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Abstract

This research is concerned with developing improved representations for special families

of mixed-discrete programming problems. Such problems can typically be modeled using different

mathematical forms, and the representation employed can greatly influence the problem’s ability

to be solved. Generally speaking, it is desired to obtain mixed 0-1 linear forms whose continuous

relaxations provide tight polyhedral outer-approximations to the convex hulls of feasible solutions.

This dissertation makes contributions to three distinct problems, providing new forms that improve

upon published works.

The first emphasis is on devising solution procedures for the classical quadratic semi-

assignment problem (QSAP), which is an NP-hard 0-1 quadratic program. The effort begins by

using a reformulation-linearization technique to recast the problem as a mixed 0-1 linear program.

The resulting form provides insight into identifying special instances that are readily solvable. For

the general case, the form is shown to have a tight continuous relaxation, as well as to possess

a decomposable structure. Specifically, a Hamiltonian decomposition of a graph interpretation is

devised to motivate a Lagrangian dual whose subproblems consist of families of separable acyclic

minimum-cost network flows. The result is an efficient approach for computing tight lower bounds

on the optimal objective value to the original discrete program. Extensive computational experience

is reported to evaluate the tightness of the representation and the expedience of the algorithm.

The second contribution uses disjunctive programming arguments to model the convex hull

of the union of a finite collection of polytopes. It is well known that the convex hull of the union of

n polytopes can be obtained by lifting the problem into a higher-dimensional space using n auxiliary

continuous (scaling) variables. When placed within a larger optimization problem, these variables

must be restricted to be binary. This work examines an approach that uses fewer binary variables.

The same scaling technique is employed, but the variables are treated as continuous by introducing a
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logarithmic number of new binary variables and constraints. The scaling variables can now be substi-

tuted from the problem. Moreover, an emphasis of this work, is that specially structured polytopes

lead to well-defined projection operations that yield more concise forms. These special polytopes

consist of knapsack problems having SOS-1 and SOS-2 type restrictions. Different projections are

defined for the SOS-2 case, leading to forms that serve to both explain and unify alternative repre-

sentations for piecewise-linear functions, as well as to promote favorable computational experience.

The third contribution uses minimal cover and set covering inequalities to define the pre-

viously unknown convex hulls of special sets of binary vectors that are lexicographically lower and

upper bounded by given vectors. These convex hulls are used to obtain ideal representations for

base-2 expansions of bounded integer variables, and also afford a new perspective on, and extend

convex hull results for, binary knapsack polytopes having weakly super-decreasing coefficients. Com-

putational experience for base-2 expansions of integer variables exhibits a reduction in effort.

iii



Dedication

I dedicate this to my father, Dr. John Dement Muldoon III, who was unable to see the

completion of my work, but would have been proud of this achievement.

iv



Acknowledgments

The completion of this work was made possible by the support of so many people. I would

particular like to thank my wonderful girlfriend, Collin Emmel, for providing motivation and encour-

agement, my mom, Elizabeth Muldoon, for believing in me and supporting me throughout graduate

school, my sister, Dr. Mary Beth Ross, who is the “real” doctor in the family, my sister, Dr. Tricia

Brown, who showed me that a Ph.D. in math is possible, and my twin brother, William Muldoon,

who is always there for me.

Also, I would like to thank my committee members, Dr. Margaret M. Wiecek, Dr. Matthew

J. Saltzman, and Dr. Pietro L. Belotti, who always provided excellent probing questions, advised

me in directions to pursue, and provided supportive feedback about my work.

Last, I own a huge debt of gratitude to my advisor Dr. Warren P. Adams who has worked

tirelessly with me to complete my research. Without his knowledge, dedication, and support I would

not be here today. I thank him for making my research much more enjoyable and stimulating.

v



Table of Contents

Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Lower Bounds of the Quadratic Semi-Assignment Problem using a Graph De-
composition of the Level-1 RLT Formulation . . . . . . . . . . . . . . . . . . . . . 5
2.1 Definition and Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Mixed 0-1 Linear Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Graph Representation and Readily-Solvable Cases . . . . . . . . . . . . . . . . . . . 12
2.4 Decomposition Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Solving the Lagrangian Dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Modeling Disjunctions of Polytopes with Application to Piecewise Linear Func-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Reduction of Binary Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Problem Reduction and Exploitation of Structure . . . . . . . . . . . . . . . . . . . . 34
3.4 Modeling Piecewise-Linear Functions using SOS-2 Restrictions . . . . . . . . . . . . 59
3.5 Computational Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Ideal Representations of Lexicographic Orderings and Base-2 Expansions of
Integer Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Minimal Cover Description of Bounded Integer Variables . . . . . . . . . . . . . . . . 79
4.3 Lexicographic Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4 0-1 Knapsack Polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5 Computational Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

vi



List of Tables

2.1 QSAP Instances for Processor Problems . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 QSAP Instances with Uniform Integer Random Coefficients . . . . . . . . . . . . . . 24

3.1 Size of formulations for a single piecewise-linear function. . . . . . . . . . . . . . . . 69
3.2 Size of a single transportation problem. . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3 Average computational times for q = 13, 17, 25, 33. . . . . . . . . . . . . . . . . . . . 72

4.1 Computational comparisons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

vii



List of Figures

2.1 Graph representations of Problem LP2(S) with m = 6 for different sets S. . . . . . . 13
2.2 LP2(S′) network with S′ of (2.13) when m = n = 3. . . . . . . . . . . . . . . . . . . 14
2.3 Hamiltonian decomposition of the complete graph G on m = 6 nodes. . . . . . . . . 16

3.1 Piecewise-linear function f(y) with q = 5 break points. . . . . . . . . . . . . . . . . . 61
3.2 Example of the cost function fij for arc yij with q = 5. . . . . . . . . . . . . . . . . . 71

viii



Chapter 1

Introduction

Discrete optimization problems represent a large family of mathematical programs in which

an objective function is to be optimized over a set of discrete variables. The objective function

is usually linear, but can also be quadratic or polynomial. Mixed-discrete programs arise when a

subset of the variables are restricted to lie within a discrete set, and the remaining variables are

allowed to be continuous.

The difficulty with solving discrete programs is the combinatorial nature of the solution

space. Given a pure 0-1 problem in n variables, so that each variable is restricted to be binary-valued,

there exist 2n possible solutions. In order to optimize discrete problems, each solution must be either

explicitly enumerated, or implicitly examined. Here, binary vectors can be implicitly eliminated from

consideration by deeming them to be non-optimal or infeasible. Since linear programs are typically

far simpler to solve than their discrete counterparts, these former problems are often used to compute

bounds on the latter, and thereby provide a fathoming mechanism for non-optimal solutions.

Discrete optimization problems have received considerable attention in the operations re-

search literature [3, 5, 6, 7, 8] for two main reasons. First, there are a wide variety of important

real-world problems that give rise to such forms. Examples include timetabling, scheduling, mixing,

pooling, network, transportation, production planning, and cutting problems. Second, many of these

problems are notoriously difficult to solve. Researchers and practitioners alike agree that there is a

large discrepancy between the size and complexity of problems confronting society and those that

can be adequately solved. The challenge here is to construct mixed 0-1 linear formulations of non-

linear and/or linear problems in such a way that the feasible regions to the continuous relaxations
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afford tight polyhedral relaxations. In this manner, the number of binary solutions that must be

explicitly considered can be drastically reduced.

This dissertation contributes to the solving of discrete programs on three fronts. First, it

presents a novel mixed 0-1 linear formulation for the famous quadratic semi-assignment problem,

and examines and exploits the underlying mathematical structure. Second, it provides improved

models for representing the union of a finite set of polytopes. Third, it gives an explicit convex hull

representation for special sets of binary variables that are lexicographically bounded between two

binary vectors.

The first contribution is presented in Chapter 2 with a study of the famous 0-1 quadratic

program known as the quadratic semi-assignment problem (QSAP). This problem has applications

in clustering, equipartitioning, coloring, and scheduling. Given m sets of n objects each, the problem

is to select one object from each set so as to minimize an overall selection cost. The cost includes

linear terms that reflect the choice of individual items, and quadratic terms that record interactions

between pairs of items. Mathematically, the problem is NP-hard, and has nm possible solutions.

The study begins by using a reformulation-linearization technique [2] to rewrite the problem as a

mixed 0-1 linear program in a higher-variable space. Then this formulation is used to identify several

easily solvable special cases. These cases arise when the objective function is sparse relative to the

number of nonzero coefficients. For general instances of the QSAP, a Hamiltonian decomposition

of an underlying graph representation is strategically devised to create replicates of certain sets of

variables, which are in turn equated using linking constraints. A Lagrangian dual is then formed

by placing these linking constraints into the objective function. The resulting subproblems separate

into a family of minimum-cost network flows. The dual multiplier adjustments in the master prob-

lem are accomplished via a combination of subgradient optimization and a dual ascent procedure.

Computational results are reported for various data sets.

Chapter 3 presents the second contribution. Consider a collection of n polytopes, where it

is desired that a set of decision variables x must lie within at least one such polytope. The convex

hull of the union of these polytopes [4] can be obtained by multiplying each polytope by a distinct

nonnegative scaling variable, by defining new variables to represent the scaled variables, by having

the scaled variables sum to x, and by restricting the scaling variables to sum to one. When contained

within a larger optimization problem, these scaling variables must be binary. Our approach uses

a method of [1] to relax the binary restrictions on the n scaling variables to nonnegativity by
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defining dlog2ne new additional binary variables and constraints. The net effect is to reduce the

number of binary variables from n to dlog2ne at the expense of dlog2ne new variables and equations.

The continuous scaling variables can then be substituted from the problem. When the polytopes

have special structures, suitable projection operations permit the rewriting of the problem in lower-

dimensional spaces. Included within these special polytopes is the set of SOS-2 restrictions. Our

projections serve to explain and unify different ideal representations for piecewise-linear functions.

They also lead to favorable computational experience for balanced transportation problems having

piecewise-linear objective functions.

Chapter 4 continues our study of tight polyhedral outer-approximations of discrete sets by

providing an explicit algebraic description of the convex hull of the base-2 expansion of a bounded

integer variable. Whereas base-2 expansions of bounded integer variables are classical in discrete

optimization, and whereas tight polyhedral outer-approximations of 0-1 linear programs are widely-

recognized as being a key ingredient for improved solution techniques, these two concepts have not

been combined to motivate convex hull (ideal) representations of such expansions. Given an integer

variable, this chapter provides an ideal form in the original variable space by explicitly describing

the additional inequalities needed to capture the convex hull. The representation requires at most

dlog2ne− 1 minimal-cover type inequalities, where n is the number of permissible realizations of the

discrete variable.

Our arguments in Chapter 4 are based on a lexicographic ordering of binary vectors. Given

a binary vector, the convex hull of the set of binary vectors that is lexicographically less than or

equal to this chosen vector is described using minimal cover inequalities. This convex hull form is

applied to model base-2 expansions of bounded integer variables. A similar description gives the

convex hull for the set of vectors that is lexicographically greater than or equal to a given binary

vector. We combine these results to characterize the convex hull of the set of 0-1 vectors that

is lexicographically bounded between two binary vectors. This characterization leads to the ideal

representation of binary knapsack polytopes having weakly super-decreasing coefficients, where the

knapsack constraint can have both lower and upper bounds.
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Chapter 2

Lower Bounds of the Quadratic

Semi-Assignment Problem using a

Graph Decomposition of the

Level-1 RLT Formulation

2.1 Definition and Formulation

The quadratic semi-assignment problem (QSAP) is an NP-hard, nonlinear 0-1 optimization

program that is expressed mathematically as:

P : min


m∑
i=1

n∑
j=1

Cijxij +

m−1∑
i=1

n∑
j=1

m∑
k=i+1

n∑
l=1

Dijklxijxkl : x ∈X, x binary

 ,

where

X ≡
{
x ∈ Rmn :

n∑
j=1

xij = 1 ∀ i = 1, . . . ,m; xij ≥ 0 ∀ (i, j), i = 1, . . . ,m, j = 1, . . . , n

}
. (2.1)

Problem P is interpreted as follows. Given m sets consisting of n objects each, the problem seeks

to select exactly one object from each set so that the total cost of selection is minimized. Here,

for each i ∈ M ≡ {1, . . . ,m} and j ∈ N ≡ {1, . . . , n}, the binary variable xij equals 1 if object
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i from set j is selected, and 0 otherwise. The equality restrictions in X enforce that exactly one

item be selected from each set. For each (i, j) with i ∈ M and j ∈ N, the scalar Cij is the cost of

selecting item i from set j while for each (i, j, k, `) with i ∈ M, j ∈ N, k ∈ M and ` ∈ N having

i < k, the scalar Dijk` records the cost of selecting item i from set j and item k from set `. In this

manner, the cost Cij is incurred if and only if xij = 1 and the cost Dijk` is incurred if and only if

xij = xk` = 1. The quadratic terms in the objective function include, without loss of generality, only

those (i, j, k, `) terms having i < k because x2
ij = xij and because xijxk` = xk`xij . (For notational

convenience and unless otherwise stated, the indices i and k lie in the set M and the indices j and

` lie in the set N.) Applications of the quadratic semi-assignment arise in such areas as clustering,

equipartitioning, colorings and scheduling [9, 11, 24, 25].

The difficulty with solving Problem P is the combinatorial nature of the solution space.

Given m sets of n items each, there exist nm possible solutions that must be considered. The special

case having Dijk` = 0 is trivially solvable as m separable linear minimization problems. Some

problem instances can be reformulated in terms of a network when certain subsets of the Dijk`

coefficients are zero. For these cases, the problem is known to be polynomially solvable [14]. In

addition, the authors [15, 16] demonstrated a method to solve special cases in which the QSAP is

represented as a reducible graph. However, the general case is known to be NP -hard [20].

Solving the general case of the QSAP first involves finding tight lower bounds on a linear

relaxation of this quadratic problem. This has been accomplished in the literature via an RLT

formulation of the QSAP. A theoretical paper [21] proves which level of the RLT is necessary for

the optimal value of the continuous relaxation to be the same as the optimal value of the original

formulation. The paper [7] shows that the best reduction of the QSAP using a quadratic pseudo-

Boolean function with nonnegative coefficients is the level-1 RLT. The papers [15, 16] give lower

bounds for the QSAP by decomposing it into reducible graphs within a Lagrangian dual framework

for special instances of the QSAP in which subsets of theDijk` are zero. The authors [18] demonstrate

that the level-1 RLT formulation of the symmetric QSAP gives integer optimal solutions in many

cases. In addition, the paper [19] shows that tighter lower bounds of the QSAP are achieved by

using the level-1 RLT formulation and introducing additional cut- and clique-inequalities.

In general, as demonstrated above, the level-1 RLT representation provides good lower

bounds for the QSAP. But solving this RLT representation using powerful linear programming

software such as CPLEX becomes more difficult as the size of the problem increases because the
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number of constraints and variables grow exponentially. As a result, it is necessary to develop an

efficient algorithm to handle such large linear programming instances in order to obtain tight lower

bounds for larger instances of the QSAP.

The rest of this chapter is organized as follows. Section 2 gives the standard level-1 RLT

representation of the QSAP, shows how this formulation can be reduced via variable substitutions,

gives a family of redundant constraints, and explains the network structure present. Section 3 follows

with a novel explanation of the level-1 RLT formulation in terms of a graph and provides several new

readily-solvable special cases. Next, the general case of the QSAP is considered in Section 4 where

a Hamiltonian decomposition on the graph representation of the formulation is used to decompose

the problem into separable networks. This decomposition requires replicate variables x with linking

constraints, which are added to the objective function via dual multipliers. Section 5 describes a

combination subgradient algorithm and dual ascent procedure to solve the Lagrangian dual created

by the decomposition. This section concludes with computational comparisons on the lower bounds

given by our method compared to the actual lower bounds for large instances of the QSAP provided

by CPLEX. Section 6 offers concluding remarks.

2.2 Mixed 0-1 Linear Representation

Our approach for obtaining lower bounds on Problem P is to convert it into an equivalent

mixed 0-1 linear program. There are various ways to construct such linear representations and the

resulting forms can have different sizes and relaxation strengths. Indeed, some linear forms are

available in the literature and we choose one given in [7] defined as the best reduction of the QSAP.

This linearization has significant mathematical structure which can be exploited and dominates

existing forms in terms of relaxation strength.

2.2.1 Level-1 RLT Form

We construct a mixed 0-1 linear representation of Problem P by applying the two-step,

reformulation-linearization technique (RLT) of [22, 23]. Depending on the specific implementation,

different level representations result. The level-1 RLT form [2, 3] (see also [23, pages 104–105] for

treatment of equality restrictions) is obtained in the following manner. The reformulation step

consists of multiplying every constraint
∑
j xij = 1 ∀ i and every nonnegativity restriction xij ≥
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0 ∀ (i, j) found in X by each variable xk`, and by appending these new (redundant) restrictions to

the problem. It then substitutes x2
ij = xij for all (i, j) and enforces xijxk` = xk`xij for all (i, j, k, `)

with i < k. (This binary substitution eliminates each term of the form xijxi` from the problem by

setting it equal to xij when j = ` and equal to 0 when j 6= `.) The linearization step substitutes a

continuous variable wijk` throughout the objective function and constraints for each occurrence of

the product xijxk` having (i, j, k, `) with i 6= k. The result is below, where we use the notation LP1

to denote the first linear representation of Problem P.

LP1 : min
∑
i

∑
j

Cijxij +
∑
i

∑
j

∑
k>i

∑
`

Dijk`wijk`

s.t.
∑
j

wijk` = xk` ∀ (i, k, `), i 6= k (2.2)

wijk` = wk`ij ∀ (i, j, k, `), i < k (2.3)

wijk` ≥ 0 ∀ (i, j, k, `), i 6= k (2.4)

x ∈X, x binary

Equations (2.2) of LP1 result from multiplying the constraints
∑
j xij = 1 for all i found

within X by each variable xk`. Those constraints having i = k and those variables wijk` having

i = k are effectively removed from consideration by the x2
ij = xij substitutions. Inequalities (2.4)

result from multiplying the xij ≥ 0 restrictions of X by each xk` having k 6= i, and equations (2.3)

are the linearized versions of the restrictions that xijxk` = xk`xij for all (i, j, k, `) having i < k.

The RLT theory stipulates that the nonlinear 0-1 program, Problem P, can be optimized

by solving the mixed 0-1 linear program, Problem LP1. This follows since, for any (x̂, ŵ) feasible

to LP1, the restrictions (2.2)–(2.4) enforce that ŵijk` = x̂ij x̂k` for all (i, j, k, `) having i 6= k.

Furthermore, ν(LP1) = ν(P ) and ν(LP1) ≤ ν(P ), where ν(LP1), ν(P ), and ν(LP1) denote the

optimal objective function values of Problems LP1, P, and LP1 respectively, with LP1 denoting the

continuous relaxation of LP1 obtained by replacing the x binary restrictions with x ≥ 0. Throughout

the remainder of the chapter, the notation ν(•) and • is used to denote the optimal objective function

value and the continuous relaxation of the program •, respectively, where the continuous relaxation

replaces x binary with x ≥ 0.

The following lemma identifies sets of constraints that are redundant within X of LP1.
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Lemma 1

Given any i ∈M and k ∈M with i < k, consider the two equations

∑
j

xij = 1 and
∑
`

xk` = 1 (2.5)

found in X, and the 2n equations

∑
j

wijk` = xk` ∀ ` and
∑
`

wijk` = xij ∀ j (2.6)

implied by (2.2) and (2.3), where the left equations in (2.6) result from multiplying the first restriction

in (2.5) by each xk` for all `, and where the right equations in (2.6) result from multiplying the second

restriction in (2.5) by each xij for all j, invoking (2.3) where needed. Then in the presence of (2.6),

either equation in (2.5) is implied by the other.

Proof

Follows directly by summing the left equations of (2.6) over ` and the right equations of (2.6) over

j. 2

Lemma 1 gives rise to a useful result, stated as a corollary below.

Corollary 1

For any p ∈ {1, . . . ,m−1}, consider all (m−p) possible (i, k) pairs of Lemma 1 having i = p, . . . ,m−1

and k = i+ 1, and compute the 2(m− p)n associated equations of the type (2.6) for these (m− p)

pairs to obtain

∑
j

wij(i+1)` = x(i+1)` ∀ (i, `), p ≤ i ≤ m− 1 and

∑
`

wij(i+1)` = xij ∀ (i, j), p ≤ i ≤ m− 1. (2.7)

Then, in the presence of (2.7), the equation
∑
j xpj = 1 implies the restrictions

∑
j xij = 1 for all

i ∈ {p+ 1, . . . ,m} of X.
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Proof

For each i ∈ {p, . . . ,m − 1}, the 2n equations of (2.7) are the equations of (2.6) with k = i + 1, so

that Lemma 1 gives us
∑
j xij =

∑
j x(i+1)j , establishing the result. 2

Problem LP1 has exploitable structure. The variables wijk` having i > k can be substituted

from the problem using (2.3), and then (2.3) can be removed. This substitution reduces the size

in terms of both the numbers of variables and constraints. Upon performing this substitution and

then making the simplification of Corollary 1 for p = 1 to replace x ∈ X with the single equation∑
j x1j = 1, as all associated 2(m−1)n equations in (2.7) are present in LP1, we obtain an equivalent

mixed 0-1 linear representation of P which we denote by LP2(T ). Here, LP2(S) is the optimization

problem given below as a function of sets S ⊆ T where

T ≡ {(i, k) : i < k}. (2.8)

LP2(S) : min
∑
i

∑
j

Cijxij +
∑

(i,k)∈S

∑
j

∑
`

Dijk`wijk`

s.t.
∑
j

wijk` = xk` ∀ (i, k, `) with (i, k) ∈ S (2.9)

∑
`

wijk` = xij ∀ (i, j, k) with (i, k) ∈ S (2.10)

wijk` ≥ 0 ∀ (i, j, k, `) with (i, k) ∈ S (2.11)∑
j

x1j = 1, x binary

These modifications to obtain LP2(T ), while reducing the problem size, do not change the set of

feasible solutions to either LP1 or to its continuous relaxation, and they do not change the objective

function value at any point. Thus, ν(P ) = ν(LP1) = ν(LP2(T )) and ν(P ) ≥ ν(LP1) = ν(LP2(T )).

