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Abstract—In this paper, we present an analysis of HTTP
traffic in a large-scale environment which uses network flow
monitoring extended by parsing HTTP requests. In contrast
to previously published analyses, we were the first to classify
patterns of HTTP traffic which are relevant to network security.
We described three classes of HTTP traffic which contain brute-
force password attacks, connections to proxies, HTTP scanners,
and web crawlers. Using the classification, we were able to detect
up to 16 previously undetectable brute-force password attacks
and 19 HTTP scans per day in our campus network. The activity
of proxy servers and web crawlers was also observed. Symptoms
of these attacks may be detected by other methods based on
traditional flow monitoring, but detection using the analysis of
HTTP requests is more straightforward. We, thus, confirm the
added value of extended flow monitoring in comparison to the
traditional method.

I. INTRODUCTION

HTTP is currently the most widely used protocol which
takes up a significant portion of network traffic. Due to its
popularity, it is beneficial to have a deeper understanding
of HTTP network traffic and its content. From a network
security perspective, we would like to know who is accessing
our network and what the requested resources are. Patterns
in network traffic and outstanding numbers of visited hosts
and requested resources would help us to distinguish between
legitimate and malicious traffic.

The most suitable way of gaining an overview of HTTP
traffic in a large-scale network is extended network flow
monitoring [1]. There are two approaches to network traffic
monitoring, deep packet inspection (DPI) and flow monitoring.
DPI is resource demanding, but provides detailed information
about a whole packet including a payload. Network flow
monitoring is fast, but limited to Layers 3 and 4 of ISO/OSI
model. Extended flow monitoring is a method combining
benefits of both methods. It provides application-level data to
traditional flow records while keeping the ability to monitor
large-scale and high-speed networks. The correlation of logs
from web servers is also an option, but in large networks
it is not always possible to gain access to logs or even be
aware of all of them. Therefore, our work is relevant for
administrators of large networks in general, from academic
networks to networks of ISPs.

We address two problems in this paper. The first one is the
lack of an overview of network traffic and insufficient security

awareness. This applies especially in heterogeneous networks
with distributed administration. Many administrators oversee
web servers in their administration and may oversee their
neighbourhood, but they are not aware of security threats in the
rest of the network. The second problem is to find a suitable
set of tools to analyse HTTP traffic and distinguish between
legitimate and malicious traffic. We are focused on large-
scale network monitoring, where traditional flow monitoring
approach cannot process application-layer traffic, while other
approaches such as DPI cannot process large amount of data.

To formalize the scope of our work, we pose two research
questions which we shall answer:

(i) What classes of HTTP traffic relevant to security can be
observed at network level and what is their impact on
attack detection?

(ii) What is the added value of extended flow compared to
traditional flow monitoring from a security point of view?

The first question is focused on common types of HTTP
traffic that we can observe in the network. We expect to
extend the traditional division of network hosts into clients
and servers. We focus on the behaviour of hosts regardless
of their client/server role: we are particularly interested in de-
tecting security-related patterns produced by attackers, proxies,
and crawlers. We search for implications of the presence of
particular traffic patterns. We aim to improve malicious traffic
detection, filter out false positives, apply better security policy,
and set up trustworthy honeypots.

The second question is focused on evaluating the contribu-
tion of extended monitoring with respect to the detection of
malicious behaviour in the network. We focus on the detection
of patterns in the network traffic that are hard to observe
using standard flow. Extended flow would make detecting
these events straightforward.

Our work contributes to a better understanding of current
security threats. For example, we can detect vulnerability
scanners and learn about vulnerability itself at the same time.

The answers to both questions are based on an analysis
of real traffic in a campus network. We use network flow
monitoring (IPFIX), extended by HTTP monitoring, which
provides additional data to common network flow monitoring
records. Although it is possible to extract some information,
such as the Server Name Indication, from the HTTPS protocol,
this work focuses on the HTTP protocol only.



We also use auxiliary methods to verify and validate the re-
sults, i.e., to confirm the membership of detected IP addresses
into the proposed behaviour classes. Legitimate sources of
traffic should be identifiable, e.g., Googlebot can be identified
by a reverse DNS record of the source IP address [2]. We
check User-Agents in HTTP traffic to differentiate legitimate
and illegitimate traffic, e.g., requests with forged User-Agent.
Finally, we check the reachability of traffic destination through
search engines to see if it is possible to find the resource
without accessing it. We follow the principle of “Google
Hacking” [3], a technique used for finding vulnerabilities on
web pages indexed by search engines.

