrix INFO LOW MEDIUM HIGH ATTACK

A
c
t
u
a
l

INFO 4896683 281528 90025 132381 165
LOW 3 663327 303 1 1
MEDIUM 32 0 3014 14806 788
HIGH 0 0 4 3419 23
ATTACK 0 0 0 8 12870

Alert throttling

With alert throttling, if an event is triggered multiple times over a given period, only
a single alert is shown to an operator, usually in an aggregated form. E.g., suppose
the same event X is raised 5 times within the throttling period, the security operator
will receive only a single alert after the first event triggered. All subsequent events
X within the throttling period are added only as additional information to the first
generated alert. After the throttling period passed, a new event will generate a new
alert.

We run this throttling mechanism over our Lastline dataset for various throt-
tling periods ranging from 15 minutes to 1 day. Tables 3.3 and 3.4 show the results
for this experiment.

The disadvantage of such an approach is that an analyst either has towait the full
throttling period to make a definitive risk assessment of all events within an alert;
or she has to assess the risk without having received all events, which potentially
misses attacks. The performance metrics for alert throttling show the results after
assessing all throttled events with the most common observed risk level.

Expert rules

Instead of alert throttling, companies often have expert-crafted rules to combine
multiple events into a single alert. Sometimes this functionality is embedded into
NSM or IDS software. A notable example is Zeek [161], which offers the Zeek Notice
Framework, where analysts can write rules that search through Zeek logs and get
notified of matches. Such rules can be based on specific sequences or combinations
of events related to known common attacks. Depending on the rules, sequences of
events that have only a partial match will still be triggered, but often with a lower
reliability level.
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In this work, we compare the performance of DeepCASE using the Lastline
dataset with expert rules from the Lastline; 292 open source rules from Alien-
Vault’s OSSIM7 that cover 82 different known attacks; and the open source rules
from Sigma8 that cover known attacks from various resources such as the MITRE
ATT&CK framework. Sigma includes rules that specifically cover Zeek logs and
thereby gives a publicly available alternative to Zeek Notices, which are normally
specifically written for an organization. As many of the rules from Sigma and Alien-
Vault’s OSSIM operate on specific types of detection events, we manually created
a bidirectional mapping between all 591 different events used in these rules and
the types of events in our Lastline dataset9. This allows us to directly apply the
Sigma and OSSIM rules to the events in the Lastline dataset and compare their
achieved alert reduction to the results from DeepCASE. We have been liberal with
this mapping, meaning that any event that could match those provided by Alien-
Vault or Sigma is counted as such. This results in an optimistic coverage of both
rulesets and it explains why the coverage of AlienVault is higher than the coverage
achieved by the Lastline ruleset. We note that there are many other solutions that
provide rule-based detection such as Azure Sentinel 10 and Splunk 11. For these solu-
tions, we were unable to obtain publicly available rules, and thus could not perform
a comparison.

For our evaluation, we count the number of alerts triggered by these expert
rules. One single alert consists of all events of a machine (partially) matching one
of the available rules. Table 3.3 shows the results of the expert rules. Here, we see
that while the reduction for the covered events is similar to DeepCASE, the number
of events that are covered is significantly lower. Furthermore, Table 3.4 shows the
performance for all events covered by the rulesets is near perfect, with metrics being
over 99.51%. This shows that expert rules are highly effective for detecting threats,
but still lack much of the coverage that DeepCASE provides. DeepCASE tackles
this problem by automatically finding correlations between events, thereby vastly
increasing the coverage. Hence, DeepCASE shows much potential to be used in
combination with expert-rules for combining events into alerts.

Naive clustering

DeepCASE’s Context Builder detects correlations between an event and its con-
text. To demonstrate why this component is required, we perform an ablation study,
i.e., we compare our full approach with a version of DeepCASE without the Con-

7https://cybersecurity.att.com/products/ossim
8https://github.com/SigmaHQ/sigma
9Mappings are available at https://doi.org/10.4121/86c12ba1-7709-45c3-ade3-897552f98ca3
10https://azure.microsoft.com/en-us/services/azure-sentinel/
11https://www.splunk.com/
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text Builder. Additionally, we show the performance increase of our clustering
approach compared to clustering on exact matches, i.e., N-grams.

N-grams

The most straightforward approach for sequence prediction is to treat an event and
its context as an N-gram. Here we can store all N-grams in the training data, to-
gether with their highest associated risk level and assign the same risk level to N-
grams in the test data if there is a match.

Tables 3.3 and 3.4 show the result for this experiment, where each alert is equal
to the number of storedN-grams. AswithDeepCASE, we assume a security operator
will check 10 sequences (N-grams) to determine its risk level. While this approach
does not underperform compared to DeepCASE in the manual use case, the semi-
automatic use case shows that N-grams do not generalize as well.

Clustering

Instead of using N-grams, we can approach matching better using clustering as pro-
posed by DeepCASE, without using the Context Builder. This scenario is equiv-
alent to DeepCASEwith Context Builderwhere the attention value for each con-
textual event is 1

𝑛
.

Table 3.3 shows that the results for using only our clustering approach slightly
outperforms DeepCASE in manual mode. However, in semi-automatic mode, it still
produces twice the workload compared to DeepCASE with the Context Builder.
Therefore, we conclude that the Context Builder generalizes significantly more
than naive approaches. This results in DeepCASE roughly halving the workload of
a security operator in semi-automatic mode compared to naive clustering.

3.5.5 Challenges

This work addressed three challenges that make it difficult to reduce the workload
of security operators. Here, we evaluate the extent to which our approach solves
these challenges.

Complex relations

The Context Builder was designed to find correlations between an event and its
context. To this end, it analyzes the preceding contextual events and tries to pre-
dict what event is most likely to occur next. To understand how well our approach
deals with such complex relations, we assess to what extent events are correctly
predicted from their context. This prediction based on past security events is not
novel, as it was introduced by DeepLog [76] and later extended by Tiresias [191].
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Table 3.9: Prediction results. Systems trained on first 20% of data and evaluated
on remaining 80% of data. Time shows the average amount of time for 1 epoch of
training. Best performance is highlighted in bold.

System Precision Recall F1-score Accuracy Train time

H
D
FS

DeepLog 89.71% 89.34% 89.35% 89.34% 1.0 s

Tiresias 89.70% 87.63% 87.96% 87.63% 15.0 s
DeepCASE 90.41% 90.64% 90.40% 90.64% 1.3 s

La
st
li
ne DeepLog 89.65% 90.40% 89.82% 90.40% 0:06.8 m

Tiresias 95.50% 96.21% 95.68% 96.21% 4:51.5 m
DeepCASE 97.90% 98.06% 97.90% 98.06% 0:13.8 m

However, both of these works focus purely on the prediction aspect, and cannot
be extended to perform the contextual analyses proposed in this work. Therefore,
to measure how well DeepCASE is able to deal with complex relations within the
data, we compare its prediction performance with the two state-of-the-art systems
DeepLog and Tiresias. We implemented both systems as described in their respec-
tive papers. While the original source code was not available, upon contacting the
authors we received helpful suggestions to re-implement both approaches12.

We evaluate all three approaches on both datasets described in Section 3.4. We
performed 10 training and testing runs for each system, where the first 20% of the
datasets were used for training and the remaining 80% was used for testing. Ta-
ble 3.9 shows the average results of all 10 runs of this evaluation. We see that on
both datasets, DeepCASE performs the best in terms of evaluation metrics. The
only downside of DeepCASE is that the runtime is slightly slower than DeepLog,
but as we show in Section 3.5.7,DeepCASE is easily fast enough for real-world appli-
cation. In short, DeepCASE shows improvements over state-of-the-art works that
were specifically designed to predict future events, while handling their complex
relations.

Evolving event patterns

Our second challenge is dealing with evolving threats and event patterns. Deep-
CASE should be able to detect new event sequences and group them into new clus-
ters to show to the security operator. In addition, DeepCASE uses a neural network

12DeepLog code is available at https://doi.org/10.4121/7a6086ad-1cd1-4a76-be8a-
b7c0b6d17311.

Tiresias code is available at https://doi.org/10.4121/4e12761f-716a-4ea6-b08c-
a6a6e459893d.
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in the Context Builder to model sequences. We generally expect the results to im-
prove as we show the network an increasingly large number of event sequences. We
recall that these sequences are automatically generated, and therefore do not need
to be labeled. When monitoring a new IT infrastructure or handling events of new
detectors, DeepCASE should quickly be able to update using these new incoming
events.

Online updating. WedemonstrateDeepCASE’s ability to evolvewith new events.
Operating in manual mode, our approach already is able to deal with new events
and different event patterns. Therefore, we evaluate the increase in performance
of DeepCASE running in semi-automatic mode if periodically updated. In this ex-
periment, we compare the performance between no updates and daily, weekly and
monthly updates. In each update, we show new data to the Context Builder and
add newly produced and manually labeled clusters to the database of the Inter-
preter to be used for comparing future event sequences.

Table 3.10 shows the results for this experiment. We find that regularly updat-
ing DeepCASE improves its coverage between 5.91 and 6.85 percentage points. The
performance in terms of accurately predicting the risk level of these newly cov-
ered items is only marginally lower than the original detection performance. This
is mostly due to having fewer datapoints available for accurate classification. In-
terestingly, we found that the improvements in coverage came from newly added
clusters to the database rather than improved confidence of the Context Builder.
In fact, in some cases the Context Builder became less confident, especially when
having to learn to classify new events. To illustrate this, consider a context 𝑋 that
is used to predict an event 𝑒old. Now consider a newly observed event 𝑒new with the
same context 𝑋 . When the Context Builder is updated, it is taught to lower its
confidence for 𝑋 to predict 𝑒old as there is now also the option to predict 𝑒new. Nev-
ertheless, this confidence reduction allows us to deal with new events. Moreover,
the lower confidence is more than made up for by the additional coverage resulting
from updating the Interpreter.

Explainable clusters

In manual mode, DeepCASE produces clusters that security operators inspect and
classify. We have shown in Section 3.5.4 that it is often enough for operators to
sample a few sequences from each cluster to determine its risk level. In this section,
we show what clusters look like and evaluate to what extent our attention query
improves the explainability of event sequences.

Cluster examples. We recall that the Interpreter produces clusters by com-
paring the contextual events in a sequence weighted by the attention vector. These
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Table 3.10: Comparison between updating strategies. We show the increased
number of covered events when DeepCASE is updated and its performance met-
rics. We compare DeepCASE over time when not updated with daily, weekly and
monthly updating.

Metrics over covered data

Updates Coverage Precision Recall F1-score Accuracy

None 87.38% 96.19% 92.75% 93.67% 92.75%
Monthly (+411K) 93.29% 95.64% 92.16% 93.16% 92.16%
Weekly (+450K) 93.93% 94.84% 90.92% 92.30% 90.92%
Daily (+466K) 94.23% 95.12% 91.39% 92.68% 91.39%

models describe the total attention of each security event type in contextual event
sequences. As clusters contain similar sequences, we can describe its characteris-
tics from the vectors detailing the total attention per event. We describe a cluster
by simply averaging the attention values for each event over all sequences.

These cluster descriptions uncover interesting patterns that illustrate how an
operator could reason about assigning risk levels. Figure 3.6 gives examples of these
descriptions. Here the relevance of events found in the security context of a cluster
is scored according to its average attention value. Consider the event in the Last-
line dataset where a detector observes an unusual user agent string. This may
be due to a newly installed or otherwise benign program, or it may be triggered by
malware that does not imitate common user-agents. This event occurs 4.6K times in
the dataset, which our Interpreter groups into 19 different clusters. To determine
whether an event of type unusual user agent string is malicious or not, we have
to look at the context weighted by the attention values. The first example in Fig-
ure 3.6 shows a case with 1) NO CONTEXT description if the event occurs where fewer
than 10 detectors were triggered in the day before observing the event, indicating
that there is no other supporting evidence for an attack; and 2) other detectors for
the similar patterns such as unusual JA3 fingerprint. This cluster does not di-
rectly indicate malicious behavior. However, other cluster descriptions in Figure 3.6
show the unusual user agent string event in combination with detectors for the
Tor browser. Depending on the organization, this may be considered a policy vio-
lation and can be classified as such. Finally, there are clusters with more malicious
indicators such as observing unusual user agent string in combination with
a large data download, or signature hits for malware (e.g., Linkury) or crypto
miners.

As another example, consider the contexts observed for beaconing activity,
which can be triggered by malware periodically contacting its command and con-
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unusual user agent string [benign]

NO CONTEXT 47.95%
unusual user agent string 7.91%
unusual JA3 fingerprint 42.70%

unusual user agent string [malicious]

NO CONTEXT 20.84%
unusual user agent string 35.09%
unknown crypto miner 43.93%

beaconing activity [malicious]

NO CONTEXT 3.68%
unusual data upload 32.29%
active directory trust enumeration 1.21%
recently registered domain access 62.64%

Figure 3.6: Cluster description examples. Three examples of both benign and
malicious clusters. All clusters are described by the average relevance of other con-
textual events as described by the attention.

trol server, or can be triggered by benign software periodically checking for updates.
We observe several clusters for beaconing activity. Some clusters contain only
events by detectors looking for repetitive network connections, which do not neces-
sarily indicate malicious activity. Other clusters, such as shown in Figure 3.6, show
signs of malware because beaconing activity is detected in combination with
recently registered domain access and unusual data uploads.

Attention query. One way in which DeepCASE improves its explanation of se-
curity events is through the attention query. This query increases the confidence
of the Context Builder in the actual security event that occurred by shifting the
attention to the more relevant contextual events. In this experiment, we measured
the increase in confidence for the actual event using this attention query. Again,
we trained the Context Builder on the first month of data from the Lastline
dataset as in all other experiments. Next, we predicted security events from their
context andmeasured the confidence level in the actual event that occurredwith and
without applying the attention query. Without the attention query, the Context
Builder reached the confidence threshold of 0.2 in 86.11% of cases. Conversely, ap-
plying the attention query resulted in a confidence ≥ 0.2 in 92.21% of cases. This
shows that the attention query improves the coverage for explainable events by
6.10%. For the HDFS dataset, this number increased from 94.66% to 99.24%, an im-
provement of 4.58 percentage points.
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3.5.6 Robustness

Using DeepCASE to reduce the workload of security operators may also create an
additional attack surface for adversaries. After all, if our approach allows adver-
saries to maliciously craft attacks such that DeepCASE discards them as being com-
pletely benign, reducing the workload would not serve its purpose. Moreover, our
approach itself may be targeted by an attacker to annul the workload reduction for
security operators. As our approach relies on events produced by security event
detectors, we consider attacks that bypass or alter detector outputs to be outside
the scope of this research. Therefore, we discuss and evaluate to what extent an
adversary can manipulate DeepCASE itself.

Denial of service attack

First, an attacker can perform a denial of service (DoS) attack against DeepCASE.
Here, we do not focus on (D)DoS attacks against a monitored device, as this type
of attack will simply generate a single cluster. Instead, we discuss DoS attacks with
the purpose of letting DeepCASE generate so many new clusters or sequences that
cannot be handled by our approach, overloading security operators. In Section 3.5.7,
we show that our approach is able to process more than 10 K sequences per second
on a system that has a good graphics card. Therefore, we can safely assume that the
bottleneck for DoS attacks is the number of sequences that the human operator has
to manually inspect. While DeepCASE currently does not provide countermeasures
for this type of attack, a sudden surge of new sequences to inspect would cause
suspicion for a security operator, even if the individual sequences do not seem ma-
licious. In fact, we found that in the Lastline dataset, for each device monitored in
semi-automatic mode, DeepCASE triggers a new sequence to inspect only once ev-
ery 2.5 days. A single device producing many more events than the average (in the
Lastline dataset, the worst infected machine produced 607 unknown sequences in
a single day) is likely to be thoroughly scrutinized by security operators. We discuss
DeepCASE’s limitations with respect to DoS attacks in Section 3.6.

Evasion attack

Second, an attacker may purposely trigger additional security events to change the
context of the attack events. Thereby, the attacker either 1) changes the context
sequence of an ongoing attack such that it matches a benign cluster instead of a
malicious cluster; or 2) attempts to create a new and benign cluster that can later be
used to perform an attack.
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Detecting evasive attacks

DeepCASE processes event sequences of an evading attacker in one of threeways: 1)
the attack is still classified as an attack; 2) the attack is classified as benign (either by
hiding in a benign cluster in manual mode, or by being assigned an INFO risk cluster
in semi-automatic mode); or 3) the attack is considered an outlier and passed to a
security operator. We consider case 2 the only successful outcome for an attacker,
as both cases 1 and 3 will be shown to a security operator. In case an attacker tries
to create a new benign cluster, such a new cluster will always be passed to a security
operator, as non-matching contextual sequences are labeled as outliers. Therefore,
in this experiment we evaluate to what extent an attacker can change the context of
an event from a malicious to a benign cluster without becoming an outlier, which
would be shown to the security operator.

Evaluation

We simulated an evasion attack by inserting random security events in the context of
events from the Lastline dataset. We note that an attacker with insider knowledge
of DeepCASE can perform an evasion attack by selecting specific security events
that perform better than random events. We discuss this scenario in Section 3.6,
where we show that having specific knowledge of DeepCASE’s clusters is better
than inserting random events possible for only 6.32% of clusters. For the random
security events, we looked only at event sequences with a risk level of LOW or higher,
i.e., INFO risk levels were omitted as they did not contain attacks. In this experiment,
we inserted random events into the context ranging from 0% to 100% percent of the
context size in steps of 10%. Where 0% is the original context and injecting 100%
completely altered the context. Next, wemeasured the number of sequences marked
as outliers and the performance metrics over the remaining sequences.

Table 3.11 shows that the performance of DeepCASE on non-outlier sequences
stays roughly the same across different numbers of injected events. However, the
number of outlier sequences increaseswith the number of injected events. Forminor
perturbations, theContext Builder can detect sufficient relevant context events to
be able to accurately model the sequence. However, when an attacker injects many
events, the number of outlier sequences rises quickly. This means that DeepCASE
notices unusual patterns and escalates these sequences to a security operator.

3.5.7 Runtime analysis

We evaluate the average of 10 runs of DeepCASE for various numbers of sequences.
All experiments ran on a Intel(R) Xeon(R) Gold 6252 CPU @ 2.10GHz machine run-
ning Ubuntu 18.04 LTS. Neural network training and prediction ran on a NVIDIA
TITAN RTX 24 GB TU102 graphics card.
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Table 3.11: Performance of DeepCASE under evasion attack. DeepCASE be-
comes less confident about event sequences and sends these outlier sequences to
security operators. The remaining sequences, for which DeepCASE remains confi-
dent, perform similarly to when no injection takes place.

Metrics on non-outlier data

Injected Outliers Precision Recall F1-score Accuracy

0/10 19.92% 98.62% 96.43% 96.88% 96.43%
1/10 21.22% 98.88% 97.26% 97.69% 97.26%
2/10 22.86% 99.06% 97.77% 98.17% 97.77%
3/10 25.51% 99.19% 98.14% 98.51% 98.14%
4/10 29.67% 99.29% 98.40% 98.75% 98.40%
5/10 35.55% 99.39% 98.61% 98.94% 98.61%
6/10 42.66% 99.46% 98.78% 99.08% 98.78%
7/10 50.26% 99.52% 98.92% 99.20% 98.92%
8/10 57.88% 99.57% 99.05% 99.30% 99.05%
9/10 68.94% 99.57% 99.16% 99.36% 99.16%
10/10 98.01% 97.92% 96.03% 96.50% 96.03%

Figure 3.7 shows the result of this analysis. The total runtime is made up of
four main computations: 1) training the Context Builder; 2) the attention query;
3) Interpreter’s clustering in manual mode; and 4) matching known clusters in
semi-automatic mode. We note that Figure 3.7 shows only a single training epoch
of the Context Builder, which in reality is trained with 100 epochs. However,
these epochs scale linearly and need to be trained only once for the manual mode,
or when updated. From this figure, we find that it takes DeepCASE less than 5 min-
utes to process 1 year of data for a single company (roughly 1.2M event sequences,
based on the average number of sequences in the Lastline dataset). Training the
neural network of Context Builder consumes the largest part of the total runtime.
We note that training epochs together with the attention query can be highly paral-
lelized as they are performed on a GPU. Furthermore, we note that while DBSCAN
clustering has a worst case complexity of 𝑂 (𝑛2), using KD-trees [39] allows us to
reduce that to a complexity of 𝑂 (𝑛 log𝑛). Overall, DeepCASE can easily keep up
with the number of generated events in large, real-world environments.

3.6 Discussion

We have shown that our approach successfully reduces the number of events pre-
sented to security operators by 95.69% inmanualmode and 90.53% in semi-automatic
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Figure 3.7: Runtime analysis of DeepCASE. Average runtime of our approach
for different numbers of contextual sequence inputs. The runtimes of each sub-
computation are stacked to show total runtime of DeepCASE. For reference, we
show the number of event sequences an average organization in the Lastline
dataset produces during one day, week, month and year.

mode. Nevertheless, there are some aspects of our approach to be addressed in fu-
ture work.