Note that an interpretation of (2.9) and (2.10) is that each equation
∑
j xij = 1 of X is multiplied

by every xk` with k > i to obtain (2.9) and each equation
∑
` xk` = 1 of X is multiplied by every

xij with i < k to obtain (2.10).

We pose two remarks relative to the general structure of LP2(S) that will be later used.
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Remark 1

Depending on the structure of the objective function coefficients Dijk`, more concise RLT represen-

tations of Problem P than LP2(T ) may be available. In particular, suppose only a subset of the

coefficients Dijk` are nonzero, and that instead of LP2(T ), we construct LP2(S′) where S′ ⊆ T has

S′ ≡ {(i, k) : Dijk` 6= 0 for some (j, l)}. Then LP2(S′) is a potentially reduced form of LP2(T ) that

preserves two important properties. First, the replacement of x ∈ X in LP1 with
∑
j x1j = 1 re-

mains valid if the conditions of Corollary 1 with p = 1 are met; that is, if the set S′ contains all (i, k)

pairs with k = i+1. Second, and again assuming the conditions of Corollary 1 are met, LP2(S′) is an

equivalent linear formulation of P with the same relaxation strength as LP2(T ). Equivalence to P is

established by showing that, for binary x, wijk` = xijxk` for all (i, j, k, `) with (i, k) ∈ S′. Consider

any such wijk`, say wrstu, and observe that (2.9) and (2.11) with (i, k, `) = (r, t, u) imply wrstu = 0

when xtu = 0. (In fact, wrst` = 0 for all ` such that xt` = 0.) Similarly, (2.10) and (2.11) with

(i, j, k) = (r, s, t) imply wrstu = 0 when xrs = 0. On the other hand, suppose that xrs = xtu = 1.

Then (2.10) with (i, j, k) = (r, s, t) gives
∑
` wrst` = 1. Since wrst` = 0 for all ` 6= u as xt` = 0 for

all ` 6= u, we have wrstu = 1. The relaxation strength remains unchanged since, given any (x̂, ŵ)

feasible to LP2(S′), the point (x̂, w̄) having

w̄ijk` =


ŵijk` if (i, k) ∈ S′

x̂ij x̂k` otherwise

∀ (i, j, k, `) with (i, k) ∈ T

is feasible to LP2(T ) with the same objective value.

Remark 2

Given any nonnegative x̂ ∈ X in LP2(T ), the reduced linear program over w decomposes into

(m(m − 1))/2 bipartite networks. Letting LP2x̂(T ) denote LP2(T ) with x fixed to some such x̂,

we have

LP2x̂(T ) :
∑
i

∑
j

Cij x̂ij +
∑

(i,k)∈T

min

∑
j

∑
`

Dijk`wijk` :
∑
j

wijk` = x̂k` ∀ `,

∑
`

wijk` = x̂ij ∀ j, wijk` ≥ 0 ∀ (j, `)

}
. (2.12)

The authors of [17] also observed a variation of Remark 2 in terms of a level-1 RLT representation
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of the single allocation hub location problem under congestion (SAHLPC) which is a specific case of

the generalized quadratic assignment problem (GQAP). The GQAP has the same constraints and

objective function as the QSAP defined by Problem P but includes additional constraints other

than those found in X of (2.1). For the SAHLPC, the additional constraints only include the x

variables so when there exists a fixed x̂ these constraints are unnecessary leaving a similar formulation

given by (2.12).

2.3 Graph Representation and Readily-Solvable Cases

The process of generating the restrictions of LP2(S) from P via the RLT approach of

multiplying the constraints in X by variables xk` can be envisioned using a graph representation.

The graph provides insight into Corollary 1, the equivalence between LP1 and LP2(S) for select

sets S, and also promotes special cases that can be more easily solved. In addition, a factorization of

this graph will serve in the next section to motivate a Lagrangian decomposition for solving LP2(T ),

where the subproblems are comprised of acyclic shortest path networks.

To begin, recall the construction of (2.9) and (2.10) of LP2(S) from X. Given any (i, k) ∈ S,

the n equations in (2.9) are computed by multiplying
∑
j xij = 1 with the variable xk` for each `,

while the n equations in (2.10) are computed by multiplying
∑
` xk` = 1 with the variable xij for

each j. Such multiplications can be represented by a graph as follows. Define a graph G on m nodes,

where node i corresponds to the ith equation of X; that is,
∑
j xij = 1. Connect two nodes i and k,

with i < k, of the graph if equation i of X is multiplied by xk` for each ` and equation k of X is

multiplied by xij for each j. This defines G in terms of LP2(S) by having an edge connecting nodes

i and k if (i, k) ∈ S. In this manner, the graph corresponding to LP2(T ), with T as defined in (2.8),

is complete on m nodes. The complete graph for m = 6 is given in Figure 2.1a.

This graph interpretation provides insight into Corollary 1 and the equivalence of LP1 with

LP2(S) for select sets S. Consider any S ⊆ T, and the associated graph G. Corollary 1 states that

if that path which sequentially progresses from node p to m in ascending node order lies within G,

then the equality
∑
j xpj = 1 and the restrictions in (2.9) and (2.10) having (i, k) = (i, i + 1) for

i ∈ {p, . . . ,m− 1} combine to imply
∑
j xij = 1 for all i ∈ {p+ 1, . . . ,m}. However, since the nodes

can be arbitrarily numbered, the Corollary can be restated in terms of G as follows: Given any two

nodes r and s that are connected by a path in G, the equality
∑
j xrj = 1 and the restrictions (2.9)

12
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(a) LP2(T ) with T of (2.8).
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(b) LP2(S′) with S′ of (2.13).
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(c) LP2(S) solvable via n net-
works.

Figure 2.1: Graph representations of Problem LP2(S) with m = 6 for different sets S.

and (2.10) associated with those pairs (i, k) ∈ T having node i connected to node k by an arc within

this path, combine to imply that
∑
j xtj = 1 for each node t on this path. As a consequence, the

replacement of x ∈ X in LP1 with any equation of the form
∑
j xij = 1 for i ∈ M in forming

LP2(S) preserves equivalence between these two problems provided that the graph G, defined in

terms of S, is connected.

Graph G can be used to identify readily solvable special cases of Problem P. Specifically,

Problem LP2(S) is an equivalent reformulation of LP1 that can be solved as a (directed) acyclic

shortest path network when the set S has the associated graph G corresponding to a Hamiltonian

path. This statement follows from two observations. Here, we assume without loss of generality via

a possible renumbering of the nodes, that the path progresses sequentially from node 1 to node m

so that LP2(S) has S = S′ with

S′ ≡ {(i, k) : k = i+ 1} , (2.13)

as in Figure 2.1b for the m = 6 case. First, since a Hamiltonian path is a connected graph, the

argument above establishes LP2(S′) as an equivalent reformulation of LP1. Second, by construction

of G, the number of edges incident with a node i denotes the number of occurrences of each variable

xij for all j within (2.9) and (2.10), and the existence of an edge between two nodes i and k

indicates the occurrence of each variable wijk` for all (j, `), twice with coefficient of 1. Thus, each

of the variables wijk` have the desired number of two nonzero entries in (2.9) and (2.10), and the

Hamiltonian path ensures that for every i, each variable xij appears exactly once when i ∈ {1,m}

since nodes 1 and m are end nodes and exactly twice when i ∈ {2, . . . ,m−1}. Noting
∑
j x1j = 1 from
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LP2(S′), including the redundant equation −
∑
j xmj = −1, and negating each equation in (2.9), an

acyclic shortest path network from node 1 to m emerges. The shortest path network has 2n(m−1)+2

nodes and nm+n2(m−1) arcs, as LP2(S′) has 2n(m−1)+2 equality constraints, nm variables xij ,

and n2(m− 1) variables wijk`. The network is acyclic because flow must progress along arc pairs xij

to wijk` and arc pairs wijk` to xk` for those (i, j, k, `) having k = i+ 1. An example is given below.

Example

Consider an instance of Problem P having m = n = 3, where the nonzero Dijk` objective function

coefficients are indexed by the set S′ of (2.13). The acyclic shortest path problem in 14 nodes

and 27 arcs is depicted in Figure 2.2, where the arc corresponding to each variable xij is suitably

labeled, and where an arc connecting some xij to x(i+1)` represents the variable wij(i+1)`. Costs are

suppressed for ease of presentation. Nodes 1 and 14 have supplies of +1 and −1 respectively, and

all other nodes have supplies of 0. (The reader is referred to the appendix for an explicit listing of

all constraints in LP2(S′), numbered to coincide with the node labels.)

Supply +1

1

4

3

2

7

6

5

10

9

8

13

12

11

Demand −1

14

x11

x12

x13

x21

x22

x23

x31

x32

x33

Figure 2.2: LP2(S′) network with S′ of (2.13) when m = n = 3.

Observe that the representation of Problem LP2(S′) for S′ of (2.13) as a Hamiltonian path

on G identifies other solvable special cases. In particular, suppose if a single node i and all the

incident edges of node i are removed from G and the remaining nodes and edges form a Hamiltonian

path on m−1 nodes. Within Problem P itself, each of the n possible binary solutions to
∑
j xij = 1

will yield a QSAP with m reduced by 1. By definition of G, the graph associated with each of

these reduced problems is the original graph G, less node i and all incident edges. Hence, Problem

P can be solved via n shortest path networks. This scenario is depicted in Figure 2.1c for i = 1

and m = 6, where the reduced graph is the Hamiltonian path on nodes 2 through 6. The process
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extends to multiple nodes. Given that G contains a node-induced subgraph on p nodes that is a

Hamiltonian path, Problem P can be solved by optimizing a shortest path network for each of the

nm−p feasible binary realizations. This number becomes computationally prohibitive as p decreases

so that alternate general solution strategies are needed.

2.4 Decomposition Strategy

We use the readily-solvable case of the previous section to motivate a decomposition ap-

proach to solve Problem P. Unlike the instances where S = S′ of (2.13) within LP2(S), this more

general case with S = T of (2.8) does not contain a network structure since each variable xij ap-

pears (m − 1) times in (2.9) and (2.10), as opposed to at most twice for S′. Our approach is to

replicate the variables xij so that the problem decomposes. We then equate these replicates using

“linking equations.” The idea is to construct a Lagrangian dual to LP (T ) with the linking equations

placed into the objective function as complicating constraints, and with the subproblems consisting

of separable shortest path problems.

This decomposition of LP (T ) can be motivated in terms of the graph G. By construction,

each node i of G corresponds to a constraint
∑
j xij = 1 of X and each edge (i, k) of G corresponds

to a set of constraints
∑
j wijk` = xk` for all ` and

∑
` wijk` = xij for all j of (2.9) and (2.10)

respectively. By replicating the variables xij associated with the various nodes i, we can decompose

G into separable factors so that each replicated variable xij and each variable wijk` lies in exactly

one factor. In particular, to take advantage of the shortest path network structure associated with

Hamiltonian paths, we desire a Hamiltonian decomposition of G into Hamiltonian paths.

Recall from [8, 26] that a Hamiltonian decomposition of a complete graph G consists of a

collection of graphs on this same set of nodes such that each graph is a Hamiltonian path, and each

edge is used exactly once in some such graph. Also recall that for an even number m of nodes in

G, Hamiltonian decompositions into m/2 graphs exist, and such a decomposition can be computed

so that the rth factor has node r as one endpoint and node v = m + 1 − r as the other endpoint.

(For the remainder of the chapter we assume that m is even so that m/2 is integral.) Specifically,

these decompositions separate G with edge set E ≡ {(i, k) : i < k} into factors G1, G2, . . . , Gm/2

having edge sets E1, E2, . . . , Em/2 respectively so that each Gr is a Hamiltonian path defined on the

same node set as G, Er ∩ Es = ∅ for all r 6= s, and ∪m/2r=1Er = E. (For notational convenience, the
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index r will lie in the set {1, . . . ,m/2}.) Thus, by replicating each variable xij exactly m/2 times,

once for each graph factor, Problem LP (T ) can be expressed in terms of m/2 separable shortest

path problems, joined by linking constraints that equate these variables. Figure 3 below shows a

Hamiltonian decomposition of the complete graph G on m = 6 nodes. An algebraic representation

3

21

6

5 4

3

21

6

5 4

3

21

6

5 4

Figure 2.3: Hamiltonian decomposition of the complete graph G on m = 6 nodes.

of Problem LP (T ) that uses the edge sets Er based on this factorization is given below. Here, each

graph Gr has a distinct set of variables xrij associated with it, and the costs Crij can be any real

numbers satisfying
m/2∑
r=1

Crij = Cij ∀ (i, j). (2.14)

LP3(T ) : min
∑
r

(∑
i

∑
j

Crijx
r
ij +

∑
(i,k)∈Er

∑
j

∑
`

Dijk`wijk`

)

s.t.
∑
j

wijk` = xrk` ∀ (i, k, `, r) with (i, k) ∈ Er (2.15)

∑
`

wijk` = xrij ∀ (i, j, k, r) with (i, k) ∈ Er (2.16)

x1
ij = x2

ij = · · · = x
m
2
ij ∀ (i, j) (2.17)

wijk` ≥ 0 ∀ (i, j, k, `) with (i, k) ∈ T (2.18)∑
j

xrrj = 1 ∀ r (2.19)

∑
j

xrvj = 1 ∀ r with v = m+ 1− r (2.20)

x binary

Equations (2.17) ensure that LP3(T ) is equivalent to LP2(T ) in the sense that, given a
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feasible solution to either problem, there exists a feasible solution to the other problem with the

same objective value. While equations (2.19) are redundant for r ≥ 2 by (2.17) and equations (2.20)

are redundant from Corollary 1, they are useful in decomposing our upcoming Lagrangian dual. The

Lagrangian dual is computed by placing equations (2.17) into the objective function using multipliers

π so that for each r ∈ {1, . . . ,m/2− 1}, the multiplier πrij corresponds to the constraint xrij = xr+1
ij .

The Lagrangian dual is given below.

LD : max
{
θ(π) : π ∈ Rmn(m/2−1)

}

where

θ(π) = min

∑
r

(∑
i

∑
j

(Crij + πr−1
ij − πrij)xrij +

∑
(i,k)∈Er

∑
j

∑
`

Dijk`wijk`

)
:

(2.15), (2.16), (2.18), (2.19), (2.20), x binary

}
.

Problem LD is separable over r for fixed π so that an optimal solution (x̂, ŵ) and optimal

objective value ν(θ(π)) can be computed by solving m/2 separable linear programs, as shown below.

ν(θ(π)) =

m/2∑
r

γr(π)

where, for each r ∈ {1, . . . ,m/2}, the value γr(π) is computed as follows.

γr(π) = min
∑
i

∑
j

(Crij + πr−1
ij − πrij)xrij +

∑
(i,k)∈Er

∑
j

∑
`

Dijk`wijk`

s.t.
∑
j

wijk` = xrk` ∀ (i, k, `) with (i, k) ∈ Er

∑
`

wijk` = xrij ∀ (i, j, k) with (i, k) ∈ Er

wijk` ≥ 0 ∀ (i, j, k, `) with (i, k) ∈ Er∑
j

xrrj = 1,
∑
j

xrvj = 1, with v = m+ 1− r

x binary

Observe that for each r, the optimization problem to compute γr(π) gives, for each (i, j), the
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value x̂ij and the values ŵijk` for all (i, k, `) having (i, k) ∈ Er. Also observe that this problem has

the same constraint structure as LP2(Er), with the added constraint
∑
j x

r
vj = 1 and the restriction∑

j x1j = 1 of LP2(Er) replaced with
∑
j x

r
rj = 1. Consequently, as each set Er corresponds to a

Hamiltonian path on the nodes of G with node r as one endpoint and node v = m + 1 − r as the

other, each problem γr(π) can be solved as a shortest path network. Optimizing θ(π) for a fixed

π thus reduces to m/2 shortest path networks. This structure is used in the following section for

solving the continuous relaxation of LP3(T ) via LD.

2.5 Solving the Lagrangian Dual

The objective is to solve the continuous relaxation of LP3(T ), denoted LP3(T ), which

also solves LP2(T ), by obtaining a vector π ∈ Rmn(m/2−1) corresponding to equations (2.17) that

maximizes LD. Since LD has the integrality property [12] because the continuous relaxation of

the program to compute each γr(π) has integral extreme points, an optimal π will be any set of

optimal duals to (2.17). For such an optimal, ν(θ(π)) = ν(LP3(T )). Our approach initializes a set

of values for π, and then systematically updates these values based on the primal solutions to θ(π).

Our solution method is a two step process in which a deflected subgradient algorithm is employed

followed by a dual ascent procedure.

2.5.1 Deflected Subgradient Optimization

We improve the value of LD first by means of a subgradient method presented in [4, 6, 10, 13].

This is an iterative procedure that updates the dual multipliers π by taking steps based upon a

subgradient of LD. An initial solution, π0, is selected for LD and iteratively updated based on

solutions to the the primal subproblem θ(πt). In general, this update is given as

πt+1 = πt + λtdt, t = 1, 2, . . . , T,

where λt and dt are the step size and direction, respectively, at iteration t with T being the total

number of iterations. In general, the direction is given as a subgradient of θ(πt), denoted ξt. We
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choose to normalized the subgradient so the direction dt is given as

dt =
ξt

||ξt||
, t = 1, 2, . . . , T.

The step size, λt, is defined as

λt =
βt(Θ− θ(πt))

||ξt||
, t = 1, 2, . . . , T,

where Θ is an upper bound on LP3(T ) and βt is given as some scalar in 0 < βt < 2. Various step sizes,

λt, have been proposed and for specific problems it is shown in [13] that if λt → 0 and
∑∞
t=0 λ

t =∞

then the sequence of dual multipliers πt will optimally converge. In practice, the algorithm tends

to stall before optimality is achieved and so a careful modification to the update method must be

undertaken to prevent this and these modifications are generally problem dependent.

An advantage of the subgradient method is that it is not computationally expensive per

iteration. The updates to the dual multipliers are readily available because θ(π) is linear and

therefore differentiable (except at corner points) and so a subgradient is easily found from the

optimal solution. In practice this procedure has difficultly achieving optimality because the dual

multipliers tend to oscillate wildly and therefore result in a slow convergence rate. In addition,

without a careful choice of λt this procedure can stall before optimality. In fact, the subgradient

method is normally stopped after a fixed number of iterations when a suitable bound for θ(π) is

found.

A variation on the previous algorithm, the deflected subgradient method [6], improves the

traditional subgradient method. In general, near the optimal solution, it takes a relatively small

step size in order to see improvement in LD. Towards this end, the direction, dt, is deflected at each

iteration by the previous direction in order to prevent the step size from being reduced too much.

For the deflected subgradient method, let

dt =
ξt + φtdt−1

||ξt + φtdt−1||
, t = 1, 2, . . . , T, (2.21)

where φt deflects the current direction by the previous previous direction. Note that φ1 = 0 and
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d0 = 0. Generally, φt is given as

φt =
||ξt||
||dt−1||

, t = 2, 3, . . . , T,

so that dt bisects the angle between ξt and dt−1. The step size is also modified based on the new

deflected direction and is given as

λt =
βt(Θ− θ(πt))
||ξt + φtdt−1||

, t = 1, 2, . . . , T. (2.22)

2.5.2 Dual Ascent

After the subgradient algorithm has terminated, we improve the lower bound by preforming

a variation on a dual ascent procedure proposed in [1]. This procedure creates a nondecreasing

sequence of lower bounds starting with the best solution found using the subgradient algorithm. Let

π̂ be the set of multipliers that give the best objective value, denoted LB, after the subgradient

algorithm is complete. We rewrite LD as

LD′ = LB + min

{∑
r

(∑
i

∑
j

C
r

ijx
r
ij +

∑
(i,k)∈Er

∑
j

∑̀
Dijk`wijk`

)
:

(2.15), (2.16), (2.18), (2.19), (2.20), x binary

}
.

where C
r

ij for all i, j, and r, and Dijk` for all i, j, k, and `, are the reduced costs on the arcs of

the network θ(π̂). The goal is to gradually increase the value of LD′ by modifying the minimization

problem. Observe that using the current reduced costs from θ(π̂) results in the minimization problem

having an optimal value of zero.

First, LD′ is adjusted without affecting the optimal solution of the minimization problem.

Modify the values of C
r

ij and Dijk` by adding multiples of the constraints of (2.15) and (2.16) to the

objective function. The goal is to increase the value of C
r

ij by reducing some of the Dijk` to zero

using the constraints given above. This is done by first considering every C
r

k` with the corresponding

constraint
∑
j wijk` = xrk` of (2.15). It is easy to find the smallest Dijk` for some j, say j′, such

that C
r

k` can be increased by Dij′k` and all Dijk`’s corresponding to the wijk`’s of the constraint are

decreased by Dij′k`. A similar argument is used to increase some of the C
r

ij ’s again by decreasing
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the Dijk`’s corresponding to the constraint
∑
` wijk` = xrij of (2.16).

Adding multiples of the constraints (2.15) and (2.16) does not improve the optimal objective

value of LD′ because the minimization problem still has an optimal objective of zero. But, the C
r

ij

can be modified within the LD framework. Recall that the linking constraints xrij = xr+1
ij of (2.17)

allow the original Crij to be any set of real coefficients as long as
∑
r C

r
ij = Cij . The same is true

for the coefficients C
r

ij . Define Cij for all i and j as Cij =
∑
r C

r

ij . The coefficients C
r

ij are allowed

to be any nonnegative values, since they are reduced costs, as long as they sum to Cij . After

the adjustments to these coefficients, the dual ascent procedure takes the following steps. If the

minimization problem has a positive objective function value say z∗ > 0 then redefine LB to be

LB = LB + z∗. The reduced costs C
r

ij and Dijk` of the current minimization problem are found

and redistributed as described above. The new minimization problem is then solved again. This is

process is repeated until the updates to LB fall below a certain threshold. As a result of the dual

ascent procedure, a nondecreasing sequence of updates to LD′ are created approaching the optimal

objective function value.