This paper is divided into six sections. Section II presents
previous work in this field. Measurement tools and environ-
ment are described in Section III. The results are presented
in Section IV and discussed in Section V. Finally, Section VI
concludes the paper.

II. RELATED WORK

Although research has focused on analysis of HTTP traffic
in recent years, there is only a small number of papers
relevant to our work. To the best of our knowledge, we are
not aware of any paper dealing with HTTP analysis using
a flow-based approach. In addition to this, the motivation of
the relevant papers is different, typically focusing on efficient
traffic management, with only a minor focus on security,
specifically attack detection and prevention. One exception
is the work by Perdisci et al. [4]. They employed network-
level behavioural clustering of HTTP requests generated by
malware. Their motivation was to provide quality input for
algorithms that automatically generate network signatures. The
second exception is the work by Husdk and Cegan [5] in
which they use flow-based HTTP analysis to detect users who
contacted malicious websites.

Other related papers dealing with HTTP traffic analysis are
listed in this paragraph. Augustin and Mellouk [6] published
a classification of web applications according to three traffic
features: intensity (total volume of exchanged traffic), symme-
try (ratio between upstream and downstream traffic) and shape
(burstiness over time). Xie et al. [7] addressed reconstructing
web surfing behaviour from network packet traces. Xu et al. [§]
analysed User-Agents strings captured at the edge of a campus
network using an extension of UASparser [9]. They identified
operating systems, types of devices (mobile, desktop) and
applications (browser, crawler, P2P, automated updates and
requests). A similar work by Jin and Choi [10] is motivated
by efficient traffic management. Hur and Kim [11] proposed
a smart phone traffic classification based on grouping User-
Agent fields and extracting common strings.

III. MEASUREMENT TOOLS AND ENVIRONMENT

This section describes the methods and tools used for
acquiring the data from our campus network. We shall also
provide characteristics of the network, in terms of its size and
utilization.

We performed all measurements on the campus network
of Masaryk University. The network has more than 40,000
users and 15,000 active IP addresses each day in /16 network
segment. The network contains both servers and client stations,
including proxy servers and a segment of honeypots. Any
incoming traffic to the honeypots is by nature suspicious [12],
which helps us to recognize malicious network traffic, e.g.,
HTTP requests on a honeypot web server. Only moderate
filtering rules are applied globally to preserve the network
neutrality of the academic environment.

Our primary source of data for network traffic analysis are
FlowMon [13] probes located throughout the campus network.
These probes use NetFlow and IPFIX protocols to export
measured traffic as flow records to central collectors [1]. The
collected flows are processed by various anomaly and intru-
sion detection systems, which report incidents to our CSIRT
team. This network-centric approach allows us to monitor a
complex network with many servers and services managed by
different entities as opposed to host-based approaches such
as log analysis. In such a case, it would be very difficult
to even obtain system logs from every web server in such
a varied environment. The monitored links are mostly 1 Gb/s
and 10 Gb/s which makes the use of DPI systems impractical,
or even impossible in the case of 10 Gb/s links, due to high
processing requirements.

To capture data for this paper, we used a probe measuring
traffic from a 10 Gb/s link which connects the campus to the
ISP. We deployed extended measurement of the HTTP traffic
on this probe using a flow exporter. The exporter software
supports the extraction of basic elements from HTTP headers,
such as host name, document URL (split into hostname and
path), User-Agent string, and response code. These elements
are then exported using the IPFIX protocol as enterprise
elements [14]. We used an IPFIXcol [15] flow collector to
receive and store the extended flow records.

A standard flow record consists of key elements (1) and of
additional elements providing detailed information about the
flow (2). The most common key elements are L3/L4 protocol
numbers, IP addresses, and ports. Additional elements can
contain any information from packet headers together with
statistical counters, e.g., timestamps, number of packets and
bytes, and autonomous system numbers.

Fiey = (L3Proto, srclP,dstIP,

1
L4Proto, srcPort, dst Port) M

Fodditional = (timeStart, timeEnd, packets, octets, )
TCPflags, ToS, srcAS,dstAS)
A standard flow is then a concatenation of Fj., and

Foaqgitionai- The HTTP measurement [16] adds information
from the HTTP application layer (3).