Bro/Zeek and programmable rules

Modern NSM and IDS systems such as Zeek [161] often include ways to manually
define expert rules. As we have shown in the evaluation, such rule based systems
work very well for the scenarios that they cover, and even outperformDeepCASE in
terms of accuracy for the covered events. However, the main issue is that manually
defined rules often have much difficulty covering all generated events. Therefore,
we believe that DeepCASE offers a complementary solution to existing rule-based
systems, as we ensure many more events are covered, while remaining conservative
in our prediction such that less than 0.001% of events are misclassified with a lower
risk level.

Evasion

For DoS attacks against DeepCASE, the main limitation of our approach lies in the
case where the attacker gradually increases the number of sequences that Deep-
CASE sends to a security operator. While such an attack can significantly impact
the workload reduction achieved by our approach, DeepCASE will still show these
sequences produced by the DoS attack to security operators. Under such an attack,
DeepCASE performs equivalently to the regular setting where DeepCASE is not
used.
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Furthermore, we note that in our evasion experiment from Section 3.5.6 we in-
jected random events. In reality, an adversary with knowledge of existing clusters
can maliciously craft its injected events to remain undetected. We observe that the
only way in which it is possible to change the malicious context of a malicious event
𝑒 , is if there exist both a malicious cluster (malicious context + event 𝑒) and a benign
cluster (benign context + event 𝑒) for that given event. We analyzed our clusters and
found that only 6.32% of clusters have this property, meaning that for 93.68% of clus-
ters, it is impossible to inject security events that would turn a malicious sequence
into a benign sequence. Notably, we observed that the clusters for which switch-
ing is possible are often only a single step in a larger attack (e.g., the clusters for
beaconing activity, where detection of connecting to the command and control
server can be circumvented). Other steps of the attack, such as uploading large
amounts of data or signature hits are more difficult to bypass without being trig-
gered as outliers. In short, evasion attacks may be possible for 6.32% of the clusters
if an attacker exploits knowledge of how clusters are formed, which is a limitation
of DeepCASE.

SOAR systems

Ourwork shows thatDeepCASE creates clusters of similar event sequences that cor-
respond to similar risk levels for a machine. However, these clusters are used only
to filter benign sequences and classify the risk levels of malicious sequences be-
fore showing them to security operators. Similar event sequences intuitively signal
similar threats infecting a device. This would mean that the response of the secu-
rity operator is also similar in terms of removing the threat and patching the device.
Such automated response systems are known in industry as “security orchestration,
automation and response”, i.e., SOAR systems. In its current form DeepCASE could
help SOAR systems when operators create automated responses per cluster.

Relative risk levels

In its current form, DeepCASE does not distinguish between risk levels for different
machines or organizations, it merely produces a risk analysis based on previously
observed event sequences. However, in practice, devices that are vital for an or-
ganization may have a lower tolerance for potential risks than other devices. As
our approach analyzes event sequences on a per-device basis, we suggest to for-
ward lower risk event sequences to the security operators for vital devices. If this
is done only for a small set of devices, the impact on workload reduction should
be minimized. However, further research is required to evaluate the full impact on
workload reduction.
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Attention and explainability

Our approach uses an attention mechanism to select relevant parts of the context
of an event. This attention mechanism is a popular approach in the current state-
of-the-art research into natural language processing (NLP). In this domain, there is
an ongoing discussion whether attention may be used for explaining feature impor-
tance [110]. The main critique here is that the attention vector used in state-of-the-
art works (e.g., BERT [72]) does not apply attention 1-to-1 to each input, but rather
maps attention to a complex combination of different inputs. We mitigate this cri-
tique bymultiplying the attention directly with the embedding of each context event
creating a direct mapping (see the Event Decoder in Section 3.3.2). Furthermore, the
results from our evaluation show that combining the attention with each individual
event can be used for accurate matching and filtering of event sequences.

Transferability

Our approach models event sequences based directly on the events produced by
underlying security detection systems. This means that changes in the detectors
will affect the performance of DeepCASE in terms of filtered sequences. We have
shown that our approach can automatically update itself with new detectors in Sec-
tion 3.5.5. In some scenarios, an operator may want to take a pre-trained model
from one organization and apply it to another organization to avoid having to run
the manual mode. Further research could show us how well existing models can
transfer to other settings, using methods such as transfer learning [159].

Context

One limitation of DeepCASE is that it only deals with events in the context of the
same machine. While it would be interesting to find cross-host relations between
events, we view this as future work. Another limitation of DeepCASE is the limited
size of the context it can deal with. Therefore, attacks over long periods of time
and contexts filled up with many unrelated events cannot be properly assessed. Our
parameter selection (Section 3.5.2) showed that incrementing the size of the context
(both in terms of time and number of events) beyond 5 samples and 1 hour has
limited effects on the performance.

Transformers

Our approach uses an Attention-based Encoder-Decoder model. Recent advances in
the field of NLP have improved this type of architecture in the form of Transform-
ers [210], of which notable examples are BERT [72] and GPT-3 [46]. These trans-
formers are based on the same concept of attention as our work, but offer a larger
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amount of parallelization. For a more detailed description, we refer to the original
paper [210]. While this transformer architecture would also work for DeepCASE,
the increased complexity of such a network would add little helpful insights into
our main concept, namely that attention can be used to explain relations between
security events.

3.7 Related work

Related works have explored various ways to contextualize and predict security
events, automating the operators’ tasks.

3.7.1 Contextual security events

The default method of analysing security events is provided by expert rules such
as those provided by AlienVault’s OSSIM, Sigma, and the rules that can be pro-
grammed in software such as Zeek [161]. However, as we have shown in the eval-
uation, these rules often only cover a limited subset (in our evaluation a maximum
of 36.97%) of all event sequences that we observe. More automated methods such as
NoDoze [99] and UNICORN [98] model the security context of system-level events
and organization-wide events, respectively. Both approaches model this context
as provenance graphs that track which processes are connected to triggered events.
They then automatically assign an anomaly score to this sequence to assist the triag-
ing process. The main drawback of these approaches is that it requires process-level
information of monitored hosts in order to construct provenance graphs. Other
works, such as OmegaLog [100], go even further in providing security operators
with additional provenance information by analyzing the executed binaries. Our
work drops the requirement for process-level information altogether by focusing
only on the security events themselves, and later identifying correlated events using
the Context Builder. This allows us to handle events of less device-intrusive de-
tection mechanisms such as network-level security detectors. Additionally, security
operators can monitor more devices, including those operating in bring-your-own-
device settings.

3.7.2 Event prediction

Other works do not focus on classifying the threat level of attacks, but rather focus
on predicting the next attack steps given a sequence of prior security events.

DeepLog [76] employs a recurrent neural network to predict future events. In
case the predicted event does not happen, DeepLog raises an alert for an anomaly
in the event sequence. When their approach detects an anomaly, it is considered
malicious and passed through a separate workflow extraction system to detect the
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underlying cause. Like many other systems, DeepLog focuses on prediction of sys-
tem logs, which means that it is optimized for more detailed events. This can also be
observed from the similarity in performance between DeepCASE and DeepLog on
theHDFS dataset, and the difference in the Lastline dataset. Furthermore, DeepLog
focuses only on anomalies, but an anomaly is not necessarily malicious.

Tiresias [191] does not predict anomalies, but instead tries to accurately predict
future events. While achieving a decent performance with an F1-score of 95.68%
versus 97.90% of DeepCASE, Tiresias is a complete black-box approach to event
prediction. This means that security operators have no way of telling whether a
particular prediction is meaningful given a specific context.

In another paper, the same authors propose Attack2vec [192], which detects
changes in attack patterns based on differences in preceding security events. While
this is also a form of contextual analysis, the goal and approach are strictly different.
Where Attack2vec only detects changes in attack trends, DeepCASE is able to also
cluster these new attacks and present them to security operators to immediately
take action.

One of the earlier works in security event prediction is Nexat [57], which uses a
co-occurrence matrix of security events to predict the most likely next event. How-
ever, this approach both assumes straightforward relations between events and is
fully supervised. This makes it more difficult to deal with rapidly evolving attack
patterns as it constantly needs to be retrained. Conversely, DeepCASE offers secu-
rity operators a simple and effective approach to semi-automatically update itself to
deal with novel event sequences.

Attention-mechanisms

ALEAP [80] uses an attention mechanism for event prediction. Unfortunately, their
work does not leverage this mechanism to provide contextual analysis, and, there-
fore, cannot properly assist security operators in their work. Moreover, their ap-
proach only has a prediction performance of only 72.36% precision (no mention
of accuracy/recall/F1-score). Besides the lower performance, the complexity of the
model is much higher than the one used in our approach, leading to longer training
and prediction times.

Brown et al. [45] also use attention mechanisms to enhance prediction of secu-
rity log messages. However, they predict specific log attributes based on different
attributes within the same log message. Hence, they base their prediction of ma-
liciousness on meta-data of individual messages, such as the machine generating
an event, or the user that authenticated an action, instead of other activities within
the network. This is simply a different approach to what many individual security
detection mechanisms already do.
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Graph-based approaches

Other works capture context through graph-based approaches, which can be built
from data [100, 133, 193]. The disadvantage of such approaches is that they rely on
predefined rules to model context. Therefore, new patterns will remain unobserved,
making it difficult to give a complete overview of the context.

3.8 Conclusion

In this chapter, we proposed DeepCASE, a novel approach that assists security op-
erators in analyzing security events by inspecting the context of events. Unlike
existing approaches, our approach does not require system-level information and
can therefore be used to analyze security events of any type of security detector.
Moreover, we showed that DeepCASE is able to deal with complex and evolving
attacks without resorting to a black-box approach.

Additionally, we showed thatDeepCASE reduces the workload of security oper-
ators on real-world data by 95.39%, and semi-automatically handles 90.53% of events
with an accuracy of 94.34%. Moreover, DeepCASE underestimates risk in less than
0.001% of cases, showing that real attacks are rarely missed. These results demon-
strate that contextual event analysis is an effective technique for security event anal-
ysis and a useful tool for real-world security operations centers.
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Chapter 4

FlowPrint: Semi-Supervised Mobile-App Fin-

gerprinting on Encrypted Network Traffic

While triaging security events reduces the workload of security operators, it as-
sumes that events provide sufficient contextual information for analysis. Where
EDR can provide information on the application exhibiting suspicious behavior,
network-based solutions often cannot. Therefore, in this chapter, we answer the
following research question:

RQ 3. To what extent can we identify malicious applications based on
network traffic?

Mobile-application fingerprinting of network traffic is valuable for many secu-
rity solutions as it provides insights into the apps active on a network. Unfortu-
nately, existing techniques require prior knowledge of apps to be able to recognize
them. However, mobile environments are constantly evolving, i.e., apps are regu-
larly installed, updated, and uninstalled. Therefore, it is infeasible for existing fin-
gerprinting approaches to cover all apps that may appear on a network. Moreover,
most mobile traffic is encrypted, shows similarities with other apps, e.g., due to com-
mon libraries or the use of content delivery networks, and depends on user input,
further complicating the fingerprinting process.

Therefore, we propose FlowPrint, a semi-supervised approach for fingerprint-
ing mobile apps from (encrypted) network traffic. We automatically find temporal
correlations among destination-related features of network traffic and use these cor-
relations to generate app fingerprints. Our approach is able to fingerprint previously
unseen apps, something that existing techniques fail to achieve. We evaluate our ap-
proach for both Android and iOS in the setting of app recognition, where we achieve
an accuracy of 89.2%, significantly outperforming state-of-the-art solutions. In addi-
tion, we show that our approach can detect previously unseen apps with a precision
of 93.5%, detecting 72.3% of apps within the first five minutes of communication.
This chapter is based on the publication: [3] Thijs van Ede et al. “Flowprint: Semi-supervised mobile-
app fingerprinting on encrypted network traffic”. In: Network and Distributed System Security Sympo-
sium (NDSS). vol. 27. 2020
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4.1 Introduction

Security solutions aim at preventing potentially harmful or vulnerable applications
from damaging the IT infrastructure or leaking confidential information. In large
enterprise networks, this is traditionally achieved by installing monitoring agents
that protect each individual device [214]. However, for mobile devices security op-
erators do not have direct control over the apps installed on each device in their
infrastructure, especially when new devices enter networks under bring-your-own-
device (BYOD) policies on a regular basis and with the ease by which apps are in-
stalled, updated, and uninstalled. In order to still retain detection capabilities for
apps that are active in the network, operators rely on observing the network traf-
fic of mobile devices. This naturally introduces the challenge of detecting apps in
encrypted network traffic, which represents the majority of mobile traffic—80% of
all Android apps, and 90% of apps targeting Android 9 or higher, adopt Transport
Layer Security (TLS) [91].

However, recognizing mobile apps can be a double-edged sword: On the one
hand, network flow analysis provides a non-intrusive central view of apps on the
network without requiring host access. On the other hand, app detection can be
used for censoring and invades users’ privacy. As we show in this chapter, active
apps on a network can not only be reliably fingerprinted for security purposes, but
also in an adversarial setting, despite traffic encryption. Thus, privacy-conscious
users need to be aware of the amount of information that encrypted traffic is still
revealing about their app usage, and should consider additional safeguards, such as
VPNs, in certain settings.

The idea of network-based app detection has already been extensively explored
in both industry and academia [13, 16, 52, 65, 149]. Snort for example offers Ap-
pID [59], a system for creating network intrusion detection rules for specified apps,
while Andromaly [189] attempts to detect unknown software through anomaly de-
tection by comparing its network behavior to that of known apps. Other approaches
specifically focus on detecting apps containing known vulnerabilities [203], and
others identify devices across networks based on the list of apps installed on a de-
vice [198]. All these approaches have in common that they require prior knowledge
of apps before being able to distinguish them. However, new apps are easily in-
stalled, updated and uninstalled, with almost 2.5 million apps to choose from in the
Google Play Store alone [197], not to mention a number of alternative markets. Fur-
thermore, recent work has shown that even the set of pre-installed apps on Android
varies greatly per device [87]. Thus, especially when companies adopt BYOD poli-
cies, it is infeasible to know in advance which apps will appear on the network. As
a consequence, unknown apps are either misclassified or bundled into a big class of
unknown apps. In a real-world setting, a security operator would need to inspect
the unknown traffic and decide which app it belongs to, limiting the applicability of
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existing approaches in practice.
Unlike existing solutions, we assume no prior knowledge about the apps running

in the network. We aim at generating fingerprints that act as markers, and that can
be used to both recognize known apps and automatically detect and isolate previ-
ously unseen apps. From this, a security operator can update whitelists, blacklists
or conduct targeted investigations on per-app groupings of network traffic.

There are several challenges that make such fingerprinting non-trivial. This is
because mobile network traffic is particularly homogeneous, highly dynamic, and
constantly evolving:

Homogeneous. Mobile network traffic is homogeneous because many apps share
common libraries for authentication, advertisements or analytics [32]. In addition,
the vast majority of traffic uses the same application-level protocol HTTP in vari-
ous forms (HTTP(S)/QUIC) [174]. Furthermore, part of the content is often served
through content delivery networks (CDNs) or hosted by cloud providers. Conse-
quently, different apps share many network traffic characteristics. Our work tack-
les homogeneous traffic by leveraging the difference in network destinations that
apps communicate with. We show that despite the large overlap in destinations, our
approach is still able to extract unique patterns in the network traffic.

Dynamic. Mobile network traffic is often dynamic as data that apps generate may
depend on the behavior of the users, e.g., their navigation through an app. Such
dynamism may already be observed in synthetic datasets that randomly browse
through an app’s functionality. Various fingerprinting approaches rely on repet-
itive behavior in network traffic [12, 83]. Despite good results of these methods
in smart-home environments and industrial control systems, dynamic traffic could
complicate fingerprinting of mobile apps. Hence, our work aims to create finger-
prints that are robust against user interactions by leveraging information about
network destinations on which the user has limited influence. We show that our
approach achieves similar results on both automated and user-generated datasets.

Evolving. Mobile network traffic is constantly evolving as app markets offer ef-
fortless installation, update, and uninstallation of a vast array of apps. Studies have
shown that apps are regularly updated with new versions, as frequently as once a
month on average [32, 60]. This is a challenge for existing fingerprinting mech-
anisms that require prior knowledge of an app in order to generate fingerprints.
When new or updated apps are introduced into the network, these fingerprinting
systems become less accurate, similarly to what Vastel et al. observed in the setting
of browser fingerprinting [209]. Moreover, the fraction of apps covered by these
systems dramatically decreases over time if fingerprints are not regularly updated.
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Our solution counters this by basing its fingerprints on pattern discovery in net-
work traffic instead of training on labeled data. Doing so, our approach produces
fingerprints that automatically evolve together with the changing network traffic.
We show that our approach is able to correctly recognize updated apps and can even
detect and fingerprint previously unseen apps.

To address these challenges, we introduce a semi-supervised approach to gen-
erate fingerprints for mobile apps. Our key observation is that mobile apps are
composed of different modules that often communicate with a static set of destina-
tions. We leverage this property to discover patterns in the network traffic corre-
sponding to these different modules. On a high level, we group together (encrypted)
TCP/UDP flows based on their destination and find correlations in destinations fre-
quently accessed together. We then combine these patterns into fingerprints, which
may, among other use cases, be used for app recognition and unseen app detection.

While our approach does not require prior knowledge to generate fingerprints,
and could, thus, be considered unsupervised, the applications of our approach are
semi-supervised. In fact, our approach creates “anonymous” labels that uniquely
identify mobile apps. However, app recognition uses known labels to assign app
names to thematched fingerprints. For example, having knowledge about theGoogle
Maps app, allows us to rename unknown_app_X to google_maps. Similarly, unseen
app detection requires a training phase on a set of known apps to identify unknown
ones.

In summary, we make the following contributions:

• We introduce an approach for semi-supervised fingerprinting by combining
destination-based clustering, browser isolation and pattern recognition.

• We implement this approach in our prototype FlowPrint, the first real-time
system for constructing mobile app fingerprints capable of dealing with un-
seen apps, without requiring prior knowledge.

• We show that, for both Android and iOS apps, our approach detects known
apps with an accuracy of 89.2%, significantly outperforming the state-of-the-
art supervised app recognition system AppScanner [203]. Moreover, our ap-
proach is able to deal with app updates and is capable of detecting previously
unseen apps with a precision of 93.5%.

In the spirit of open science, we make both our prototype and datasets available
at https://doi.org/10.4121/e08823b5-ceff-4ebc-a967-290ef9cacc7e.

4.2 Preliminary Analysis

To study mobile network traffic and identify strong indicators that can be used to
recognize mobile apps, we performed a preliminary analysis on a small dataset.
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As indicated in the introduction, our fingerprinting method should be able to dis-
tinguish mobile apps despite their homogeneous, dynamic and evolving behavior.
Hence, in our preliminary analysis we explored features that may be used to finger-
print apps.

4.2.1 Dataset

In order to perform our analyses, we use datasets of encrypted network traffic la-
beled per app (see Table 4.1). These datasets allow us to evaluate our method in
various conditions as they contain a mix of both synthetic and user-generated data;
Android and iOS apps; benign and potentially harmful apps; different app stores;
and different versions of the same app. We collected three of the datasets as part of
our prior work [132, 176–178]. We collected the last set specifically for this work
with the purpose of representing browser traffic, which is lacking in most available
datasets. For this preliminary analysis, we only used a small fraction of the available
data in order to prevent bias in the final evaluation.

ReCon. The ReCon AppVersions dataset [177, 178] consists of labeled network
traces of 512 Android apps from the Google Play Store, including multiple version
releases over a period of eight years. The traces were generated through a combina-
tion of automated and scripted interactions on five different Android devices. The
apps were chosen among the 600 most popular free apps on the Google Play Store
ranking within the top 50 in each category. In addition, this dataset contains ex-
tended traces of five apps, including multiple version releases. The network traffic
of each of these five apps was captured daily over a two-week period. In this work,
we refer the AppVersions dataset as ReCon and to the extended dataset as ReCon
extended.

Cross Platform. The Cross Platform dataset [176] consists of user-generated data
for 215 Android and 196 iOS apps. The iOS apps were gathered from the top 100
apps in the App Store in the US, China and India. The Android apps originate from
the top 100 apps in Google Play Store in the US and India, plus from the top 100
apps of the Tencent MyApps and 360 Mobile Assistant stores, as Google Play is not
available in China. Each app was executed between three and ten minutes while
receiving real user inputs. Procedures to install, interact, and uninstall the apps
were given to student researchers who followed them to complete the experiments
while collecting data. We use this dataset to evaluate both the performance of our
method with user-generated data and the performance between different operating
systems.
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Table 4.1: Dataset overview. ✓ indicates a dataset contains Homogeneous (H),
Dynamic (D), or Evolving (E) traffic.

Dataset

No.

Apps

No.

Flows

% TLS

Flows

Start Date End Date

Avg.