2.5.3 Combination Algorithm

Our procedure for finding the solution to LD is to perform T iterations of the deflected

subgradient algorithm and then implement the dual ascent procedure until it stalls. After some

initial testing, a value of T = 600 subgradient iterations provided the best results results and is

used for all trials. For the deflected subgradient algorithm, we initialize π0 = 0. At each iteration,

dt is defined as the deflected gradient given in (2.21). We find a naive upper bound Θ by finding

Cipi , where pi is defined as pi = argminj{Cij}, and setting xipi = 1 with xij = 0 for j 6= pi for

each i = 1, . . . ,m. A step length, λt, given by (2.22), is taken along the direction dt of (2.21) with

βt = 0.25. If the algorithm fails to improve over 20 iterations, then the incumbent dual vector is

reinstated and βt is divided by two.

After the deflected subgradient algorithm terminates, the dual ascent procedure is started

using the best solution found with the previous method. As mentioned above, the reduced cost

coefficients C
r

ij and Dijk` are found from the best solution provided by the deflected subgradient

algorithm. In addition, the C
r

ij are increased as much as possible by decreasing the Dijk` using (2.15)

and (2.16). After this, we define Cij =
∑
r C

r

ij and evenly distribute Cij to each C
r

ij by setting
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these coefficients as

C
r

ij =
Cij
m/2

∀ i, j, r.

The dual ascent procedure is repeated until the update to LB falls below 0.5.

2.5.4 Computational Results

The LD solution technique described above is coded using Python 2.7 and executed it on

a Dell Precision T3500 workstation with an Intel Xeon W3690 processor (6 cores at 3.46GHz) with

24 GB RAM. The m
2 network subproblems γr(π) are efficiently solved using the reaching algorithm

of [5] because each subproblem, for a fixed π, is an acyclic minimum-cost network flow problem.

Solving the network subproblems is then incorporated into the deflected subgradient algorithm and

the dual ascent procedure described above. The optimal value of LP3(T ), which is equivalent to

the optimal value of LP2(T ), is denoted ν(LP3(T )) and was found using ILOG CPLEX 12.0 on the

same machine as given above.

We tested our method using two different data sets for various values of m and n. First,

the coefficients Dijk` in the objective function of Problem P are replaced with the product terms

fikdj` similar to objective function found in [15, 18]. This instance occurs in computer processing

where m processes need to be assigned to n processors. First, the computation time required to

run process i on processor j is Cij . During the computation period, processes i and k exchange fik

units of information where dj` is the time needed to move one unit of information from processor

j to processor `. We assume that the processors are arranged on a mesh of size a × a = n and the

distance between processors j and ` is the mesh distance. In addition, djj , for j = 1, . . . , n, are

defined to be the max mesh distance because assigning two processes to the same processor incurs

a penalty cost. The objective is to minimize the total computational time of the m processes using

the n processors and is given as

∑
i

∑
j

Cij +
∑
i

∑
j

∑
k>i

∑
`

fikdj`xijxk`.

The number of processors is fixed to be n = 16, 25, 36 corresponding to grid sizes of 4 × 4 = 16,

5 × 5 = 25, and 6 × 6 = 36, respectively. Different numbers of processes m are attempted for each

fixed number of processors n and we note that as the number of processors increases the number of
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processes that can be solved in a reasonable amount of time decreases.

We observed that when trying to solve LD, the solution θ(0), that is, the initial solution with

π0 = 0, provides a close approximation of the optimal relaxation value ν(LP3(T )) and so we did not

attempt the deflected subgradient or dual ascent. The results are summarized in Table 2.1 which is

divided into eight columns. The first and second columns give the values for the parameters n and

m, respectively. Next, columns three and four show the optimal relaxation value, that is ν(LP3(T )),

and the time in seconds it took CPLEX to find this value. Columns five and six give θ(0) and the

time in seconds our code took to find these solutions. Last, columns seven and eight give the Gap

defined as

Gap =
ν(LP3(T ))− θ(0)

ν(LP3(T ))
× 100%

which is the percentage difference between our solution and the optimal solution and the percentage

decrease in time our algorithm achieved compared to CPLEX, respectively.

n m ν(LP3(T ))
CPLEX

θ(0)
θ(0)

Gap(%)
Decrease in

Time(Sec.) Time(Sec.) Time(%)

16 16 679.00 1.24 664.25 0.12 2.17 90.32
16 20 1096.50 4.18 1073.20 0.19 2.12 95.45
16 26 1874.50 8.67 1850.85 0.32 1.26 96.31
16 30 2472.50 21.74 2448.47 0.42 0.97 98.07
16 36 3543.00 62.07 3499.28 0.67 1.23 98.92
16 40 4420.00 94.00 4382.20 0.74 0.86 99.21
16 46 5778.50 236.41 5722.70 1.00 0.97 99.58
16 50 6887.50 352.11 6826.96 1.26 0.88 99.64
16 56 8753.50 871.63 8684.46 1.56 0.79 99.82
16 60 9713.00 973.44 9647.60 1.75 0.67 99.82
16 66 11937.00 1840.43 11881.24 2.07 0.47 99.89
16 70 13240.50 2951.80 13148.26 2.29 0.70 99.92
25 26 1824.50 39.46 1797.77 0.72 1.47 98.18
25 30 2620.00 87.71 2586.47 0.99 1.28 98.87
25 36 3565.50 260.12 3516.06 1.43 1.39 99.45
25 40 4405.50 485.41 4357.80 1.75 1.08 99.64
25 46 5814.50 947.90 5763.83 2.36 0.87 99.75
25 50 6770.00 2029.35 6698.48 2.71 1.06 99.87
25 56 8799.00 3590.72 8721.43 3.56 0.88 99.90
25 60 10051.00 5511.00 9966.63 4.02 0.84 99.93
36 36 3622.50 620.54 3575.61 2.73 1.29 99.56
36 40 4373.00 1540.11 4320.35 3.46 1.20 99.78
36 46 5908.00 3859.92 5843.74 4.65 1.09 99.88
36 50 6828.50 6126.58 6763.04 5.50 0.96 99.91

Table 2.1: QSAP Instances for Processor Problems
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The second set of problems considered are similar to those found in [7, 15] where the coeffi-

cients, Cij and Dijk`, of Problem P are selected uniform randomly from the integer set {0, 1, . . . , 99}.

For these instances, θ(0) provided a relatively weak bound on the optimal solution, which is demon-

strated in Table 2.2, and so we preformed the deflected subgradient and dual ascent procedure

described above. This table is divided into nine columns where the first two columns give the values

for the parameters n and m, respectively. Next, columns three and four give the optimal relaxation

value, that is ν(LP3(T )), and the time in seconds it took CPLEX to find this value. Column five

gives θ(0). (The time to find θ(0) for all instances was never greater than 7 seconds.) Columns six

and seven give the best bound, denoted LD Best, found using the combination subgradient and dual

ascent procedure and the time in seconds, respectively. Next, column eight gives the Gap defined

this time as

Gap =
ν(LP3(T ))− LD Best

ν(LP3(T ))
× 100%

which is the percentage difference between LD Best and the optimal solution provided by CPLEX.

Last, column nine displays the the percentage decrease in time our algorithm achieved compared to

CPLEX. A dash in column nine indicates that our algorithm took longer than CPLEX. For this set

n m ν(LP3(T ))
CPLEX

θ(0)
Best Best LD

Gap(%)
Decrease in

Time(Sec.) LD Time(Sec.) Time(%)

15 30 5419.00 42.00 2404.67 5299.33 61.89 2.21 -
15 36 7560.38 67.12 3283.00 7398.36 92.30 2.14 -
15 40 9100.87 91.18 3893.10 8954.39 116.77 1.61 -
15 46 11682.20 179.81 4921.96 11481.89 158.32 1.71 11.95
15 50 13684.73 285.77 5677.56 13497.65 188.02 1.37 34.21
15 56 16853.87 1198.59 6774.82 16567.94 248.01 1.70 79.31
15 60 19102.47 1637.25 7622.90 18819.25 285.11 1.48 82.59
10 50 18498.10 72.57 7797.52 18371.39 103.45 0.68 -
15 50 13684.73 285.77 5677.56 13497.65 188.02 1.37 34.21
20 50 11051.20 2041.50 4529.20 10738.66 323.26 2.83 84.17
25 50 9281.60 1886.01 3737.88 8920.78 490.78 3.89 73.98
30 50 8167.67 11480.25 3368.28 7762.21 708.91 4.96 93.82
35 50 7303.32 7116.42 2930.28 6901.47 958.09 5.50 86.54
40 50 6585.51 11689.52 2693.24 6042.09 1243.69 8.25 89.36

Table 2.2: QSAP Instances with Uniform Integer Random Coefficients

of problems, we ran T = 600 iterations of the deflected subgradient algorithm and then performed

the dual ascent procedure until the update to LD was less than 0.5. The number of dual ascent

steps for the instances of Table 2.2 were between 3 and 18.

For the first set of instances tested, found in Table 2.1, our decomposition provided by θ(0)

24



gave a very close approximation to the optimal solution ν(LP3(T )) as is seen in columns 3 and 5

of Table 2.1. In addition, as m and n increase, the percentage Gap actually decreased between our

solution and the solution given by CPLEX. In most cases, especially larger instances, our solution

procedure took just a fraction of the time that CPLEX needed to find the optimal value.

The second set of problems tested, those with uniform integer coefficients found in Table 2.2,

did not have a relatively close relaxation value for θ(0) so 600 iterations of the subgradient method

was preformed for all instances and then the dual ascent procedure iterated until the updates to

LD were less than 0.5. First, consider the cases where n is fixed to 15 and m is increased, it is

seen in Table 2.2 that after termination of our algorithm, our best solution is always within 3% of

ν(LP3(T )) for each m. In addition, as m increased, the percentage decrease in time for our algorithm

took compared to the CPLEX decreased. In the instance where m = 60 and n = 15, our algorithm

took 82.59% less time than CPLEX to get a solution that was within 1.48% of ν(LP3(T )).

For the cases where m is fixed to 50 and n increases, the results show that our algorithm

finds a solution that is within 4% of ν(LP3(T )) when n = 10, 15, 20, 25, and between 4% and 9% for

n = 30, 35, 40. In general, for n = 20, 25, 30, 35, 40, our algorithm obtains a solution that is between

2% and 9% of ν(LP3(T )) in 73% to 93% less time than CPLEX.

2.6 Conclusion

When solving difficult nonlinear optimization problems, such as the QSAP, the first step is

generally to find a linear relaxation of the problem and then solve the new representation in order to

obtain a tight lower bound. Reformulations using the RLT have proven effective in providing tight

lower bounds for other difficult optimization problems so we applied the level-1 RLT representation

to the QSAP. For this instance, the level-1 RLT representation of the QSAP has a network structure

which aids in our solution technique. Regardless of the structure of any RLT formulation, as the size

of the original problem grows, the number of constraints and variables in the RLT representation

increases exponentially which hinders achieving optimal solutions of the relaxation using traditional

linear programming software. To combat this, we provided a novel solution technique using a

Lagrangian dual that exploits, with a Hamiltonian path decomposition, the network structure of the

RLT formulation of the QSAP in order to achieve lower bounds for larger values of m and n in less

time than using traditional methods like a powerful linear programming solver such as CPLEX.
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Preliminary computational results suggest that our solution technique, for a linear relax-

ation of the level-1 RLT formulation of the QSAP for larger values of m and n, offers a reduction

in computation time for a close approximation of the optimal value. For instances of the QSAP

representing assigning processes to processors, our decomposition provides an extremely accurate

approximation of the optimal value in a fraction of the time without using the combination subgra-

dient and dual ascent procedure. For QSAP instances with more general integer coefficients, our

solution method required solving the Lagrangian dual many times but still came relatively close to

the optimal relaxation value in a shorter amount of time compared to CPLEX for larger values of

m and n.

This chapter presents the first step for solving larger instances of the QSAP by finding tight

lower bounds using the level-1 RLT formulation. Future research in the area will attempt to embed

our solution technique within an efficient branch-and-bound routine in order to solve to integer

optimality larger instances of the QSAP than have been previously attempted.
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2.7 Appendix

The following gives all the constraints of Problem LP2(S) corresponding to the nodes of

the network displayed in Figure 2.2 for Problem P when m = 3 and n = 3.

x11 + x12 + x13 = +1 (1)

w1121 + w1122 + w1123 − x11 = 0 (2)

w1221 + w1222 + w1223 − x12 = 0 (3)

w1321 + w1322 + w1323 − x13 = 0 (4)

−w1121 − w1221 − w1321 + x21 = 0 (5)

−w1122 − w1222 − w1322 + x22 = 0 (6)

−w1123 − w1223 − w1323 + x23 = 0 (7)

w2131 + w2132 + w2133 − x21 = 0 (8)

w2231 + w2232 + w2233 − x22 = 0 (9)

w2331 + w2332 + w2333 − x23 = 0 (10)

−w2131 − w2231 − w2331 + x31 = 0 (11)

−w2132 − w2232 − w2332 + x32 = 0 (12)

−w2133 − w2233 − w2333 + x33 = 0 (13)

−x31 − x32 − x33 = −1 (14)

xij ≥ 0 ∀ (i, j)

wijk` ≥ 0 ∀ (i, j, k`) with (i, k) ∈ S
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Chapter 3

Modeling Disjunctions of

Polytopes with Application to

Piecewise Linear Functions

3.1 Introduction

The feasible regions to a variety of mixed-discrete optimization problems can be modeled as

disjunctions of polytopes. Consider a set X in variables x ∈ Rq defined in terms of n disjunctions

as

X ≡
n⋃
k=1

Pk, (3.1)

where the n polytopes Pk are given by

Pk =
{
x : Akx = bk, x ≥ 0

}
∀ k = 1, . . . , n. (3.2)

Here, Ak and bk are appropriately-dimensioned matrices and vectors, respectively, and we assume

without loss of generality that the restrictions defining the sets Pk consist of equality constraints in

nonnegative variables. Then x must lie in at least one of the n polytopes Pk.

The n disjunctions defining X can be modeled using 0-1 variables within a higher-
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dimensional space as follows. For each k ∈ {1, . . . , n}, multiply every constraint defining the polytope

Pk by a binary variable λk, and substitute wk = xλk. Then set x =
∑n
k=1wk and 1 =

∑n
k=1 λk. The

following expression of X results, where λ represents the vector (λ1, λ2, . . . , λn)T and w represents

the vector (wT
1 ,w

T
2 , . . . ,w

T
n )T .

X ′ =

{
(x,λ,w) : Akwk = bkλk ∀ k = 1, . . . , n,

wk ≥ 0 ∀ k = 1, . . . , n,

x =

n∑
k=1

wk,

1 =

n∑
k=1

λk,

λk binary ∀ k = 1, . . . , n

}
(3.3)

Clearly, at every feasible solution, exactly one λk, say λp, will equal 1 and the remaining λk will

equal 0, with x then given by x = wp.

Denote the relaxed version of the set X ′ obtained by replacing the binary restrictions on λk

with variable nonnegativity for all k = 1, . . . , n, as the set X
′
. A result of [2, 3] is that

conv(X) = Projx(X
′
),

where conv(•) represents the convex hull of • and

Projx(X
′
) =

{
x : there exists a (λ,w) so that (x,λ,w) ∈ X ′

}

represents the projection of the set X onto the space of the variables x. This convex hull result

of [2, 3] does not hold true using the relaxed set X
′

if X is contained within a larger optimization

problem, so that the binary restrictions on λk for k = 1, . . . , n must be enforced in this more general

case.

In this chapter, we begin by employing a result of [1] to reduce the number of binary

variables within the set X ′ from n to dlog2ne. The method operates by defining dlog2ne new binary
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variables and dlog2ne linear equations that allow us to relax λ to be nonnegative. Section 2 reviews

the approach. Section 3, which includes the main theoretical contributions of this chapter, provides

methods for reducing problem size. To begin, the continuity of λ allows us to substitute these

variables from the problem. Then, depending on the structure of the polytopes Pk, projection

operations are characterized for further reductions. Interestingly, for the polytopes considered, these

projections do not increase the number of constraints, so that smaller forms are obtained. The special

polytopes consist of knapsack restrictions taking the form of SOS-1 and SOS-2 type restrictions.

Section 4 uses the known relationships between SOS-2 restrictions and piecewise-linear functions

to explain two alternate representations of the latter, both of which use logarithmic numbers of

binary variables. The first form is a direct consequence of one of our models, though ours requires

roughly half the number of constraints in the same number of variables. The second form is a

classical approach for piecewise-linear functions, cast in a different variable space from the first.

Our projections can thus be viewed as a theoretical linkage joining together two otherwise unrelated

forms. Section 5 provides computational experience to compare the relative merits of two of our

representations with these alternate two. Finally, Section 6 provides a summary of results and

concluding remarks.

3.2 Reduction of Binary Variables

A method of [1] can reduce the number of binary variables within X ′. Given a collection of

n binary variables that is restricted to sum to 1, the paper [1] provides a method for rewriting the

variables as continuous by introducing a logarithmic number of new binary variables and constraints.

Specifically, given a set of n variables λk, k = 1, . . . , n, that is restricted to satisfy

n∑
k=1

λk = 1, λk binary for k = 1, . . . , n, (3.4)

the binary restrictions on the variables λk can be relaxed to nonnegativity as follows. First, form n

binary vectors vk ∈ Rdlog2ne, k = 1, . . . , n, as

vk ∈ Rdlog2ne = {the binary expansion of the number k − 1, where position

i corresponds to the value 2i−1} for all k = 1, . . . , n. (3.5)
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Then construct a new vector of binary variables u ∈ Rdlog2ne to associate in a one-to-one fashion

with the vectors vk, and enforce

n∑
k=1

λk = 1, λk ≥ 0 for k = 1, . . . , n,

n∑
k=1

λkvk = u, u binary. (3.6)

System (3.6) has dlog2ne binary variables as opposed to the n variables of (3.4). Moreover, the

continuous relaxation of (3.6) obtained by relaxing the u binary restrictions to 0 ≤ u ≤ 1 has

all binary extreme points. This reduction of binary variables was achieved at the expense of an

additional dlog2ne equations which enforce that, given any feasible (λ,u) with u binary, the vector

λ must also be binary. (The vectors vk need not be defined as in (3.5), but can instead comprise

any distinct set of binary vectors in Rdlog2ne.)

Example 1

Consider an instance of (3.4) having n = 10 so that

10∑
k=1

λk = 1, λk binary for k = 1, . . . , 10.

Then the representation (3.6) uses 4 = dlog2(10)e binary variables u and ten vectors vk ∈ R4 of the

form (3.5) to relax the binary restrictions on λk to nonnegativity. The resulting system is expressed

in matrix form as follows.



1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 0 0

0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 1 1





λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8

λ9

λ10



=



1

u1

u2

u3

u4


, λ ≥ 0, u binary
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The paper [1] uses (3.6) as the foundation for linearizing products of functions of discrete

variables. Here, we employ (3.6) within a disjunctive programming context. Specifically, we apply

this idea to the set X ′ to obtain the form below.

X ′′ =

{
(x,λ,w,u) : Akwk = bkλk ∀ k = 1, . . . , n,

wk ≥ 0 ∀ k = 1, . . . , n,

x =

n∑
k=1

wk,

1 =

n∑
k=1

λk,

λk ≥ 0 ∀ k = 1, . . . , n,

n∑
k=1

λkvk = u, u binary

}
(3.7)

3.3 Problem Reduction and Exploitation of Structure

The continuity of the variables λ in X ′′ allows for their elimination via substitution, a

characteristic not shared by X ′. In addition, special structures of the polytopes Pk can lead to

simpler forms.

The variable substitutions operate as follows. For each k, select any nonzero entry of the

vector bk occuring in some row i, and express λk in terms of the variables wk via equation i of

Akwk = bkλk. Use this representation to substitute all occurrences of λk from the problem, and

then remove this equation. Upon performing this substitution for all k, the problem will have

removed all n variables λk, and will have one equation found in each system Akwk = bkλk, namely

the associated equation i, replaced by an inequality restriction in the variableswk only. (As discussed

below, these new inequality constraints will be redundant for special Ak.)

We mention here that for any j ∈ {1, . . . , n}, since Pj is a polytope, if all entries of bj

were to equal 0, then Pj would restrict x = 0. If this case were to occur, then wj = 0 in X ′

and X ′′ regardless of the value of λj , and this variable could be removed from both sets using

the substitution λj = 1 −
∑
k 6=j λk. By letting the vector vj associated with Pj be all zeroes, the

substitution is equivalent to relaxing the restriction
∑n
k=1 λk = 1 to

∑
k 6=j λk ≤ 1. Logically, we can

assume without loss of generality that at most one set Pj has all entries of bj equal to 0.
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Now, special structure can allow for a further reduction in problem size. Suppose that each

set Pk of (3.2) has a single “knapsack” equality restriction defined on a subset Jk ⊆ Q ≡ {1, . . . , q}

of the q variables x1, . . . , xq, with positive coefficients αkj and with positive righthand-side bk so

that

Pk =

x :
∑
j∈Jk

αkjxj = bk, xj ≥ 0 ∀ j ∈ Jk, xj = 0 ∀ j /∈ Jk

 ∀ k = 1, . . . , n. (3.8)

(We assume that each index j appears in at least one set Jk since otherwise xj must equal 0 at

all solutions to (3.2).) Using these sets Pk, the variable substitutions described above reduce each

system Akwk = bkλk to the inequality restriction
∑
j∈Jk

αkj

bk
wkj ≥ 0, where λk =

∑
j∈Jk

αkj

bk
wkj

and where variable wkj represents component j of wk resulting from the product λkxj . As all αkj

with j ∈ Jk and bk are positive, and as all the associated wkj are nonnegative, each such inequality

is redundant. The net result is to effectively remove all n equations Akwk = bkλk and all n

nonnegativity restrictions on λk from X ′′. The below formulation results, where the variables wkj

for all (j, k) having j /∈ Jk are by definition 0 and are therefore not explicitly stated.