Furrp = (hostname, path, user Agent, requestMethod,

responseCode, referrer, contentType)

3)



The concatenation of a standard flow with application
elements is called an extended flow. In this case, it will contain
HTTP elements (4).

Fepy = ery - Fadditional - FarTP (€]

We measured the F.,; vector in the environment of our
campus network for three weeks over the summer break and
three weeks in the semester. Thus, we could compare the
amount of overall network traffic and suspicious events over
two distinct time periods and traffic loads of the network. The
amount of the traffic is lower in the summer break, although
still comparable to the rest of the year. However, we assume
that the amount of malicious traffic is constant over the year
and is more apparent in the summer break.

Table I shows the size of each data set in packets, bytes, and
flows. Moreover, it contains the number of HTTP requests ob-
served. Although the number of requests is not high compared
to the number of flows, there are at least as many responses,
which often carry multimedia content. Therefore, the portion
of HTTP traffic in bytes is very significant, despite the lower
number of requests.

TABLE I
DATA SETS
Data set Flows Packets Bytes HTTP Req.
Summer 2014 | 3.733G | 188.953G | 198.362TB 0.310G
Spring 2015 6.680G | 552.523G | 604.704 TB 0.720G
IV. RESULTS

Four characteristics of network flows were monitored:
source IP address, destination IP address, hostname, and HTTP
request. We analysed only HTTP traffic incoming to our
network. The destination IP addresses were restricted to the /16
IP range of Masaryk University, while the source IP addresses
were restricted to all other IP ranges. In some selected cases,
we evaluated also the HTTP requests in opposite direction,
i.e., source IP was in our network range and the destination IP
was not. We used the hostnames and destination IP addresses
interchangeably during the analysis due to a negligible amount
of multi-hosting in our network. Overall, we observed HTTP
traffic sent to almost 500 web servers, i.e., approximately 3 %
of all hosts in our network. IPv6 traffic and measurement
artifacts were observed in the measurement, but were omitted
from the analysis due to their negligible impact on results.

The network traffic was analysed over five-minute and one-
day intervals. A five-minute interval is the default granularity
of data capture in network flow monitoring, i.e., one output file
contains records of five minutes of network traffic. It allowed
us to observe local anomalies, not only anomalies in the overall
sample traffic. The one-day interval allowed us to compare
anomalies over different days and discover repeated events and
typical patterns. The one-day time window was chosen as it is
long enough to contain an anomaly, while it is short enough
in respect to the processing time of an analysis. The statistics

presented in this section are based on an analysis of one-
day intervals. However, for practical reasons, the five-minute
interval is more convenient for detecting malicious events. We
checked that the observed events can be detected even in the
shorter time window.

We classified the network traffic according to the three main
parameters of an extended flow: guest (source IP address), host
(destination IP address or hostname), and HTTP request. We
were interested in the cardinality of the relation between the
parameters rather than values of the parameters. A high occur-
rence of flows sharing one or more parameters would suggest
unusual activity in the network and is key for the classification.
The number of flows which share the three main parameters
is, therefore, an additional parameter for classification. The
parameters and selected classes are presented in Table II.

TABLE 11
TRAFFIC CLASSES
#Guests | #Host | #HTTP Requests | #Flows
Class 1 1 1 1 n
Class 11 1 n 1 n
Class IIT 1 >1 n >n

We were particularly interested in the results of three
queries. First, how many similar requests were demanded
by one source IP to one destination IP? Second, how many
destination IP addresses were contacted by one source IP
address with the same request? And third, how many requests
were demanded by one source IP to one destination IP? Each
query is represented by a class, as shown in Table II. The
classes correspond to patterns in the network traffic as depicted
in Fig. 1. A detailed description of each query and class can
be found in the following subsections.

There are many other possible classes, although we found
them to not be relevant from a security perspective. For
example, many guests accessing a single host with a request
suggests the popularity of a resource at the host. Such classes,
however, could be interesting for general traffic classification,
not security analysis.