Duration

H D E

ReCon [177, 178] 512 28.7K 65.9% 2017-01-24 2017-05-06 189.2s ✓ ✓

ReCon extended [177, 178] 5 141.2K 54.0% 2017-04-21 2017-05-06 4h 16m ✓ ✓

Cross Platform (Android) [176] 215 67.4K 35.6% 2017-09-11 2017-11-20 333.0s ✓ ✓

Cross Platform (iOS) [176] 196 34.8K 74.2% 2017-08-28 2017-11-13 339.4s ✓ ✓

Cross Platform (All) [176] 411 102.2K 49.6% 2017-08-28 2017-11-20 336.0s ✓ ✓

Andrubis [132] 1.03M 41.3M 24.7% 2012-06-13 2016-03-25 210.7s ✓

Browser 4 204.5K 90.5% 2018-12-17 2019-03-01 3h 34m ✓

Andrubis. The Andrubis dataset [132] contains labeled data of 1.03 million An-
droid apps from the Google Play Store and 15 alternative market places. This dataset
contains both benign and potentially harmful apps, as classified by VirusTotal. Each
trace in this dataset was generated by running the app for four minutes in a sandbox
environment emulating an Android device. The app was exercised by automatically
invoking app activities and registered broadcast receivers, and simulating user in-
teractions through the Android Application ExerciserMonkey. We use the Andrubis
dataset for experiments requiring large traffic volume and to assess the performance
of our method on both benign and potentially harmful apps.

Browser. We created the Browser dataset because the existing datasets contain a
limited amount of browser traffic, which may produce a significant portion of traffic
in mobile environments. Even though a browser is not a dedicated app, but rather a
platform on which various web content is rendered, executed and displayed, a fin-
gerprinting method with the purpose of detecting apps should also be able to detect
the browser as a single app. To this end, we collect an additional dataset of browser
traffic by scraping the top 1,000 Alexa websites on a Samsung Galaxy Note 4 run-
ning Android 6.0.1 with Chrome, Firefox, Samsung Internet and UC Browser, which
cover 90.9% of browser traffic [196], if we exclude Safari, which is not available for
Android. Each website visit lasts for 15 seconds, while the Application Exerciser
Monkey simulates a series of random movements and touches.

4.2.2 Feature Exploration

Previous work on app fingerprinting usually tackles the problem in a supervised
setting. In this work however, we propose an approach with the aim of automati-
cally detecting unknown apps, without requiring prior knowledge. This requires a
re-evaluation of the network features commonly used in app fingerprinting. There-
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fore, we first identify possible features from the network traffic. The TLS-encrypted
traffic limits the available features to temporal and size-based features, as well as
the header values of unencrypted layers and the handshake performed to establish
a TLS connection. The data-link layer header provides only information about the
linked devices, not about the app itself and is therefore not useful for our purposes.
We further analyze the layers between the data-link and application layer, as we
expect the latter to be encrypted. From these layers, we extract all header values
controlled by the communicating app as well as the sizes and inter-arrival times
of packets. In addition, for the size and time related features we compute the sta-
tistical properties: minimum, maximum, mean, standard deviation, mean absolute
deviation, and 10-th through 90-th percentile values.

4.2.3 Feature Ranking

We score all features according to the Adjusted Mutual Information (AMI) [211], a
metric for scoring features in unsupervised learning. We favor the AMI over other
methods, such as information gain, as the latter is biased towards features that can
take on random values. Such randomness is undesirable in an unsupervised or semi-
supervised setting, as we do not have any prior expectation of feature values. The
AMI defines the relative amount of entropy gained by knowing a feature with re-
spect to the class, in our case the app. To this end, we first compute the mutual
information between a feature and its app as described in Equation 4.1. Here 𝑌

is the list of classes of each sample and 𝑋 is the list of features corresponding to
the samples. Function 𝑝 (𝑥,𝑦) defines the joint probability of value 𝑥 and label 𝑦,
whereas 𝑝 (𝑥) and 𝑝 (𝑦) are the individual probabilities of features 𝑥 and 𝑦 occurring
respectively.

𝑀𝐼 (𝑋,𝑌 ) =
∑︁
𝑦∈𝑌

∑︁
𝑥∈𝑋

𝑝 (𝑥,𝑦) log
( 𝑝 (𝑥,𝑦)
𝑝 (𝑥)𝑝 (𝑦)

)
(4.1)

To counter that the mutual information is biased toward features that have many
different values, the AMI removes any bias by normalizing for the expected gain
in entropy. As a result, the AMI score ranges from 0 (completely uncorrelated) to
1 (observing feature X fully maps to knowing app label Y). Equation 4.2 shows the
definition of theAMI, where 𝐸 [𝑋 ] is the expected value of𝑋 and𝐻 (𝑋 ) is the entropy
of𝑋 . We use the AMI to rank features based on howmuch information they contain
about an app, and thereby get an indication of their usefulness in a fingerprint.

𝐴𝑀𝐼 (𝑋,𝑌 ) = 𝑀𝐼 (𝑋,𝑌 ) − 𝐸 [𝑀𝐼 (𝑋,𝑌 )]
max(𝐻 (𝑋 ), 𝐻 (𝑌 )) − 𝐸 [𝑀𝐼 (𝑋,𝑌 )] (4.2)
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Table 4.2: AMI of ten highest scoring features.

Feature Category AMI

Inter-flow timing Temporal 0.493
IP address - source Device 0.434
TLS certificate - validity after Destination 0.369
TLS certificate - validity before Destination 0.356
TLS certificate - serial number Destination 0.342
IP address - destination Destination 0.246
TLS certificate - extension set Destination 0.235
Packet size (incoming) - std Size 0.235
Packet size (outgoing) - std Size 0.232
Packet inter-arrival time (incoming) - std Temporal 0.218

4.2.4 Feature Evaluation

Using the AMI, we analyze and rank the features available in TLS-encrypted traffic
of the ReCon dataset. The evaluation of our fingerprinting approach in Section 4.5
demonstrates that these features also generalize to other datasets. After extracting
all features, we divide them into categorical and continuous values. As the AMI can
be compared only for categorical values, we divided each continuous value into 20
equally sized bins spanning the full range of each feature. Then, we computed the
AMI of each feature with respect to the app label. Table 4.2 shows the ten highest
ranked features, we provide all the analyzed features together with their AMI scores
at https://doi.org/10.4121/e08823b5-ceff-4ebc-a967-290ef9cacc7e.

From Table 4.2 we first observe that there are no features with an AMI close to
1. Hence, a fingerprint should combine multiple features in order to create a reliable
app marker. In addition, we deduce four important categories that can be leveraged
when creating app fingerprints. We note that these categories are not new to app
fingerprinting, but give insights into how an approach may benefit from leveraging
these features. While only using a small part of the dataset for our preliminary
feature evaluation, our results in Section 4.5 show that the features are generic and
also perform well on larger datasets.

Temporal features. The Inter-flow timing and Packet inter-arrival time (incom-
ing) stress the importance of timing in network traffic. Most apps primarily com-
municate when active, and early studies suggested a limited number of apps are
active simultaneously [41, 74]. As temporal features may be affected by latency and
network congestion on a small-time scale, our work uses time on a more course-
grained level. We leverage the time between flows to correlate traffic occurring at
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the same time interval. In addition to our semi-supervised setting, supervised fin-
gerprinting methods such as BIND [149] also use temporal features.

Device features. The IP address - source feature is the IP address of the monitored
device. This feature demonstrates that the device producing network traffic reveals
information about the app. Intuitively, different devicesmay run different app suites.
Our work does not use the IP source address as a feature, but instead creates app
fingerprints separately per device. We reason that identifying apps on a per-device
basis assists in limiting the amount of dynamic behavior. Furthermore, a related
study [16] observed that different devices in terms of vendor and/or OS version may
exhibit significant variations in traffic features. Therefore, our approach handles
traffic on a per-device basis and constructs separate fingerprints for each device.

Destination features. The high AMI of the IP address - destination, i.e., the IP
address of the server, and various TLS certificate features indicate that apps may be
discriminated based on the destinations with which they communicate. Intuitively,
each app is composed of a unique set of differentmodules that all provide parts of the
app’s functionality. Each module communicates with a set of servers resulting in a
unique set of network destinations that differentiate apps. Destination features may
even be enriched by domains extracted from DNS traffic. However, this data is not
always available due to DNS caches. Hence, to work in a more general setting our
approach does not use the domain as a feature. Even though network destinations
may change over time, we show in Section 4.5 that our approach is able to deal with
these changes.

Size features. Both incoming and outgoing Packet size features show a high AMI.
This implies that the amount of data being sent and received per flow is a good
indicator of which app is active. However, all other packet size features yielded an
AMI score of 0.07 or lower, i.e., making up two thirds of the bottom 50% of ranked
features. Therefore, we do not incorporate packet sizes in our approach. This does
not mean size features are unsuited for fingerprinting per se, as can be observed
from supervised approaches using size-based features [13, 16, 203]. However, the
size features yield little information for fingerprinting in a semi-supervised setting.

4.3 Threat Model

Our work focuses on creating fingerprints for mobile apps and we assume the per-
spective of a security monitor who can (1) trace back flows to the device despite
NAT or changing IP addresses, (2) distinguish mobile from non-mobile devices, and
(3) only monitor its own network (e.g., the WiFi network of an enterprise)—traffic
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sent over other networks cannot be used to generate fingerprints. Our assumptions
match the scenario of enterprise networks, where security operators have full net-
work visibility and access to the DHCP server.

Even without a priori knowledge about device types, security operators could
still isolate network traffic from mobile devices based on MAC addresses and or-
thogonal OS fingerprinting approaches: for example, related work has shown that
DHCPmessages [160], TCP/IP headers [50], and OS-specific destinations [122] (e.g.,
update servers and mobile app markets), can be used to identify mobile devices, and
even tethering.

Finally, we focus on single-app fingerprints, i.e., we assume that mobile apps are
executed one at a time. In practice, there is often a separation between the execution
of multiple apps, with the exception of background services, which, however, pro-
duce fewer and more recognizable traffic patterns. Nonetheless, we acknowledge
the possibility that multiple apps are executed simultaneously on a single device
causing composite fingerprints. We believe our approach is an excellent start to
investigate the creation and behavior of such composite fingerprints. However, as
we will discuss in Section 4.6, we consider this out of scope for the current work
as existing solutions already suffer from limitations such as identifying previously
unseen apps.

4.4 Approach

We aim to fingerprint mobile apps in a semi-supervised and real-time fashion on
the basis of their (encrypted) network traffic. We build our approach on the obser-
vation that mobile apps are composed of different modules that each communicate
with a relatively unvarying set of network destinations. Our focus lies on discover-
ing these distinctive communication patterns without requiring any knowledge of
the specific active apps. To this end, we create fingerprints based on temporal corre-
lations among network flows between monitored devices and the destinations they
interact with. As a result, our fingerprints are capable of dealing with evolving app
suites, and are agnostic to the homogeneous and dynamic nature of mobile traffic.

Figure 4.1 shows an overview of our approach: We periodically take network
traffic of mobile devices as input and generate fingerprints that map to apps. To do
so, we isolate TCP/UDP flows from the network traces for each device, and extract
the required features. Subsequently, for each individual device we cluster all flows
according to their destination. This clustering allows the discovery of common com-
munication patterns later on. Before generating app fingerprints, our approach first
pays special attention to browsers as they behave like a platform accessing web con-
tent rather than a dedicated app. Thereafter, we correlate remaining clusters based
on temporally close network activity to generate app fingerprints. When clusters
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Figure 4.1: Overview of the creation andmatching of app fingerprints. (A)We
extract features from the network traces. (B) We cluster the flows from each device
per network destination. (C) We detect and isolate browsers. (D) We discover cor-
relations between network destinations. (E) We create fingerprints based on strong
correlations. (F) We match newly found fingerprints against previously generated
fingerprints and update them accordingly.

show a strong correlation, we group their flows together in a fingerprint. Finally, we
match the generated fingerprints against a database of known fingerprints to recog-
nize apps or detect previously unseen apps. By combining correlation and clustering
techniques, our approach discovers temporal access patterns between network des-
tinations without requiring any prior knowledge.

4.4.1 Feature Extraction

The first step for generating fingerprints extracts features from the network traffic,
where we separately look at the TCP and UDP flows of each mobile device. Per de-
vice, we extract the destination IP and port number, timestamp (used to compute the
timing between flows), size and direction of all packets in the flow and, if applicable,
the TLS certificate for that flow. From these features, we use the destination IP and
port number as well as the TLS certificate in the clustering phase. Browser isola-
tion additionally requires information about the amount of data that is sent over the
network. Finally, the correlation step uses the timestamps of packets to determine
to what extent different flows are temporally correlated.

4.4.2 Clustering

Since our approach runs periodically over input data of each device, we first split
the input data is into batches of a given timing interval 𝜏batch. After extracting the
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features for each batch, we cluster together TCP/UDP flows based on their network
destination. We consider flows to go to the same network destination if they satisfy
any of the following criteria: (1) The flows contain the same (destination IP address,
destination port)-tuple. (2) The flows contain the same TLS certificate.

The clustering approach for app fingerprinting raises some concerns about the
consistency of destination clusters. After all, web services may use multiple IP ad-
dresses for a single destination for load balancing and reducing the server response
time, or even change their IP address completely. Our approach tackles this problem
by clustering destinations based on similarity of either the (IP, port)-tuple or the TLS
certificate. As discussed previously, one may even enrich the clustering features by
including DNS traffic of flows as well if this information is available. Our evaluation
in Section 4.5 shows that this method is robust against inconsistencies in network
destinations.

Figure 4.2 shows an example of the resulting clusters, in which the destination
clusters are scattered randomly. The size of each cluster is proportionate to the
amount of flows assigned to it. Note that some of the clusters are generated by mul-
tiple apps, which we refer to as shared clusters. Further inspection reveals that these
shared clusters correspond to third-party services such as crash analytics, mobile ad-
vertisement (ad) networks, social networks, and CDNs. These services are often em-
bedded through libraries used bymany apps: e.g., googleads.g.doubleclick.net,
lh4.googleusercontent.com and android.clients.google.com are shared clusters
that provide these services. We discuss the extent to which shared clusters influ-
ence fingerprinting in our analysis on homogeneity in Section 4.5.5. In addition
to shared clusters, apps frequently produce clusters unique to that specific app,
e.g., the s.yimg.com and infoc2.duba.net clusters only occur in the traffic of the
com.rhmsoft.fm app. These app-specific clusters often point to destinations of the
app developer, i.e., the first party, or smaller providers of the aforementioned cross-
app services.

Finally, note that the obtained clusters consist of flows from the entire input
batch. However, the monitored device will only sporadically communicate with
each destination. Therefore, we refer to clusters as active when a message is sent to
or received from the destination represented by the cluster, and inactive otherwise.

4.4.3 Browser Isolation

As previously discussed, browsers are different from other apps in that they are not
dedicated apps. This means that behavioral patterns in browsers are more difficult
to detect as the user may navigate to any website at will. To account for this, we
introduce a separate technique to detect and isolate browser traffic into a single app.
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Features. From the perspective of destination clustering, we expect browsers to
show many new clusters. After all, modern websites distribute their content along
CDNs, display advertisement, and load auxiliary scripts and images. These are
stored at various destinations and therefore show up as new clusters. In addition,
content downloaded to be displayed in browsers often contains much more data
than is uploaded in browser requests. To account for the fact that multiple apps
may be active and thereby show browser-like behavior, we focus only on the relative
changes. Therefore, our browser detector uses the following features: (1) Relative
change in active clusters; (2) Relative change in bytes uploaded; (3) Relative change
in bytes downloaded; (4) Relative change in upload/download ratio.

Browser detector. To detect browsers, we train a Random Forest Classifier [102]
with labeled browser and non-browser data.1 When the classifier detects a TCP/UDP
stream originating from a browser at time 𝑡 , we isolate all connections active within
an empirically set timeframe of [𝑡 −10, 𝑡 +10] seconds. This means that we label the
connections as browser and do not consider them for further analysis. Therefore, af-
ter detection, these streams are removed from the destination clusters. Our rationale
for removing all connections within a specific timeframe is that, when a browser is
detected, it probably caused more network activity around that time. While this ap-
proach might be considered aggressive in detecting browsers, we argue that other
apps should show persistent behavior. As a result, clusters that have been removed
because all their connections were incorrectly isolated are still expected to resurface
when the app is active without an interfering browser. We evaluate the performance
of the browser isolation component in Section 4.5.4.

4.4.4 Cluster Correlation

Now that browsers are isolated, we leverage the remaining clusters for app finger-
printing. However, using only destination clusters is insufficient for fingerprinting
apps as network destinations are shared among apps and may change between dif-
ferent executions of an app [202, 203]. A small-scale experiment on our datasets
shows that an increasing number of apps leads to a rapid decline in app-specific clus-
ters. When randomly selecting 100 apps from all our dataset over ten Monte Carlo
cross validations, only 58% of apps show at least one app-specific destination clus-
ter. In the same experiment, when selecting 1,000 apps, this number drops to 38%.
Therefore, to fingerprint apps we also leverage the temporal correlations between
active destination clusters. Our rationale here is that apps persistently communi-
cate with the same network destinations. We hypothesize that the combination of
active destination clusters at each point in time is unique and relatively stable for

1While this is a form of supervised detection, we still consider our approach semi-supervised as
we do not require prior knowledge for other types of apps.
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each app. This means that over time one should be able to observe stronger corre-
lations for destinations that belong to the same app. Our experiments in Section 4.5
demonstrate that this method of fingerprint generation can be used for both app
recognition and detection of previously unseen apps.

Correlation graph. To measure the temporal correlation between clusters, we
compute the cross-correlation [169] between the activity of all cluster pairs as de-
fined in Equation 4.3. Even though this has a theoretical time complexity of 𝑂 (𝑛2),
we show in Section 4.5.7 that in practice it is still easily scalable. We compute this
cross-correlation by splitting the input batch into slices of 𝜏window seconds (see Sec-
tion 4.5.1). We consider a cluster 𝑐𝑖 active at time slice 𝑡 if it sends or receives at
least one message to or from the destination cluster during that window. Its activity
is modeled as 𝑐𝑖 [𝑡] = 1 if it is active or 𝑐𝑖 [𝑡] = 0 if it is inactive.

(𝑐𝑖 ★ 𝑐 𝑗 ) =
𝑇∑︁
𝑡=0

𝑐𝑖 [𝑡] · 𝑐 𝑗 [𝑡] (4.3)

The cross-correlation is naturally higher for clusterswith a lot of activity. To counter
this, we normalize the cross-correlation for the total amount of activity in both clus-
ters as specified in Equation 4.4.

(𝑐𝑖 ★ 𝑐 𝑗 )𝑛𝑜𝑟𝑚 =

∑𝑇
𝑡=0 𝑐𝑖 [𝑡] · 𝑐 𝑗 [𝑡]∑𝑇

𝑡=0max(𝑐𝑖 [𝑡], 𝑐 𝑗 [𝑡])
(4.4)

Using the cross-correlation metric between each cluster, we construct a correlation
graph with each node in this graph representing a cluster. Clusters are connected
through weighted edges where the weight of each edge defines the cross-correlation
between two clusters. Figure 4.3 shows the correlation graph of three selected apps
as an example. We see that clusters belonging to the same app demonstrate a strong
cross-correlation. In addition, shared clusters show weak correlation between all
apps and most of the unique clusters are not correlated at all.

4.4.5 App Fingerprints

To construct app fingerprints we identify maximal cliques, i.e., complete subgraphs,
of strongly correlated clusters in the correlation graph. To discover such cliques, we
first remove all edges with a weak cross-correlation. A cross-correlation is consid-
ered weak if it is lower than a threshold 𝜏correlation, which in our approach is empiri-
cally set to 0.1 (see Section 4.5.1). This leaves us with a correlation graph containing
only the strongly correlated clusters. We then extract all maximal cliques from this
graph and transform each clique into a fingerprint. As all maximal cliques are com-
plete subgraphs, the edges in the clique do not add any additional information. This
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Figure 4.2: Example of destination clusters for three apps: com.rhmsoft.fm,
com.steam.photoeditor, and au.com.penguinapps.android.babyfeeding.client.android.
The size of each cluster is proportionate to the amount of flows assigned to it. We la-
beled first- and third-party destinations based on themethodology of Ren et al. [177],
and distinguished for the latter between CDNs, advertisement networks (ads), and
social networks (social).

Figure 4.3: Example correlation graph for three apps as gener-

ated by our approach (left) and when labeled per app (right). The
apps include com.rhmsoft.fm (blue), com.steam.photoeditor (green) and
au.com.penguinapps.android.babyfeeding.client.android (red) or shared destina-
tion clusters (black). Larger nodes indicate the more flows to that destination
cluster. The thickness of each edge depends on the cross correlation.
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means we can transform cliques into sets of network destinations by extracting all
(destination IP, destination port)-tuples and TLS-certificates from every node in a
clique and combine them into a set. By performing this transformation for each
clique, we obtain all of our fingerprints. In short, we define an app fingerprint as
the set of network destinations that form a maximal clique in the correlation graph.

