337 research outputs found

    New models for the location of controversial facilities: A bilevel programming approach

    Get PDF
    Motivated by recent real-life applications in Location Theory in which the location decisions generate controversy, we propose a novel bilevel location model in which, on the one hand, there is a leader that chooses among a number of fixed potential locations which ones to establish. Next, on the second hand, there is one or several followers that, once the leader location facilities have been set, chooses his location points in a continuous framework. The leader’s goal is to maximize some proxy to the weighted distance to the follower’s location points, while the follower(s) aim is to locate his location points as close as possible to the leader ones. We develop the bilevel location model for one follower and for any polyhedral distance, and we extend it for several followers and any ℓp-norm, p ∈ Q, p ≥ 1. We prove the NP-hardness of the problem and propose different mixed integer linear programming formulations. Moreover, we develop alternative Benders decomposition algorithms for the problem. Finally, we report some computational results comparing the formulations and the Benders decompositions on a set of instances.Fonds de la Recherche Scientique - FNRSMinisterio de Economía y CompetitividadFondo Europeo de Desarrollo Regiona

    Robust network optimization under polyhedral demand uncertainty is NP-hard

    Get PDF
    AbstractMinimum cost network design/dimensioning problems where feasibility has to be ensured w.r.t. a given (possibly infinite) set of scenarios of requirements form an important subclass of robust LP problems with right-hand side uncertainty. Such problems arise in many practical contexts such as Telecommunications, logistic networks, power distribution networks, etc. Though some evidence of the computational difficulty of such problems can be found in the literature, no formal NP-hardness proof was available up to now. In the present paper, this pending complexity issue is settled for all robust network optimization problems featuring polyhedral demand uncertainty, both for the single-commodity and multicommodity case, even if the corresponding deterministic versions are polynomially solvable as regular (continuous) linear programs. A new family of polynomially solvable instances is also discussed

    Solving mixed integer bilinear problems using MILP Formulations

    Get PDF

    Optimization with multivariate conditional value-at-risk constraints

    Get PDF
    For many decision making problems under uncertainty, it is crucial to develop risk-averse models and specify the decision makers' risk preferences based on multiple stochastic performance measures (or criteria). Incorporating such multivariate preference rules into optimization models is a fairly recent research area. Existing studies focus on extending univariate stochastic dominance rules to the multivariate case. However, enforcing multivariate stochastic dominance constraints can often be overly conservative in practice. As an alternative, we focus on the widely-applied risk measure conditional value-at-risk (CVaR), introduce a multivariate CVaR relation, and develop a novel optimization model with multivariate CVaR constraints based on polyhedral scalarization. To solve such problems for finite probability spaces we develop a cut generation algorithm, where each cut is obtained by solving a mixed integer problem. We show that a multivariate CVaR constraint reduces to finitely many univariate CVaR constraints, which proves the finite convergence of our algorithm. We also show that our results can be naturally extended to a wider class of coherent risk measures. The proposed approach provides a flexible, and computationally tractable way of modeling preferences in stochastic multi-criteria decision making. We conduct a computational study for a budget allocation problem to illustrate the effect of enforcing multivariate CVaR constraints and demonstrate the computational performance of the proposed solution methods

    Polyhedral Approximations of Quadratic Semi-Assignment Problems, Disjunctive Programs, and Base-2 Expansions of Integer Variables

    Get PDF
    This research is concerned with developing improved representations for special families of mixed-discrete programming problems. Such problems can typically be modeled using different mathematical forms, and the representation employed can greatly influence the problem\u27s ability to be solved. Generally speaking, it is desired to obtain mixed 0-1 linear forms whose continuous relaxations provide tight polyhedral outer-approximations to the convex hulls of feasible solutions. This dissertation makes contributions to three distinct problems, providing new forms that improve upon published works. The first emphasis is on devising solution procedures for the classical quadratic semi-assignment problem(QSAP), which is an NP-hard 0-1 quadratic program. The effort begins by using a reformulation-linearization technique to recast the problem as a mixed 0-1 linear program. The resulting form provides insight into identifying special instances that are readily solvable. For the general case, the form is shown to have a tight continuous relaxation, as well as to possess a decomposable structure. Specifically, a Hamiltonian decomposition of a graph interpretation is devised to motivate a Lagrangian dual whose subproblems consist of families of separable acyclic minimum-cost network flows. The result is an efficient approach for computing tight lower bounds on the optimal objective value to the original discrete program. Extensive computational experience is reported to evaluate the tightness of the representation and the expedience of the algorithm. The second contribution uses disjunctive programming arguments to model the convex hull of the union of a finite collection of polytopes. It is well known that the convex hull of the union of n polytopes can be obtained by lifting the problem into a higher-dimensional space using n auxiliary continuous (scaling) variables. When placed within a larger optimization problem, these variables must be restricted to be binary. This work examines an approach that uses fewer binary variables. The same scaling technique is employed, but the variables are treated as continuous by introducing a logarithmic number of new binary variables and constraints. The scaling variables can now be substituted from the problem. Moreover, an emphasis of this work, is that specially structured polytopes lead to well-defined projection operations that yield more concise forms. These special polytopes consist of knapsack problems having SOS-1 and SOS-2 type restrictions. Different projections are defined for the SOS-2 case, leading to forms that serve to both explain and unify alternative representations for piecewise-linear functions, as well as to promote favorable computational experience. The third contribution uses minimal cover and set covering inequalities to define the previously unknown convex hulls of special sets of binary vectors that are lexicographically lower and upper bounded by given vectors. These convex hulls are used to obtain ideal representations for base-2 expansions of bounded integer variables, and also afford a new perspective on, and extend convex hull results for, binary knapsack polytopes having weakly super-decreasing coefficients. Computational experience for base-2 expansions of integer variables exhibits a reduction in effort