A. Class I: Repeated requests

The first query asks for repeated requests between one
guest and one host. We measured the number of occurrences
of each triple, consisting of source IP, destination IP, and
requested URL. Our assumption was that the repetition itself
is common, but outstanding numbers may point to undesired
behaviour. For example, password-protected web services may
be exposed to brute-force attacks, which we can observe as a
series of similar requests. The repeated request (A) is defined
as follows:

RepeatedRequest(A) < A= {F |VF,F":
F(srcip) = F'(srcip) A F(dstip) = F'(dstip)
A F(path) = F'(path)} and |A| > threshold

All flows in the set share the same source IP address, destina-
tion IP address, and requested HTTP path. The total number
of flows in the set is bigger than the threshold.
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Fig. 1. Selected classes of HTTP traffic

Sample results are presented in Table III from one day in
summer 2014. As we can see, the numbers of repeated flows
reaches tens of thousands, which represents outstanding traffic
patterns. There is a disproportion in the numbers of flows with
the same source IP, destination IP, and HTTP request. While
the majority of the triples were unique or repeated several
times, a small number of triples were observed to be repeated
several thousand times or more. The nature of these repeated
requests was revealed by analysing the request. The majority
of repeated requests contained a substring such as admin or
login, which suggests that these traffic patterns were caused by
brute-force attacks against password-protected web services.
Other interesting repeated requests contained the substring
proxy, which suggests communication between a client and a
web-based proxy server. Furthermore, we found other repeated
requests accessed large downloadable files, e.g., ISO images
of Linux distributions.

TABLE III
TOP REPEATED REQUESTS FROM ONE DAY (DATA SET SUMMER 2014)

Guest | Host | HTTP Path #Flows
Gl H1 /wp-login.php 46,031
G2 H2 /administrator/index.php 27,965
G3 H2 /administrator/index.php 27,798
G4 H3 /wp-login.php 25,316
G5 H4 /pub/linux/slax/Slax-7.x/7.0.8/slax-Chinese- 5,921

Simplified-7.0.8-i486.iso
G6 H5 /proxy/libproxy.pac 5,036
G7 H6 /node/ 4,286
G8 H4 /pub/linux/slax/Slax-7.x/7.0.8/slax-English- 4,170
US-7.0.8-i486.zip
G9 H7 | /wp-login.php 3,632
G10 H7 /polit/wp-login.php 3,632

The second sample of results presented in Table IV was
observed in one day in spring 2015. As we can see, there is
a significant difference in the number of flows. However, the
distribution of various types of repeated request is similar. One
interesting anomaly is the guest G3, which performed repeated
requests on 8 different hosts. This guest used different requests
on different hosts, however the number of flows on each host
is similar.

As we can see in Table V, which displays statistics for the
whole monitored time window, almost half of the detected
events were related to using a proxy. Brute-force password
attacks were recognized only in 10.6 % of events. On the other

TABLE IV
TOP REPEATED REQUESTS FROM ONE DAY (DATA SET SPRING 2015)
Guest | Host | HTTP Path #Flows
Gl H1 /proxy/libproxy.pac 5,147
G2 H2 /pub/linux/fedora/epel/6/x86_64/repodata/ 4,244
e63d28ff5a765b11a7052496f481f31aebab
17¢28545908d54e65904a1046ec8-
filelists.sqlite.bz2
G3 H3 /senat/studenti/wp-login.php 3,992
G3 H4 /administrator/index.php 3,945
G3 HS5 /slovnik/administrator/index.php 3,934
G3 H6 /administrator/index.php 3,926
G3 H7 /capv2011/administrator/index.php 3,924
G3 HS8 /index.php 3,921
G3 H9 /administrator/index.php 3,794
G3 H10 | /wp-login.php 3,701

hand, brute-force password attacks may generate more flows
than other events in this class. They were the only events
which generated more than 10,000 flows with the same source
IP, destination IP, and HTTP path. However, we have also
observed brute-force attacks of approximately a few thousand
flows, but targeting multiple hosts over a short period of time.

TABLE V
DISTRIBUTION OF REPEATED REQUEST

Subclass Path regular expression  Portion [%]
Proxy 494
*libproxy.pac 45.0
J¥sviproxy.pac 4.3
Jfproxy.php 0.1
Brute-force 10.6
Fadmin.* 6.7
Flogin. * 3.9
Others 40.0

B. Class II: Similar requests on many hosts

The second query addresses identical requests from one
source IP address to many destination IP addresses. Our
assumption was that a guest accesses only a limited number of
hosts or at least requests different paths from different hosts.
Therefore, a guest accessing a large number of hosts with the
same request (with the exception of “/”) is suspicious and
worth noting. We would also like to point out the similarity
between this traffic pattern and network port scanning, e.g.,
TCP SYN scan [17]. Therefore, we propose the name HTTP



scan for this traffic class. HTTP scan (B) is defined as follows:
HTTPScan(B) <= B ={F |VF,F':
F(srcip) = F'(srcip) A F(dstip) # F'(dstip)
A F(path) = F'(path)} and |B| > threshold

All flows in the set share the same source IP address and
requested HTTP path, while there are no flows with the same
destination IP address. The total number of flows in the set is
bigger than threshold.