As graph edges in the correlation graph depend on the activity of a destination
with other clusters, some of the nodes are completely disconnected from the rest
of the graph. This is often the case for destinations that are shared among many
apps. Figure 4.3 shows an example where the shared (black) nodes only have low
cross correlations that fall under the threshold. As these 1-cliques often correspond
to multiple apps, treating them as fingerprints yields little added value. However,
they will most likely originate from the same app for which we are able to produce
fingerprints during the batch processing. Therefore, we assign flows from 1-cliques
to the fingerprint that is closest in time, or, if two fingerprints are equally close, to
the fingerprint containing the most flows.

4.4.6 Fingerprint Comparison

The benefit of using a fingerprint to represent traffic from an app is that it can be
computed from the features of the network traffic itself without any prior knowl-
edge. Moreover, we want to compare fingerprints with each other to track app
activity over time. Unfortunately, apps communicate with various sets of destina-
tions at different times, either because traffic is based on user interaction, which is
dynamic, or because apps produce distinct traffic for different functionalities. Con-
sequently, fingerprints of the same app can diverge to various degrees. To account
for this fact, we do not compare fingerprints as an exact match, but instead base
their comparison on the Jaccard similarity [108]. Since our fingerprints are sets, the
Jaccard similarity is a natural metric to use. To test whether two fingerprints are
similar, we compute the Jaccard similarity between two fingerprints 𝐹𝑎 and 𝐹𝑏 (dis-
played in Equation 4.5) and check whether it is larger then a threshold 𝜏similarity. If
this is the case, we consider the two fingerprints to be the same.

𝐽 (𝐹𝑎, 𝐹𝑏) =
|𝐹𝑎 ∩ 𝐹𝑏 |
|𝐹𝑎 ∪ 𝐹𝑏 |

(4.5)

By comparing fingerprints in this way, we are able to track the activity of apps
between different input batches and executions of the our approach. In addition, it
automatically solves the problem when we observe a fingerprint where one edge of
the clique is missing because it did not make the threshold cutoff. Especially when
cliques become larger, the possibility of a clique missing an edge increases. In such
cases, our approach would output multiple fingerprints for the same app. If these
fingerprints are similar, they can even bemerged by taking the union of fingerprints.
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In addition, this comparison based on the Jaccard similarity allows our approach to
treat similar fingerprints as equivalent.

4.5 Evaluation

We implemented a prototype of our approach, called FlowPrint, in Python using
the Scikit-learn [162] and NetworkX [96] libraries for machine learning and graph
computation. The first experiment in our evaluation determines the optimal param-
eters for our approach. Then, we analyze to what extent the fingerprints generated
by our approach can be used to precisely identify apps. Here, we compare our ap-
proach against AppScanner [203], a supervised state-of-the-art technique to recog-
nize apps in network traffic. Thereafter, we evaluate how well our approach deals
with previously unseen apps, either through updates or newly installed apps. We
then detail specific aspects of our approach such as the performance of the browser
detector, the confidence level of our fingerprints, and the number of fingerprints
produced per app. We further investigate how well our approach can deal with the
homogeneous, dynamic, and evolving nature of mobile network traffic. Finally, we
discuss the impact of the number of apps installed on the device and demonstrate
that our method is able to run in real-time by assessing the execution time of Flow-
Print.

Experimental setup. Our evaluation requires ground truth labels, which for mo-
bile apps can be acquired by installing an intrusivemonitoring agent on a real device,
or by running controlled experiments. Due to privacy concerns and to ensure re-
peatability of our experiments, we evaluate FlowPrint on the datasets described in
Section 4.2.1, which closely approach an open world setting, containing encrypted
data, user-generated data, both Android and iOS apps, and different app versions.
As explained in Section 4.4, our approach does not require any prior knowledge
to generate fingerprints, and we leverage ground truth labels only to evaluate our
prototype (i.e., to assign app names to matched fingerprints).

We split the traffic of each app in our datasets 50:50 into training and testing sets,
without any overlap. For each experiment, we build our database from the training
data of 100 randomly chosen apps for each dataset. This leads to an average of 2.0
fingerprints per app for ReCon and Andrubis, and 6.2 for the Cross Platform dataset.
For the unseen app detection, we additionally introduce traffic from 20 randomly
chosen apps that are not present in the training set.

4.5.1 Parameter Selection

As detailed in the previous section, our approach requires four configurable param-
eters to create fingerprints:
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• 𝜏batch sets the amount of time of each batch in a network capture to process
in each run of our approach.

• 𝜏window specifies the time window for destination clusters to be considered
active simultaneously.

• 𝜏correlation describes the minimum amount of correlation (𝑐𝑖★𝑐 𝑗 )𝑛𝑜𝑟𝑚 between
two destination clusters to have an edge in the correlation graph.

• 𝜏similarity indicates the minimum required Jaccard similarity between finger-
prints to be treated as equivalent.

Optimization metric. We optimize each parameter with respect to the F1-score
that our approach achieves when recognizing apps. This metric computes the har-
monic mean between precision and recall and is often used to evaluate security
solutions. As we output fingerprints, we need to map them to app labels in order to
evaluate our approach. Each fingerprint consists of flows which, in our dataset, are
labeled. Hence, we label each fingerprint with the flow label that is most commonly
assigned to that fingerprint. To illustrate this, suppose fingerprint 𝐹 contains 10
flows of app 𝐴 and 2 flows of app 𝐵, all 12 flows of that fingerprint will be assigned
the label 𝐴. While this approach can generate multiple fingerprints per app (see
Section 4.5.4), many security applications (e.g., firewalls) use a mapping on top of
fingerprinting and allow multiple fingerprints for the same app.

Parameter selection. To optimize our parameters, we refine them individually
to reach an optimal F1-score. We choose our parameters from the following set of
possible values:

• 𝜏batch: 1m, 5m, 10m, 30m, 1h, 3h, 6h, and 12h.

• 𝜏window: 1s, 5s, 10s, 30s, 1m, 5m, 10m, and 30m.

• 𝜏correlation: 0.1 to 1.0 in steps of 0.1.

• 𝜏similarity: 0.1 to 1.0 in steps of 0.1.

The batch size thresholds vary between 1 minute, a scenario where apps can
be detected while they are still running, and 12 hours, representing a post-incident
analysis. The window thresholds vary between 1 second and 30 minutes, where
smaller values may miss flow correlations and larger values may correlate flows
that were accidentally active around the same time period. Both correlation and
similarity thresholds are evenly spread out between 0.1 and 1.0, the first and max
values that trigger the corresponding fingerprint mechanism.
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Table 4.3: Summary of tested parameter optimization values. The first row
shows the default parameters and each subsequent row highlights the optimal val-
ues found for each individual parameter.

𝜏batch 𝜏window 𝜏correlation 𝜏similarity F1-score

3600 5 0.3 0.5 81.64%

300 5 0.3 0.5 82.94%
300 30 0.3 0.5 83.67%
300 30 0.1 0.5 85.43%
300 30 0.1 0.9 91.90%

For each parameter we vary the value by iterating over the test set of possible
values while keeping the other parameters as their default value. Once we find an
optimal value for a parameter, it is set as the new default for optimizing the other
parameters. This way of iterating through the values allows us to capture depen-
dencies between the parameters. To get an average result, we perform a 10-fold
cross validation analysis for each setting on held-out validation data from the An-
drubis dataset. This held-out data is not used in the remainder of the evaluation to
remove bias from this optimization step. We opt to optimize the parameters using
only the Andrubis dataset to ensure all datasets contain enough testing data to eval-
uate our approach. While this may bias the optimal parameters to a specific dataset,
our results in the remainder of this section show that the parameters also generalize
well to other datasets. During the experiment, we assume that each device has 100
apps installed, which resembles a realistic setting [25]. We also performed the same
evaluation with 200 apps per device, which resulted in the same optimal parameters.

As shown in Table 4.3, we find optimal values for 𝜏batch = 300 seconds, 𝜏window =

30 seconds, 𝜏correlation = 0.1 and 𝜏similarity = 0.9 from this analysis.2 One interesting
observation is that the optimal value for 𝜏batch is found at 300 seconds. This means
that it may take up to five minutes before a flow is assigned to a fingerprint. In set-
tings that require faster fingerprint generation, operators can of course set a lower
𝜏batch value, however at the cost of a lower performance.

4.5.2 App Recognition

Many security solutions use a fingerprinting method for the purpose of app recog-
nition [5, 189, 203]. To evaluate the extent to which our approach recognizes apps
within network traffic, we create fingerprints of labeled training data. Then, we la-

2Due to space limitations we provide additional results about the parameter selection at https:
//doi.org/10.4121/e08823b5-ceff-4ebc-a967-290ef9cacc7e.
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Table 4.4: Performance of our approach compared to AppScanner in the app

recognition experiment. AppScanner was used in Single Large Random Forest
mode. The number of flows shown for the Andrubis dataset indicate the minimum
number of required flows an app had to produce to be included in the experiment.

Dataset

FlowPrint AppScanner

Prec. Recall F1 Acc. Prec. Recall F1 Acc.

Re
Co

n normal 94.70% 94.47% 94.58% 94.47% 89.60% 42.84% 57.97% 42.84%
extended 89.84% 89.22% 89.53% 89.22% 93.65% 25.34% 39.89% 25.34%

X-
Pl
tf. Android 90.07% 86.98% 87.02% 86.98% 91.08% 88.67% 86.93% 88.67%

iOS 94.38% 92.54% 92.60% 92.54% 85.38% 14.84% 24.30% 14.84%
Average 91.91% 89.23% 89.17% 89.23% 87.91% 50.28% 57.57% 50.28%

A
nd

ru
bi
s

≥ 1 flow 58.42% 58.71% 58.56% 58.71% 62.70% 19.56% 29.82% 19.56%
≥ 10 flows 54.39% 50.31% 52.27% 50.31% 60.69% 15.01% 24.07% 15.01%
≥ 100 flows 76.17% 68.52% 72.14% 68.52% 85.20% 50.48% 63.40% 50.48%
≥ 500 flows 73.89% 74.13% 74.01% 74.13% 86.63% 53.86% 66.42% 53.86%
≥ 1000 flows 80.21% 81.11% 80.66% 81.11% 91.41% 60.05% 72.48% 60.05%

bel each fingerprint with the app label most commonly assigned to flows within the
fingerprint, i.e., we perform amajority vote. After obtaining the labeled fingerprints
we run our approach with the test data. We then compare the resulting test finger-
prints with the labeled training fingerprints using the Jaccard similarity, as detailed
in Section 4.4.6. Subsequently, each test fingerprint, and by inference each flow be-
longing to that test fingerprint, receives the same label as the training fingerprint
that is most similar to it.

We compare our approach with the state-of-the-art tool AppScanner [202, 203].
However, the authors of AppScanner only released precomputed length statistics
about the flows in their dataset and the code for running the classification phase
on such preprocessed statistics. Therefore, to be able compare both approaches on
the same datasets, we faithfully reimplemented the AppScanner feature extraction
strategy, which reads PCAP files and feeds the feature values to the classifier.3 To
do so, we followed the description in the AppScanner paper for computing feature
statistics, using the standard NumPy [156] and Pandas [139] libraries. AppScanner
has different settings, it can either work with a Support Vector Classifier or a Ran-
dom Forest Classifier. We evaluate AppScanner with a single large Random Forest
Classifier, which achieved the highest performance in AppScanner’s evaluation. In
addition, AppScanner requires a parameter that sets the minimum confidence level
for recognition. The optimal confidence level according to the original paper is 0.7,

3We release our implementation of AppScanner at https://doi.org/10.4121/
db4fbbb9-fe7d-44b0-b8ec-02a8c81481d9.
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hence this is what we used in our evaluation. Lowering this threshold increases the
recall and decreases the precision of AppScanner.

Comparison with AppScanner. We evaluate FlowPrint against AppScanner
by running a 10-fold cross validation on the same datasets discussed in Section 4.2.1.
Additionally, wemeasure towhat extent the performance of our approach is affected
by the number of flows produced per app. As apps in the Andrubis dataset produce
a varying amount of data, we evaluated the performance considering only apps
having aminimumof 𝑥 flows. This resulted in five evaluations for 𝑥 = 1, i.e., all apps,
𝑥 = 10, 𝑥 = 100, 𝑥 = 500, and 𝑥 = 1000. We refer to these evaluations as Andrubis
≥ x flow(s) for each respective value of 𝑥 . All experiments assumed a maximum of
100 active apps per device in accordance with recent statistics [25].

Table 4.4 shows the performance of both FlowPrint and AppScanner. We note
that the accuracy and recall levels are the same, which is due to computing the
micro-average metrics for the individual apps. This is often regarded as a more pre-
cise metric for computing the precision, recall and F1-score and has the side effect
that the accuracy equals the recall [92]. Despite competing with a supervised learn-
ing method, we see that both AppScanner and our approach have similar levels of
precision, meaning they are able to correctly classify network flows to their corre-
sponding app. However, we outperform AppScanner greatly on the recall, meaning
that our approach is much better at classifying all types of traffic, whereas App-
Scanner provides a sufficient certainty level for only a small fraction of apps. We
note that in our experiments, AppScanner has a lower performance than reported
in the original paper, especially for the recall. The cause is twofold: First, most apps
in our datasets are captured over shorter periods of time, making it more difficult
to recognize apps. Second, the AppScanner paper reported only on flows for which
they have a confidence level ≥ 0.7, which in their dataset was 79.4% of flows. This
means that unclassified flows are not taken into account. As unrecognized flows re-
veal much about the recognition approach, our work reports the performance over
all flows, where unrecognized flows cause lower recall rates.

Dataset independence. Our evaluation shows that FlowPrint performs well on
both synthetic (ReCon and Andrubis) and human-generated (Cross Platform) traffic.
Furthermore, the results from the Cross Platform dataset show that our approach
can be used to generate fingerprints for both iOS and Android apps. However, this
does not necessarily mean that a fingerprint generated for an iOS app can be used
to detect the corresponding Android version or vice versa. In the Andrubis dataset,
we observed no significant difference between recognizing benign and potentially
harmful apps. Moreover, the flow experiment (see Table 4.4) shows that apps gener-
ating a small amount of flows are more difficult to detect. As a result, our approach
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has to find correlations between traffic in a limited timeframe resulting in a lower
precision. This is a known limitation of network-based approaches and also affects
related tools such as AppScanner.

4.5.3 Detection of Previously Unseen Apps

In addition to app recognition, we evaluate the capabilities of our fingerprinting ap-
proach to detect previously unseen apps. Here, we want FlowPrint to be able to
correctly isolate an unseen app as a new app, instead of classifying it as an exist-
ing one. This isolation allows also us to distinguish between different unseen apps.
Subsequently, when FlowPrint detects a previously unseen app, the security op-
erator can choose to include the new fingerprints in the database. From that point
forward, the new app will be classified as known and can be recognized as in Sec-
tion 4.5.2. For this setting, we create fingerprints for the apps that are present on the
device. Subsequently, we add previously unseen apps to the evaluation and generate
fingerprints for all the apps present during this testing phase. Our work uses the
same parameters from Section 4.5.1 for detecting unseen apps. However, in order
to decide whether a fingerprint originates from a new or existing app, we introduce
a different threshold 𝜏new. This threshold indicates the maximum Jaccard similarity
between a tested fingerprint and all training fingerprints to be considered a new
app. Note that the lower this threshold, the more conservative we are in flagging
fingerprints as originating from new apps. The rationale for introducing this addi-
tional threshold is that fingerprints remain the same for the entire approach, but are
interpreted differently depending on the use case. When detecting unseen apps, we
suggest the use of a threshold of 0.1, meaning that only fingerprints that have an
overlap of less than 0.1 with all existing fingerprints are considered new apps. Com-
paring fingerprinting approaches for detecting unseen apps is difficult because, as
far as we are aware, the only network-based approaches for detecting unseen apps
are DECANTeR [5] and HeadPrint [7]. Unfortunately, both detectors only handle
unencrypted data, thus they cannot be applied on encrypted data like ours. Hence,
we are unable to compare our approach with related work in this setting.

As in previous experiments, we assume each device has 100 apps installed, and
introduce 20 new apps. We evaluate our detector by running a 10-fold cross val-
idation using 𝜏new = 0.1. A low 𝜏new threshold ensures that known apps are not
detected as new despite the dynamic nature of apps. As a trade-off, the detector
does not correctly classify all flows of previously unseen apps. However, we argue
that correctly classifying all flows of unseen apps is infeasible as large parts of many
apps are shared in the form of common libraries. This means that it is preferable to
aim for a high precision in flows flagged as new apps rather than a high recall as
long as previously unseen apps can be detected at some point.

Table 4.5 shows the results of our experiment. We see that the precision is rea-
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Table 4.5: Performance of our approach when detecting unseen apps. True
positives = correctly identified new apps; true negatives = correctly identified
known apps; false positives = known apps classified as new; false negatives = new
apps classified as known.

Dataset Precision Recall F1-score Accuracy

ReCon 97.77% 70.98% 82.25% 85.50%
ReCon extended 99.48% 20.32% 33.75% 54.94%

Cross Platform (Android) 91.06% 43.18% 58.58% 66.34%
Cross Platform (iOS) 96.37% 77.44% 85.88% 85.27%
Cross Platform (Average) 93.52% 54.49% 68.86% 72.53%

Andrubis (≥ 1 flow) 47.57% 20.90% 29.04% 51.00%
Andrubis (≥ 10 flows) 57.03% 25.52% 35.26% 49.65%
Andrubis (≥ 100 flows) 84.05% 47.60% 60.78% 63.86%
Andrubis (≥ 500 flows) 77.22% 31.21% 44.46% 59.15%
Andrubis (≥ 1000 flows) 79.39% 34.44% 48.04% 61.77%

sonably high and 97.8% of flows are correctly flagged as unseen for ReCon and 99.5%
for ReCon extended. This alsomeans that existing apps are rarelymarked as unseen,
reducing the load on any manual checking of alert messages. On the Cross Platform
dataset, we achieve 93.5% precision on average indicating that, while slightly more
difficult, our approach is still capable of detecting new apps without raising too
many false alerts. For Andrubis, the rate of false positives is higher with 14.8% for
apps producing at least 100 flows. This is due to the relatively short time span in
which traffic of this dataset was produced, i.e., 240 seconds.

Recall. We see that the recall is significantly lower than the precision, only reach-
ing 20.3% for the ReCon extended dataset. This is caused by homogeneous behavior
of mobile apps, i.e., the network traffic of these apps overlaps due to the use of com-
mon libraries and services. In the experiments of Table 4.5 we found that unknown
apps showed similar advertisement traffic to known apps. When the similarity ot
the unknown app results in a higher matching score than 𝜏new, it will be misclas-
sified as known. This is less of a problem in the app recognition scenario where
FlowPrint searches for a best match. Multiple training fingerprints can have a
similarity score > 𝜏new, but the actual app likely produces the highest score due
to most overlapping destinations, leading to a correct match. We elaborate on the
effects of homogeneous traffic in Section 4.5.5. As stated before, low recall is not
necessarily problematic as long as the unseen app is detected at some point. In our
experiment, we already detect 72.3% of apps in the first batch (fiveminutes) in which
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they appear. We discuss further limitations of app fingerprinting in Section 4.6.

4.5.4 Fingerprinting Insights

In the previous experiments we demonstrated that our approach works for both
recognizing already seen apps, as well as detecting unseen apps. In this section, we
evaluate specific parts of our fingerprinting approach to give insights into possible
other use cases.

Browser isolation. We first highlight the performance of the browser detector
componentwithin our approach. In this experimentwe use both the browser dataset
and the Andrubis dataset as discussed in Section 4.2.1. As the browser detector is su-
pervised, it performs better when trained with a large set of applications, hence the
Andrubis dataset is a natural choice for this evaluation. To this end, we randomly se-
lected 5,000 non-browser apps from the Andrubis dataset to represent non-browser
data. Of these apps, we used an 80:20 split for training and testing our detector
respectively. Recall that when we detect a browser, all flows within a surrounding
20 second window are marked as browser traffic. This window was empirically op-
timized to achieve high recall rates. To ensure that wrong detections are properly
penalized in our experiment, we interleave the browser and non-browser traffic by
shifting all timestamps such that each trace starts at the same time.

Note that, while there exist apps that embed a “browser window” (e.g., Android
WebView), we do not consider these apps as browsers because of their confined ac-
cess to a limited set of network destinations. In contrast, real browsers navigate to
many different websites, producing a bigger relative change of active clusters—one
of the features of our browser isolation. In fact, our datasets contain several HTML5
apps, which we correctly detected as regular apps.

Table 4.6 shows the average performance of the browser detector using ten
Monte Carlo cross validations. Our detector achieves, on average, an accuracy of
98.1% and detects browser flows with a recall of 98.3%. Unfortunately, with a pre-
cision of 79.8% the number of wrongly isolated streams is rather high due to the
aggressive detection. This in turn leads to 1.8K of 25.8K non-browser clusters being
incorrectly removed at some point. Fortunately, 75.7% of these clusters resurfaced
after the initial removal without beingmistakenly detected as a browser. This means
they are still used for fingerprinting their corresponding non-browser apps. In total
only 1.7% of non-browser clusters were permanently removed.