    Decomposition Methods for Nonlinear Optimization and Data Mining

    Full text link
    We focus on two central themes in this dissertation. The first one is on decomposing polytopes and polynomials in ways that allow us to perform nonlinear optimization. We start off by explaining important results on decomposing a polytope into special polyhedra. We use these decompositions and develop methods for computing a special class of integrals exactly. Namely, we are interested in computing the exact value of integrals of polynomial functions over convex polyhedra. We present prior work and new extensions of the integration algorithms. Every integration method we present requires that the polynomial has a special form. We explore two special polynomial decomposition algorithms that are useful for integrating polynomial functions. Both polynomial decompositions have strengths and weaknesses, and we experiment with how to practically use them. After developing practical algorithms and efficient software tools for integrating a polynomial over a polytope, we focus on the problem of maximizing a polynomial function over the continuous domain of a polytope. This maximization problem is NP-hard, but we develop approximation methods that run in polynomial time when the dimension is fixed. Moreover, our algorithm for approximating the maximum of a polynomial over a polytope is related to integrating the polynomial over the polytope. We show how the integration methods can be used for optimization. The second central topic in this dissertation is on problems in data science. We first consider a heuristic for mixed-integer linear optimization. We show how many practical mixed-integer linear have a special substructure containing set partition constraints. We then describe a nice data structure for finding feasible zero-one integer solutions to systems of set partition constraints. Finally, we end with an applied project using data science methods in medical research.Comment: PHD Thesis of Brandon Dutr

    Optimization with multivariate conditional value-at-risk constraints

    Get PDF
    For many decision making problems under uncertainty, it is crucial to develop risk-averse models and specify the decision makers' risk preferences based on multiple stochastic performance measures (or criteria). Incorporating such multivariate preference rules into optimization models is a fairly recent research area. Existing studies focus on extending univariate stochastic dominance rules to the multivariate case. However, enforcing multivariate stochastic dominance constraints can often be overly conservative in practice. As an alternative, we focus on the widely-applied risk measure conditional value-at-risk (CVaR), introduce a multivariate CVaR relation, and develop a novel optimization model with multivariate CVaR constraints based on polyhedral scalarization. To solve such problems for finite probability spaces we develop a cut generation algorithm, where each cut is obtained by solving a mixed integer problem. We show that a multivariate CVaR constraint reduces to finitely many univariate CVaR constraints, which proves the finite convergence of our algorithm. We also show that our results can be naturally extended to a wider class of coherent risk measures. The proposed approach provides a flexible, and computationally tractable way of modeling preferences in stochastic multi-criteria decision making. We conduct a computational study for a budget allocation problem to illustrate the effect of enforcing multivariate CVaR constraints and demonstrate the computational performance of the proposed solution methods

    Approximation Limits of Linear Programs (Beyond Hierarchies)

    Full text link
    We develop a framework for approximation limits of polynomial-size linear programs from lower bounds on the nonnegative ranks of suitably defined matrices. This framework yields unconditional impossibility results that are applicable to any linear program as opposed to only programs generated by hierarchies. Using our framework, we prove that O(n^{1/2-eps})-approximations for CLIQUE require linear programs of size 2^{n^\Omega(eps)}. (This lower bound applies to linear programs using a certain encoding of CLIQUE as a linear optimization problem.) Moreover, we establish a similar result for approximations of semidefinite programs by linear programs. Our main ingredient is a quantitative improvement of Razborov's rectangle corruption lemma for the high error regime, which gives strong lower bounds on the nonnegative rank of certain perturbations of the unique disjointness matrix.Comment: 23 pages, 2 figure
    corecore