First, we analysed only the scans of our monitored network
by external hosts. Sample results from one day in summer
2014 are displayed in Table VI. For each scan we state a
guest, i.e., the scanner, the requested HTTP path, the number
of visited hosts, and the percentage of visited hosts of all
hosts in the monitored network. There were two outstanding
source IP addresses identified, one accessed almost all the
web servers in our network and requested six paths. The
second scanner accessed significantly less hosts with only one
requested path. The other combinations of Source IP address
and path, including the “/” request, were not observed to
access more than ten hosts a day. We observed up to nineteen
events a day in the measurement, including events where a
guest requested more than one path. The same paths were
also observed to be requested by different guests.

TABLE VI
Top HTTP SCANNERS FROM ONE DAY (DATA SET SUMMER 2014)
Guest | HTTP Path #Hosts %
Gl /myadmin/scripts/setup.php 497 100
Gl /pma/scripts/setup.php 497 100
Gl /w00tw00t.at.blackhats.romanian.anti-sec:) 497 100
Gl /phpmyadmin/scripts/setup.php 495 99
Gl /phpMyAdmin/scripts/setup.php 494 99
Gl /MyAdmin/scripts/setup.php 491 99
G2 /manager/html 118 24

The number of detected HTTP scans varied from 3 to 19
per day over the monitored time window. Ten scans per day
were detected on average and scanning for multiple paths was
common. The scan for six paths, displayed in Table VI, was
observed from four different IP addresses in one week. The
other multiple-path scans did not use more than three paths in
one scan.

The second sample results are from one day in spring 2015.
We can see an interesting similarity of request in the first and
second classes. The guest G1 was scanning for HTTP paths
which also appeared in the results of the previous class. This
suggests that the first class includes brute-force attacks and the
second class some sort of network reconnaissance. Therefore,
we may have observed the two phases of a complex attack.

Second, we searched for the HTTP scans in the opposite
direction, i.e., scanning external networks by a host from our
network. The detection in this direction is tricky as there
are no clear boundaries of scanned networks and it is hard
to set an appropriate threshold. In addition to this, even a
common user may generate hundreds of similar requests such
as /favicon.ico. Therefore, we do not present any significant

TABLE VII
Top HTTP SCANNERS FROM ONE DAY (DATA SET SPRING 2015)
Guest | HTTP Path #Hosts | %
Gl /wordpress/wp-login.php 337 68
Gl /site/wp-login.php 335 67
Gl /wp-login.php 332 67
Gl /blog/wp-login.php 201 40
G2 /bins.php 183 37
G3 /cgi-bin/test-cgi 102 21

results. However, it would be possible to identify a scan by
searching for continuous scanned network segments or the
longest common prefix of the scanned IP addresses to estimate
a scan of a subnet.

C. Class IlI: Varying multiple requests on multiple hosts

The third query addressed the guests which requested a large
number of unique paths on a single host. In this case, we seek
guests which requested the majority of content from our hosts.
Our assumption is that a large number of different requests
from one guest to one host is a legitimate traffic pattern. On
the other hand, outstanding numbers worth noting can also
be observed. Then we looked for guests which requested an
outstanding number of unique paths on more than one host. We
assume that only crawlers behave in this way and it is unusual
that any other guest would request such a large number of
unique URLs on more hosts. The activity of a crawler (C) is
defined as follows:

CrawlerCandidate(C') < C' ={F |VF,F":
F(srcip) = F'(srcip) A F(dstip) = F'(dstip)
A F(path) # F'(path)} and |C'| > threshold;

Crawler(C) <= C ={F |V¥C;,C;:
F; € C; NFj € C} N\ Fi(srcip) = Fj(srcip)}
and |C| > thresholds

We detect crawlers as guests which requested many resources
from more hosts. First, all flows which have the same source
IP address and destination IP address, but distinct requested
HTTP paths, are grouped to sets. The first threshold is a
minimal number of distinct requests on a single host. Second,
we select source IP addresses which appeared in more sets.
The second threshold is a minimal number of crawled hosts.
The thresholds were selected to include at most 10 % of sets.