Confidence. FlowPrint assigns unlabeled fingerprints to each passing flow. To
gain more insights into how these fingerprints are represented we assign a confi-
dence level to each fingerprint that measures how certain we are that each flow
within a fingerprint belongs to the same app. In order to measure confidence, we
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Table 4.6: Performance of the Browser Detector based on the number of de-

tected TCP/UDP streams.

Actual Browser Actual non-Browser

Predicted Browser 21,987 (TP) 5,574 (FP)
Predicted non-Browser 363 (FN) 28,4125 (TN)

Table 4.7: Confidence levels of our fingerprints. A score of 1 indicates finger-
prints only contain flows of a single app.

Dataset Confidence

ReCon 0.9857
ReCon extended 0.9670

Cross Platform (Android) 0.9740
Cross Platform (iOS) 0.9887
Cross Platform (Total) 0.9864

Andrubis 0.9939

look at the amount of information gained by knowing to which fingerprint a flow
belongs to with respect to the app label of that flow. That is, we measure by what
fraction the entropy of app labels is reduced if we know the fingerprint of each flow.
Equation 4.6 shows the formula for computing the confidence of our fingerprints.
Here, 𝐻 (𝐴|𝐹 ) is the entropy of app labels for each flow, given that we know its fin-
gerprint. 𝐻 (𝐴) is the entropy of the labels without knowing the fingerprints. When
all fingerprints only consist of flows of a single app knowing that fingerprint au-
tomatically leads to knowing the label. Therefore, 𝐻 (𝐴|𝐹 ) = 0 gives a confidence
level of 1. In case knowing the fingerprint does not provide additional information
regarding the app label of a flow𝐻 (𝐴|𝐹 ) = 𝐻 (𝐴) and therefore, the confidence level
is 0. In clustering, this is referred to as homogeneity [180].

Confidence = 1 − 𝐻 (𝐴|𝐹 )
𝐻 (𝐴) (4.6)

Table 4.7 shows the confidence level of fingerprints produced by our approach for
each dataset. We see that for each dataset we achieve confidence levels close to 1
meaning that the majority of our fingerprints contain only flows of a single app.

Cardinality. Each app is ideally represented by a single fingerprint. This would
make it possible to automatically separate the network traffic into bins of different
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apps. However, this might be infeasible as mobile apps offer different functionalities
whichmay result inmultiple fingerprints. Therefore, we also investigate the number
of fingerprints our approach generates for each app. We recall that an app can
be viewed as a combination of individual modules, including third-party libraries,
that each account for part of the app’s functionality. This naturally leads to apps
presenting multiple fingerprints. We refer to the number of fingerprints generated
per app as the cardinality of each app.

Figure 4.4 displays the cardinality of apps in our datasets and shows that the ma-
jority of apps in all datasets have multiple fingerprints. Our previous evaluations
have shown that this is not a problem for the app recognition and unseen app de-
tection settings. However, the cardinality of apps in our work should be taken into
account in case a new app is detected. Here, security operators should be aware
that there will likely emerge multiple fingerprints for that new app. We note that
the ReCon extended dataset is not shown in this graph since all apps in that dataset
had more than 20 fingerprints. This is in large part due to the fact that apps in
the ReCon extended dataset contain more versions, which introduce additional fin-
gerprints (also see Section 4.5.5). On average, each version in the ReCon extended
dataset contained 18 fingerprints. This number of fingerprints per version is still
higher than the other datasets because each app was exercised longer, leading to
more app functionality being tested, which in turn led to more fingerprints. Finally,
Figure 4.4 shows that apps in the Cross Platform dataset have a higher average car-
dinality than the other datasets. This suggests that user interaction leads to more
fingerprints describing individual app functionalities rather than the entire app it-
self.

4.5.5 Mobile Network Traffic Challenges

We evaluate the effect of the three properties (Section 4.1) of the mobile network
traffic that pose challenges for our approach: its homogeneous, dynamic and evolving
nature.

(1) Homogeneous traffic. The first challenge is that mobile traffic is homoge-
neous because traffic is encrypted and many apps share the same network destina-
tions, for example due to shared third-party libraries, or the use of CDNs and com-
mon cloud providers. In this experiment, we analyze to what extent the homogene-
ity caused by shared network destinations affects the performance of our approach.
We analyzed the ReCon dataset, which includes DNS information for each flow, as
well as a classification of each DNS address as a first-party or third-party destination
for each app, allowing us to investigate the cause of homogeneity. In detail, this clas-
sification maps domains, and by extension flows, to one of the following categories
based on properties of the app’s description in the Google Play Store and WHOIS
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Figure 4.4: Number of fingerprints (cardinality) generated per app.

information [177]: (1) first-party, i.e., app-specific traffic, and third-party traffic. For
the latter we further distinguish between (2) CDN traffic, (3) advertisement traffic,
and (4) social network traffic, based on publicly available adblocker lists, extended
by manual labeling. In turn, we classify each cluster according to a majority vote of
the flows within that cluster.

Our experiment found a total of 2,028 distinct clusters, of which 281 clusters are
shared between more than one app. At first sight, the homogeneity of traffic seems
quite low with only 13.9% of all clusters being shared. However, these shared clus-
ters account for 56.9% of all flows in the dataset. By looking at the categories, we
find that advertisement networks account for 60.6% of traffic spread over 184 differ-
ent shared destination clusters. As apps often use standard libraries for displaying
advertisement it is unsurprising that many flows are homogeneous with respect to
their network destination. Social networks account for 30.4% of traffic to shared
clusters. Similar to advertisements, the support for social services is often provided
by commonly used libraries such as the Facebook SDK4 or Firebase SDK5. Finally, we
find that 6.0% and 2.9% of shared cluster traffic originates from app-specific network
destinations and CDNs respectively.

Then, we evaluate how our approach reacts under higher levels of homogene-
ity. To this end, we removed all flows that are not shared between apps from the

4https://developers.facebook.com/docs/android/
5https://firebase.google.com/docs/auth/android/start
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ReCon dataset, leaving only shared clusters. When running our approach for recog-
nizing apps, the F1-score drops from 94.6% to 93.0% and accuracy drops from 94.5%
to 93.3%. Despite the small drop in performance, we are still able to accurately dis-
tinguish apps because the different correlation patterns of these shared clusters can
still be uniquely identified. Therefore, our approach shows robustness against ho-
mogeneous network traffic.

(2) Dynamic traffic. The second challenge is the dynamic nature of the traffic
generated by users as they interact with apps by using different functionalities at
different times. In contrast, automatically generated datasets often aim to cover as
much functionality as possible in a short amount of time. This difference between
datasets may lead to a different quality of the fingerprints. To evaluate whether our
approach is influenced by dynamic traffic, we look at the performance difference
of our approach between the user-generated Cross Platform dataset and the other
datasets. Although these datasets are not directly comparable due to the different
apps they contain, we do not find a significant difference in the detection capabilities
of our approach (see Tables 4.4 and 4.5). We attribute this in part to the amount of
network traffic produced by apps without requiring any user interaction. These
include connections to, for example, advertisement and social networks, as well as
loading content when launching an app. The high performance for both recognizing
apps and detecting unseen apps from user-generated traffic suggests that dynamic
traffic does not impose any restrictions on our approach.

(3) Evolving traffic. The final challenge concerns the evolving nature of apps.
Besides detecting previously unseen apps (Section 4.5.3), we evaluate our approach
when dealing with new versions of an existing app, and we perform a longitudinal
analysis to assess how FlowPrint performs when the values of our features change
over time.

(3a) App updates. We use the ReCon and ReCon extended datasets as they con-
tain apps of different versions released over 8 years. On average, the datasets con-
tain 18 different versions per app, where new versions were released once every
47.8 days on average. As the traffic of these different versions was captured over
a period of two and a half months, changes in IP addresses and certificates might
cause a slight bias in the dataset. In the next subsection, we describe the results of
our longitudinal analysis, which provides a more in depth analysis regarding this
influence. Nevertheless, we demonstrate that new app functionality introduced by
updates does not necessarily cause an issue with our fingerprints if caught early.
For this experiment, we train the unseen app detector with a specific version of the
app as described in Section 4.5.3. In turn, for each newer version of the app, we
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Figure 4.5: Recognition performance of FlowPrint between versions. The
x-axis shows the number of different versions, including the average time apps take
to receive so many version updates. The y-axis shows the fraction of matching
fingerprints between training and testing data.

run the unseen app detector to predict whether the fingerprints of this new version
match the training version. We perform this experiment by increasing the amount
of versions between the training data and the version to predict. This simulates a
security operator lagging behind in updating the models and thus missing interme-
diate versions.

Figure 4.5 shows the results of this experiment. Here, the x-axis shows the
amount of versions between the training app and predicted app. The y-axis shows
the relative number of fingerprints from the newer app versions that FlowPrint
correctly recognizes. As we know the average amount of time it takes for an app to
be updated (47.8 days), we show the decline in performance not only in terms of ver-
sions, but also over time, by the vertical dashed lines in the plot. We found that on
average FlowPrint recognizes 95.6% of the fingerprints if FlowPrint is updated
immediately when a subsequent version is released. When we do not update imme-
diately, but wait a certain amount of time, the detection rate slowly drops, which is
more evident in the ReCon dataset. The difference between the two datasets is due
to (1) more traffic per app in the ReCon Extended dataset, which makes fingerprint-
ing more accurate, and (2) a larger set of apps in the ReCon dataset, which makes
recognition more difficult. The average result shows the analysis for the combined
datasets and gives the most realistic performance, which shows that FlowPrint
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can recognize 90.2% of the new fingerprints even when operators do not update the
models for one year. Interestingly, 45.5% of the apps in our datasets released mul-
tiple new versions on the same day. However, FlowPrint showed nearly identical
performance for these same-day updates, leading us to believe that quick version
releases do not introduce major app fingerprint changes.

(3b) Longitudinal analysis. Over time, the destination features (IP address, port)
and the TLS certificate may change because of server replication/migration or cer-
tificate renewals. To measure how FlowPrint’s performance changes over ex-
tended periods of time, we evaluate how feature changes affect our approach. To do
this, we train FlowPrint using the original training data and consistently change a
percentage of random IP addresses and TLS certificates in the testing data. As TLS
certificates are domain-based and not IP-based, random selection gives a good ap-
proximation of FlowPrint’s performance. We performed a 10-fold cross validation
changing 0 to 100% of such features in steps of 10% points.

Figures 4.6 and 4.7 show the performance of FlowPrint, in the case of app
recognition and unseen app detection respectively, for an increasing amount of
changes in our features. As with the app updates, we indicate the expected amount
of changed features after given periods of time by the vertical dashed lines. These ex-
pected changes are computed from the average lifetime of certificates in our dataset
and DNS-name-to-IP changes according to the Farsight DNSDB database [188]. For
the case of app recognition, the number of changed features initially has limited
effect because changing only one of the two destination features still allows our
clustering approach to detect the same network destination. Once we change ap-
proximately 80% of the features, the decline becomes a lot steeper because at this
point both features are changed simultaneously. When changing 100% of IP ad-
dresses and certificates we are unable to detect anything. Interestingly, the Andru-
bis performance of the dataset declines almost linearly. That is because only 24.7%
of Andrubis flows contain a TLS certificate. Hence, the certificate cannot counteract
changes in the IP address, leading to a steeper decline. This also underlines the im-
portance of using both the IP and TLS certificate as destination features. We recall
from Section 4.4.2 that destination features may be enriched by domains from DNS
traffic. As domains are generally more stable than IP addresses, they will have a
positive effect on the performance over time. For the case of unseen app detection,
an increase in changed features leads to an increase in the recall. After all, if traf-
fic of a previously unseen app differs more from the training data, the app will be
flagged as previously unseen. For the same reason, the detection precision declines
as known apps increasingly differ from their training dataset.

Subsequently, we performed a real-world experiment by collecting and analyz-
ing data from the current versions of 31 apps in the Cross Platform dataset more
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Figure 4.6: App recognition performance vs changes in both IP and certificate

features. The x-axis denotes the % of changed features. Where the expected amount
of change over time is denoted by the dashed vertical lines.

than 2 years (26 months) after the original capture. When FlowPrint trains on
the original dataset and performs recognition on the recollected flows it achieved
a precision of 36.7%, recall of 33.6% and F1-score of 35.1%. This translated to being
able to recognize 12 out of 31 apps. Interestingly, if we only look at the apps that
we were able to recognize, FlowPrint performs with a precision of 76.1%, a recall
of 62.2% and an F1-score of 68.4%. The expected decline in performance after 2+
years that we found in our two previous analyses is in line with the results from
this real-world experiment.

In conclusion, while, as expected, FlowPrint’s performance degrades when a
large amount of destination-based features change (i.e., after one year), our approach
can cope with a significant amount of variations without drastic performance degra-
dations. We believe this gives operators enough time to update FlowPrint’s models
to maintain high performance, making our approach practical.

4.5.6 Training Size

So far we assumed each device in the network to have 100 apps installed, however
FlowPrintmay perform better or worse in case this number differs. To evaluate the
effect of the number of installed apps, we train FlowPrint by varying the number of
apps𝑁 in the training data. Recall that our approach builds its model on a per-device
basis. Hence, while our database may contain millions of fingerprints, FlowPrint
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Figure 4.7: Unseen app detection performance vs changes in both features.

The x-axis denotes the % of changed features. Where the expected amount of change
over time is denoted by the dashed vertical lines.

only matches fingerprints against apps installed on the monitored device. We train
FlowPrint with 𝑁 apps, ranging from 1 to 200 for the ReCon and Cross Platform
datasets, which is already much higher than the average number of installed apps
on a device [25]. For the Andrubis dataset, we range 𝑁 from 1 to 1,000 to evaluate
the extreme scenario. We first analyze the performance of our approach in app
recognition on the testing data of the same apps. In the second experiment, for each
𝑁 we introduce 20% previously unseen apps, which FlowPrint has to correctly
detect. All experiments use 10-fold cross validation.

Figure 4.8 shows the performance of the different datasets in app recognition.
Here we see that for all datasets, the performance of all metrics initially decreases,
but stabilizes after a certain point (note that the y-axis starts from 0.85). Even up
to the tested scenario of 1,000 apps, for the Andrubis dataset, the F-1 score remains
constant at 0.9. This indicates that FlowPrint easily discerns between relatively
few apps, because it can still rely on network destinations to differentiate between
apps. However, once apps start to share network destinations, the performance
drops slightly and quickly stabilizes. Once stabilized, FlowPrint leverages tem-
poral correlations in network destinations found by our correlation-graph, which
provide a much more robust way of recognizing apps. We see the same mechanism,
although to a lesser degree, for the unseen app detection scenario in Figure 4.9. Here
the recall is initially affected because FlowPrint only detects an app as previously
unseen if its fingerprint differs enough from the existing ones. When the train-

136



4.5. Evaluation

0 40 80 120 160 200

0.85

0.9

0.95

1

Cross Platform

ReCon

Andrubis

Number of training apps

Pe
rf
or
m
an
ce

F1-score
Precision
Recall

Figure 4.8: App recognition performance vs training size.

ing data includes more shared destinations, the probability that a new app overlaps
with the original dataset becomes larger, and therefore the detection rate, initially,
slightly decreases. Once the training data contains a sufficient amount of shared
destinations the performance becomes more consistent. The fluctuations are due
to apps producing traffic to shared clusters, which occasionally produce incorrect
matches with known apps. Finally, we note that the Andrubis dataset performs no-
tably worse than the other datasets because it contains apps that produce relatively
few flows. This is in accordance with the results found in Table 4.5.

4.5.7 Assessment of Execution Time

In addition to the aforementioned metrics, the effectiveness of our approach in a
real environment also depends on its execution time. As we employ some seem-
ingly high-cost operations, such as clustering and clique discovery, we also assess
the individual components of our approach to better understand the actual time
complexity involved. We note that, due to the setup of our approach, its complexity
depends on the number of network flows rather than the amount of communicated
bytes. In order for our approach to run smoothly, it should be able to process all
received flows within each batch time 𝜏batch, which in our prototype is set to five
minutes. We assessed the execution time of FlowPrint by running it on a sin-
gle core of an HP Elitebook laptop containing an Intel Core i5-5200U CPU 2.20GHz
processor.

Figure 4.10 shows the average performance over 10 runs of FlowPrint when
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Figure 4.9: Unseen app detection performance vs training size.
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generating fingerprints. Here we find that our prototype is able to process roughly
400k flows within the time window of five minutes. To put this number into per-
spective, the ReCon and Andrubis datasets contain an average of 117 and 22 flows
and a maximum of 845 and 1,810 flows per five-minute interval respectively. This
means that at peak communication activity FlowPrint is able to handle 221 devices
simultaneously on a mid-range laptop, making our approach feasible to run in prac-
tice. Both the clustering and cross-correlation have a theoretical time complexity
of 𝑂 (𝑛2), however, from Figure 4.10 we see that in our approach these components
act almost linearly. For the clustering, each flow is clustered together with flows
containing the same destination (IP, port)-tuple or the same TLS certificate. Our
prototype implements these checks using a hashmap giving the clustering a linear
time complexity. For the cross-correlation we note that flows that have the same
activity pattern 𝑐 [0] ...𝑐 [𝑇 ] have a mutual cross-correlation of 1 and the same cor-
relation with respect to other flows. Hence, they only need to be computed once,
reducing the time complexity.

Generated fingerprints need to be matched against a database of known fin-
gerprints. We consider two scenarios: (1) finding the closest matching fingerprint
(for app recognition), and (2) checking for any match (in case of unseen app detec-
tion). Figure 4.11 shows the average performance over 10 runs for matching 1,000
generated fingerprints against a database of size 𝑛. The complexity of matching fin-
gerprints grows both with the database size and the amount of fingerprints matched
against this database. Figure 4.11 shows that even for databases containing one mil-
lion fingerprints, the required time to match is 73 seconds, which is well beneath the
five-minute mark of 𝜏batch. Assuming an average of 100 apps per device and a high
cardinality of 20 fingerprints per app (see Section 4.5.4), a database containing one
million fingerprints would be able to deal with 500 devices simultaneously on a mid-
range laptop. These results suggest the feasibility of our approach in high-volume
traffic scenarios as well.

4.6 Discussion

Wehave shown that our approach succeeds in creating semi-supervised fingerprints
for mobile apps, and that such fingerprints can be used for both app recognition
and detecting previously unseen apps. Nevertheless, there are some aspects of our
approach that should be addressed in future work.

Potential for evasion. We construct our fingerprints based on the set of network
destinations, and the timing of communication with such destinations. In order
for authors of an adversarial app to evade detection by our approach, they have
two options. First, they may redirect all traffic of their app using a VPN or proxy.
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gerprints against a database containing 𝑛 fingerprints.

When doing this only for their app and not system-wide, its single destinationwould
still show up as a fingerprint, thus that specific app can still be detected. Setting a
system-wide proxy or VPN connection for all apps on the device (1) requires manual
confirmation by the user; and (2) would be recognizable as unusual device behavior
as our approach would detect all device traffic as originating from a single app.
Hence, with this evasion technique our approach would still be able to detect the
presence of an unknown app but it will have trouble identifying the specific app.
The second option is to either avoid producing network traffic (limiting the damage
of potentially harmful apps), or to try to simulate the traffic patterns of a genuine
app. We expect that being restricted to use the same set of destinations and timing
of an existing genuine app severely limits the potential for an attack, especially if
the attacker does not have control over such destinations.

Low-traffic apps. During our evaluation, we observed cases of apps that can-
not be reliably fingerprinted using our approach. This includes, in particular, apps
that only communicate with widely used services, e.g. advertisement networks and
CDNs, which may be difficult to fingerprint. After all, our fingerprints rely on pat-
terns shown in network destinations. If the pattern generated by an app is common
to many other apps, we cannot discern said specific app. We mainly observed this
behavior in apps that do not require any form of server for their main functional-
ity, but that still communicate with advertisement and analytics services, probably
as a way for monetization. Unfortunately, we expect most network-based moni-
toring approaches to suffer from the same limitation due to the generic nature of
advertisement and analytics communication.
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Simultaneously active apps. A limitation of a semi-supervised approach is that
it has difficulty distinguishing multiple apps that are running at the same time. An-
droid allows apps to exchange network traffic in the background, although this be-
havior is typically found only in a limited set of apps (i.e., music streaming apps,
and apps to make phone calls). In addition, since Android 7, two apps can be in
the foreground at the time by splitting the screen of the device. Furthermore, An-
droid 10 allows those apps also to be active simultaneously [190]. We expect this
heavy multi-app scenario to create challenges for our fingerprinting approach, and
therefore, future work needs to investigate the fingerprint generation for multiple
simultaneously active apps.

Repackaged apps. While one of our datasets, the Andrubis dataset, also con-
tains flows from potentially harmful and malicious apps, we did not specifically in-
vestigate the effect of repackaged apps on our fingerprinting. As malware authors
frequently repackage benign apps with their malicious payload [127], it would be
interesting for future work to investigate whether the additional fingerprints intro-
duced by this payload could be used to detect this type of malware.