X ′′′ =

{
(x,w,u) : wkj ≥ 0 ∀ j ∈ Jk, ∀ k = 1, . . . , n,

xj =
∑
k:j∈Jk

wkj ∀ j = 1, . . . , n,

1 =

n∑
k=1

∑
j∈Jk

αkj
bk

wkj

 ,

n∑
k=1

∑
j∈Jk

αkj
bk

wkj

vk = u, u binary

}
(3.9)

Two specific forms of the sets Pk of (3.8) are considered in the next two subsections.

3.3.1 Representation of a Discrete Variable

Consider the instance of a discrete variable x that can realize values in some finite set

{θ1, . . . , θn} of positive values. Then X of (3.1) is defined in terms of the single variable x1 so that

q = 1 and X = ∪nk=1Pk, where each set Pk takes the form of (3.8) with Pk = {x1 : x1 = θk} giving

us, for each k, that Jk = {1}, αk1 = 1, and bk = bk = θk. The associated restrictions Akwk = bkλk

of X ′ and X ′′ become wk1 = θkλk. Here, the inequality x1 ≥ 0 is not found within any set Pk so no
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wk1 ≥ 0 inequalities result in (3.9). But for each k = 1, . . . , n, substituting λk = wk1

θk
into λk ≥ 0

gives us that wk1

θk
≥ 0. Then X ′′′ of (3.9) becomes the following, denoted by DV to identify the

modeling of a discrete variable.

DV =

{
(x1,w,u) :

wk1

θk
≥ 0 ∀ k = 1, . . . , n,

x1 =

n∑
k=1

wk1,

1 =

n∑
k=1

(
wk1

θk

)
,

n∑
k=1

(
wk1

θk

)
vk = u, u binary

}
(3.10)

For this special case in which each set Pk defines a single point, we have the option to remove

the variables wk1 instead of λk from X ′′ using the substitution wk1 = θkλk for each k. The resulting

form is given below as DV ′.

DV ′ =

{
(x1,λ,u) : x1 =

n∑
k=1

θkλk,

1 =

n∑
k=1

λk,

λk ≥ 0 ∀ k = 1, . . . , n,

n∑
k=1

λkvk = u, u binary

}
(3.11)

Observe that (3.10) and (3.11) are equivalent via a scaling of variables. For any (x̂1, ŵ, û)

feasible to (3.10), the point (x̂1, λ̂, û) is feasible to (3.11) with λ̂k = ŵk1

θk
for all k = 1, . . . , n. Similarly,

for any (x̂1, λ̂, û) feasible to (3.11), the point (x̂1, ŵ, û) is feasible to (3.10) with ŵk1 = θkλ̂k for all

k = 1, . . . , n. A notable difference between (3.10) and (3.11), however, is that the derivation of the

latter does not require the scalars bk of (3.8) to be nonnegative. As a result, the set of permissible

values θ1, . . . , θn for x1 can be arbitrary within (3.11). Formulation DV ′ is as found in [1].

This convex hull argument extends to any collection of polytopes Pk consisting of single

points. Given that each Pk can be expressed as Pk = {x : x = bk} where x is not restricted to be

nonnegative, the set X ′′ of (3.7) has wk = bkλk for all k, with wk unrestricted. Then wk can be
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substituted from the problem to obtain the set

{
(x,λ,u) : x =

n∑
k=1

bkλk, 1 =

n∑
k=1

λk, λk ≥ 0 ∀ k = 1, . . . , n,

n∑
k=1

λkvk = u, u binary

}
,

which reduces to DV ′ when x = x1 and bk = θk.

3.3.2 Representation of SOS-d Restrictions

Given a set of q nonnegative, continuous variables x1, . . . , xq that is restricted to sum to

one, an SOS-d restriction enforces that at most d variables can be positive, and that these variables

must be selected from a consecutive subset. Such a restriction can be naturally modeled by (3.1)

using (3.8). The n = q − d+ 1 polytopes Pk of (3.8) have the sets Jk defined by

Jk = {k, . . . , k + d− 1} for each k = 1, . . . , q − d+ 1, (3.12)

with αkj = 1 for all k = 1, . . . , n and j ∈ Jk, and with all bk = 1. Then the sets (3.8) take the form

Pk =

x :
∑
j∈Jk

xj = 1, xj ≥ 0 ∀ j ∈ Jk, xj = 0 ∀ j /∈ Jk

 ∀ k = 1, . . . , q − d+ 1, (3.13)

with the sets Jk as given in (3.12) so that X ′′′ of (3.9) becomes the set Xd below, where w denotes

the collection of d(q − d+ 1) variables wkj such that j ∈ Jk and k ∈ {1, . . . , q − d+ 1}.

Xd =

{
(x,w,u) : wkj ≥ 0 ∀ j = k, . . . , d+ k − 1, ∀ k = 1, . . . , q − d+ 1,

xj =

min{j,q−d+1}∑
k=max{1,j−d+1}

wkj ∀ j = 1, . . . , q,

1 =

q−d+1∑
k=1

k+d−1∑
j=k

wkj

 ,

q−d+1∑
k=1

k+d−1∑
j=k

wkj

vk = u, u binary

}
(3.14)

Observe how (3.14) simplifies when d = 1 and d = 2 to correspond to SOS-1 and SOS-2
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type restrictions respectively. When d = 1, we obtain n = q and

X1 =

{
(x,w,u) : wkk ≥ 0 ∀ k = 1, . . . q,

xj = wjj ∀ j = 1, . . . , q,

1 =

q∑
k=1

wkk,

q∑
k=1

wkkvk = u, u binary

}
(3.15)

Then we can remove w from X1 using the identity xj = wjj for all j to obtain the projection of X1

onto the space of the variables (x,u) as

Proj(x,u)(X1) =

{
(x,u) :

q∑
k=1

xk = 1, xk ≥ 0 for k = 1, . . . , q,
q∑

k=1

xkvk = u, u binary

}
,

which is of the form (3.6) with n = q.

When d = 2, we have (3.14) simplifying to

X2 =

{
(x,w,u) : wkk, wk(k+1) ≥ 0 ∀ k = 2, . . . q − 1, (3.16)

x1 = w11, (3.17)

xj = w(j−1)j + wjj ∀ j = 1, . . . q − 1, (3.18)

xq = w(q−1)q, (3.19)

1 =

q−1∑
k=1

(
wkk + wk(k+1)

)
, (3.20)

q−1∑
k=1

(
wkk + wk(k+1)

)
vk = u, u binary

}
. (3.21)

3.3.3 Alternate Reductions for SOS-2 Restrictions

The SOS-2 restrictions have a special structure that allows us to alternately express the

corresponding set X ′′ of (3.7) in terms of only the variables (x,λ,u) or (x,u), as opposed to the

variables (x,w,u) of X2 in (3.16)–(3.21). To see this, observe that the constraints x =
∑n
k=1wk

and Akwk = bkλk ∀ k = 1, . . . , q − 1 of X ′′ found in (3.7) take the form of (3.17)–(3.19) and

λk = wkk + wk(k+1) ∀ k = 1, . . . , q − 1, respectively. Since wk ≥ 0 ∀ k = 1, . . . , q − 1, the λ ≥ 0
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restrictions are implied and can be omitted. Now, let us define a new variable w0 = 0 and modify

the first constraint to x1 = w0 + w11 so that w becomes a vector of size 2q − 1. Then these 2q

restrictions define a nonsingular linear transformation between the 2q − 1 variables (x,λ) and the

resulting 2q− 1 variables w. Specifically, these 2q constraints can be represented in matrix form as

 x

λ

 = Qw, w0 = 0, (3.22)

where

 x

λ

 = (xT ,λT )T and w are column vectors in R2q−1 with w having w0 in position 1 and

having wkj in position k + j, and where Q is a (2q − 1)× (2q − 1) matrix.

Suppose that we wish to reorder the rows of Q so that that row associated with each variable

xi appears in row 2i − 1 and that row associated with each variable λi appears in row 2i. In this

manner, that variable in position i after the permutation originated in position i+1
2 when i is odd,

and originated in position i
2 + q when i is even, for all i. This operation can be expressed in matrix

form by defining a (2q− 1)× (2q− 1) permutation matrix P whose (i, j)th element, Pij , is given by

Pij =


1 if j = i+1

2 (so that i is odd)

1 if j = i
2 + q (so that i is even)

0 otherwise

∀ i = 1, . . . , 2q − 1, j = 1, . . . , 2q − 1, (3.23)

and computing PQ. This matrix PQ has Jordan block form with ones along the diagonal so that

(PQ)−1 exists and is upper triangular with

(PQ)−1
ij =


(−1)i+j if j ≥ i

0 otherwise

∀ i = 1, . . . , 2q − 1, j = 1, . . . , 2q − 1. (3.24)

Now, left-multiply the matrix system of (3.22) by the (2q − 1) × (2q − 1) matrix PT (PQ)−1P to

obtain

PT (PQ)−1P

 x

λ

 = PT (PQ)−1PQw, w0 = 0. (3.25)
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System (3.25) simplifies to



1 1 · · · · · · 1 −1 −1 · · · −1

1 · · · · · · 1 −1 · · · −1

. . .
. . .

...
. . .

...

. . .
... −1

1

−1 · · · · · · −1 1 · · · · · · 1

. . .
. . .

...
. . .

. . .
...

. . .
...

. . .
...

−1 1





x1

...

xq

λ1

...

λq−1


= PT



w0

w11

...

w(q−1)q


, w0 = 0, (3.26)

where the (2q − 1) × (2q − 1) matrix follows from (3.24) and the property that the permutation

matrix P of (3.23) relocates each entry (i, j) of (PQ)−1 into entry (p(i), p(j)) of PT (PQ)−1P, where

p(α) = α+1
2 if α is odd and p(α) = α

2 + q if α is even, for all α = 1, . . . , 2q − 1.

The nonnnegativity of w in X ′′ of (3.7) allows us to rewrite X2 in terms of the variables

(x,λ,u) as below, where we use X ′2 to denote the modified version of X2 in a different variable space.

Here, we set w0 = 0 and accordingly remove this variable from the problem. The first equation is

written separately since it remains an equality.

X ′2 =

{
(x,λ,u) :

q∑
k=1

xk −
q−1∑
k=1

λk = 0,

q∑
k=1

xk = 1,

q−1∑
k=1

λkvk = u, u binary,



1 · · · · · · 1 −1 · · · −1

. . .
. . .

...
. . .

...

. . .
... −1

1

−1 · · · · · · −1 1 · · · · · · 1

. . .
. . .

...
. . .

. . .
...

. . .
...

. . .
...

−1 1





x2

...

xq

λ1

...

λq−1


≥ 0



(3.27)

Example 2

Consider the case where X in (3.1) has q = 4 variables so that xT = (x1, x2, x3, x4), and is defined
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in terms of sets Pk of the form (3.13) having d = 2 so that the SOS-2 restrictions look as follows.

P1 = {x : x1 + x2 = 1, x3 = x4 = 0}

P2 = {x : x2 + x3 = 1, x1 = x4 = 0}

P3 = {x : x3 + x4 = 1, x1 = x2 = 0}

(3.28)

The set X ′′ of (3.7) takes the form below, where we have included the variable w0 set to 0 as

in (3.22), and where v1 =

 0

0

 , v2 =

 1

0

 , and v3 =

 1

1

 .

X ′′ =

{
(x,λ,w,u) : w0, w11, w12, w22, w23, w33, w34, λ1, λ2, λ3 ≥ 0,

w0 = 0, u1, u2 binary,

x1

x2

x3

x4

λ1

λ2

λ3



=



1 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 1 0

0 0 0 0 0 0 1

0 1 1 0 0 0 0

0 0 0 1 1 0 0

0 0 0 0 0 1 1





w0

w11

w12

w22

w23

w33

w34



,


1

u1

u2

 =


1 1 1

0 1 1

0 0 1



λ1

λ2

λ3





Here, the first matrix equation looks as

 x

λ

 = Qw of (3.22).

The set X2 of (3.16)–(3.21) is given below, and is obtained from the above system by
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removing the implied inequalities λ1, λ2, λ3 ≥ 0 and the variable w0 fixed to 0.

X2 =

{
(x,w,u) : w11, w12, w22, w23, w33, w34 ≥ 0, u1, u2 binary,



x1

x2

x3

x4

1

u1

u2



=



1 0 0 0 0 0

0 1 1 0 0 0

0 0 0 1 1 0

0 0 0 0 0 1

1 1 1 1 1 1

0 0 1 1 1 1

0 0 0 0 1 1





w11

w12

w22

w23

w33

w34




The permutation matrix P of (3.23) and the matrix PT (PQ)−1P of (3.24) have

P =



1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 1 0 0 0 0 0

0 0 0 0 0 1 0

0 0 1 0 0 0 0

0 0 0 0 0 0 1

0 0 0 1 0 0 0



and PT (PQ)−1P =



1 1 1 1 −1 −1 −1

0 1 1 1 0 −1 −1

0 0 1 1 0 0 −1

0 0 0 1 0 0 0

0 −1 −1 −1 1 1 1

0 0 −1 −1 0 1 1

0 0 0 −1 0 0 1



.

Then X ′2 of (3.27) is given below, where again v1 =

 0

0

 , v2 =

 1

0

 , and v3 =

 1

1

 .

X ′2 = {(x,λ,u) : λ2 + λ3 = u1, λ3 = u2, u1, u2 binary,

0 ≤ x4 ≤ λ3 ≤ x3 + x4 ≤ λ2 + λ3 ≤ x2 + x3 + x4

≤ λ1 + λ2 + λ3 = x1 + x2 + x3 + x4 = 1}

Now, returning to (3.27), suppose we wish to project the set X ′2 onto the space of the

variables (x,u). The task can be accomplished by computing all the extreme directions of the
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projection cone


−1 1 v11 · · · vdlog2(q−1)e,1
...

. . .
...

. . .
...

...

−1 · · · −1 1 · · · 1 v1,(q−1) · · · vdlog2(q−1)e,(q−1)

π = 0, πj ≥ 0 ∀ j = 2, . . . 2q − 2, (3.29)

where π ∈ R2q−2+dlog2(q−1)e, and to generate the facets using these directions. Here, the first two

sets of columns are the transpose of the coefficient matrix on the variables λ in (3.26), less the null

row q, while the last set of columns represents the transpose of the (dlog2(q−1)e)×(q−1) coefficient

matrix on the variables λ found in equations
∑q−1
k=1 λkvk = u of (3.27). The notation vik is used to

represent the binary entry in position i of vk.

Up to this point, the vectors vk are any set of distinct binary vectors. It is necessary to

put some restrictions on these vectors before characterizing the extreme directions of (3.29). The

following definition describes a restriction on a general set of vectors β1, . . . ,βp ∈ Rm.

Definition

A set of vectors β1, . . . ,βp ∈ Rm is in a compatible order if for any two adjacent vectors, say βj and

βj+1 for any j = 1, . . . , p− 1, then βj and βj+1 differ by at most one component.

Note, for the special case when the set of binary vectors, v1, . . . ,vq−1 ∈ Rdlog2(q−1)e, are

distinct, a compatible order corresponds to a Hamiltonian path on the dlog2(q − 1)e-dimensional

hypercube. The following lemma gives a consequence of a set of vectors that are in a compatible

order.

Lemma

Let a set of vectors β1 . . .βp ∈ Rm be in a compatible order with S defined as S ≡ {1, . . . ,m}. For

any sets S1, S2 ⊆ S, with S1
⋂
S2 = ∅, and the given constants c1, . . . , cm ≥ 0, then the following

equation

∑
i∈S1

ci max{0, βij − βi(j+1)}+
∑
i∈S2

ci max{0, βi(j+1) − βij}

= max

{
0,
∑
i∈S1

ci
(
βij − βi(j+1)

)
+
∑
i∈S2

ci
(
βi(j+1) − βij

)}
(3.30)
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is true for all j = 1, . . . , p− 1 with βij being the ith component of the vector βj .

Proof

Let a set of vectors β1 . . .βp ∈ Rm be in a compatible order and consider any two adjacent vectors,

say βj and βj+1 for any j = 1, . . . , p−1. Let S1 and S2 be any disjoint subsets of S and let c1, . . . , cm

be any set of nonnegative constants.

Case 1

If βij = βi(j+1) for all i ∈ S1
⋃
S2, then (3.30) is verified below.

∑
i∈S1

ci max{0, βij − βi(j+1)}+
∑
i∈S2

ci max{0, βi(j+1) − βij}

=
∑
i∈S1

ci max{0, 0}+
∑
i∈S2

ci max{0, 0}

= max

{
0,
∑
i∈S1

0 +
∑
i∈S2

0

}

= max

{
0,
∑
i∈S1

ci
(
βij − βi(j+1)

)
+
∑
i∈S2

ci
(
βi(j+1) − βij

)}

Case 2

There exists a k ∈ S1
⋃
S2 such that βkj 6= βk(j+1) and βij = βi(j+1) for all i ∈ S1

⋃
S2 with i 6= k.

Without the loss of generality, assume that k ∈ S1 (the case with k ∈ S2 is analogous). Thus, (3.30)

44



is verified below.

∑
i∈S1

ci max{0, βij − βi(j+1)}+
∑
i∈S2

ci max{0, βi(j+1) − βij}

=
∑

i∈S1/k

ci max{0, 0}+ max{0, ck(βkj − βk(j+1))}+
∑
i∈S2

ci max{0, 0}

= max{0, ck(βkj − βk(j+1))}

= max

0,
∑

i∈S1/k

0 + ck(βkj − βk(j+1)) +
∑
i∈S2

0


= max

0,
∑

i∈S1/k

ci(βij − βi(j+1)) + ck(βkj − βk(j+1)) +
∑
i∈S2

ci(βi(j+1) − βij)


= max

{
0,
∑
i∈S1

ci
(
βij − βi(j+1)

)
+
∑
i∈S2

ci
(
βi(j+1) − βij

)}

2

The following example shows that a set of vectors not in a compatible order does not

necessarily satisfy the lemma.

Example 3

Let β1,β2 ∈ R2 with β1 =

 1

0

 and β2 =

 0

−1

 . The set S is defined as S ≡ {1, 2} and let

S1 = {1} with S2 = {2}. Assume that c1 = c2 = 1, with j = 1 and j + 1 = 2, then,

∑
i∈S1

ci max{0, βij − βi(j+1)}+
∑
i∈S2

ci max{0, βi(j+1) − βij} = max{0, 1− 0}+ max{0,−1− 0} = 1,

and

max

{
0,
∑
i∈S1

ci
(
βij − βi(j+1)

)
+
∑
i∈S2

ci
(
βi(j+1) − βij

)}
= max {0, (1− 0) + (−1− 0)} = 0,

which are not equal.

The following theorem characterizes all extreme directions of (3.29) using the definition and

lemma above.
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Theorem 1

Given any set of distinct binary vectors v1 . . .vq−1 ∈ Rdlog2(q−1)e that are in a compatible order, then

there are exactly q−1+2dlog2(q−1)e extreme directions, given as π0
1 , . . . ,π

0
q−1, π

+
1 , . . . ,π

+
dlog2(q−1)e,

π−1 , . . . ,π
−
dlog2(q−1)e ∈ R2q−2+dlog2(q−1)e, of the projection cone (3.29), and these directions are

π0
i = ei + ei+q−1 ∀ i = 1, . . . , q − 1,

where ei ∈ R2q−2+dlog2(q−1)e is the unit vector of all zeros with a 1 in the ith component,

π+
i =



π+
1i

π2i

...

π+
(q−1),i

π+
qi

π+
(q+1),i

...

π+
(2q−2),i

π+
(2q−1),i

...

π+
(i+2q−2),i

...

π+
(2q−2+dlog2(q−1)e),i



=



vi1

max{0, vi2 − vi1}
...

max{0, vi,(q−1) − vi,(q−2)}

0

max{0, vi1 − vi2}
...

max{0, vi,(q−2) − vi,(q−1)}

0

...

1

...

0



∀ i = 1, . . . , dlog2(q − 1)e,
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and

π−i =



π−1i

π−2i
...

π−(q−1),i

π−qi

π−(q+1),i

...

π−(2q−2),i

π−(2q−1),i

...

π−(i+2q−2),i

...

π−(2q−2+dlog2(q−1)e),i



=



−vi1

max{0, vi1 − vi2}
...

max{0, vi,(q−2) − vi,(q−1)}

0

max{0, vi2 − vi1}
...

max{0, vi,(q−1) − vi,(q−2)}

0

...

−1

...

0



∀ i = 1, . . . , dlog2(q − 1)e,

where π+
ji, π

−
ji, and vji denote the jth components of the vectors π+

i , π
−
i , and vi, respectively.

Proof

First, for ease of notation, define the set S ≡ {2q− 1, . . . , 2q− 2 + dlog2(q− 1)e}. Now, consider any

extreme directions πi with πji = 0 for all j ∈ S. Thus, only consider the first 2q − 2 columns of the

constraint matrix of (3.29). The first q − 1 columns of the constraint matrix of (3.29) give a lower

triangular matrix of all −1’s while the next q− 1 columns give a lower triangular matrix of all +1’s.

There is one extreme direction πi with πii = π(i+q−1),i = 1 for i = 1, . . . , q − 1, or πi = ei + ei+q−1

which are given by π0
1 , . . . ,π

0
q−1.

Next, observe for any extreme direction π̂ with π̂ 6= π1 that π̂q must equal zero. To see

that the remaining extreme directions have π̂q = 0, consider any π̂ 6= π1 satisfying the restrictions

of (3.29) with π̂q = ε > 0. Then π̃ = (π̂ + εe1 − εeq) and π̄ = (π̂ − εe1 + εeq) both satisfy (3.29)

with π̂ = π̃
2 + π̄

2 .

Before identifying the last set of extreme directions, we give a general set of solutions

to (3.29) and then eliminate the ones that are not extreme directions. Suppose we find a solution

π̂ to (3.29) where the π̂j are given for all j ∈ S and at least one of these π̂j is not equal to zero.
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Rewriting (3.29) based on the set of π̂j given results in finding a solution to


−1 1

...
. . .

...
. . .