In the first phase, we confirmed that the assumed traffic
pattern occurs frequently with a varying number of requested
URLs. We were not able to unambiguously mark outstanding
numbers. In the second phase, we filtered out the guests which
did not access more than one host. The remaining guests were
characterized by common signs, e.g., they accessed similar sets
of hosts and requested a similar number of URLs. We have
marked these guests as crawlers and present sample results
from a one-day measurement in Tables VIII and IX.

Out of 11 crawlers detected in one day in summer 2014, 4
were identified as a well-known MSN search bot. The others
were mostly local search engines, i.e., the Czech search engine



TABLE VIII
Top HTTP CRAWLERS FROM ONE DAY (DATA SET SUMMER 2014)
Guest Domain Name #Hosts
207.46.13.62 msnbot-207-46-13-62.search.msn.com 7

157.55.39.107
137.110.244.137
157.55.39.156
157.55.39.6
37.187.28.19
137.110.244.139
5.135.154.106

msnbot-157-55-39-107.search.msn.com
bnserver2.sdsc.edu
msnbot-157-55-39-6.search.msn.com
msnbot-157-55-39-156.search.msn.com
z3.sentione.com
integromedb-crawler.integromedb.org
nks02.sentione.com

W | Wl L w| &l & &l B0

5.135.154.98 nks03.sentione.com
77.75.73.32 fulltextrobot-77-75-73-32.seznam.cz
77.75.77.17 fulltextrobot-77-75-77-17.seznam.cz

Seznam (2 guests) and social media monitoring tool Sentione
(3 guests). The two remaining guests were identified as a part
of an IntegromeDB crawler collecting biomedical data.

The second sample results are based on a one-day mea-
surement in spring 2015. In the course of this day, we
detected a higher activity of crawlers in our network. The
recognized crawlers accessed significantly more hosts and
generated more unique HTTP requests. We mostly observed
well-known crawlers, such as the MSN search bot and two
local search engines. One interesting finding was the detection
of an unknown guest behaving like a crawler. The guest’s
IP address had no reverse domain name assigned and its
WHOIS record pointed to a hosting company, which indicates
a potentially malicious crawler.

TABLE IX

Top HTTP CRAWLERS FROM ONE DAY (DATA SET SPRING 2015)
Guest Domain Name #Hosts
157.55.39.97 msnbot-157-55-39-97 .search.msn.com 24
207.46.13.11 msnbot-207-46-13-11.search.msn.com 23
157.55.39.28 msnbot-157-55-39-28.search.msn.com 18
157.55.39.209 | msnbot-157-55-39-209.search.msn.com 17
157.55.39.41 msnbot-157-55-39-41.search.msn.com 15
195.113.155.3 | severus.mzk.cz 11
77.75.77.123 screenshotgenerator-77-75-77-123.seznam.cz 11
77.75.77.200 screenshotgenerator-77-75-77-200.seznam.cz 11
46.229.164.99 | NOT FOUND 10

Similarly to HTTP scans, we were looking for the described
activity in the opposite direction, i.e., crawling of external web
servers by a crawler from our network. Again, the detection
in the opposite direction is harder as there no clear thresholds
and many potential false positives. The thresholds for crawler
detection had to be set considerably higher to avoid false
positives. However, no significant results demonstrating the
advantages of this method were found.

V. DISCUSSION

In previous section we outlined three relevant classes of
network traffic. The classes cover similar traffic patterns and
can be characterized by outstanding numbers of observed
network flows. The first class revealed several interesting
patterns with ambiguous results as it can be split into several
subclasses according to the HTTP request used. The second

class is assumed to be solely malicious as it contains scanning
for application vulnerabilities. The third class is considered
mostly legitimate and is assumed to cover the activity of search
bots and crawlers. However, not all the bots and crawlers are
welcome in the network. Impacts on network security and the
confirmation of the assumptions are discussed in this section
for each class. There is also an interesting correlation between
the first and second class which suggests that the malicious
activity may be observed in both classes.

A. Class I: Brute-forcing and proxy servers

The first class is characterized by a large number of the
same HTTP request from one guest to one host. As we can
see in the results, several types of network activity are covered
by this class. Generally, we cannot distinguish between them
by the number of observed flows. The subclasses are easily
distinguishable by analysing the requested path.