Fingerprint coverage. Our evaluation has shown an app may have multiple fin-
gerprints. When detecting new apps, it takes some time for our approach to con-
verge to a state where a sufficient number of fingerprints has been created to ac-
curately characterize the network traffic of an app. Continella et al. [62] already
observed this as a limitation when dealing with unknown traffic. Future work could
explore approaches similar to theirs to automatically decide when enough network
traffic has been fingerprinted to sufficiently cover the network behavior of an app.
Furthermore, while the fingerprints of previously unseen apps can be immediately
used to recognize the same apps later on, if an unseen app produces multiple finger-
prints, FlowPrint recognizes each fingerprint as a separate app. Future work could
explore approaches to automatically determine whether a burst of new fingerprints
belong to the same previously unseen app.

AppScanner reimplementation. While we faithfully reimplemented AppScan-
ner following the approach described in the original paper, our implementation
might still slightly differ from the original tool. Therefore, it is possible that the
two implementations have slightly different performances. However, we expect this
difference to be minimal, if present.

Privacy implications. One of the advantages of our work is that it works on en-
crypted traffic. One can argue that in enterprise networks, TLS can be decrypted
by deploying man-in-the-middle TLS proxies and therefore other approaches are
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still applicable. However, traffic decryption weakens the overall security [77] and
violates users’ privacy, thus we believe it should be avoided. At the same time, our
approach shows the high precision with which apps can be identified despite traffic
encryption. From a privacy perspective, the use of certain apps can reveal infor-
mation about medical conditions, religion, sexual orientation, or attitude towards
the government of users. Identifying individual apps from the network traffic alone
also opens the door for censorship and traffic differentiation [125]. Furthermore,
individuals may be identified and tracked to a certain degree based on the unique
set of apps they are using [14]. Since devices from different vendors and carriers
often introduce a unique set of pre-installed apps [87], it should at least be feasible
to identify a specific device manufacturer or type, which we leave for future work.

4.7 Related Work

Related work already explored the use of network fingerprints for both mobile and
desktop devices. However, related approaches are either supervised, i.e., require
prior training on labeled apps, or only work on unencrypted network traffic.

App recognition. App recognition, also referred to as traffic classification, is
closely related to app fingerprinting as both approaches attempt to map traffic to
the app that produced it. Related work suggested the use of deep packet inspection
(DPI) for this purpose. Some approaches attempt to automatically identify clear-
text snippets in network traffic that are unique to an app [208, 221]. Other classi-
fiers focus specifically on HTTP headers in combination with traditional machine
learning [145] or deep learning approaches [53]. Choi et al. [55] even suggested
automatically learning the optimal classifier for each app. As app recognition can
only be used for apps for which a fingerprint exists, several approaches extended
HTTP-based fingerprints by automating the process of fingerprint creation [52, 65].
However, all these approaches rely on DPI, meaning that they cannot be used on en-
crypted traffic. Given that 80%–90% of Android apps nowadays communicate over
HTTPS, i.e., use TLS [91, 174], any fingerprinting solution should be able to deal
with TLS-encrypted traffic.

AppScanner [203] uses statistical features of packet sizes in TCP streams to train
Support Vector and RandomForest Classifiers for recognizing known apps. This sys-
tem is able to re-identify the top 110most popular apps in the Google Play Store apps
99% accuracy. However, to achieve these results, AppScanner only makes a predic-
tion on traffic for which its confidence is high enough. This results in the system
only being able to classify 72% of all TCP streams. BIND [149], like AppScanner, cre-
ates supervised app fingerprints based on statistical features of TCP streams. BIND
also uses temporal features to better capture app behavior and reaches an average
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accuracy of 92.6%. However, the authors observed a decay in performance over time,
and suggest to retrain the system periodically if lower performance is observed.

Concurrent to our work, Petagna et al. [165] demonstrated that individual apps
can also be recognized in traffic that is anonymized through Tor. Their supervised
approach uses timing, size, packet direction and burst features of TCP flows. Similar
to our work, the authors observed web browsers posing a particular challenge, since
each visited website might produce different patterns.

Other approaches include the use of Naïve Bayes classifiers in combination with
incoming and outgoing byte distributions [131], the use of statistical flow features
in combination with decision trees [34] and the possibility of combining existing
classifiers [13]. Alan et al. [16] train a classifier on the packet sizes of the launch-
time traffic of apps. However, as the authors acknowledge, detecting the launch of
an app in real-world traffic is challenging, and and app might already be launched
when a phone enters a network.

Finally, several techniques attempt to identify not the apps themselves, but rather
user activity within apps [61, 183]. These methods are able to detect even more
subtle differences within app usage which can subsequently be linked to the origi-
nal app. Unfortunately, none of these approaches address the inherent flaw of app
recognition, namely the inability to recognize previously unseen apps.

Real-time fingerprint generation. Related approaches on real-time fingerprint
generation for the detection of apps either require decrypted network traffic, or fo-
cus on detecting the application-layer instead of the mobile app itself. Bernaille et
al. [40] stressed the importance of fast recognition of apps in network traffic and
suggested the clustering of TCP flows based on their first five messages. Their
approach recognizes the application-layer protocol, which might be sufficient for
detecting desktop apps. In contrast, since mobile apps mostly communicate over
either HTTPS or QUIC, this method is insufficient in our setting. DECANTeR [5]
builds desktop app fingerprints from the headers of HTTPmessages without requir-
ing prior knowledge of apps. However, this approach also relies on decrypted traffic
for fingerprint generation.

TLS fingerprinting. In addition to app fingerprinting, TLS fingerprinting tech-
niques are often used to track communicating processes [17, 23, 137, 138]. These
techniques leverage the diversity of fields in ClientHello messages generated by
different TLS implementations to create fingerprints. However, they do not work
well in the homogeneous mobile setting where many apps use the same SSL/TLS
implementation provided by the underlying OS. Consequently, different apps pro-
duce the same TLS fingerprints making it impractical to recognize apps or discover
previously unseen apps. This property is even exploited by tools [86] to bypass
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censorship systems. TLS fingerprinting may also be applied on the ServerHello
message as done by JA3S [17]. In this setting, it is not the app that is fingerprinted
but rather the destination communicating with the app. This technique can poten-
tially be used to improve our destination clustering step, but is not directly applica-
ble to fingerprinting mobile apps. In general, destination-based TLS fingerprinting
techniques that focus on desktop applications do not work well when directly ap-
plied to mobile apps because, as shown in Section 4.5.5, mobile apps often share
destination-based clusters (e.g., advertisement networks).

Malware detection. We showed the value of our approach in the setting of un-
seen app detection, where we treat new apps as potentially malicious. This decision
can be made by complementing techniques that focus specifically on classifying ma-
licious traffic [22, 24]. These approaches are not capable of discriminating between
individual apps, but rather make a decision on whether traffic contains malicious
patterns. Hence, our approach complements these techniques by providing more
insights into the individual apps active on the network.

4.8 Conclusion

In this chapter we proposed FlowPrint, a novel approach for creating real-time app
fingerprints from the encrypted network traffic of mobile devices. Unlike existing
approaches, our approach does not rely on any prior knowledge about apps that
are active in a certain network. Therefore, the strength of FlowPrint lies in its
ability to detect previously unseen apps in encrypted network traffic. This allows
us to deal with evolving sets of apps, opening many security applications for which
fingerprinting was previously unsuitable.

In our evaluation, FlowPrint achieved an accuracy of 89.2% for recognizing
apps, outperforming the supervised state-of-the-art approach. Furthermore, we
showed that our approach is able to detect previously unseen apps with a precision
of 93.5%. These results demonstrate the capabilities of semi-supervised approaches
when dealing with evolving systems, such as mobile apps, even in the presence of
largely homogeneous traffic due to third-party libraries and services.
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Chapter 5

DetectingAnomalousMisconfigurations inAWS

Identity and Access Management Policies

We have shown that our context-based approach to the identification and explana-
tion of security events can assist security operators in their daily activities. How-
ever, so far, our approach has been reactive, meaning that security incidents can only
be caught after they occur. Instead, we wanted to study how contextual analysis
could be applied as a preventive measure. Specifically, we performed the following
case study:

Case Study. To what extent can context-based analysis assist in preventing mis-
configurations in IAM Policies?

In recent years, misconfigurations of cloud services have led to major security
incidents and large-scale data breaches. Due to the dynamic and complex nature of
cloud environments, misconfigured (e.g., overly permissive) access policies can be
easily introduced and often go undetected for a long period of time. Therefore, it
is critical to identify any potential misconfigurations before they can be abused. In
this chapter, we present a novel misconfiguration detection approach for identity
and access management policies in AWS. We base our approach on the observa-
tion that policies can be modeled as permissions between entities and objects in the
form of a graph. Our key idea is that misconfigurations can be effectively detected as
anomalies in such a graph representation. We evaluate our approach on real-world
identity and access management policy data from three enterprise cloud environ-
ments. We investigate the effectiveness of our approach to detect misconfigurations,
showing that it has a slightly lower precision compared to rule-based systems, but
it is able to correctly detect between 3.7 and 6.4 times as many misconfigurations.

This chapter is based on the publication: [2] Thijs van Ede et al. “Detecting Anomalous Misconfig-
urations in AWS Identity and Access Management Policies”. In: Proceedings of the 2022 on Cloud
Computing Security Workshop (CCSW). 2022, pp. 63–74
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5.1 Introduction

Data breaches are a dangerous threat to our society [216]. In 2019, Capital One,
an American bank holding, suffered a data breach where data of over a hundred of
million people was stolen [82]. More recently, the credit card details of more than
hundred million hotel guests were stolen [187], personal data of over 10 million
church-goers was leaked [186], and inmate records were leaked from a prison sys-
tem [144]. All these data breaches have two common characteristics: the data was
hosted in the cloud; and the cloud access policies were misconfigured.

Since its introduction in 2006, the use of cloud computing solutions, such as
Amazon Simple Storage Service (S3), Microsoft Azure, and Google Cloud Platform
increased. While the adoption of cloud services offers awide range of benefits, it also
brings a number of security challenges [44]. As the aforementioned data breaches
already demonstrate, security misconfigurations, such as publicly accessible private
data, are a considerable threat in cloud security. Attackers even collect publically
available lists of misconfigurations to find common vulnerabilities in cloud systems
[150]. Moreover, the majority of misconfigurations are reported only when they
lead to security incidents [73, 114, 115], making the problem even larger than it first
appears. Asmost cloud environments are exposed to the Internet, misconfigurations
create a large attack surface, making it easy for attackers to scan for misconfigured
services and exploit them.

To prevent breaches, cloud solutions offer identity and accessmanagement (IAM).
IAM allows cloud operators to define and manage the roles and access privileges of
network users and systems, offloading responsibility to cloud administrators [38,
47]. When configured correctly, IAM systems prevent unauthorized access to pro-
tected resources, ensuring that only specified users get access to the specified re-
sources. However, for each newly introduced or modified resource, role or user,
these IAM policies must be reconfigured. This (re)configuration is challenging and
may unintentionally introduce incorrect rules, which allow access to resources that
are undesirable (e.g., guest users accessing sensitive data), potentially leading to se-
curity issues. We refer to these undesirable rules as misconfigurations and further
explain them in Section 5.2. As cloud environments are often large, dynamic, and
complex, the configuration of security services becomes difficult and error prone.
Therefore, there is a need for systems to flag potential misconfigurations as soon as
they are introduced and before such misconfigurations can be abused.

Existing solutions such as Cloud Custodian [84] use a rule-based approach to
prevent the introduction of security misconfigurations in cloud environments. Be-
fore deployment, such systems compare IAM policies against existing rules to detect
misconfigurations. However, rule-based approaches are limited by the fact that rules
need to be created and maintained to adhere to security policies for each specific or-
ganization. A rule-based system requires constant effort to keep rules up-to-date,
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has different requirements per organization, and can be error prone due to manual
rule creation. Other approaches, such as P-DIFF [217], monitor access and control
behavior to detect misconfigurations. However, this is a reactive approach, meaning
that misconfigurations are detected only when they are abused. Unfortunately, at
this point, it is often too late, as data is already leaked.

To overcome the limitations of existing solutions, we propose a novel miscon-
figuration detection approach that is proactive in detection, but is able to take into
account the context of a specific organization and does not require high mainte-
nance like rule-based detection. We achieve this by collecting all identity and access
management policies from cloud environments before they are rolled out. Next, we
model identity and access management policies as a graph where rules are repre-
sented by edges between nodes that model entities (users, groups, and roles) and
resources. In such graphs, we observed that similar policies within the same envi-
ronment also have similar graph representations. This means that, correctly config-
ured policies are similar to each other, while misconfigurations show up as anoma-
lies. Leveraging our observation, we apply anomaly detection to spot outliers and
raise real-time alerts about potential misconfigurations.

To validate our proposed approach, we collected real-world identity and access
management policy data of AWS cloud environments from three different compa-
nies. We manually labelled the data as correct policies and potential misconfigura-
tions. On these datasets, our proposed approach correctly detected between 3.7 and
6.4 times as many misconfigurations as rule-based approaches.
In summary, our work makes the following contributions:

• We introduce a novel approach to model AWS identity and access manage-
ment policies in the form of a graph model;

• We present a novel system that uses anomaly detection techniques to identify
potential misconfigurations in Amazon AWS environments;

• We show that our approach correctly detects between 3.7 and 6.4 times as
manymisconfigurations than state-of-the-art rule-based approaches on a real-
world dataset of IAM policies from three AWS cloud environments.

To foster future research on the automatic identification of misconfigurations in
cloud environments, we release our prototype open-source: https://doi.org/10.
4121/948f9457-d168-4eb6-9523-bc235a871e83.

5.2 Background and Motivation

We first detail the main concepts used in IAM and then focus on better understand-
ing when access to cloud resources is misconfigured. While we focus on AWS, the
concepts discussed here can be applied to any IAM system.
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{
"Version":"2012-10-17",
"name":"AdministratorAccess",
"Statement":{

"Effect":"Allow",
"Action":"*",
"Resource":"*"

}
}

Figure 5.1: AdministratorAccess policy that allows all actions (*) on all re-

sources (*).

Cloud Identity and Access Management. Identity and access management al-
lows administrators to limit access to their cloud services and resources. Using IAM,
the administrator can create and manage different entities that can consist of indi-
vidual users, groups of multiple users, and roles that can be linked users, groups or
even other systems. Each entity has certain permissions that allow or deny certain
actions on cloud resources, such as reading or writing. Sets of permission rules are
captured in policies that allow administrators a more high level view of related per-
missions. Cloud providers have different ways of implementing IAM policies, Figure
5.1 gives an example of an AWS’ IAM policy [19] in JSON format, which describes
an AdministratorAccess policy that allows an administrator to perform any action
(*, wildcard) on any resource (*). In this example, the policy itself is related to a
resource, which means that it still needs to be attached to an entity, i.e. either a user,
group, or role. The entity is then granted the permissions specified in the policy.

Misconfigurations. While cloud providers often include IAM systems, it is the
responsibility of the customer to specify IAM policies for their organization [47]. As
organizations differ in their needs, so do the policies they need in place for access
and restriction to cloud resources. Keeping a balance between access for maintain-
ing company workflow, and restrictions to improve security is difficult, especially
for large organizations where policies often change depending on new needs. This
can introduce misconfigurations into IAM policies in several ways. We identify
three types of misconfigurations:

1. Overly permissive policies allow entities actions on resources that they
should not be able to perform.

2. Overly restrictive policies denies entities actions on resources that they
should be able to perform.
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3. Incorrectly attached policies specifies correct actions on resources, but for
the incorrect entity.

Misconfigured policies open up vulnerabilities that can potentially be exploited
by attackers. While there exist some approaches to detect misconfigurations [84,
217], they are either (1) rule-based, requiring a large effort to maintain rules, or
(2) reactive, thus detecting misconfigurations only after they are abused. Our ap-
proach tackles the following challenges: (i) Proactive, misconfigurations need be
detected before they lead to security incidents; (ii) Context-specific, misconfigura-
tions depend on the organization for which they are detected. Some organizations
may require stricter or more permissive policies, depending on their workflow; (iii)
Low maintenance, administrators should not have to maintain rules or perform
manual fine-tuning for detecting misconfigurations.

5.3 Approach

We aim to detect potential misconfigurations in IAM policies based on the cloud
environment for which they are defined. We recall that IAM policies define al-
lowed/disallowed actions on resources and link them as permissions to entities. We
propose to model these connections in a graph to represent the connected nature of
policies, providing advantages for analyzing and visualizing the policies.

By modelling IAM policies as a graph, we observe that policies permissiveness
level is naturally represented through the number of connections (i.e., degree) of
each node. Intuitively, an overly permissive policy will have many direct connec-
tions to allowed actions, whereas overly restrictive policies will have many direct
connections to disallowed actions. We use this observation and leverage anomaly
detection techniques [157] to detect misconfigurations. The idea is that we can au-
tomatically learn an expected permissiveness level for each resource of an organi-
zation given that most policies will be correctly configured. Finally we use these
learned models to detect deviations representing overly permissive or restrictive
policies and alert operators.

Figure 5.2 shows a high-level overview of the three phases of our approach:

1. Graph Creation builds a graph model from the identity and access manage-
ment policies.

2. Graph Embedding extracts relevant features from the graph on which we
can apply anomaly detection methods.

3. Anomaly Detection trains on past, verified policy data and analyzes new,
unverified policies for anomalous misconfigurations. Upon detection we alert
an operator for manual verification.
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Figure 5.2: Overview of our proposed approach to detect potential miscon-

figurations. First, we create graph model representations of the IAM policies in
the cloud environment (Graph Creation); then, we transform the graph model into
vector representations (Graph Embedding), and finally, we apply anomaly detection
to spot outliers and thereby detect potential misconfigurations.

5.3.1 Graph Creation

For the creation of the graph, we transform the policies of a cloud instance into a
graph representation. The nodes of the graph represent one of the following types:
policy, action, resource, or entity, where entity represents either a user, group, or
role. Policy nodes represent the identity and access management policies specified
in the environment. Action nodes represent the specified actions within the per-
missions in the policy, while resource nodes represent the resources on which the
actions apply. Entity nodes are the identities that are present within the environ-
ment and can make use of the policies. The relationships between the nodes are
defined as edges in the graph as follows:

(Entity)-[ATTACHED_TO]->(Policy)
(Policy)-[ALLOWS | DENIES]->(Action)
(Action)-[WORKS_ON]->(Resource)

5.3.2 Graph Embedding

While our graph model accurately represents IAM policies, they cannot directly
be used by existing anomaly detection models. This is because anomaly detection
models rely on features that indicate normal behavior and find deviations in those
features. Therefore, we first transform the graph into a feature representation that
anomaly detection models can interpret. We recall that intuitively, a large number
of allowed actions and low number of disallowed actions attached to a resource may
indicate overly permissive policies. Vice versa, a low number of allowed actions and
high number of disallowed actions may indicate overly restrictive policies. How-
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ever, these features may have different values depending on the attached resource,
entities or even the type of organization implementing these policies. Therefore,
we require method that captures the contextual differences of nodes attached to
policies, i.e., type of attached entities, actions and resources. To this end, we use
Node2Vec [95], an algorithm that uses random path sampling to create embeddings
for each node in the graph [93]. The idea behind Node2Vec is that we select a tar-
get node in the graph and perform various random walks, starting from that node.
During these walks, we record the types of other nodes we encounter and encode
them into a low-dimensional feature space (we use the current best-practice of 128
features). By performing multiple walks for each node in the graph, we capture
both information about the number of allowed and disallowed actions, but also of
the attached resources and entities. If other nodes have a similar number of allowed
and disallowed actions for similar resources and entities, the resulting vector repre-
sentations will also be similar. We note that there exist other methods that capture
similar information, such as graph2vec [151]. However, graph2vec embeds a graph
as a whole, making it more difficult to identify which specific policy is misconfig-
ured. As Node2Vec allows us to identify the individual policy node, we argue that
it is a better graph embedding for our purpose.

5.3.3 Anomaly Detection

Now that we have embedded policy nodes of the graph, we can use anomaly detec-
tion methods to identify potential misconfigurations. We recall that similar policies
will also have similar graph representations. Therefore, embeddings of properly
configured policies will be similar to each other, and misconfigurations will be dif-
ferent. Anomaly detection techniques will be able to spot these outliers and thereby
detect potential misconfigurations.

The anomaly detection model should ideally be trained on properly configured
policies (we discuss misconfigurations in training data in Section 5.6.3). These can
be policies that follow security policies, adhere to industry best practices, or are cre-
ated through the use of existing tools to ensure proper configuration. Then, when
policies change or when new policies are introduced, the anomaly detection model
checks them for outliers and marks them as potential misconfigurations. This con-
tinuous monitoring of changes in cloud environments enables our approach to de-
tect potential misconfigurations immediately when there is a change in policies.
This quick reaction time minimizes the time a cloud environment is exposed, and
therefore minimizes the possibility for abuse.