−1 · · · −1 1 · · · 1

π′ +


∑
j∈S

π̂jvj′1

...∑
j∈S

π̂jvj′,(q−1)

 = 0, π′j ≥ 0 ∀ j = 2, . . . 2q − 2, (3.31)

where j′ = j − (2q − 2) and π′ is the vector of the first 2q − 2 elements of the vector π. For ease of

notation, let the vector α ∈ Rq−1 be

α =


α1

...

αq−1

 =



∑
j∈S

π̂jvj′1

...∑
j∈S

π̂jvj′,(q−1)

 ,

and so we solve the system


−1 1

...
. . .

...
. . .

−1 · · · −1 1 · · · 1

π′ = −α, π′j ≥ 0 ∀ j = 2, . . . 2q − 2, (3.32)

for π′. From the system (3.32), the constraint matrix on π′ has special structure which allows for

an easy calculation of π′, which, with the π̂j already defined for j ∈ S, give a solution to (3.29).

The goal is to define the components of π′ in the order π′1, π
′
q, π
′
2, π
′
q+1, . . . , π

′
q−1, π

′
2q−2, such that

the components of −α are satisfied in the order −α1,−α2, . . . ,−αq−1. This is done by considering

the first equation, −π′1 + π′q = −α1, which is satisfied by setting π′1 = α1, since π′1 is unrestricted,

and π′q = 0. Now, the second equation to be satisfied is −π′1 − π′2 + π′q + π′q+1 = −α2. The variables

π′1 and π′q are already defined so rewrite the second equation as −π′2 + π′q+1 = −α2 + π′1 − π′q. If

the right side of this equation is negative, then set π′2 = | − α2 + π′1 − π′q| and π′q+1 = 0. If the right

side is zero, then set π′2 = π′q+1 = 0. If the right side is positive, then set π′q+1 = −α2 + π′1 − π′q

and π′2 = 0. Continue in this fashion by defining the pair π′i and π′i+q−1 for i = 3, . . . , q− 1, until all

constraints of (3.32) are satisfied and all π′ are defined. In general, this procedure can be written
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as

π′i =



∣∣∣∣∣−αi +
i−1∑
j=1

(π′j − π′j+q−1)

∣∣∣∣∣ if − αi +
i−1∑
j=1

(π′j − π′j+q−1) < 0

0 if − αi +
i−1∑
j=1

(π′j − π′j+q−1) = 0

0 if − αi +
i−1∑
j=1

(π′j − π′j+q−1) > 0



π′i+q−1 =



0 if − αi +
i−1∑
j=1

(π′j − π′j+q−1) < 0

0 if − αi +
i−1∑
j=1

(π′j − π′j+q−1) = 0

−αi +
i−1∑
j=1

(π′j − π′j+q−1) if − αi +
i−1∑
j=1

(π′j − π′j+q−1) > 0



, ∀ i = 2, . . . , q − 1.

Alternatively, the multipliers π′i for i 6= 1 and i 6= q are found by rewriting the above definitions

using a max function as

π′i = max

{
0,−

(
−αi +

i−1∑
j=1

(π′j − π′j+q−1)

)}

π′i+q−1 = max

{
0,−αi +

i−1∑
j=1

(π′j − π′j+q−1)

} , ∀ i = 2, . . . , q − 1.

Observe that based on this definition of π′, at most one of each pair, π′i and π′i+q−1, is not equal

to zero for i = 2, . . . , q − 1. In addition, note that the sum
∑i−1
j=1(π′j − π′j+q−1) is equal to αi−1 for

i = 2, . . . , q − 1, because from the i− 1 row of (3.32) we have −
∑i−1
j=1 π

′
j +

∑i−1
j=1 π

′
j+q−1 = −αi−1.

Making this final substitution, the form of the π′i’s for i 6= 1 and i 6= q are

π′i = max {0, αi − αi−1}

π′i+q−1 = max {0, αi−1 − αi}
, ∀ i = 2, . . . , q − 1. (3.33)

Letting π̂i = π′i for i = 1, . . . , 2q − 2 and including the π̂i already given for i ∈ S, the solution π̂ is

feasible to (3.29).

For any set of defined multipliers π̂j for j ∈ S we have shown a way to define the π̂j for

j = 1, . . . , 2q − 2 such that π̂ is feasible to (3.29). Not all of the feasible directions π̂ are extreme

directions (3.29), but it is easy to determine them. Of the q − 1 extreme directions identified so

far, none of them have a nonzero πj for all j ∈ S. We look at the special cases where the extreme

directions have exactly one πj 6= 0 for some j ∈ S.
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First, consider the extreme direction πi with πji > 0 where j = i+ 2q− 2. Without the loss

of generality, assume πji = 1 and πki = 0 for all k ∈ S with k 6= j. For this instance, the α vector is

α =


α1

...

αq−1

 =


πjivj′1

...

πjivj′,(q−1)

 =


vj′1

...

vj′,(q−1)

 ,

where j′ = j − (2q − 2). Using the procedure above, define πji for j /∈ S as π1i = vj′1, πqi = 0,

with (3.33) giving

πki = max
{

0, vj′k − vj′,(k−1)

}
π(k+q−1),i = max

{
0, vj′,(k−1) − vj′k

} , ∀ k = 2, . . . , q − 1.

There are dlog2(q − 1)e choices for πji = 1, that is, i = 1, . . . , dlog2(q − 1)e, with j = i+ 2q − 2 ∈ S,

which correspond to the dlog2(q − 1)e extreme directions π+
1 , . . . ,π

+

dlog2(q−1)e
.

Next, consider the extreme direction πi with πji < 0 where j = i+ 2q− 2. Without the loss

of generality, assume πji = −1 and πki = 0 for all k ∈ S with k 6= j. For this instance, the α vector

is

α =


α1

...

αq−1

 =


πjivj′1

...

πjivj′,(q−1)

 =


−vj′1

...

−vj′,(q−1)

 ,
where j′ = j − (2q − 2). Using the procedure above, define πji for j /∈ S as π1i = −vj′1, πqi = 0,

with (3.33) giving

πki = max
{

0,−vj′k + vj′,(k−1)

}
π(k+q−1),i = max

{
0,−vj′,(k−1) + vj′k

} , ∀ k = 2, . . . , q − 1.

There are dlog2(q − 1)e choices for πji = 1, that is, i = 1, . . . , dlog2(q − 1)e, with j = i+ 2q − 2 ∈ S,

which correspond to the dlog2(q− 1)e solutions π−1 , . . . ,π
−
dlog2(q−1)e

to (3.29). All of these solutions

are extreme directions because for any solution, say π−i with π(i+2q−2),i = −1, given above, the only

other extreme direction identified so far with a with a nonzero component there is π+
i which has

π+
(i+2q−2),i = 1. By definition of the other π−ji and π+

ji for j 6= i + 2q − 2 using the max function, it

is clear that π−i 6= (−1)π+
i and so π−1 , . . . ,π

−
dlog2(q−1)e are extreme directions to (3.29).

50



Last, consider any solution π̂ to (3.29) with at least two nonzero multipliers π̂j 6= 0 for some

j ∈ S. Partition the set S into S+, S0, and S− defined as S+ ≡ {i ∈ S : π̂i > 0}, S0 ≡ {i ∈ S :

π̂i = 0}, and S− ≡ {i ∈ S : π̂i < 0}. Note, that by assumption, |S+|+ |S−| ≥ 2. Let cj = |π̂j | for all

j ∈ S. The α vector is

α =


α1

...

αq−1

 =



∑
j∈S

π̂jvj′1

...∑
j∈S

π̂jvj′,(q−1)


where j′ = j − (2q− 2). Using the procedure above to find a feasible solution to (3.29), the other π̂i

for i = 1, . . . , 2q − 2 are π̂1 = α1 =
∑
j∈S π̂jvj′1, π̂q = 0, with

π̂i = max

{
0,
∑
j∈S

π̂jvj′i −
∑
j∈S

π̂jvj′,(i−1)

}

π̂i+q−1 = max

{
0,
∑
j∈S

π̂jvj′,(i−1) −
∑
j∈S

π̂jvj′i

} , ∀ i = 2, . . . , q − 1.

Now, we show that π̂ is a linear combination of a subset of the extreme directions π+
1 , . . . ,π

+
dlog2(q−1)e

and π−1 , . . . ,π
−
dlog2(q−1)e First, consider π̂1 which can be rewritten as

π̂1 =
∑
j∈S

π̂jvj′1

=
∑
j∈S+

π̂jvj′1 +
∑
j∈S0

π̂jvj′1 +
∑
j∈S−

π̂jvj′1

=
∑
j∈S+

cjvj′1 +
∑
j∈S0

(0)vj′1 +
∑
j∈S−

−cjvj′1

=
∑
j∈S+

cjπ
+
1j′ +

∑
j∈S−

cjπ
−
1j′
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where j′ = j − (2q − 2). Next, consider π̂i for i = 2, . . . , q − 1 which are defined as

π̂i = max

{
0,
∑
j∈S

π̂jvj′i −
∑
j∈S

π̂jvj′,(i−1)

}

= max

{
0,
∑
j∈S+

π̂j(vj′i − vj′,(i−1)) +
∑
j∈S0 π̂j(vj′i − vj′,(i−1)) +

∑
j∈S−

π̂j(vj′i − vj′,(i−1))

}

= max

{
0,
∑
j∈S+

cj(vj′i − vj′,(i−1)) +
∑
j∈S0

0(vj′i − vj′,(i−1)) +
∑
j∈S−

−cj(vj′i − vj′,(i−1))

}

= max

{
0,
∑
j∈S+

cj(vj′i − vj′,(i−1)) +
∑
j∈S−

cj(vj′(i−1) − vj′i)

}
(3.34)

=
∑
j∈S+

max
{

0, cj(vj′i − vj′,(i−1))
}

+
∑
j∈S−

max
{

0, cj(vj′(i−1) − vj′i)
}

(3.35)

=
∑
j∈S+

cj max
{

0, (vj′i − vj′,(i−1))
}

+ 0 +
∑
j∈S−

cj max
{

0, (vj′(i−1) − vj′i)
}

=
∑
j∈S+

cjπ
+
ij′ +

∑
j∈S−

cjπ
−
ij′ ,

where j′ = j − (2q − 2) with the equivalence of (3.34) and (3.35) begin a result of the lemma. It is

also shown that

π̂i+q−1 =
∑
j∈S+

cjπ
+
(i+q−1),j′ +

∑
j∈S−

cjπ
−
(i+q−1),j′ , ∀ i = 2, . . . q − 1,

by interchanging i and i− 1 in the above equations where j′ = j − (2q − 2).

Next, π̂q =
∑
j∈S+ cjπ

+
qj′ +

∑
j∈S− cjπ

−
qj′ = 0, with j′ = j − (2q − 2), since π+

qi = 0 and

π−qi = 0 for all i = 1, . . . , dlog2(q − 1)e. Finally, consider any π̂i for any i ∈ S and recall that the

extreme directions π+
j′ and π−j′ where j′ = i − (2q − 2), have π+

ij′ = 1 and πij′ = −1, with π+
k` = 0

and π−k` = 0 for all k ∈ S with k 6= i and all ` = 1, . . . , dlog2(q−1)e with ` 6= j′. In addition, ci = |π̂i|

for all i ∈ S, thus

π̂i =
∑
j∈S+

cjπ
+
ij′ +

∑
j∈S−

cjπ
−
ij′ , ∀ i = 2q − 1, . . . , 2q − 2 + dlog2(q − 1)e,

where j′ = i− (2q− 2). Thus, all components of π̂ have been written as a linear combination of the
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components of other extreme directions which is now given in concise form as

π̂ =
∑
j∈S+

cjπ
+
j′ +

∑
j∈S−

cjπ
−
j′

with j′ = j − (2q − 2). 2

The following Theorem relates the extreme directions of (3.29) to the facets of the projection

of X ′2 of (3.27) onto the (x,u) space denoted Proj(x,u)(X
′
2).

Theorem 2

Every extreme direction of (3.29), that is, π0
i for i = 1, . . . , q − 1, π+

i for i = 1, . . . , dlog2(q − 1)e,

and π−i for i = 1, . . . , dlog2(q − 1)e, found in Theorem 1 define facets on Proj(x,u)(X
′
2).

Proof

Two facets are already known for Proj(x,u)(X
′
2). These come from the the constraints of (3.27) that

do not contain any λ variables and are
∑q
k=1 xk = 1 and xq ≥ 0. To find the remaining facets, we

consider the system of equations from (3.27) given as



1 1 · · · 1 1 −1 −1 · · · −1

1 · · · 1 1 −1 · · · −1

. . .
...

...
. . .

...

1 1 −1

−1 · · · · · · −1 1 · · · · · · 1

. . .
. . .

...
. . .

. . .
...

. . .
...

. . .
...

−1 1

0dlog2(q−1)e×q V





x1

...

xq

λ1

...

λq−1





=

≥
...

≥

≥
...

...

≥

=





0

0

...

0

0

...

...

0

u



,

where 0dlog2(q−1)e×q is a dlog2(q − 1)e × q matrix whose elements are all zeros and V is a matrix of

size dlog2(q − 1)e × (q − 1) where the kth column of V corresponds to the vector vk. In addition, the

two constraints corresponding to zero rows of the λ variables have been removed from the system.

Now, multiply this system by π0
i for i = 1, . . . , q − 1, π+

i for i = 1, . . . , dlog2(q − 1)e, and π−i for

i = 1, . . . , dlog2(q − 1)e, recalling that since each π0
i , π

+
i , and π−i , are extreme directions of (3.29)
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the λ variables will not appear in the resulting constraints.

First, consider the extreme directions π0
i = ei+ei+q−1 for i = 1, . . . , q−1. For each of these

cases, the two nonzero multipliers of π0
i are π0

ii = π0
(i+1−q),i = 1 which give

∑q
k=i xi+

∑q
k=i+1−xi ≥

0, or, more concisely, xi ≥ 0. Observe that each constraint xi ≥ 0 created by π0
i for i = 1, . . . , q− 1,

is a facet of Proj(x,u)(X
′
2) because this constraint cannot be represented by a linear combination the

other facets. Thus, the facets found so far for Proj(x,u)(X
′
2) are

∑q
k=1 xk = 1, xq ≥ 0, and xk ≥ 0

for k = 1, . . . , q − 1 found using the multipliers π0
1 , . . . ,π

0
q−1.

Next, none of the facets identified for Proj(x,u)(X
′
2) contain any of the u variables so consider

the extreme directions π+
i for i = 1, . . . , dlog2(q − 1)e where, exactly one u variables is selected.

Specifically, for π+
i , the variable ui has a multiplier of 1 with all other u variables having multipliers

of zero. The valid constraints given for Proj(x,u)(X
′
2) are of the form

vi1
q∑
j=1

xj +
q−1∑
j=2

(
max{0, vij − vi,(j−1)}

(
q∑
k=j

xk

)
+ max{0, vi,(j−1) − vij}

(
q∑

k=j+1

−xi

))
≥ ui,

for each i = 1, . . . , dlog2(q − 1)e. These constraints are facets as ui appears in exactly one of the

above constraints and none other. The above representation of the facets is cumbersome so we

rewrite them in close form without use of a max function.

Recall that each vij ∈ {0, 1} for i = 1, . . . , dlog2(q − 1)e, and j = 1, . . . , q − 1, so for a given

binary row, [vi1, . . . , vi,(q−1)] of V, consider the first vij with vij = 1, which adds
∑q
k=j xk to the left

side of the constraint. Next, find the index of the row vector, say ` with ` > j, such that vi` = 0

and so vik = 1 for j ≤ k < `. This adds −
∑q
k=`+1 xk to the left side of the constraint. Combining

the two sums gives
∑`
k=j xk on the left side of the constraint. Continuing, look for the next index

p with p > ` such that vip = 1 and vik = 0 for ` ≤ k < p, which adds
∑q
k=p xk to the left side of

the constraint and gives
∑`
k=j xk +

∑q
k=p xk. Repeating the above steps until each component of

[vi1, . . . , vi,(q−1)] is considered gives the xk that are on the left side of the constraint. This process

provides insight into rewriting the constraints. From the above description, the variable x1 is on the

left side of the constraint if vi1 = 1, xj is on the left side of the constraint if vij = 1 or vi,(j−1) = 1

for j = 2, . . . , q−1, and xq is on the left side of the constraint if vi,(q−1) = 1. Using this information,
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define new binary coefficients b1ij ∈ {0, 1} for i = 1, . . . , dlog2(q − 1)e and j = 1, . . . , q as

b1ij =

 1 if vij = 1 or vi,(j−1) = 1

0 otherwise

 ∀ (i, j), i = 1, . . . , dlog2(q − 1)e, j = 2, . . . , q − 1,

with b1i1 = vi1 and b1iq = vi,(q−1) for all i = 1, . . . , dlog2(q− 1)e. Thus, the facets above are rewritten

as
q∑
j=1

b1ijxj ≥ ui, ∀ i = 1, . . . , dlog2(q − 1)e.

For example, let q = 9 and consider the binary row vector [vi1, . . . , vi8] = [0, 1, 1, 0, 0, 1, 1, 0].

The coefficients are given as [b1i1, b
1
i2, b

1
i3, b

1
i4, b

1
i5, b

1
i6, b

1
i7, b

1
i8, b

1
i9] = [0, 1, 1, 1, 0, 1, 1, 1, 0] and the facet

is x2 + x3 + x4 + x6 + x7 + x8 ≥ ui.

The last set of facets of Proj(x,u)(X
′
2) come from the extreme directions π−i for i =

1, . . . , dlog2(q − 1)e where, exactly one u variables is selected. In this case, for π−i , the variable

ui has a multiplier of −1 with all other u variables having multipliers of zero. The valid constraints

given for Proj(x,u)(X
′
2) are of the form

−vi1
q∑
j=1

xj +
q−1∑
j=2

(
max{0, vi,(j−1) − vij}

(
q∑
k=j

xk

)
+ max{0, vij − vi,(j−1)}

(
q∑

k=j+1

−xi

))
≥ −ui,

for each i = 1, . . . , dlog2(q − 1)e. These constraints are facets as −ui appears on the right side in

exactly one of the above constraints and none other.

Again, we simplify the notation for the constraint given above by looking at the row vector

[vi1, . . . , vi,(q−1)]. Consider the first vij with vij = 1, which adds
∑q
k=j+1−xk if j 6= 1 and

∑q
k=1−xk

if j = 1, to the left side of the constraint. Next, find the first index of the row vector, say ` with

` > j, such that vi` = 0 and so vik = 1 for j ≤ k < `. This adds
∑q
k=` xk to the left side of the

constraint. Combining the two sums gives
∑`−1
k=j+1−xk if j 6= 1 and

∑`−1
k=1−xk if j = 1, on the

left side of the constraint. Continuing, look for the next index p with p > ` such that vip = 1 and,

thus, vik = 0 for ` ≤ k < p. This adds
∑q
k=p+1−xk to the left side of the constraint and gives∑`−1

k=j −xk +
∑q
k=p+1−xk if j 6= 1, and

∑`−1
k=1−xk +

∑q
k=p+1−xk, if j = 1. Repeating the above

steps until each component of [vi1, . . . , vi,(q−1)] is considered, gives the −xk that are on the left side

of the constraint. From the above description, the variable −x1 is on the left side of the constraint

if vi1 = 1, −xj is on the left side of the constraint if vij = 1 and vi,(j−1) = 1 for j = 2, . . . , q−1, and
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−xq is on the left side of the constraint if vi,(q−1) = 1. Using this information, define new binary

coefficients b2ij ∈ {0, 1} for i = 1, . . . , dlog2(q − 1)e and j = 1, . . . , q as

b2ij =

 1 if vij = 1 and vi,(j−1) = 1

0 otherwise

 ∀ (i, j), i = 1, . . . , dlog2(q − 1)e, j = 2, . . . , q − 1,

with b2i1 = vi1 and b2iq = vi,(q−1) for all i = 1, . . . , dlog2(q− 1)e. Thus, the facets above are rewritten

as
q∑
j=1

−b2ijxj ≥ −ui, ∀ i = 1, . . . , dlog2(q − 1)e.

For example, let q = 9 and consider the binary row vector [vi1, . . . , vi8] = [1, 0, 0, 1, 1, 0, 0, 1].

The coefficients are given as [b2i1, b
2
i2, b

2
i3, b

2
i4, b

2
i5, b

2
i6, b

2
i7, b

2
i8, b

2
i9] = [1, 0, 0, 0, 1, 0, 0, 0, 1] and the facet

is −x1 − x5 − x9 ≥ −ui. 2

As Theorem 2 showed, all the extreme directions of (3.29) give facets to Proj(x,u)(X
′
2). This

projection of X ′2 onto the (x,u) is also the projection of X2 onto the (x,u) since there exists a

nonsingular linear transformations between X ′2 and X2. So, we denote the projection of X2 onto

the (x,u) space as Proj(x,u)(X2) which is given as

Proj(x,u)(X2) =

 (x,u) :

q∑
j=1

xj = 1, x ≥ 0, u binary,

q∑
j=1

b1ijxj ≥ ui ∀ i = 1, . . . , dlog2(q − 1)e,

q∑
j=1

−b2ijxj ≥ −ui ∀ i = 1, . . . , dlog2(q − 1)e

 , (3.36)

where

b1ij =

 1 if vij = 1 or vi,(j−1) = 1

0 otherwise

 ∀ (i, j), i = 1, . . . , dlog2(q − 1)e, j = 2, . . . , q − 1,
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with b1i1 = vi1 and b1iq = vi,(q−1) for all i = 1, . . . , dlog2(q − 1)e, and

b2ij =

 1 if vij = 1 and vi,(j−1) = 1

0 otherwise

 ∀ (i, j), i = 1, . . . , dlog2(q − 1)e, j = 2, . . . , q − 1,

with b2i1 = vi1 and b2iq = vi,(q−1) for all i = 1, . . . , dlog2(q−1)e. Note, that the vectors v1, . . . ,vq−1 ∈

Rdlog2(q−1)e must be in a compatible order in order for Proj(x,u)(X2) to be a valid representation.

This formulation has q nonnegative variables x, dlog2(q−1)e binary variables u with 1+2dlog2(q−1)e

constraints.