The first subclass was observed most often and was identi-
fied as communication between client and proxy. This subclass
can be easily recognized by the substring proxy in a requested
path. All the detected hosts were legitimate proxy servers in
our network. The clients were located in networks of ISPs in
our country, so we suppose the clients were legitimate. The
implication for network security monitoring in this case is the
possibility of proxy detection. We are able to detect active
proxy servers in the network and identify their clients. There-
fore, we should be able to reveal illegitimate proxy servers in
the network or the illegitimate use of a proxy by unauthorized
clients, e.g., from networks with a bad reputation [18].

The second subclass was not observed often, but generated
the record number of flows. Paths containing a substring such
as admin or login suggest a request to a resource protected
by authentication. Paths ending in wp-login indicate the pres-
ence of an administrative interface of a well-known content
management system WordPress, which is prone to brute-force
password attacks [19]. This path was observed very often and
the high number of flows, typically over a short period of
time, indicates an attack. We accessed the requested URLs and
confirmed that the hosts are running WordPress and provide a
login page at the requested path. Another well-known content
management system, Joomla!, was also a target of brute-force
password attacks. The login page of Joomla! is located under
a generic-looking path /administrator/index.php and we have
confirmed the presence of Joomla! at the observed URLs.

An interesting conclusion is that the dictionary attacks are
rarely accompanied by any other network traffic from the
source IP address. There were neither scans nor any other
access to the host preceding the attack as is common among
SSH brute-force attacks [20]. We suppose this is due to
attackers using a “Google Hacking” technique [3]. In this
technique, a search engine (e.g. Google, hence the name) is
abused to do the reconnaissance for the attacker. The attacker
searches a string typical for a WordPress login page and the
search engine returns a list of WordPress instances which
can be accessed instantly. Several well-aimed Google searches
proved this assumption.



Although we can easily identify the two subclasses by the
presence of characteristic substrings, the group of requested
path is uncategorized and creates a third subclass. Paths such
as /node/ and /wiki/ do not indicate a vulnerable resource.
Dynamically generated content was observed on the requested
URLSs which suggests that the requests were legitimate. Highly
repeated requests for URLs of files for downloading can be
explained by partitioning the download, e.g., by download
managers, and, thus, is legitimate traffic.

B. Class II: HTTP scanners

The second class was marked as HTTP scanning. Requested
paths suggest that the scanning guests are searching for
specific web applications and their vulnerabilities. It is also
common that more paths, versions, or applications are probed
during one scan. This type of traffic is easily detectable and
highly interesting from a network security perspective. We
have not observed any traffic that could be mistaken for a
scan or marked as a false positive in this class. Even the
low threshold of scanned hosts is sufficient for detection of
a scanner as not every scanner accesses every host in the
network. Fairly good results can be achieved with a threshold
set to one fifth of the number of web servers in the network.

The HTTP scans were further analysed and correlated to
TCP SYN scans on port 80. The results confirm the malicious
nature of the scans. 46 % of the HTTP scans were preceded
or accompanied by a TCP SYN scan of the full range of our
network. The first option is that the scanner first obtains the
list of IP addresses with port 80 opened and then scans them
with HTTP requests. The delay between the two phases varies
from one hour to several days. The second option of HTTP
scanning is to send a HTTP request instantly after receiving a
response to the TCP SYN packet.

TCP SYN scanning is easily detectable using network
flow monitoring [21], but scanners can avoid detection by
scanning “low & slow” [22]. We propose using extended flow
monitoring to increase the detection rate of network scanning
and lower the amount of false positives. We observed scanners
that scanned no more than 5,000 IP addresses out of a /16
network range with a TCP SYN packet and continued HTTP
scanning the web servers they found. Naturally, the scanners
did not scan all the web servers, they typically found 100-
250 hosts. On the other hand, as we stated earlier, more than
100 scanned hosts is enough to identify a scanner, at least in
a network containing around 500 web servers. Therefore, we
are able to identify a scanner which would otherwise avoid
detection due to the high threshold of the TCP SYN scan
detection method.

Another interesting property of the HTTP scans is that some
of the requested HTTP paths were observed as a target of
brute-force attack as well. For example, the scanners were
looking for running instances of WordPress by requesting
paths ending in wp-login. The same paths were subjects of
thousands of repeated request, which we consider as a brute-
force attack. This lead us to suggestion that the attackers
search for victim of a brute-force attack using the HTTP scans,

just like it is common for attackers to perform port scan before
a brute-force attack against services such as SSH [20].