Based on our empirical evaluation in Section 5.6, we use Local Outlier Factor [43]
(LOF) as our anomaly detection model. LOF is a density-based model, where a data
point is considered an outlier if it has a lower local density compared to its neigh-
bors. The model does not make any assumption on the probability distribution of
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the data and it provides some tolerance in case of outliers in the training set, making
it a generic solution suitable for our approach.

5.4 Implementation

Whilewe described our approach as a generic cloud IAMmisconfiguration detection
system, our implementation focuses on the AWS cloud platform, as it is currently
the largest cloud provider [195].

Graph Creation. To create our graph, we pull the IAM policies from the mon-
itored AWS environment in JSON format and transform the file to a Neo4j graph
database [94]. We recall from Section 5.2 and Figure 5.1 that policies contain multi-
ple statements that specify actions and resources. We create nodes for each policy,
action and resource in the JSON file, and connect them with edges according to
their relationship defined in the statements. We perform a similar operation for the
entities defined in the JSON file and connect them to their corresponding policies.
Figure 5.3 shows an example of a resulting graph, where yellow nodes represents the
policy names, blue nodes represent actions, and purple nodes represent resources.
Existing graphs can easily be updated if changes are made to the policies in the envi-
ronment. We define a change as adding, removing or modifying nodes, edges or any
of their properties. Changes in policies can be automatically detected from differing
lines in IAM JSON files and can be applied as updates to the graph. This mecha-
nism updates the graph rather than recreating it entirely, making it more efficient
(see Section 5.6.4). Moreover, because the updates are triggered automatically, there
is minimal overhead for security operators as they only have to focus on verifying
detected misconfigurations.

Graph Embedding. Next, we transform a graph to vectors representing poli-
cies which we can then use in anomaly detection models. We run the algorithm
Node2vec [95] included in Neo4j on each policy node in the graph to produce an
embedded vector of 128 features (128 features are currently considered best prac-
tice). We then store the resulting embedded feature vectors as properties in the pol-
icy nodes. This way, we can access the embedded vectors by querying the database,
enabling us to easily extract the vectors for anomaly detection.

Anomaly Detection. Finally, we use the scikit-learn Python library [162]. This
library implements awide range ofmachine learning algorithms, including the Local
Outlier Factor algorithm and other algorithms used in our evaluation. More details
on the implementation of the anomaly detection will be discussed in Section 5.6.

152



5.5. Dataset

Iam:List*

Iam:Get*

Iam:
Access*

Iam:
Request*

IAM
ReadOnly
Access

*

Figure 5.3: Example of a graph representation of a policy in the environment.

Policies (yellow) allow actions (blue) on resources (purple).

5.5 Dataset

To evaluate our prototype, we need real IAM policies containing labelled misconfig-
urations. We collected a total of 2480 different policies from three organizations that
use AWS cloud environments over a period of several weeks. These datasets are de-
tailed in Table 5.1. The first two datasets were collected from two different financial
organizations with approximately 12,000 (dataset 1) and 130 (dataset 2) employees.
The third dataset belongs to a smaller tech/software development company with 4
employees. These datasets represent small, medium and large enterprises, giving
us a variety of real-world deployments. While this dataset is relatively small (three
organizations), we use all the deployed policies from real-world environments, min-
imizing potential sampling bias. A further advantage is that we have a realistic ratio
of misconfigurations (which are relatively scarce), minimizing any base rate fallacy.

We collected this data with a script that uses the AWS CLI [31] to periodically
pull IAM policies from the cloud environments of these organizations1. We collected
all IAM policies, as well as all entities (user, groups, and roles) from each environ-
ment and store it locally in a spreadsheet. Please note that collecting AWS IAM
policies can contain sensitive data about the resources used by an organization and
should therefore be treated confidently or be sanitized (e.g., replacing ARNs with
generic identifiers) when shared with third parties.

As shown in Table 5.1, the organizations implemented between 812 and 842 poli-
1Code available at https://doi.org/10.4121/948f9457-d168-4eb6-9523-bc235a871e83
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Table 5.1: Overview of three datasets used for the evaluation. We show the
size of the datasets in terms of number of employees working for each organization
as well as the number of policies, users, groups, roles defined in the IAM policies.
To evaluate changes in datasets, we collected policies multiple times over a period
of multiple weeks indicated by Number of collections.

Total number of Number of

Dataset employees policies users groups roles collections

1 12,000 842 0 0 55 8
2 130 812 0 0 34 2
3 4 826 2 1 10 12

cies. This relatively high number of policies is due to the fact that all companies used
the 515 default IAM policies provided by AWS themselves. Each company added be-
tween 297 and 327 custom policies for their environment. The first two datasets do
not contain any users or user groups because those environments authenticate users
with a separate identity provider that issues temporary cloud credentials. This au-
tomatically ensures users assume roles rather than having permissions on their own
user account, a common industry best-practice. We note that this does not impact
our approach as we treat users, groups and roles all as entities. Furthermore, we
collected IAM policies of each organization at regular intervals during a period of
multiple weeks (at least two weeks, as shown in Table 5.1). This allows us to evalu-
ate the performance of our approach when misconfigurations are introduced after
the initial configuration.

Data Labeling. To evaluate our proposed approach, the collected policies were
manually labelled into correct and misconfigured policies. Each policy has been
manually reviewed with respect to the level of permissiveness. Policies that contain
a high number of allowed actions, on a high number of resources, were consid-
ered with extra care. Each policy has been compared against current industry best
practices [29], and, by following these guidelines, we attempted to minimize label
inaccuracy. An example of a potential misconfiguration is the previously mentioned
AdministratorAccess policy (see Figure 5.1). This policy has a high level of permis-
siveness since it grants permission to perform all the actions on all the resources.
When not attached to the proper entities this policy could be a potential misconfig-
uration. All three datasets were labeled, and contain 12, 11, and 6 misconfigurations,
respectively. During our evaluation, we analyze misconfigurations that were intro-
duced after initial configuration. However, our labelling process showed that no
new misconfigurations were introduced in the modifications. Therefore, in those
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sections, we simulate the temporal aspect by manually introducing misconfigura-
tions after the initial setup.

5.6 Evaluation

To evaluate our prototype, we take care to follow good practices inmachine learning
detailed by Arp et al. [26] and TESSERACT [163]. In each experiment, we briefly
discuss how we tried to avoid relevant common pitfalls.

We evaluate our prototype by comparing it against Cloud Custodian [84], one of
the main rule-based tools used for validating many AWS IAM policies, which can be
seen as our experimental baseline. Cloud Custodian allows operators to define cus-
tom rules to ensure deployed IAM policies adhere to organizational requirements.
The organizations represented in our dataset did not have any predefined rules in
place. Thus, we instead compared our approach against Cloud Custodian using
open-source IAM rules2. We note that open-source rules such as those used for
this experiment are not tailored towards a specific setting and will therefore likely
not give the best possible results. To make the comparison more fair, we also per-
formed the same experiment where wemanually selected open-source rules that are
applicable to the organizations in our dataset, removing rules producing incorrect
detections. This emphasizes the fundamental limitation of rule-based systems, i.e.,
there are no generic rules that can be applied to all cloud environments. Hence, an
anomaly-based solution like ours can help reduce the manual effort required for de-
tecting IAM misconfigurations while potentially detecting more misconfigurations.

Table 5.2 shows the performance of both our approach using the LOF anomaly
detector (see Section 5.6.1), and the two rulesets of Cloud Custodian on all three
datasets split randomly into 90/10 training and testing sets. While Cloud Custodian
performs better over all policies, we find that for misconfigurations, our approach
performs better, correctly detecting between 3.7 and 6.4 times as many misconfigu-
rations. The reason for this is that rule-based systems such as Cloud Custodian are
very precise in their detection, i.e. if there exists a rule for a misconfiguration, it
will only trigger for the misconfiguration and not for other rules. Our approach on
the other hand is anomaly-based, meaning that it may incorrectly flag some correct
configurations as misconfigurations, but it is also able to detect misconfigurations
not captured by rules. Therefore, our approach shows a promising direction for de-
tecting additionalmisconfigurations using anomaly detection, improving the overall
cloud security.

Misclassifications. During our evaluation, we found some occurences of false
positives (correct policies flagged as misconfigurations) and false negatives (unde-

2https://github.com/davidclin/cloudcustodian-policies
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Table 5.2: Overall evaluation. Performance of our approach compared with Cloud
Custodian using all rules, and using rules specifically selected for our dataset. We
show the performance for detecting misconfigurations (top) and the overall perfor-
mance (bottom). While Cloud Custodian seems to perform better overall, its recall
is low, meaning the majority of misconfigurations go undetected.

Our approach

Cloud Custodian Cloud Custodian

All rules Selected rules

DS Prec. Recall F1-score Prec. Recall F1-score Prec. Recall F1-score

M
is
co
nf
. 1 66.67% 66.67% 66.67% 7.89% 10.34% 4.48% 100.00% 10.34% 9.37%

2 70.00% 63.34% 66.67% 13.73% 17.07% 7.61% 100.00% 17.07% 14.58%
3 75.00% 50.00% 60.00% 15.38% 11.32% 6.52% 100.00% 11.32% 10.17%

O
ve
ra
ll 1 91.58% 91.58% 91.58% 97.93% 97.60% 97.76% 98.99% 98.98% 98.57%

2 92.03% 92.31% 92.15% 97.40% 97.09% 97.24% 98.75% 98.73% 98.28%
3 94.97% 95.45% 95.03% 98.93% 97.88% 96.87% 98.12% 98.08% 97.33%

tected misconfigurations). The common characteristics of our false positives are
high levels of permissiveness, which in many scenarios are misconfigurations, but
under certain circumstances can be allowed. An example of such policy is the Read-
Only policy, which, in dataset 1 permits 762 read-only actions, making it very per-
missive. However, since in this dataset, all read-only permissions are for on non-
critical resources the policy was not considered a misconfiguration. As our anomaly
detector does not have a sense of which resources are critical or not, our approach
plays it safe and classifies these policies as potential misconfigurations.

Conversely, false negatives can occur when a policy does not seem permissive
but actually allows certain high-impact actions. A policy such as the PowerUser-
Access allows only a small number of actions, for a limited number of entities, but
works on critical resources and can have a high impact. Therefore, to reduce the
number of misclassifications, further research is needed into methods that take into
account the impact of policies.

5.6.1 Anomaly Detectors

We have shown that our approach correctly detects more misconfigurations than
rule-based approaches using LOF as our anomaly detector. The only requirement
for our detector is that it can detect anomalies based on a vector representation.
Therefore, before choosing LOF, we compared four different anomaly detection
techniques to empirically find the best performing technique for our approach: 1)
One-Class Support Vector Machine; 2) Local Outlier Factor; 3) Isolation Forest; 4)
Robust Covariance.

For this experiment, we limit ourselves to dataset 1 to minimize the data snoop-
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ing bias that the result of this experiment may introduce to our overall evaluation.
Ideally, such evaluation would be performed on a separate dataset to exclude bias
completely. However, due the limited availability of data we chose to still report
the performance of dataset 1 in Table 5.2, but show the results separately for each
dataset, demonstrating that the performance generalizes across datasets. We follow
our proposed approach as described in Section 5.3. First, we create a graph model
representation from the first collected IAM policies. Second, we apply node2vec
to embed the policy nodes into vector representations. The vector representations
are the same for all four tested anomaly detectors. Next, we split dataset 1 into a
90/10 training and testing set, following machine learning best practices [26, 163].
Dataset 1 contains a total of 842 policies containing 12 misconfigurations. To ensure
that the anomaly detection model is solely trained on correctly configured policies,
we temporarily remove the misconfigurations from the dataset, leaving us with 830
correct policies. Using a 90/10 split, we create a training set consisting of 747 (90%)
correct policies without any misconfiguration. The test set consists of the remain-
ing 83 (10%) correct policies, and the 12 misconfigurations, for a total test size of 95
policies. We choose a 90/10 training testing split as IAM policy changes are often
relatively small compared to the existing policies. In these environments, the ma-
jority of policies are created initially when the environment is setup. New policies
are added through the life-cycle of the environment, but comprise a smaller part of
the total amount. Additionally, the test set is imbalanced as there are considerably
more correct policies than misconfigurations which is also representative of real-
world deployments, since misconfigurations are introduced much less frequently
than correct modifications [26, 163]. In this setting, the training set can be seen
as the initial deployment of a cloud environment. The test set then simulates the
changes made to the policies in the environment, both additions of policies as well
as modifications, and can therefore be considered new observations.

Each anomaly detector goes through the same process outlined in Section 5.3.3.
We first train the model using the correct training policies. Then, we evaluate the
performance of the model using the test set, containing both correct policies and
misconfigurations. We evaluate the performance using the following metrics: pre-
cision, recall, F1-score, and ROC Area Under Curve (ROC AUC). The precision mea-
sures the proportion of correctly identified misconfigurations in all detected mis-
configurations. The recall measures the proportion of correctly identified miscon-
figurations in all actual misconfigurations. The F1-score is the harmonic mean of
precision and recall, and conveys the balance between the precision and the recall.
The ROC AUC measures the relationship between the True Positive and False Pos-
itive Rate of the anomaly detector.
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Parameter optimization. The performance of each anomaly detector depends
on the use of specific parameters that determine how each algorithm separates mis-
configurations from valid configurations. Therefore, we performed a grid-search
on dataset 1 to find the optimal parameters for each of the four anomaly detection
algorithms. The effect of the parameters on the performance metrics can be found
in Figure 5.4. For each parameter, we choose the best performing according to the
ROC AUC metric as a high ROC AUC will not only give a high precision, but will
also be robust against variations in the data. Using our grid-search, we found the
following optimal parameters for each anomaly detector:

• One-Class SVM: gamma = 0.001, nu = 0.5

• Local Outlier Factor: n_neighbours = 5

• Isolation Forest: n_estimators = 30

• Robust Covariance: contamination = 0.1

Results. With the aforementioned selected optimal parameters, we evaluate the
performances of the four anomaly detection techniques. Table 5.3 shows the ob-
tained overall performance for each anomaly detector for their optimal parameters.
Our first observation is that all four techniques have relatively high precision and
recall. Both metrics are important since precision measures whether detected mis-
configurations are actual misconfigurations, while recall measures the proportion
of detected misconfigurations. In our approach, however, we prefer a high recall
above a high precision because potentially missed misconfigurations have a consid-
erably larger impact to cloud security than a false positive detection, which can be
manually filtered out by an operator.

From the results in Table 5.3 we find that the Local Outlier Factor (LOF) has the
best performance in precision, recall and F1-score. The ROC AUC of the One-Class
SVM is slightly higher, meaning that the choice of decision boundary is slightly
more robust and will therefore depend less on the chosen parameters. Nevertheless,
the ROC AUC of the LOF algorithm is the second highest and gives a better overall
performance, making it our algorithm of choice. Additionally, LOF has the great
advantage of beingmore resilient in caseswhere the training set contains anomalous
data points (see Section 5.6.3). In fact, bymeasuring the local deviation of data points
with respect to their neighbors, LOF can identify local outliers in the training set,
providing some tolerance for misconfigurations already present during the training.

5.6.2 Parameter Transferability

Our approach shows promising results for detecting more misconfigurations than
rule-based approaches. However, with large manual effort, rules may be tweaked
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Figure 5.4: Parameter selection. Detection performance metrics during parameter
optimization for the four anomaly detection techniques

to the extent that they cover nearly every edge case. Therefore, we want to eval-
uate whether our anomaly-based approach requires a similar level of tweaking, or
whether our internal parameters are transferable accross settings. To this end, we
take our optimal LOF parameter (n_neighbours = 5) for dataset 1 as found in Sec-
tion 5.6.1 and apply them to datasets 2 and 3 to see how well they generalize.

Analogous to our approach, we create separate graph models for the two new
datasets and embed the policy nodes into vector representations. We then apply
the same 90/10 training testing split as in the previous experiment and obtain 737
correct policies for training and 11 misconfigurations and 64 correct policies for
testing dataset 2. For dataset 3, the training set contains 743 correct policies and the
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Table 5.3: Comparison of anomaly detectors. Performance of anomaly detectors
after parameter optimization (dataset 1).

Algorithm Precision Recall F1-Score AUC

One-Class SVM 88.78% 89.47% 89.06% 0.70
Local Outlier Factor 91.58% 91.58% 91.58% 0.66
Isolation Forest 84.08% 87.37% 84.50% 0.60
Robust Covariance 87.94% 89.47% 87.90% 0.65

testing set contains 6 misconfigurations, and 77 correct policies. We create separate
LOFmodels for the training sets, using the n_neighbours = 5 parameter and evaluate
the performance using the test sets.

Table 5.4 shows the results of this experiment. We observe that all metrics are
quite similar compared to the baseline, and even slightly improved. The reason that
parameters are transferable is the relatively high similarity between AWS IAM poli-
cies. By default, there are 515 IAM policies managed and provided by AWS, meaning
that there is a significant overlap (> 60%) of policies between the datasets. As these
default policies are well-checked, our model is trained on properly configured poli-
cies that are available in nearly all real-world scenarios. The small variance between
our baseline and the other datasets can be explained by the level of permissiveness
for policies in the dataset. In dataset 1, policies were more permissive, without be-
ing classified as misconfigurations, meaning it is more difficult to distinct between
correct and misconfigured policies. In conclusion, we find that that the parameter,
n_neighbours = 5, seems to be transferable between datasets.

5.6.3 Misconfigurations in Training Data

As our approach is based on anomaly detection, misconfigurations in training data
may lead to undetected misconfigurations during deployment. To test the resilience
against misconfigurations in the training data, we introduced known misconfigu-

Table 5.4: Parameter transferability. LOF detection performance on dataset 2 and
3, with parameter n_neighbours = 5.

Dataset Precision Recall F1-Score ROC AUC

1 (baseline) 91.58% 91.58% 91.58% 0.66

2 92.03% 92.31% 92.15% 0.73
3 94.97% 95.45% 95.03% 0.72
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Table 5.5: Misconfigurations in training data. We show the influence of includ-
ing a certain number of misconfigurations in the training dataset.

Algorithm No. Misconfigurations Precision Recall F1-score

One-class SVM 1 ( 0.12% of training) 90.68% 50.05% 63.15%
One-class SVM 5 ( 0.61% of training) 90.81% 48.20% 61.83%
One-class SVM 10 ( 1.21% of training) 92.09% 49.71% 63.49%

Local Outlier Factor 1 ( 0.12% of training) 91.07% 95.24% 93.10%
Local Outlier Factor 5 ( 0.61% of training) 91.78% 95.61% 93.65%
Local Outlier Factor 10 ( 1.21% of training) 92.67% 95.78% 94.20%

Isolation Forest 1 ( 0.12% of training) 88.67% 17.10% 23.94%
Isolation Forest 5 ( 0.61% of training) 91.08% 28.47% 39.81%
Isolation Forest 10 ( 1.21% of training) 91.86% 30.10% 42.84%

Robust Covariance 1 ( 0.12% of training) 90.64% 81.73% 85.91%
Robust Covariance 5 ( 0.61% of training) 91.57% 85.07% 88.17%
Robust Covariance 10 ( 1.21% of training) 92.37% 82.65% 87.19%

rations during the training phase of all four algorithms and tested the performance
with respect to the amount of introduced misconfigurations.

Table 5.5 shows the result of this experiment. We see that for the One-class
SVM and Isolation Forest, the recall drops significantly with respect to the data in
Table 5.3. The Local Outlier Factor and Robust Covariance algorithms are much
more resilient against misconfigurations in the training data. We also note that in-
creasing the number of misconfigurations seems to increase the precision, recall and
F1-score. However, this is due to fewer misconfigurations in the test data as they
were included in the training data instead. From Table 5.2, we found that evaluation
metrics over misconfigurations are relatively lower, hence having fewermisconfigu-
rations slightly skews the evaluation upwards. Nevertheless, our experiments show
that both the Local Outlier Factor and Robust Covariance algorithms are relatively
robust against misconfigurations in the training data.

5.6.4 Runtime Performance

During our experiments, we measured the runtime performance of the graph cre-
ation and model training stage of our approach for various input sizes. All experi-
ments were performed on an Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz laptop
running Ubuntu 20.04 LTS. We report the average runtime over 10 runs.
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Graph Creation. During Graph Creation, the IAM policy data is transformed
into a graph model representation. Figure 5.5 shows the runtime performance of
the Graph Creation stage. The performance scales linearly, but larger datasets can
take up a significant amount of time. For our largest dataset (1) with 842 policies,
graph creation took 20 minutes and 55 seconds. It is worth mentioning that only
the initial graph creation is this long, due to the fact that all nodes must be created.
Graph updates are considerably faster since the number of new nodes is generally
low. To evaluate this, we performed 10 experiments where we took the graph of
Dataset 3 consisting of 826 nodes. Next, we added 10 random policies and added
these to the graph, which took on average 0.581 seconds versus 833.986 seconds for
recreating the graph. This shows that our graph update achieved a speedup of a
factor 1091 versus recreating the graph from scratch. While the speedup depends
on both the total size of the graph (influencing the recreation of the graph) and
the number of added nodes (influencing the average update time), we believe our
experiment shows a considerable speedup in a realistic scenario.