In summary, when a collection of distinct binary vectors, v1, . . . ,vq−1,∈ Rdlog2(q−1)e, are in

a compatible order, then the characterization of all extreme directions of the projection cone of (3.29)

is easily obtained and gives a representation of Proj(x,u)(X2) using 1 + 2dlog2(q − 1)e constraints.

However, if a non-compatible order of binary vectors is used, then the number of constraints defining

the convex hull of Proj(x,u)(X2) is not necessary 1 + 2dlog2(q − 1)e. We end this section by giving

the following example of the projection, Proj(x,u)(X2), obtained from a set of binary vectors not in

a compatible order.

Example 4

Let q = 5 and define the binary vectors v1,v2,v3,v4 ∈ R2 as v1 =

 1

0

 , v2 =

 0

1

 , v3 =

 1

1

 ,
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and v4 =

 0

0

 . We seek the extreme directions of



−1 0 0 0 1 0 0 0 0 0

−1 −1 0 0 1 1 0 0 1 1

−1 −1 −1 0 1 1 1 0 0 1

−1 −1 −1 −1 1 1 1 1 1 0





π1

π2

π3

π4

π5

π6

π7

π8

π9

π10



= 0, πi ≥ 0, ∀ i = 2, . . . , 8,

which are



1

0

0

0

1

0

0

0

0

0



,



0

1

0

0

0

1

0

0

0

0



,



0

0

1

0

0

0

1

0

0

0



,



0

0

0

1

0

0

0

1

0

0



,



0

1

0

0

0

0

0

1

0

1



,



0

0

0

1

0

1

0

0

0

−1



,



1

0

1

0

0

0

0

2

1

1



,



−1

0

0

2

0

0

1

0

−1

−1



,



1

0

1

0

0

2

0

0

1

−1



,



−1

2

0

0

0

0

1

0

−1

1



.

Notice that some extreme directions have two nonzero components on the constraints
∑4
k=1 λkvk = u

which does not occur when the vectors v1, v2, v3, and v4 are in a compatible order. The projection
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having 5 nonnegative variables x, 2 binary variables u, and 7 constraints is

Proj(x,u)(X2) =



(x,u) :

x1 + x2 + x3 + x4 + x5 = 1

0 1 1 1 0

0 0 −1 0 0

1 1 2 2 0

−1 −1 −1 0 0

1 1 0 0 0

−1 1 1 0 0





x1

x2

x3

x4

x5


≥



u2

−u2

u1 + u2

−u1 − u2

u1 − u2

−u1 + u2



, x ≥ 0, u binary



,

which has more than the 1 + 2dlog2(5− 1)e = 5 constraints obtained when using binary vectors in

a compatible order.

3.4 Modeling Piecewise-Linear Functions using SOS-2 Re-

strictions

SOS-2 restrictions easily model piecewise-linear functions. Consider such a function f(y)

defined over an interval [θ1, θq], and having q break points θ1 < θ2 < · · · < θq so that

f(y) = f(θk) + (y − θk)

(
f(θk+1)− f(θk)

θk+1 − θk

)
when y ∈ [θk, θk+1] for k ∈ {1, . . . , q − 1}.

This function is represented by enforcing SOS-2 restrictions on a set of nonnegative variables x along

with the constraint
∑q
k=1 xk = 1, as

PW =

{
(y, f(y),x) : y =

q∑
k=1

θkxk, f(y) =
q∑

k=1

f(θk)xk,
q∑

k=1

xk = 1, x ≥ 0, SOS-2 on x

}
. (3.37)

The SOS-2 restriction on the variables x along with the constraints
∑q
k=1 xk = 1 and x ≥ 0 can be

enforced using X2 of (3.16)–(3.21) by including the additional variables w and u within PW as

PW1 =

{
(y, f(y),x,w,u) : y =

q∑
k=1

θkxk, f(y) =
q∑

k=1

f(θk)xk, (x,w,u) ∈ X2 of (3.16)− (3.21)

}
, (3.38)
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or X ′2 of (3.27) by including the variables λ and u within PW as

PW2 =

{
(y, f(y),x,λ,u) : y =

q∑
k=1

θkxk, f(y) =
q∑

k=1

f(θk)xk, (x,λ,u) ∈ X ′2 of (3.27)

}
, (3.39)

or Proj(x,u)(X2) of (3.36) by including the additional variables u within PW as

PW3 =

{
(y, f(y),x,u) : y =

q∑
k=1

θkxk, f(y) =
q∑

k=1

f(θk)xk, (x,u) ∈ Proj(x,u)(X2) of (3.36)

}
. (3.40)

Observe that the restrictions x1 = w11, xj = w(j−1)j + wjj for j = 2, . . . , q − 1, and xq = w(q−1)q

in X2 allow for a reduction in size of PW1 via a substitution of all variables x from the problem to

give the formulation PW ′1 below.

PW ′1 =

 (y, f(y),w,u) : y = θ1w11 +

q−1∑
k=2

θk(w(k−1)k + wkk) + θqw(q−1)q,

f(y) = f(θ1)w11 +

q−1∑
k=2

f(θk)(w(k−1)k + wkk) + f(θq)w(q−1)q,

wkk, wk(k+1) ≥ 0 ∀ k = 1, . . . , q − 1,

q−1∑
k=1

(wkk + wk(k+1)) = 1,

q−1∑
k=1

(wkk + wk(k+1))vk = u, u binary

 (3.41)

In summary, PW ′1 of (3.41), PW2 of (3.39), and PW3 of (3.40) all model a single piecewise-

linear function f(y) having q break points. The formulation PW ′1 uses 2(q − 1) nonnegative and

continuous variables w, dlog2(q − 1)e binary variables u, and 3 + dlog2(q − 1)e constraints. PW2

requires 1 nonnegative and continuous variable xq with 2(q − 1) continuous variables x1, . . . , xq−1

and λ, dlog2(q−1)e binary variables u, and 4 + dlog2(q−1)e+ 2(q−1) constraints. PW3 only needs

q nonnegative and continuous variables x, dlog2(q − 1)e binary variables u, and 3 + 2dlog2(q − 1)e

constraints. These forms are exhibited in the example below.

Example 5

Consider the piecewise-linear function f(y) defined on the interval [0, 6], and having the q = 5

break points y = 0, 1, 3, 4, 6, with f(0) = 0, f(1) = 5, f(3) = 9, f(4) = 10, and f(6) = 11. The
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function is depicted in Figure 1. Define the compatible vectors v1,v2,v3,v4 ∈ R2 to be v1 =

 0

0

 ,

y

f(y)

(0, 0)

(1, 5)

(3, 9)
(4, 10)

(6, 11)

Figure 3.1: Piecewise-linear function f(y) with q = 5 break points.

v2 =

 1

0

 , v3 =

 1

1

 , and v4 =

 0

1

 .
First, consider formulation PW ′1. The five equations of (3.41) in nonnegative, continuous

(w11, w12, w22, w23, w33, w34, w44, w45) and binary (u1, u2) are listed in matrix notation as



0 1 1 3 3 4 4 6

0 5 5 9 9 10 10 11

1 1 1 1 1 1 1 1

0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1





w11

w12

w22

w23

w33

w34

w44

w45



=



y

f(y)

1

u1

u2


.

Next, consider the 14 constraints of PW2 where x5 ≥ 0 with continuous variables (x1, x2, x3, x4, x5)
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and (λ1, λ2, λ3, λ4), and binary variables (u1, u2) listed in matrix notation as



0 1 1 1 1 0 −1 −1 −1

0 0 1 1 1 0 0 −1 −1

0 0 0 1 1 0 0 0 −1

0 −1 −1 −1 −1 1 1 1 1

0 0 −1 −1 −1 0 1 1 1

0 0 0 −1 −1 0 0 1 1

0 0 0 0 −1 0 0 0 1





x1

x2

x3

x4

x5

λ1

λ2

λ3

λ4



≥ 0,

and



0 1 3 4 6 0 0 0 0

0 5 9 10 11 0 0 0 0

1 1 1 1 1 0 0 0 0

1 1 1 1 1 −1 −1 −1 −1

0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 1





x1

x2

x3

x4

x5

λ1

λ2

λ3

λ4



=



y

f(y)

1

0

u1

u2


.

Last, the 7 constraints of PW3 with the nonnegative and continuous variables (x1, x2, x3, x4, x5) and

the binary variables (u1, u2) are given as


0 1 3 4 6

0 5 9 10 11

1 1 1 1 1





x1

x2

x3

x4

x5


=


y

f(y)

1

 ,


0 1 1 1 0

0 0 1 1 1

0 0 −1 0 0

0 0 0 −1 −1





x1

x2

x3

x4

x5


≥



u1

u2

−u1

−u2


.
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3.4.1 Alternate Approaches for Piecewise-Linear Functions using SOS-2

Restrictions

Many alternative approaches are found in [5, 6] to model piecewise-linear functions with

SOS-2 restrictions using any number of auxiliary binary variables and constraints. Computational

trials by [6] demonstrate that formulations using a logarithmic number of auxiliary binary variables

and constraints are most efficient in respect to solution times for larger problem instances. Thus,

we only compare our models, X2 of (3.16)–(3.21) and Proj(x,u)(X2) of (3.36), for SOS-2 restrictions

with two models found in [5, 6] that use a logarithmic number of constraints and binary variables.

The first approach we mention found in [5, 6] applicable to SOS-2 restrictions uses the

variables (x,u) and is, in fact, very close to Proj(x,u)(X2). First, define q∗ as the smallest integer

with q∗ ≥ q such that q∗− 1 is a power of 2. That is, dlog2(q∗− 1)e = log2(q∗− 1). This formulation

uses the vectors v1, . . . ,vq∗−1 ∈ Rlog2(q∗−1) and requires them to be in a compatible order. These

vectors give a Hamiltonian path using every vertex on the log2(q∗−1)-dimensional hypercube. Now,

define b̂1ij and b̂2ij as

b̂1ij =

 1 if vij = 1 or vi,(j−1) = 1

0 otherwise

 ∀(i, j), i = 1, . . . , log2(q∗ − 1), j = 2, . . . , q∗ − 1,

with b̂1i1 = vi1 and b̂1iq∗ = vi,(q∗−1) for all i = 1, . . . , log2(q∗ − 1), and

b̂2ij =

 1 if vij = 1 and vi,(j−1) = 1

0 otherwise

 ∀(i, j), i = 1, . . . , log2(q∗ − 1), j = 2, . . . , q∗ − 1,
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with b̂2i1 = vi1 and b̂2iq∗ = vi,(q∗−1) for all i = 1, . . . , log2(q∗−1). The formulation denoted Log in [6] is

Log =

 (x,u) :

q∗∑
j=1

xj = 1, x ≥ 0, u binary,

q∗∑
j=1

(1− b̂1ij)xj ≤ 1− ui ∀ i = 1, . . . , log2(q∗ − 1),

q∗∑
j=1

b̂2ijxj ≤ ui ∀ i = 1, . . . , log2(q∗ − 1),

xi = 0 ∀ i = q + 1, . . . , q∗

 .

Obviously, this formulation can be reduced in size when q < q∗ which the authors of [5, 6] do by

substituting out the variables xq+1, . . . , xq∗ which gives

Log =

 (x,u) :

q∑
j=1

xj = 1, x ≥ 0, u binary,

q∑
j=1

(1− b̂1ij)xj ≤ 1− ui ∀ i = 1, . . . , log2(q∗ − 1),

q∑
j=1

b̂2ijxj ≤ ui ∀ i = 1, . . . , log2(q∗ − 1)

 . (3.42)

Notice, that even though we have defined b̂1ij and b̂2ij for all i = 1, . . . , log2(q∗−1), and j = 1, . . . , q∗,

the reduced formulation given in (3.42) only uses those b̂1ij and b̂2ij for i = 1, . . . , dlog2(q − 1)e,

and j = 1, . . . , q. To conclude, the simplified formulation for Log of (3.42), just like Proj(x,u)(X2),

uses q nonnegative continuous variables x, dlog2(q − 1)e = log2(q∗ − 1) binary variables u, and

1 + 2dlog2(q − 1)e constraints.

The second model for SOS-2 restrictions for piecewise-linear functions using a logarithmic

number of binary variables and constraints is given in [6] and is similar to X2 of (3.16)–(3.21) because
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it uses the same variables (x,w,u). This formulation, denoted as in [6] as DLog, is given as

DLog =

 (x,w,u) : wkk, wk(k+1) ≥ 0 ∀ k = 1 . . . , q − 1,

x1 = w11,

xj = w(j−1)j + wjj ∀ j = 1, . . . , q − 1,

xq = w(q−1)q,

q−1∑
k=1

(wkk + wk(k+1)) = 1,

q−1∑
k=1

(wkk + wk(k+1))vk ≤ u,

q−1∑
k=1

(wkk + wk(k+1))(1− vk) ≤ 1− u, u binary

 . (3.43)

Both formulations provided in this section are able to model SOS-2 restrictions over a set

of nonnegative x variables having
∑q
k=1 xk = 1. Thus, each formulation can model a piecewise-

linear function represented by (3.37). We assume that, if possible, reductions to the models, such

as substituting out the variables x as in PW1 when X2 is used, are made. Any substitutions do not

affect the SOS-2 restrictions, but provide a reduced number of constraints and variables within the

formulation.

3.4.2 Comparisons of SOS-2 Models for Piecewise-Linear Functions

Of the given formulations, we compare X2 of (3.16)–(3.21), Proj(x,u)(X2) of (3.36), Log

of (3.42), DLog of (3.43) because each of these formulations only requires a logarithmic number of

binary variables and constraints to model SOS-2 restrictions. It is known that the formulations Log

and DLog are locally ideal from [5, 6]. That is, conv(Log)= Log, and conv(DLog)= DLog where

Log and DLog are the continuous relaxations of Log and DLog, respectively. The formulation X2

of (3.16)–(3.21) is trivially ideal. To explain, let X2 denote the continuous relaxation of X2 obtained

by relaxing the u binary restrictions to 0 ≤ u ≤ 1. As with the system found in (3.6), the relaxation

X2 has only binary extreme points. Observe that the constraints
∑q−1
k=1(wkk + wk(k+1)) = 1, w ≥ 0

found withinX2 of (3.16)–(3.21) have 2(q−1) binary extreme points and
∑q−1
k=1(wkk+wk(k+1))vk = u
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with (3.17)–(3.19) not restrictive in x or w. Also, (x,w) binary implies u binary, giving conv(X2) =

X2 (so that X2 of (3.16)–(3.21) is locally ideal). Since X2 is locally ideal, we also conclude that

conv(X ′2) = X
′
2 and conv(Proj(x,u)(X2)) = Proj(x,u)(X2), with X

′
2 and Proj(x,u)(X2) being the

continuous relaxations of X ′2 and Proj(x,u)(X2), respectively. To explain, X ′2 is obtained from X2

via a non-singular linear transformation which means X ′2 is locally ideal. In addition, Proj(x,u)(X2),

is also ideal, because it is obtained from X ′2 by projecting out the λ variables.

Continuing with the comparisons of the formulations given above, we have shown that each

formulation is locally ideal and so we first look at X2 of (3.16)–(3.21) and DLog of (3.43) because

they are in the same variables space but contain a different number of constraints. It is shown in [1]

that X2 = DLog where X2 and DLog are the continuous relaxations of X2 and DLog, respectively.

This results holds for any set of vectors vk.

Next, consider Proj(x,u)(X2) and Log which are both in the (x,u) variable space. Both

formulations require the binary vectors vk to be in a compatible order. As shown above, both

formulations are locally ideal, but are different for any q such that log2(q − 1) < dlog2(q − 1)e. The

following theorem describes the relationship between Proj(x,u)(X2) and Log.

Theorem 3

Let Proj(x,u)(X2) and Log be defined using the binary vectors v1, . . . ,vq−1 ∈ Rdlog2(q−1)e in a

compatible order. Also, let Proj(x,u)(X2) and Log be the continuous relaxations of Proj(x,u)(X2)

and Log, respectively. Given any q = q∗, with q∗ satisfying the equation dlog2(q∗−1)e = log2(q∗−1),

then Proj(x,u)(X2) = Log. For any q < q∗, then Proj(x,u)(X2) ⊂ Log.

Proof

First, consider the case for any q = q∗, with q∗ satisfying the equation dlog2(q∗− 1)e = log2(q∗− 1).

Observe that b1ij = b̂1ij and b2ij = b̂2ij for all i = 1, . . . , log2(q∗ − 1), and j = 1, . . . , q∗. Thus, all

constraints of Proj(x,u)(X2) and Log are the same and so Proj(x,u)(X2) = Log.

Now, consider any q such that q < q∗ and the binary vectors vq and vq+1. Since the vectors

are in a compatible order, we know that vq and vq+1 differ by one component, say component k.

Case 1

Let vkq = 1 and vk,(q+1) = 0, then, by definition, b2kq = 1, since vkq = 1, but b̂2kq = 0, because

vk,(q+1) = 0. In addition, b2ij = b̂2ij for all i = 1, . . . , dlog2(q − 1)e, and j = 1, . . . , q with i 6= k and
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j 6= q, and b1ij = b̂1ij for all i = 1, . . . , dlog2(q − 1)e, and j = 1, . . . , q. As a result, the formulations

Proj(x,u)(X2) and Log differ by exactly one constraint. That is, Proj(x,u)(X2) uses the constraint∑q
j=1−b2kjxj ≥ −uk, while Log uses

∑q
j=1 b̂

2
kjxj ≤ uk which is equivalent to

∑q
j=1−b̂2kjxj ≥ −uk by

multiplying
∑q
j=1 b̂

2
kjxj ≤ uk by −1. Now, consider any feasible (x̂, û) to Proj(x,u)(X2) which has

the constraint
∑q
j=1−b2kj x̂j ≥ −ûk. Note that −ûk ≤

∑q
j=1−b2kj x̂j ≤

∑q−1
j=1 −b2kj x̂j =

∑q
j=1−b̂2kj x̂j

since b̂2kq = 0 and b̂2kj = b2kj for j = 1, . . . , q − 1. Thus,
∑q
j=1−b̂2kj x̂j ≥ −ûk or by multiplying it by

−1 gives the constraint found in Log,
∑q
j=1 b̂

2
kj x̂j ≤ ûk. All other constraints of Log are the same

as Proj(x,u)(X2) so (x̂, û) ∈ Log and thus Proj(x,u)(X2) ⊆ Log. In addition, the solution xq = 1,

xi = 0 for i 6= q, and u = vq+1 is feasible to Log, but not to Proj(x,u)(X2) so Proj(x,u)(X2) ⊂ Log.

Case 2

Now, let vkq = 0 and vk,(q+1) = 1, then, by definition, b1kq = 0, since vkq = 0, but b̂1kq = 1, because

vk,(q+1) = 1. In addition, b1ij = b̂1ij for all i = 1, . . . , dlog2(q − 1)e, and j = 1, . . . , q with i 6= k

and j 6= q and b1ij = b̂1ij for all i = 1, . . . , dlog2(q − 1)e, and j = 1, . . . , q. Again, the formulations

Proj(x,u)(X2) and Log differ by exactly one constraint. That is, Proj(x,u)(X2) uses the constraint∑q
j=1 b

1
kjxj ≥ uk, while Log uses

∑q
j=1(1− b̂1kj)xj ≤ 1− uk which is equivalent to

∑q
j=1 b̂

1
kjxj ≥ uk

by taking
∑q
j=1(1 − b̂1kj)xj ≤ 1 − uk and multiplying it by −1 and then adding

∑q
j=1 xj = 1 to

it. Now, consider any feasible (x̂, û) to Proj(x,u)(X2) which has the constraint
∑q
j=1 b

1
kj x̂j ≥ ûk.

Note that ûk ≤
∑q
j=1 b

1
kj x̂j =

∑q−1
j=1 b

1
kj x̂j ≤

∑q
j=1 b̂kj x̂j since b1kq = 0, b̂1kq = 1, and b̂1kj = b1kj for

j = 1, . . . , q − 1. Thus,
∑q
j=1 b̂

1
kj x̂j ≥ ûk or by multiplying this constraint by −1 and adding the

constraint
∑q
j=1 xj = 1 gives the constraint in Log,

∑q
j=1(1 − b̂1kj)x̂j ≤ 1 − ûk. All of the other

constraints of Log are the same as Proj(x,u)(X2) so (x̂, û) ∈ Log and thus Proj(x,u)(X2) ⊆ Log.

In addition, the solution xq = 1, xi = 0 for i 6= q, and u = vq+1 is feasible to Log, but not to

Proj(x,u)(X2) so Proj(x,u)(X2) ⊂ Log. 2

The next example illustrates the strict containment of the set Proj(x,u)(X2) within Log

when q = 4 and q∗ = 5 resulting in q < q∗.

Example 6

Let q = 4, then the formulation Proj(x,u)(X2) with the compatible vectors, v1 =

 0

0

 , v2 =
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 1

0

 , v3 =

 1

1

 , and v4 =

 0

1

 , is

Proj(x,u)(X2) =


(x,u) :

x1 + x2 + x3 + x4 = 1

0 1 1 1

0 0 1 1

0 0 −1 −1

0 0 0 1





x1

x2

x3

x4


≥



u1

u2

−u1

−u2


, x ≥ 0, 0 ≤ u ≤ 1


.

We rewrite Proj(x,u)(X2) in a similar form to Log by multiplying the four inequality constraints by

−1 and then add x1 + x2 + x3 + x4 = 1, to the first two constraints which gives the formulation

Proj(x,u)(X2) =


(x,u) :

x1 + x2 + x3 + x4 = 1

1 0 0 0

1 1 0 0

0 0 1 1

0 0 0 1





x1

x2

x3

x4


≤



1− u1

1− u2

u1

u2


, x ≥ 0, 0 ≤ u ≤ 1


.

The formulation for Log using the same v1,v2,v3,v4 as Proj(x,u)(X2) is

Log =


(x,u) :

x1 + x2 + x3 + x4 = 1

1 0 0 0

1 1 0 0

0 0 1 0

0 0 0 1





x1

x2

x3

x4


≤



1− u1

1− u2

u1

u2


, x ≥ 0, 0 ≤ u ≤ 1


.