C. Class IlI: Web crawlers

The third recognized class of HTTP traffic was marked
as crawlers. The query had to be further specified due to
the interchangeability of crawlers and common guests when
measured on a single host. Covering more hosts in the network
provided us with a set of crawlers active in our network. The
crawlers were further analysed to filter out false positives.
Filtering methods consisted of querying reverse DNS records,
querying the WHOIS database, and checking User-Agents
used in HTTP requests. We confirmed the identified set was
populated by legitimate crawlers. The User-Agents in the
HTTP headers pointed to well-known search engines such
as Googlebot, Bing, and Baidu. Reverse DNS and WHOIS
records further confirmed the presumptions by referring to
domains names of the search engine owners.

Crawlers are mostly legitimate and welcome in the net-
work [23]. Almost all the crawlers we discovered were con-
firmed as legitimate. However, there are two reasons why we
included them in a security-related analysis. First reason is
small number of IP addresses that were identified as crawlers
using the flow-based method, but we were not able to tell
which any further information about them. Missing reverse
DNS records or empty User-Agent fields in HTTP queries lead
to suggestion that these IP addresses performed illegitimate
crawling, e.g., e-mail harvesting that aims at discovering spam
recipients [24].

The second reason of including crawlers in the analysis
is the large number of flows they generate. Any potential
detection method based on extended flow analysis would have
to deal with false positive alerts. Legitimate web crawlers can
be easily mistaken for malicious traffic due to their omnipres-
ence and large number of requests. On the other hand, we
have to be careful about false negatives, i.e., malicious hosts
disguising as crawlers to avoid attention. In addition to this,
operators of web crawlers may change the addresses of their
bots over time or not publish them at all, which makes creating
a whitelist a difficult task. Our method is based on monitoring
the behaviour of the potential crawler, which alleviates the
possibility of false positives or false negative detections. The
User-Agent field of HTTP extended flow record can also be
used for validation of the results.

VI. CONCLUSION

We presented an analysis of HTTP traffic using extended
flow monitoring in a large campus network. Contrary to
previously published analyses, we were the first to focus on
the security aspects. We identified three security-related traffic
classes: repeated requests, HTTP scans, and web crawlers.
Repeated request were further split into brute-force password
attacks and proxies according to the observed HTTP request.

This classification is based on an analysis of selected
elements of extended flow: source IP, destination IP, and



requested URL split into domain and path. Our analysis sup-
ported the hypothesis that flow monitoring extended to HTTP
headers (Layer 7) enables the straightforward detection of
current security issues compared to traditional flow monitoring
performed at Layers 3 and 4. Particularly, the brute-force
password attacks and proxies are hard to differentiate using
only traditional flow monitoring.

Malicious traffic is contained in the classes of HTTP scans
and repeated request, in which we were able to identify
brute-force attacks against well-known content management
systems. Web crawlers represent a class of legitimate traffic
that can be mistaken for malicious activity due to its large
number of generated flows. However, suspicious crawlers can
also be observed. We have also identified the use of proxies
as a traffic class. Using a proxy is not malicious by nature,
but is interesting for security enforcement. For example, the
presence of an unauthorized proxy may violate security policy
in the network.

The classification is based on counting number of extended
flows which share one or more parameters. The classification
can be thus easily converted into a threshold-based detection
method. We were able to detect malicious HTTP traffic in
large-scale network and process it from one point with a
low amount of false positives. Ten previously undetectable
brute-force password attacks and 10 HTTP scans per day
were detected on average in our campus network. In addition,
previously unknown proxies and web crawlers were observed.
The large-scale network monitoring approach proved benefi-
cial particularly during the detection of HTTP scans and web
crawlers, which are hardly detectable using only local system
logs or local monitoring.

Further work will involve the integration of the proposed
methods into the existing detection framework in the cam-
pus network. False positive and false negative ratios of the
detection methods based on our proposed methods will be
evaluated. The security incidents concerning HTTP will be
resolvable globally in the whole network and the security
awareness can be spread more effectively. Additionally, we
will use the discovered classes for setting up more effi-
cient honeypots to respond to the requested vulnerability.
This applies particularly to HTTP scanners and brute-force
password attacks. We should be able to equip a honeypot
with an appropriate resource, e.g., vulnerable web application
that the adversaries were looking for, to attract and analyse
specific attacks. The honeypot use case involves both network
monitoring and security incident analysis and can lead to an
effective reaction to upcoming threats including a reaction to
zero-day attacks.
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