Graph Embedding. After the graph has been created, we run the Node2vec al-
gorithm on the policy nodes to transform nodes into vectors, which took on average
57 milliseconds for our entire dataset.

Model Training and Prediction. We also consider the model training overhead
of the Local Outlier Factor anomaly detection model. The LOF model is trained
on correct policies and then used to determine whether new observations are also
correct or potential misconfigurations. The measured runtime performance of the
LOF model can be found in Figure 5.6. We find that the runtime performance is
negligible with respect to creating the graph model with 26 milliseconds for our
largest dataset. For the prediction, we measured an average of 6 milliseconds for
our largest test dataset of 86 policies and is therefore also negligible.

5.7 Discussion and Future Work

Challenges. We recall from Section 5.2 that our approach aims to be proactive,
context-specific, and lowmaintenance. Our approach can be automatically trig-
gered upon changes in IAM policies as explained in Section 5.4. Furthermore, our
evaluation in Section 5.6.4 has shown that our approach can also be run in a reason-
able timespan, allowing for proactivemisconfiguration detection. Additionally, our
evaluation in Table 5.2 has shown that our anomaly-based approach detects more
misconfigurations, compared to generic rule-based approaches, meaning it is better
able to take into account the context-specific (mis)configurations for an organiza-
tion. And finaly, with our Parameter Transferability evaluation in Section 5.6.2, we

162



5.7. Discussion and Future Work

100 200 300 400 500 600 700 800
0

200

400

600

800

1,000

1,200

Number of data points (policies)

Ti
m
e
in

se
co
nd

s

Figure 5.5: Overview of runtime performance for the creation of the graph

model.

have shown that our approach is lowmaintenance, showing promising results for
all our criterea.

Misconfigurations in training data. Our approach assumed that we only train
the anomaly detection model on correct policies. While our evaluation in Sec-
tion 5.6.3 showed that Local Outlier Factor and Robust Covariance have some ro-
bustness with small numbers of misconfigurations, ideally the training data should
not containmisconfigurations. The policy data collected for our experiments is from
real-world cloud environments. Each dataset has been manually reviewed, and po-
tential misconfigurations have been removed from the training set. This is a costly
human operation that is error prone and may not be feasible in all use cases. There-
fore, a possible approach could be to train only on the 515 default IAM policies
provided by AWS. In this scenario, we can be sure that there are no misconfigu-
rations in the training data. As a disadvantage, our approach will not be able to
learn the context-specific environment and may flag policies that seem misconfig-
ured with respect to IAM policies, but are permissible in certain cases. In short, we
believe that with careful review, the number of misconfigurations that slip through
manual detection is sufficiently low, and we have shown that for low numbers of
misconfigurations, Local Outlier Factor and Robust Covariance still produce good
results.
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Figure 5.6: Overview of runtime performance for training the LOF anomaly

detector.

Advanced embedding and anomaly detection. In our approach, we have used
the graph embedding technique Node2vec, which is currently the state-of-the-art of
graph embedding. Node2vec in combination with LOF has already provided us with
good results in detecting potential misconfigurations. There are however newer
techniques in the making that might be able to transform the graph in a better and
more efficient way. An example of such a new embedding technique is GraphSage
[97], which uses inductive representation learning to also enable the embedding of
node properties. Furthermore, we have only considered four anomaly detection al-
gorithms in our approach. More complexmachine learning techniques could further
enhance the performance of our approach. Examples of such techniques are Graph
Convolutional Networks [116], and One-Class Neural Networks [49].

Different policy types. In our current approach, we only consider identity-based
policies. There are, however, more IAM policie types in cloud environments3:

• Resource-based policies,

• Permission boundaries,

• Organization service contol policies,
3https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
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• Access control lists,

• Session policies.

These policies cover different scenarios and can be represented using other node
types in a graph. E.g., a resource-based policy can set a storage service node to
be either publicly or privately accessible. Such policies specify actions that are
only allowed on that specific resource, regardless of who is performing the action.
These different policy types can be created and stored in the same way as identity-
based policies but may show different behaviour when analyzed using our approach.
Therefore, we recommend future investigation into using our approach with differ-
ent policy types.

Future Work. From our current approach, we see several potential future direc-
tions for improvement. First, a feedback loop may be added after a security operator
verifies or discards flagged misconfigurations. The model can be updated with such
new information and prevent other similar alerts in the future.

Second, our work focused on the AWS cloud platform. While we only evaluated
our approach on AWS IAM datasets, the technique itself may be extended to other
cloud platforms that provide IAM policies where entities can be linked to resources
through policies. Besides AWS, other major cloud platforms such as Google Cloud
Platform and Microsoft Azure support such policy structures. Our approach can
be extended by adding collection services for additional cloud providers. While the
rest of our approach should be independent of the cloud provider, future research
should show whether our approach achieves similar results on those platforms.

Finally, our approach is able to detect misconfigurations, but is not yet able to
provide suggestsions for IAM policy modifications. To this end, we could explore
link prediction techniques that indicate which links should be added or removed.
While link prediction is technically possible to implement in our graph, we consider
this out of scope for the current research.

5.8 Related Work

Access control is a subfield of the broader area of identity and access management,
and has been studied extensively. P-Diff [217] monitors access and control behavior
by using decision tree algorithms. While effective, P-Diff has one major limita-
tion: it learns access control policies from access logs. This means that detection
is therefore limited to the information contained in the access logs, which makes
the approach reactive. As a consequence, misconfigurations can only be detected
after abuse, once anomalies show up in the access logs. Instead, our approach is
proactive and aims at identifying misconfigurations as soon as they are introduced
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in the cloud environment. Baaz [66] infers permission misconfigurations in an en-
terprise network by monitoring updates made to the access control metadata, and
looking for potential inconsistencies among peers. The major limitation of Baaz is
that it relies on the definition of what should be considered as an inconsistency.
This parameter can be tweaked by administrators, but could still cause problems
and influence the performance of the system.

Rule-based solutions rely on predefined rules to which the newly created or
modified cloud resources must adhere—these rules have to be created, monitored
and maintained throughout the life cycle of the cloud environment. Cloud Custo-
dian [84] is a widely used open-source rule-based system. Cloud Custodian enables
users to be well managed in the cloud. It allows for the easy definition of rules to
manage the cloud infrastructure. These rules are collected in policies. The policies
can be as simple or as complex as the person creating them wants them to be. Ex-
amples of such policies can be the blocking of all the public access to S3 buckets or
the detection of an account receiving admin privileges. AWS Remediation Frame-
work [81] is another example of an open-source solution. As the name suggests, it
is a project that identifies and remediates AWS security issues to ensure AWS usage
is compliant with a set of rules. Although these rule-based solutions can be very
powerful and have clear advantages, there are also a number of limitations. First
of all, the rules need to be created and maintained to adhere to security policies.
This has to be performed manually and can require a large effort. Furthermore,
this process can be error prone and security policies can be insufficient to detect all
misconfigurations. Secondly, cloud environments are generally extremely dynamic
and change frequently. There are situations in which a certain action can be seen
as a misconfiguration, while it is needed for a certain operation, predefined rules
can therefore be too rigid too handle these quick changes, which will impact the
performance of the system.

Cloud providers have also started offering solutions for detecting misconfigu-
rations. AWS provides CloudTrail [30], which is an AWS service that enables gov-
ernance, compliance, and auditing of the AWS account and all the corresponding
resources. It provides logging and continuous monitoring of the AWS environment.
Cloudtrail can be used in two ways to detect misconfigurations. First, it can be
used to log and raise alerts in case any changes are made to the identity and access
management configurations of the cloud resources. Second, it can be used to detect
unauthorized access if misconfigurations are abused. Both ways have limitations.
Either over-alerting administrators on every change made, or reacting to already
happened abuse, thus being too late. Besides, AWS has some mechanisms in place
to prevent misconfigurations. For example, when overly permissive identity and
access management roles are created, the system raises a warning. This already
creates a first line of defense, however, it can be easily overridden by administrators
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and only identifies major and obvious errors.
Other studies, which are orthogonal to our research, focused on measuring mis-

configurations. Continella et al. [63] investigated permission misconfigurations on
Amazon Simple Storage Service (S3) buckets [28]. Another research has been per-
formed on the cause of data leaks when cloud platforms are used as mobile app
back-ends [228]. Finally, Zahoor et al. developed a formal method for detecting
conflicting policies [223] and extended this method to work accross multiple cloud
providers [224]. These conflicts cover cases where some policies allow entities ac-
cess to a resource, whereas another policies deny overlapping entities from access-
ing to same resource. While such policies are also misconfigurations, they are or-
thogonal to the context-specific overly permissive or restrictive policies that our
work focuses on.

5.9 Conclusion

In this chapter, we presented a novel approach for detecting misconfigurations of
AWS identity and access management policies. The goals for this approach were
to be proactive, context-specific, and requiring low maintenance. To achieve these
goals, we first created a graph model representing IAM policies from a given cloud
environment. We then created context-specific representations of all policies using
node2vec embeddings. Finally, we trained an anomaly detection model on correct
policy embeddings and used it to detect potential misconfigurations in new poli-
cies. We have evaluated our approach on real-world IAM policies from three or-
ganizations and have shown that our approach correctly detects between 3.7 and
6.4 times more misconfigurations than state-of-the-art approaches at the cost of a
slight decrease in precision. Furthermore, we have shown that the parameters for
the anomaly detection algorithms are transferable between environments, while still
maintaining a similar detection performance, ensuring low maintenance costs. As
security misconfigurations in cloud environments have detrimental consequences,
our approach performs an important step to reduce the risk of security misconfigu-
rations.
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Chapter 6

Concluding Remarks

We have seen that adversaries continue to target organizations using increasingly
advanced strategies to execute their attacks, often involving multi-step kill chains.
While security operators try to uncover these kill chains, they base their detection
on security events that provide only an isolated view of single steps within such
an attack. Moreover, the number of security events produced to detect attacks is
overwhelming and often includes events that are not malicious. This leads to oper-
ators suffering from alert fatigue, making it difficult to correctly identify kill chains.
To combat these problems and gain a deeper understanding of security events, we
proposed a context-based approach to answer our main research question:

Main RQ. To what extent can we leverage high-level contextual knowledge of
cyber kill chains into security event analysis?

This chapter summarizes our contributions, reflects on the thesis process, ad-
dresses some of our limitations and provides insights into future work.

6.1 Contributions

To answer our main research question, we focused on three open problems in the
current workflow of SOC operators and performed one case study. Figure 6.1 shows
how these sub-problems fit into the overall process of dealing with security events.

We started by investigating the high-level CTI reports discussing Tactics, Tech-
niques and Procedures that operators share to spread knowledge about cyber kill

Figure 6.1: Thesis Overview. Four focal points of context-based identification and
explanation of security events.
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chains. We introduced EAGLE, our approach for Threat Intelligence Processing to
answer our first concrete research question:

RQ 1. To what extent can we automate knowledge extraction from CTI
reports and classify it into existing TTP frameworks?

We found that CTI reports use widely different descriptions to communicate
similar tactics, techniques and procedures. Moreover, existing techniques to detect
MITRE ATT&CK concepts mentioned in CTI reports do not follow well-established
NLP techniques and therefore often fail to detect a large portion of concepts. To
solve this problem, we introduced the EAGLE framework that combines established
NLP techniques with domain-specific knowledge of cyber attacks. By doing so, we
created an extendable approach that not only detects ATT&CK concepts, but can
also infer relations between concepts, leading to a more complete overview of TTP
information contained in CTI reports. Moreover, by combining semantic and data-
driven approaches, we showed how to increase detection performance, while still
making the detected results explainable to security operators. This process greatly
increases the effectiveness of security operators when searching for relevant threat
intelligence and linking intelligence to observed security events.

Next, we shifted our focus from external knowledge about threat intelligence
to the actual security events that are observed within a SOC. Here we found that
the knowledge from CTI reports was used by security operators to assess security
events. However, not all attacks may be covered by external knowledge, especially
in the case of newly emerging threats. Moreover, even if knowledge is available, the
process of triaging (i.e., the initial decision of whether security events are malicious
or benign) is a time-consuming task. Therefore, with our next research, we tried to
answer our second research question:

RQ 2. To what extent can we reduce the manual workload of triaging
security events based on contextual information?

To answer RQ 2, we developed our approach DeepCASE, which assists security
operators in identifying kill chains by analyzing the context in which events occur.
Ourmain observationwas that security events that are part of an actual kill chain, do
not occur as a single event, but are highly correlated with other security events that
represent different parts of the same kill chain. To leverage this insight, we created
a deep learning-based approach that attempts to find correlations between security
events from large sequences of real-world events. Once these correlations are found,
we cluster similar sequences of correlated events and show these clusters to security
operators who decide whether found sequences are malicious or whether they are
benign correlations. Previous decisions can be repeated for new, similar sequences
of events, thereby vastly reducing the workload of security operators.
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For our third question, we challenged a fundamental assumption of our work,
namely that enough contextual information is provided to security operators to de-
cide whether a security event is malicious or benign. We found that host-based
approaches often provide additional information about processes running on the
device. However, in network-based detection, this information is often lacking.
Therefore, we focused on the following research question:

RQ 3. To what extent can we identify malicious applications based on
network traffic?

For RQ 3, we focused on a specific use case, namely the fingerprinting of network
traffic from mobile applications. We chose this use case as mobile applications are
easily installed, removed or updated, changing the characteristics of their network
traffic and therefore making it difficult to group traffic per application. Moreover,
due to bring-your-own-device policies and the high level of encrypted network traf-
fic, mobile devices are often even less visible to security operators. This makes it
even more important to be able to provide contextual information from the network
level. We introduced FlowPrint which is built on the assumption that mobile ap-
plications consist of various components that often communicate with dedicated
network services. By clustering mobile network traffic based on its destination and
then correlating these different destinations, we were able to create fingerprints for
both known and previously unseen apps. These fingerprints can be provided to
security operators as additional information when triaging security events.

With our research questions, we focused on the open problems in the detection
andmitigation of security events. However, we also wanted to know if our proposed
context-based approaches could help to improve other areas of security. Therefore,
we conducted a case study exploring the benefits of context-based anomaly detec-
tion in the area of identity and access management (IAM). In this case study, we at-
tempted to detect misconfigurations in IAM policies for AWS cloud environments.
Our context-based approach modeled policies as a graph, connecting policies to ac-
tions and resources. This graph representation allowed us to embed the context of
a policy in terms of relation to the different actions and resources and use this con-
text in combination with anomaly detection to identify possible misconfigurations.
By proactively searching for potential misconfigurations we reduced the surface
of potential attacks, ultimately leading to fewer security incidents, showing that
context-based approaches can benefit other areas of research as well.

In summary, this thesis presented a study that attempted to comprehend security
events produced by IDSs and provided context-based approaches to improve the
identification and explanation of these events for security operators in a SOC. We
attempted to integrate high-level contextual knowledge in three components of the
security operator workflow:
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1. Threat Intelligence Processing, automating knowledge extraction from high-
level CTI reports to enable improved and automated information sharing.

2. DeepCASE, providing contextual analysis of security events by grouping se-
quences of security events that occur in a similar context semi-automatically.

3. FlowPrint, providing improved contextual information about applications
on the network level that can be used during the triaging process.

By doing so, we improved our understanding of security events and used this knowl-
edge to enhance identification and explanation capabilities for security events.

6.2 Process Reflection

The observant reader may have noticed that the order of publications on which this
thesis is based is different from the order in which works were discussed. In fact,
the chronological order in which we worked on various aspects of the thesis started
with FlowPrint (2020) [3], then DeepCASE (2022) [1], detecting IAM policy mis-
configurations (2022) [2], and lastly threat intelligence processing (2023) [4]. This
difference reflects both a change in focus of the PhD project, as well as the develop-
ment of deeper insights into the process of handling security events.

Initially, this project focused on detecting new and previously unseen security
events in the context of the “EVolutionary Intrusion DEtectioN for Changing Envi-
ronments” (EVIDENCE) project. FlowPrint focused on detecting new events in the
context of mobile applications. However, after this project had finished, we found
that too little was understood about the subsequent analysis of these events, which
was the focus of the DeepCASE chapter. Where DeepCASE proved the importance
of contextual analysis, it raised the question of how security operators receive ad-
equate information for making these contextual assessments, leading to our final
work on threat intelligence processing.

While this explains the publication order, it does not explain the thesis structure.
For the thesis structure, we reflected on the best way to introduce new readers to
the processing of security events. Here, we decided to provide a top-down explana-
tion to cement the idea that security events can only be understood in the context
of a larger attack. To this end, we started with our work on threat intelligence pro-
cessing. As the cyber threat intelligence reports that we analyze focus on TTPs, it
introduces the reader to the context-aware view that operators have when analyz-
ing security events. The idea is that with this background, the (semi-)automated
contextual analysis of security events introduced by DeepCASE is easier to under-
stand. After our attempt to convince the reader that context-based analyses are
crucial in the identification and explanation of security events, we could challenge
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our fundamental underlying assumption that security events provide sufficient in-
formation for these analyses. This was the initial problem that we started with
in FlowPrint, where simply detecting known applications did not provide enough
context to operators, but we also required knowledge of new and previously unseen
applications. Therefore, while the work done in FlowPrint was our starting point,
we found that it required a deeper understanding of the security events it produced.
Hence, our non-chronological thesis structure attempts to provide the reader with
a deeper understanding of security events we gained ourselves upfront. We hope
that this presents the reader with a more contextual understanding of the various
research challenges explored in this work.

6.3 Limitations & Future work

While this thesis aims to provide a better understanding of security events through
contextual analysis, even after five years of research, we do not consider this a solved
problem. To start positively, we have gained a better understanding of extracting kill
chain information from CTI; analyzing contextual security events for more efficient
triaging; and using network fingerprints to give more insights into active applica-
tions. However, as we have seen, in its current form, analysis of security events still
requires human intervention to make final decisions about mitigating or discarding
potential attacks. Moreover, better solutions to the individual sub-problems that
we addressed may exist in terms of performance, computational complexity or ex-
plainability, especially with the recent advances in many areas of research that we
covered. We do not claim to have completely solved the individual sub-problems,
but we did advance the state-of-the-art allowing us to better understand security
events. Leaving the individual limitations of our proposed methods to their corre-
sponding chapters, in the remainder of this section, we identify several limitations
of the thesis as a whole and propose directions for future work.

6.3.1 Environment-based contextualization

The current approaches discussed in this thesis contextualize security events using
external threat reports (Chapter 2), other security events (Chapter 3), or additional
network data (Chapter 4). However, the severity of a security event, and therefore
the triaging process and potential mitigation, also depends on the environment in
which the event is observed. To illustrate, a DDoS attack on vital energy infrastruc-
ture is considered more severe than a DDoS attack on a personal website. While
the attack and its related security events may be the same, the response that se-
curity operators propose can vastly differ. For this thesis, the analysis of security
events in the context of the environment in which events occur was considered
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out of scope. However, future work may investigate ways of modeling the moni-
tored IT infrastructure in terms of potential impact for different types of attacks.
Such a model could include network-level, device-level or even more fine-grained
application-level information on business continuity impact, similar to [78]. Next,
such impact assessment can be integrated into triaging tools to improve the timeli-
ness and accuracy of triaging operators.

6.3.2 (Semi-)automated kill chain detection

In this thesis, we have considered the human-in-the-loop as a vital step in the triag-
ing of security events. However, security operators, or more specifically security
threat analysts also manually create detection rules, heuristics or detectors that trig-
ger the events that operators receive. Just like CTI reports, rules are shared in the
form of Yara [222], SIGMA [181], Suricata [85] or other forms of rule-based detec-
tion. However, these rules often focus on detecting single malicious events, not
capturing larger kill chains. One area of research that does attempt to track vari-
ous steps of program behavior studies provenance graphs [36]. These provenance
graphs can be queried to find malicious behavior on a device [98, 99]. Leveraging
threat intelligence from CTI reports, possibly in combination with environment-
based contextualization, it may be possible to (semi-)automatically generate detec-
tion queries for multi-step kill chains. Advantages of such detection techniques are
that they are inherently explainable, as they would be generated from CTI reports
describing the attack. However, future research should investigate the detection
performance of such rules, and to what extent they can be evaded by APTs.

6.3.3 Context-informed response

This thesis has focused on understanding security events with the aim of triaging
and ultimately understanding the individual steps of an attack. However, after the
security incident has been established, security operators should take steps to miti-
gate the impact of the attack. To this end, we propose to use information from de-
tected kill chains to automatically propose mitigation steps (known as playbooks) to
security operators. Please note that we stress the role of security operators in this
step as fully automated intervention leads to both ethical concerns (as users may
be incorrectly shut out of their accounts) and practical considerations (do we want
an autonomous systems to potentially disrupt vital business processes?). Neverthe-
less, generating mitigation playbooks could potentially save security operators a lot
of work, especially when combined with environment-based contextual knowledge
(see subsection 6.3.1) about the systems under attack.
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