Observe that the binary realization of the vector û = v4 = (0, 1)T is feasible to Log and gives

the point (x̂, û) = (x̂1, x̂2, x̂3, x̂4, û1, û2) = (0, 0, 0, 1, 0, 1) ∈ Log. Now consider the point (x̂, û) for

Proj(x,u)(X2). The realization û = (0, 1) in Proj(x,u)(X2) is not feasible because it forces x1 = x2 =

x3 = x4 = 0 with x1 + x2 + x3 + x4 = 1 so (x̂1, x̂2, x̂3, x̂4, û1, û2) = (0, 0, 0, 1, 0, 1) 6∈ Proj(x,u)(X2).

The theorem above demonstrated that all other feasible points (x̂, û) to Proj(x,u)(X2) also have

(x̂, û) ∈ Log so Proj(x,u)(X2) ⊂ Log when q < q∗.
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To conclude the comparisons of the various models we see that the size of the formulations

adapted to modeling a single piecewise-linear function are given in Table 3.1. A similar reduction

to formulation DLog (as is done in Section 4 to X2) to remove the x variables using (3.17)–(3.19) is

performed again. In addition, the removal of the variables y and f(y) and their associated constraints

is done when these piecewise-linear functions are used within a larger optimization problem (as is

demonstrated in Section 5). To summarize, all formulations use the same logarithmic number of

binary variables u, but the number of constraints and continuous variables required to enforce the

SOS-2 restrictions vary. The formulation X2 uses roughly half the number of constraints than the

formulations Log, Proj(x,u)(X2), and DLog, but requires more variables. In addition, formulation

Log and Proj(x,u)(X2) require q + 2 continuous variables while formulations X2 and DLog require

almost twice as many, specifically 2(q − 1) + 2.

Model Constraints Variables Binaries
X2 3 + dlog2(q − 1)e 2(q − 1) + 2 dlog2(q − 1)e

Proj(x,u)(X2) 3 + 2dlog2(q − 1)e q + 2 dlog2(q − 1)e
Log 3 + 2dlog2(q − 1)e q + 2 dlog2(q − 1)e
DLog 3 + 2dlog2(q − 1)e 2(q − 1) + 2 dlog2(q − 1)e

Table 3.1: Size of formulations for a single piecewise-linear function.

3.5 Computational Experience

The formulations using a logarithmic number of additional binary variables and constraints

for SOS-2 restrictions modeling piecewise-linear functions presented in Subsections 3.2, 3.3, and 4.1

are tested computationally using similar problems in structure to the transportation problems found

in [6] which were first formulated in [4]. These balanced transportation problems with 10 supply

nodes and 10 demand nodes take the form

min

10∑
i=1

10∑
j=1

fij(yij) s.t. y ∈ Y , (3.44)

where Y is the feasible set for a 10× 10 balanced transportation problem given as

Y =

{
y ∈ R10 × R10 :

10∑
i=1

yij = dj , j = 1, . . . , 10,
10∑
j=1

yij = si, i = 1, . . . , 10, y ≥ 0

}
, (3.45)
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with supply nodes si, i = 1, . . . , 10, and demand nodes dj , j = 1, . . . , 10. The objective function is

the sum over continuous concave piecewise-linear functions where fij is the cost associated with arc

yij . Each arc yij and cost function fij for i, j = 1, . . . , 10, are partitioned into q − 1 segments with

break points θij1 , . . . , θ
ij
q . Using (3.37) for each individual piecewise-linear function and adding the

nonnegative variables x gives the formulation of the transportation problem as

min

10∑
i=1

10∑
j=1

q∑
k=1

fij(θ
ij
k )xijk s.t. x ∈X, (3.46)

with

X =


x ∈ R10 × R10 × Rq :

10∑
i=1

q∑
k=1

θijk x
ij
k = dj , j = 1, . . . , 10,

10∑
j=1

q∑
k=1

θijk x
ij
k = si, i = 1, . . . , 10,

q∑
k=1

xijk = 1, i, j = 1, . . . , 10, x ≥ 0,

SOS-2 on xij1 , . . . , x
ij
q ,∀ i = 1, . . . , 10, j = 1, . . . , 10


, (3.47)

where the variables yij and fij(yij) are substituted out to reduce the size of the problem. As shown

previously, these SOS-2 restrictions can be provided by X2 of (3.16)–(3.21), Proj(x,u)(X2) of (3.36),

Log of (3.42), or DLog of (3.43).

For the computational experiments, the supply and demand nodes were initially set as

uniform integer random variables between 1 and 21 inclusively. They were then adjusted so that

the transportation problem was balanced by randomly selecting either a supply or a demand node

and increasing or decreasing it by 1 depending on whether the gap between the total supply and

total demand decreased (nodes could only be adjusted if their value remained between 1 and 21

inclusively). This was done until the total supply equaled the total demand. Each arc yij in the

transportation problem was bounded on the interval [0,min{si, dj}] to create a bounded set for the

partitioning of the arc costs meaning θijq = min{si, dj} for all i and j. The intervals [0, θijq ] were

randomly partitioned into four sections and these sections were evenly divided until the desired

number of q − 1 segments was achieved.

The piecewise-linear functions had q − 1 uniform random slopes found by selecting some

a ∈ {1, . . . , 2000} and defining the slope to be a
2000 . The q− 1 slopes were arranged in nonincreasing

order to give the desired concavity. Each concave piecewise-linear function begins at the origin
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(fij(θ
ij
1 ) = 0 with θij1 = 0 for all i and j) and increases until θijq = min{si, dj}. An example is shown

in Figure 3.2 with q = 5 and 4 randomly generated slopes.

θij1 θ
ij
2 θij3 θij4 θij5

yij

fij(yij)

Figure 3.2: Example of the cost function fij for arc yij with q = 5.

We investigate the computational time required for instances of X2, Proj(x,u)(X2), Log, and

DLog. Five individual 10 × 10 transportation problems as described above were created and then 20

different objective functions were formed for each individual transportation problem. A total of 100

problem instances where generated for the cases q = 13, 17, 25, 33. The number of binary variables,

continuous variables, and constraints for a single transportation problem are given in Table 3.2.

All problems were formulated in AMPL and solved using using ILOG CPLEX 10.0 on a Sun V440

workstation with 16 GB of RAM and four 1.6 GHz CPU’s running Solaris 10.

q = 13 X2 Proj(x,u)(X2) Log DLog

Bin. Var. 400 400 400 400
Cont. Var. 2400 1300 1300 2400
Const. 520 920 920 920

q = 17 X2 Proj(x,u)(X2) Log DLog

Bin. Var. 400 400 400 400
Cont. Var. 3200 1700 1700 3200
Const. 520 920 920 920

q = 25 X2 Proj(x,u)(X2) Log DLog

Bin. Var. 500 500 500 500
Cont. Var. 4800 2500 2500 4800
Const. 620 1120 1120 1120

q = 33 X2 Proj(x,u)(X2) Log DLog

Bin. Var. 500 500 500 500
Cont. Var. 6400 3300 3300 6400
Const. 620 1120 1120 1120

Table 3.2: Size of a single transportation problem.

The average time (in CPU seconds) of the 100 transportation problem tested are displayed

in Table 3.3 for all cases. (A complete list of all computational result are found in the appendix.).

The first observation we make is that X2, Proj(x,u)(X2), and Log, outperformed DLog, on

average, for each transportation problem and for every instance of q with the exception of Log for

71



q = 13 Average Time (CPU sec.)
Problem X2 Proj(x,u)(X2) Log DLog

Trans A 350.80 254.10 708.70 701.27
Trans B 25.85 19.75 25.03 47.93
Trans C 17.18 20.53 21.33 34.51
Trans D 122.75 140.22 152.83 231.37
Trans E 15.69 15.70 19.08 32.33

Average 106.45 90.06 185.39 209.48

q = 17 Average Time (CPU sec.)
Problem X2 Proj(x,u)(X2)/Log DLog

Trans A 295.94 223.14 485.80
Trans B 43.02 23.11 73.89
Trans C 42.61 28.15 73.96
Trans D 238.84 217.48 436.50
Trans E 24.51 17.43 46.66

Average 128.99 101.86 223.36

q = 25 Average Time (CPU sec.)
Problem X2 Proj(x,u)(X2) Log DLog

Trans A 1788.90 1417.96 2520.20 2668.94
Trans B 83.39 56.58 74.90 139.83
Trans C 50.90 50.87 56.35 95.15
Trans D 551.44 541.48 394.02 1031.96
Trans E 49.60 51.78 58.71 99.55

Average 504.85 423.74 620.83 807.09

q = 33 Average Time (CPU sec.)
Problem X2 Proj(x,u)(X2)/Log DLog

Trans A 948.24 1623.58 3129.62
Trans B 49.09 47.34 122.73
Trans C 58.93 55.97 156.67
Trans D 451.16 387.06 1406.26
Trans E 45.46 50.05 129.70

Average 310.58 432.80 988.99

Table 3.3: Average computational times for q = 13, 17, 25, 33.

Transportation Problem A when q = 13. For this instance, Log was only, on average, about 1%

slower than DLog. Next, formulation X2 outpreformed DLog, which was expected, because both

formulations have the same number of variables but DLog requires 1 + 2dlog2(q − 1)e inequality con-

straints for each piecewise-linear function while X2 only needs 1 + dlog2(q − 1)e equality constraints.

In addition, formulations Proj(x,u)(X2) and Log did better on average, beside the exception already

mentioned, than DLog which is expected because all three formulations have the same number of

constraints, but Proj(x,u)(X2) and Log required q continuous variables for each piecewise-linear

function while DLog needs 2(q−1). The additional variables for DLog result in longer computation

times. Also, we note that the computational trials of [6] comparing Log and DLog demonstrated

that Log outperformed DLog, on average, for all values of q tested and our trials demonstate a

similar result.

The most interesting results occurred between X2, Proj(x,u)(X2), and Log. First consider

the cases q = 13, 25. Recall that formulation X2 requires 1 + dlog2(q − 1)e constraints and 2(q −

1) continuous variables for each piecewise-linear function while Proj(x,u)(X2) and Log need 1 +

2dlog2(q − 1)e constraints but only q continuous variables. In addition, from Theorem 3, Log ⊂

Proj(x,u)(X2) when log2(q − 1) < dlog2(q − 1)e which is the case for q = 13, 25. The differences

between these two formulations offers insight into the computational results obtained. To begin

with, X2, on average, did better then Log in 7 out of the 10 transportation problems tested and

this could be attributed to the fact that X2 has more variables but fewer constraints than Log.
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The formulation Proj(x,u)(X2), on average, outperformed Log in 9 out of the 10 transportation

problems tests. This is to be expected because each formulation had the same number of constraints

and variables, but Proj(x,u)(X2) had one less binary realization of u than Log for each piecewise-

linear function. Last, formulations X2 and Proj(x,u)(X2) demonstrated similar results since X2 has

fewer constraints while Proj(x,u)(X2) has fewer variables. As a result, Proj(x,u)(X2) did better, on

average, than X2 in only 6 out of 10 transportation problems tested. But, the results between these

two problem were similar which suggest that more testing could be done to assess the validity of

one formulation over the other.

Next, when q = 17, 33, recall that Proj(x,u)(X2) and Log are the same formulation and,

thus have the same computational times. We observe that Proj(x,u)(X2)/Log is faster, on average,

than X2 in 8 out of 10 transportation problems which could have resulted from X2 having 2(q − 1)

continuous variables for each piecewise-linear function while Proj(x,u)(X2)/Log only requires q and

X2 using 1 + dlog2(q − 1)e equality constraints for each function while Proj(x,u)(X2)/Log needs

1+2dlog2(q−1)e inequality constraints. In this instance, it might be preferable to reduce the number

of variables while increasing the number of constraints by using the formulation Proj(x,u)(X2)/Log

instead of X2. We will mention that overall computational times were similar between X2 and

Proj(x,u)(X2)/Log, thus more testing could be done to assess the validity of formulations with fewer

constraints and more variables versus formulations with more constraints and less variables.

3.6 Conclusions

This chapter presented a new approach for modeling disjunctions of polytopes using a loga-

rithmic number of binary variables. Our form permits reductions in the problem via substitutions of

continuous variables through suitable projections. Specifically, disjunctions modeling SOS-2 restric-

tions are formed and then reduced in size via projections. Such reductions result in models having

only a logarithmic number of binary variables and constraints to represent the SOS-2 restrictions.

We proved that our formulations are as least as tight as other leading SOS-2 representations in the

literature. In special instances, our models are contained within these other representations. All

formulations modeling SOS-2 restrictions are easily adapted to represent piecewise-linear functions.

Such functions are useful in larger transportation networks with piecewise-linear objective functions.

Computational results demonstrated the merits of our models compared to other leading
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representations for piecewise-linear functions using a logarithmic number of constraints and binary

variables. Specifically, our models, on average, outperformed the other formulations tested when the

number of segments for each piecewise-liner functions was not a power of two. When the number

of segments was a power of two, one of our formulations reduces to another found in the literature

and the other model compared favorable to this representation and outperformed another from the

literature. In the former instance, the model from the literature had more constraints, but a fewer

number of continuous variables than our formulation. More computational testing could be done

to assess the benefits of representations with fewer constraints versus models with fewer continuous

variables.
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Chapter 4

Ideal Representations of

Lexicographic Orderings and

Base-2 Expansions of Integer

Variables

4.1 Introduction

Consider a discrete variable x having ` ≤ x ≤ u, where ` and u denote integer lower and

upper bounds on x respectively, so that there exist n = u − ` + 1 permissible realizations. There

are various ways to represent x in terms of binary variables. One approach is to define n− 1 binary

variables λj , j = 1, . . . , n− 1, and to enforce the set

P1(x,λ) ≡

(x,λ) ∈ R× {0, 1}n−1 : x = `+

n−1∑
j=1

λj

 . (4.1)
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In this way, x will equal ` plus the number of variables λj fixed to 1. An alternative approach that

employs these same variables is based on the set

P2(x,λ) ≡

(x,λ) ∈ R× {0, 1}n−1 : x = `+

n−1∑
j=1

jλj ,

n−1∑
j=1

λj ≤ 1

 . (4.2)

These restrictions ensure that x will equal ` when all λj equal 0, and will equal ` + j when some

single λj is equal to 1. A third approach constructs a base-2 expansion of x by enforcing the set

P3(x,λ) ≡

{
(x,λ) ∈ R× {0, 1}dlog2ne : x = `+

dlog2ne∑
j=1

2dlog2ne−jλj , x ≤ u

}
. (4.3)

The expression
∑dlog2ne
j=1 2dlog2ne−jλj for λ ∈ {0, 1}dlog2ne can realize any integer value between 0 and

2dlog2ne−1 so that the identity in (4.3) enforces that x is an integer satisfying ` ≤ x ≤ `+2dlog2ne−1.

The inequality x ≤ u serves to upper bound x at the value u, but is not needed when dlog2ne = log2n,

as n = u− `+ 1 by definition.

An immediate distinction between the sets P1(x,λ) and P2(x,λ) of (4.1) and (4.2), respec-

tively, and P3(x,λ) of (4.3) is that the first two use n− 1 binary variables, while the last uses only

dlog2ne. These three sets, with minor variations, are prevalent throughout the operations research

literature, appearing in such works as [2, 5, 7, 13, 15, 18, 20, 22]. In particular, the expansion

of (4.3) arises in various contexts. The “all different polytope” of [10] is defined in terms of m× n

matrices, where the rows of each matrix serve as base-2 expansions. Here, it is desired to select m

elements, order important, from amongst a collection of 2n, with row i of a matrix denoting the

base-2 expansion of the i-th element selected. Each matrix represents a different overall selection

of m elements, and the rows are restricted to be distinct so that each element is selected at most

once. Motivated by this work, the paper [4] studies cases where the number of elements within the

collection need not be a power of 2. Given an n-dimensional hypercube, and an integer k ≤ 2n,

a task of this latter paper is to select k vertices so that a minimal number of linear inequalities

is needed to define the convex hull. Special “cropping inequalities” are employed. By numbering

the vertices of the hypercube in terms of their base-2 expansions, the lexicographic orderings allow

us to select the set of vertices numbered 0 through k − 1 using m0 readily-defined minimal cover

inequalities, in addition to the trivial bounding inequalities, where m0 represents the number of

entries of value 0 in the binary expansion of k− 1. Extensions to the all different polytope are found
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in [11, 12] relative to an edge coloring problem on a graph, where row i of an m×n matrix represents

the base-2 expansion of that color number assigned to edge i. In this way, m equals the number of

edges and n = dlog2ce, where c is the number of colors. This problem differs from [10] in that two

rows of the matrix need not be distinct if the corresponding edges do not share a vertex.

Within an optimization setting, the idea behind (4.1), (4.2), and (4.3) is to convert integer

programs to binary problems, which are sometimes simpler to solve. It is well-known that a critical

concern in approaching discrete optimization problems is the strength of the continuous relaxation.

Generally speaking, tighter relaxations are preferable. Thus, it is prudent to consider the respective

strengths of (4.1)–(4.3) when constructing a conversion.

Let P 1(x,λ), P 2(x,λ), and P 3(x,λ) denote the continuous relaxations of the sets P1(x,λ),

P2(x,λ), and P3(x,λ), respectively, obtained by replacing the λ ∈ {0, 1}n−1 restrictions with λ ∈

[0, 1]n−1 within P1(x,λ), the λ ∈ {0, 1}n−1 restrictions with λ ≥ 0 within P2(x,λ), and the λ ∈

{0, 1}dlog2ne restrictions with λ ∈ [0, 1]dlog2ne within P3(x,λ). It is simple to show that the sets

P1(x,λ) and P2(x,λ) are ideal in that conv(P1(x,λ)) = P 1(x,λ) and conv(P2(x,λ)) = P 2(x,λ),

where conv(•) denotes the convex hull of the set •. It is also known [1] that P3(x,λ) is ideal when

dlog2ne = log2n, but [1] gives an example showing conv(P3(x,λ)) ⊂ P 3(x,λ) for a specific instance

having dlog2ne > log2n. An emphasis of this chapter is to show that (4.3) can be made ideal by

appending at most dlog2ne − 1 minimal cover inequalities. For the simple special case in which

dlog2ne = log2n so that the convex hull is known, no new inequalities are needed.

The convex hull argument for P3(x,λ) is motivated by a lexicographic ordering on vectors of

binary variables. In the spirit of [8], given a nonzero vector α ∈ {0, 1}m for some positive integer m,

Section 2 explains that the convex hull of the set of vectors in {0, 1}m that is lexicographically less

than or equal to α can be characterized in terms of m0 minimal cover inequalities in m variables,

where m0 denotes the number of entries of value 0 in α. This section then relates lexicographic

orderings and base-2 expansions to obtain conv(P3(x,λ)).

Extensions of convex hull forms of lexicographic orderings and their applications to knapsack

polytopes are presented in Sections 3 and 4, respectively. Section 3 generalizes our results on

lexicographic orderings in two ways. First, it shows that the convex hull of all binary vectors

lexicographically greater than or equal to a vector α ∈ {0, 1}m can be obtained in an analogous

fashion as to when α serves as an upper bound. Second, it combines these lower and upper bounding

results to provide an explicit description for the convex hull of binary vectors that are restricted to
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lexicographically lie between two binary vectors. This description employs both minimal cover and

set covering inequalities and is somewhat unexpected, as the intersection of two integral polytopes

is not necessarily an integral polytope. Section 4 then considers specially-structured 0-1 knapsack

problems whose constraint coefficients are weakly super-decreasing. Earlier work of [9], using results

of [19], showed that the set of minimal cover inequalities for a 0-1 knapsack problem defines the

convex hull of solutions if and only if the problem has weakly super-decreasing (equivalently, weakly

super-increasing) coefficients. The convex hull proof was later simplified by [6]. Our lexicographic

orderings naturally extend to weakly super-decreasing coefficients, and so we are able to generalize

the result of [6, 9] to 0-1 knapsack polytopes having weakly super-decreasing coefficients where

both lower and upper bounds are enforced on the knapsack constraint. (Approximately two months

after the completion of this chapter, the article [3] appeared on Optimization Online; this article

provides an alternate proof of the convex hull form for two-sided knapsack sets having weakly super-

increasing coefficients. This work, motivated by a problem of efficiently representing the convex hull

of an arbitrary set of vertices of the unit hypercube, uses a different method of proof that relies on

an inductive argument based on an extended formulation obtained via disjunctive programming.)

The chapter continues by presenting some preliminary computational experience in Section

5 to demonstrate the usefulness of incorporating conv(P3(x,λ)) within a base-2 expansion of integer

variables, and ends with a conclusions section.

4.2 Minimal Cover Description of Bounded Integer Variables

As mentioned earlier, our modeling of the convex hull of the set P3(x,λ) of (4.3) is based

on a minimal cover description of a lexicographic ordering of binary vectors. This description relates

and combines published works, but differs in that the motivation stems from the representation of

integer variables. The paper [8] gives a thorough study of the facial structure of the convex hull of

the set of binary vectors that is lexicographically upper bounded by a given such vector. Though

motivated from a different perspective than [8], the minimal cover inequalities we obtain include all

the nontrivial facets. Our approach extends, in Section 3, this work of [8] to binary vectors that are

lexicographically bounded from both below and above by including set covering restrictions. Section

4 uses our lexicographic results to extend the convex hull representations of [6, 9] for special knapsack

problems having weakly super-decreasing coefficients to include instances having lower and upper
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bounds on the structural constraint. In the process, this latter section relates [8] to such problems.

Recall that a vector y is lexicographically nonpositive, denoted y � 0, if either y = 0 or

the first nonzero entry is negative. Also recall that, given two vectors y1 and y2, the vector y1

is lexicographically less than or equal to the vector y2, denoted y1 � y2, if y1 − y2 � 0. Now,

consider a vector α ∈ {0, 1}m for some integer m ≥ 2 and the set of y ∈ {0, 1}m satisfying y � α.

It turns out that m0 minimal cover inequalities in y, together with the restrictions y ∈ [0, 1]m, are

sufficient to define the convex hull where, consistent with earlier use, m0 represents the number of

entries of value 0 in α. For convenience, we henceforth denote the i-th entries of α and y by αi and

yi respectively, and assume without loss of generality that α1 = 1 since otherwise all y satisfying

y � α must have y1 = 0, and similarly assume that αm = 0 since otherwise ym can realize a value

of either 0 or 1 without restriction.

To motivate the convex hull description, based on the vector α, partition the set M ≡

{1, . . . ,m} into the two subsets M0 = {i ∈ M : αi = 0} and M1 = {i ∈ M : αi = 1}, noting

from above that 1 ∈ M1 and m ∈ M0. Let m0 = |M0| (as used earlier) and m1 = |M1| denote the

cardinalities of the sets M0 and M1, respectively, so that m0 +m1 = m. The approach follows from

the property of lexicographic orderings that a vector y ∈ {0, 1}m is such that y � α if and only

if, for each i ∈ M0 such that yi = 1 (if any), there exists some j ∈ M1, j < i, with yj = 0. This

observation is summarized below.

Observation

Given a vector α ∈ {0, 1}m and the sets M, M0, and M1 defined in terms of m and α as above, a

binary vector y is such that y � α if and only if the following m0 inequalities are satisfied:

yi ≤
∑
j∈M1
j<i

(1− yj) ∀ i ∈M0.

Based on this observation, the set

S ≡

y ∈ {0, 1}m : yi ≤
∑
j∈M1
j<i

(1− yj) ∀ i ∈M0

 (4.4)

characterizes those vectors y ∈ {0, 1}m having y � α. Let S denote the continuous relaxation of S
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obtained by replacing the y ∈ {0, 1}m restrictions of (4.4) with y ∈ [0, 1]m.

As noted by [8], and later by [6], the inequalities of (4.4) possess the “interval matrix”

or “consecutive ones” property (see [16, page 544, Definition 2.2] or earlier work by [21]). Note

that each variable yi having i ∈ M0 appears in a single inequality while each variable yi having

i ∈ M1 appears in those inequalities corresponding to j ∈ M0 for which j > i. As a consequence,

conv(S) = S.

This minimal cover description of the convex hull of S allows us to write conv(P3(x,λ)).

The connection between lexicographic orderings and base-2 expansions is the following. Given any

two vectors α,y ∈ {0, 1}m for m ≥ 1, we have

y � α⇐⇒
m∑
j=1

γjyj ≤
m∑
j=1

γjαj , (4.5)

where

γj = 2m−j ∀ j = 1, . . . ,m. (4.6)

To apply this connection, observe that the variable x of P3(x,λ) is allowed to realize any of

the n = u− `+ 1 integral values between ` and u. Consequently, by letting m = dlog2ne in (4.3) and

computing α ∈ {0, 1}m so that
∑m
j=1 2m−jαj = u− `, the set P3(x,λ) of (4.3) can be rewritten as

P3(x,y) =

(x,y) ∈ R× {0, 1}m : x = `+

m∑
j=1

2m−jyj , y � α

 , (4.7)

where we have substituted y for λ in (4.3) and replaced x ≤ u with y � α. But then

conv(P3(x,y)) =

(x,y) ∈ R× [0, 1]m : x = `+

m∑
j=1

2m−jyj , y ∈ S

 . (4.8)

Note in this construction that if dlog2ne = log2n in P3(x,λ) of (4.3), then α would be a vector of

ones, and no inequalities would be present in S of (4.8). This is to be expected since, as mentioned

in Section 1, conv(P3(x,λ)) = P 3(x,λ) for such values of n.

The example below demonstrates the construction of conv(P3(x,λ)) when dlog2ne > log2n.

Example

Consider an integer variable x having 1 ≤ x ≤ 91. Then n = 91 and dlog291e = 7 so that P3(x,λ)
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of (4.3), with λ replaced by y, takes the form

P3(x,y) =

 (x,y) ∈ R× {0, 1}7 : x ≤ 91,

x = 1 + 64y1 + 32y2 + 16y3 + 8y4 + 4y5 + 2y6 + y7

 .

We have m = dlog291e = 7 and αT = (1, 0, 1, 1, 0, 1, 0) because u − ` = 90 = 64 + 16 + 8 + 2.

Consequently, the m0 = 3 minimal cover inequalities y1 + y2 ≤ 1, y1 + y3 + y4 + y5 ≤ 3, and

y1 + y3 + y4 + y6 + y7 ≤ 4 describe S, so that conv(P3(x,y)) of (4.8) is given by

conv(P3(x,y)) =



(x,y) ∈ R× [0, 1]7 :

x = 1 + 64y1 + 32y2 + 16y3 + 8y4 + 4y5 + 2y6 + y7,

y1 + y2 ≤ 1, y1 + y3 + y4 + y5 ≤ 3,

y1 + y3 + y4 + y6 + y7 ≤ 4


.

Observe from above that the point (x, y1, y2, y3, y4, y5, y6, y7) = (91, 1, 13
16 , 0, 0, 0, 0, 0) is feasible to

the continuous relaxation of P3(x,y), but violates the inequality y1 + y2 ≤ 1 of conv(P3(x,y)).

Before proceeding to the next section, we note that the Observation, together with the

consequence that conv(S) = S, directly relates to [4]. Given an n-dimensional hypercube and any

k ∈ {1, . . . , 2n}, the set S explicitly defines the convex hull of that collection of k vertices whose

base-2 expansions are less than or equal to k−1 by defining α ∈ {0, 1}n so that
∑n
j=1 2n−jαj = k−1.

4.3 Lexicographic Extensions

Given an α ∈ {0, 1}m, Section 2 provided the convex hull of the set of vectors y ∈ {0, 1}m

satisfying y � α. This result can be extended in two ways.

First, given such an α, a similar argument can be used to generate the convex hull of the

set of vectors y ∈ {0, 1}m satisfying y � α by the relationship

y � α⇐⇒ 1− y � 1−α.
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Using the same definitions of M0 and M1, we have that the set covering inequalities of

Q ≡

y ∈ {0, 1}m : 1− yi ≤
∑
j∈M0
j<i

yj ∀ i ∈M1


characterize the vectors y ∈ {0, 1}m satisfying y � α, and that Q, the continuous relaxation of

the set Q obtained by relaxing y ∈ {0, 1}m to y ∈ [0, 1]m, gives conv(Q) = Q. Here, to potentially

reduce problem size, we can assume without loss of generality that α1 = 0 since otherwise y1 must

equal 1, and that αm = 1 since otherwise ym would be unrestricted to realize value of either 0 or 1.

The second extension is, given two vectors α1,α2 ∈ {0, 1}m with α1 � α2, the construction

of the convex hull of the set

T ≡
{
y ∈ {0, 1}m : α1 � y � α2

}
, (4.9)

or equivalently, from Q and S, the convex hull of the set

T =

y ∈ {0, 1}m : 1− yi ≤
∑
j∈M1

0
j<i

yj ∀ i ∈M1
1 , yi ≤

∑
j∈M2

1
j<i

(1− yj) ∀ i ∈M2
0

 , (4.10)

where M ≡ {1, . . . ,m} is partitioned in terms of α1 into the subsets M1
0 = {i ∈ M : α1

i = 0} and

M1
1 = {i ∈ M : α1

i = 1}, and again partitioned in terms of α2 into the subsets M2
0 = {i ∈ M :

α2
i = 0} and M2

1 = {i ∈ M : α2
i = 1}. Here, α1

i and α2
i denote, respectively, the i-th entries of α1

and α2 for each i ∈ M, and we assume without loss of generality that α1
1 = 0 and α2

1 = 1 so that

1 ∈M1
0 ∩M2

1 .

The result below establishes that the continuous relaxation of T yields the convex hull. This

description is unexpected, as the intersection of two integral polytopes does not generally yield an

integral polytope.

Theorem 1

Let T be the set of binary vectors defined by (4.10) and let T denote the continuous relaxation of T

obtained by relaxing the y ∈ {0, 1}m restrictions to y ∈ [0, 1]m. Then conv(T ) = T .
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Proof

Let α1,α2 ∈ {0, 1}m with α1 � α2 and α1
1 = 0 and α2

1 = 1, and let ŷ be any extreme point of T . It

is sufficient to show that ŷ ∈ {0, 1}m. Toward this end, define S1 ⊆ M1
1 and S2 ⊆ M2

0 as the index

sets of left-hand and right-hand inequalities respectively of (4.10) that are satisfied with equality

at ŷ. If either S1 = ∅ or S2 = ∅, then ŷ ∈ {0, 1}m, as each set individually, with the restrictions

y ∈ [0, 1]m, has binary extreme points. Otherwise, express the inequalities holding at equality in

matrix form, with the left-hand restrictions followed by the right-hand, and using an ordering of the

variables according to the set in which each index is contained. The four possibilities are i ∈ S1\S2,

i ∈ S2\S1, i ∈ S1∩S2, and i /∈ S1∪S2, which give the four sets of columns in the following system of

|S1|+ |S2| equations in m variables, where some variables yi with i /∈ S1∪S2 may have all coefficients

of 0. Observe that 1 /∈ S1 ∪ S2. Ī1 Ā Ī2 B̄

Ã Ĩ1 Ĩ2 B̃

[ y ] =

 1

d

 . (4.11)

Here, Ī1 and Ī2 are obtained through a possible reordering and partitioning of the columns of the

|S1|×|S1| identity matrix to reflect the variables yi for which i ∈ S1. Similarly, Ĩ1 and Ĩ2 are obtained

through a possible reordering and partitioning of the columns of the |S2| × |S2| identity matrix to

represent the variables yi for which i ∈ S2. The matrices Ā, Ã, B̄, and B̃ have all binary entries,

and have the additional property that whenever a 1 appears in some row, the value 1 is repeated

down the column through the last row of the matrix. The notation 1 denotes the column vector of

size |S1| having all entries of 1 and d denotes an integral column vector of size |S2| representing the

constants in the associated right-hand side restrictions of (4.10).

The proof proceeds in two parts. First, it shows that each variable yq with q ∈ S1 ∪ S2

either can be identified as having ŷq binary, or the system (4.11) can be equivalently rewritten so

that the associated column in Ā, Ã, or Ĩ2 consists of all zeros. The rewriting consists of removing

select redundant constraints, while preserving all variables. Second, it shows that upon substituting

those elements ŷj of ŷ into (4.11) for which ŷj has been identified at a binary value, the reduced

system over the remaining entries of y has all binary extreme points.

Begin by defining F0 and F1, respectively, to be the index sets of those ŷj that are currently

identified as being at value 0 and 1, initialized as F0 = F1 = ∅. Now, consider any entry of value 1
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(if it exists) within Ā appearing in some column corresponding to a variable yq. Then, by definition,

q ∈ S2 ∩M1
0 and there exists a p ∈ S1 such that q < p. We thus have that

1− yp =
∑
j∈M1

0
j<p

yj and yq =
∑
j∈M2

1
j<q

(1− yj), (4.12)

with the left equation yielding the selected coefficient 1 in Ā. Substitute yq from the right equation

of (4.12) into the left (as q ∈M1
0 with q < p) to obtain, using 1 ∈M1

0 ∩M2
1 , that

0 =
∑
j∈M1

0
1<j<p,j 6=q

yj +
∑
j∈M2

1
1<j<q

(1− yj) + yp.

Then y ∈ [0, 1]m identifies ŷj = 0 for all j ∈ M1
0 with 1 < j < p, j 6= q; ŷj = 1 for all j ∈ M2

1 with

1 < j < q, and ŷp = 0. Modify F0 and F1 to reflect these variables recognized to be binary in ŷ.

For these binary values, each of the two equations in (4.12) reduces to y1 + yq = 1. Remove the left

equation of (4.12) from (4.11) but maintain the right. This replacement reduces the number of rows

indexed by S1 by one. Repeat this approach until no entries of value 1 remain within a column of

Ā corresponding to a variable yq for which q /∈ F0 ∪ F1.

In a similar manner, consider any entry of value 1 (if it exists) within Ã appearing in some

column corresponding to a variable yq where q /∈ F0 ∪ F1. Then, by definition, q ∈ S1 ∩M2
1 and

there exists a p ∈ S2 such that q < p. We thus have that

1− yq =
∑
j∈M1

0
j<q

yj and yp =
∑
j∈M2

1
j<p

(1− yj), (4.13)

with the right equation yielding the selected coefficient 1 in Ã. Substitute yq from the right equation

of (4.13) into the left (as q ∈M2
1 with q < p) to obtain, using 1 ∈M1

0 ∩M2
1 , that

0 =
∑
j∈M1

0
1<j<q

yj +
∑
j∈M2

1
1<j<p,j 6=q

(1− yj) + (1− yp).

Then y ∈ [0, 1]m identifies ŷj = 0 for all j ∈ M1
0 with 1 < j < q; ŷj = 1 for all j ∈ M2

1 with

1 < j < p, j 6= q, and ŷp = 1. Modify F0 and F1 to reflect these variables recognized to be binary in

ŷ. For these binary values, each of the two equations in (4.13) reduces to y1 + yq = 1. Remove the
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right equation of (4.13) from (4.11) but maintain the left. This replacement reduces the number of

rows indexed by S2 by one. Repeat this approach until no entries of value 1 remain within a column

of Ã corresponding to a variable yq for which q /∈ F0 ∪ F1.

Next, suppose there exists a q ∈ (S1 ∩ S2)\(F0 ∪ F1). The two restrictions in (4.11) having

a coefficient of 1 for yq are

1− yq =
∑
j∈M1

0
j<q

yj and yq =
∑
j∈M2

1
j<q

(1− yj), (4.14)

with the right equation yielding the coefficient 1 in Ĩ2. Substitute yq from the right equation of (4.14)

into the left to obtain, using 1 ∈M1
0 ∩M2

1 , that

0 =
∑
j∈M1

0
1<j<q

yj +
∑
j∈M2

1
1<j<q

(1− yj).

Then y ∈ [0, 1]m enforces that ŷj = 0 for all j ∈M1
0 with 1 < j < q and ŷj = 1 for all j ∈M2

1 with

1 < j < q. Modify F0 and F1 accordingly. For these binary values of ŷj , each of the two equations

in (4.14) reduces to y1 + yq = 1. Remove the right equation of (4.14) from (4.11) but maintain the

left. Repeat until no entries of value 1 remain within a column of Ĩ2 corresponding to a variable yq

for which q /∈ F0 ∪ F1.

The second part of the proof substitutes ŷj = 0 for all j ∈ F0 and ŷj = 1 for all j ∈ F1

within the reduced version of (4.11). This substitution rewrites (4.11) in the form below, where a

prime is used to denote the potential changes in the corresponding matrices, and where 0 is used to

denote appropriately-dimensioned matrices of zeros.

 Ī ′1 0 Ī ′2 B̄′

0 Ĩ ′1 0 B̃′

[ y′ ] =

 1′

d′

 . (4.15)

The matrices B̄′ and B̃′ have all binary entries and preserve the property of B̄ and B̃ respectively

in that whenever a 1 appears in some row, the value 1 is repeated down the column through the last

row. Reorder the second family of equations so that the rows of B̃′ appear in reverse order. Then

every column of the resulting coefficient matrix for the adjusted y′ possesses the consecutive ones

property. Thus, since 1′ and d′ are integral, the extreme point(s) to (4.15) must be integral [16, 21].
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As y ∈ [0, 1]m, y′ must be binary, making ŷ binary. The proof is complete. 2

Theorem 1, together with an extension of (4.5), suggests an alternative formulation to (4.8)

of conv(P3(x,y)), as well as a generalization of a result of [8]. The relationship of (4.5) between

lexicographic orderings and base-2 expansions extends to those cases where a vector y ∈ {0, 1}m is

lexicographically bounded between vectors α1,α2 ∈ {0, 1}m as α1 � y � α2. Given α1, α2,y ∈

{0, 1}m for m ≥ 1, we have

α1 � y � α2 ⇐⇒
m∑
j=1

γjα
1
j ≤

m∑
j=1

γjyj ≤
m∑
j=1

γjα
2
j , (4.16)

where the coefficients γj are as defined in (4.6). Thus, by computing α1 ∈ {0, 1}m so that∑m
j=1 2m−jα1

j = ` and α2 ∈ {0, 1}m so that
∑m
j=1 2m−jα2

j = u, the set P3(x,y) of (4.7) can be

expressed as

P3(x,y) ≡

(x,y) ∈ R× {0, 1}m : x =

m∑
j=1

2m−jyj , α
1 � y � α2

 . (4.17)

Theorem 1 allows us to substitute the inequalities of (4.10) for α1 � y � α2 in (4.17), and the

continuous relaxation will give the convex hull of P3(x,y). Nonetheless, this strategy is not recom-

mended in this case, as T of (4.10) will contain at least as many inequalities as S of (4.8), and can

possibly contain additional variables in y. The constraint count follows from the property of base-2

addition that for any a, b ∈ {0, 1}m, we have

W (a) +W (b) ≥W (a⊕ b), (4.18)

where W (•) denotes the Hamming weight of • (the number of entries of value 1 within •) and where

a ⊕ b denotes the base-2 addition of a and b. For x having ` ≤ x ≤ u, let a and b be the base-2

expansions of u− ` and ` respectively, to obtain that the number of inequalities defining S in (4.8)

is (m−W (a)), and the number of inequalities in (4.17) is W (b) + (m−W (a⊕b)), so (4.18) gives us

that the former number is bounded above by the latter. An additional dlog2(u+1)e−dlog2(u−`+1)e

variables beyond that of (4.8) are needed in y of (4.17).

As a final note of this section, observe how Theorem 1, (4.16), and (4.17) provide a general-
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ization of work in [8]. Identity (4.16) uses Theorem 1 to obtain the convex hull of the set of vectors

that is lexicographically bounded between two vectors while (4.17) relates this bounding to integer

variables. In contrast, [8] considers only upper bounds.

4.4 0-1 Knapsack Polytopes

The strategy used to obtain the convex hull of the set P3(x,y) of (4.17) via the inequalities

in T of (4.10) is applicable to a special family of 0-1 knapsack polytopes. The key ingredient is that,

given vectors α1, α2, y ∈ {0, 1}m for m ≥ 1, the if-and-only-if implications of (4.16) are applicable

to a more general family of coefficients γj than described in (4.6). In fact, (4.16) will hold true for

coefficients γj > 0 that are “weakly super-decreasing” in that

γj ≥
m∑

i=j+1

γi for each j = 1, . . . ,m− 1. (4.19)

Here, it is possible that two vectors in {0, 1}m yield the same value
∑m
j=1 γjα

1
j , and we assume that

α1 is taken as the lexicographically smaller. Similarly, it is possible that two vectors in {0, 1}m yield

the same value
∑m
j=1 γjα

2
j , and we assume that α2 is taken as the lexicographically larger.

Now, consider 0-1 knapsack polytopes of the form

KP (y) ≡

y ∈ {0, 1}m : κ1 ≤
m∑
j=1

γjyj ≤ κ2

 , (4.20)

where κ1 and κ2 are scalars satisfying κ1 ≤ κ2, and where the coefficients γj > 0 are weakly super-

decreasing. It is a simple task [14, page 300] via a greedy algorithm to compute a vector α2 ∈ {0, 1}m

yielding the largest scalar κ′2 ≤ κ2 such that
∑m
j=1 γjα

2
j = κ′2. A similar greedy algorithm computes

a vector α1 ∈ {0, 1}m yielding the smallest scalar κ′1 ≥ κ1 such that
∑m
j=1 γjα

1
j = κ′1. As alluded

to above, we select the lexicographically larger vector if two α2 provide κ′2, and we select the

lexicographically smaller vector if two α1 provide κ′1. We assume without loss of generality that

κ1 ≤
∑m
j=2 γj and κ2 ≥ γ1 so that α1

1 = 0 and α2
1 = 1 since otherwise the value of y1 would be

fixed. (We can also assume that γ1
m = 0 and γ2

m = 1 are not both true since otherwise ym would not

appear within the inequalities of (4.10), having the convex hull representation allow 0 ≤ ym ≤ 1.)

The generalization of (4.16) to handle coefficients γj > 0 satisfying (4.19) allows us to
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rewrite (4.20) as

KP (y) =
{
y ∈ {0, 1}m : α1 � y � α2

}
,

where α1 and α2 are as described above. This version of KP (y) is of the form (4.9) so that it can

be rewritten as (4.10) where, as before, M ≡ {1, . . . ,m}, M1
0 = {i ∈ M : α1

i = 0}, M1
1 = {i ∈ M :

α1
i = 1}, M2

0 = {i ∈ M : α2
i = 0}, and M2

1 = {i ∈ M : α2
i = 1}. Then Theorem 1 gives us that the

set T defines the convex hull of the set KP (y) of (4.20).

There is an important distinction between using lexicographic orderings to represent a

bounded integer variable x having ` ≤ x ≤ u and to use these same orderings to model KP (y)

in (4.20). As mentioned earlier for the case of ` ≤ x ≤ u, it is preferable to scale x so that the

lower bound is 0. In this manner, the lower bounding vector α1 of (4.17) would have α1 = 0 so

that a potentially reduced number of inequalities and binary variables can be used. Such a scaling

is not, in general, possible when the two-sided knapsack constraint of (4.20) is found within some

optimization problem, as the specific binary realizations of y can affect both the objective function

and remaining constraints.

This convex hull representation of KP (y) relates to earlier work in [6, 8, 9]. The paper [9]

forms the minimal cover inequalities defining S of (4.4) associated with those special cases of (4.20)

for which κ1 = 0, and uses results of [19] to show that the continuous relaxation S of S defines the

convex hull. The work of [6] simplifies the arguments of [9] by using the interval-matrix property

of (4.4). The paper [6] also gives a novel application of weakly super-increasing knapsack problems in

the context of discretizing continuous power variables within Signal-to-Interference Ratio restrictions

for radio network design. Neither of these papers, however, consider binary expansions of integer

variables to obtain conv(P3(x,y)). Moreover, for the knapsack polytopes, we obtain a more general

result by providing the convex hull for those cases having nonzero κ1 values. Upon observing the

relationship between lexicographic orderings and weakly super-decreasing coefficients as provided

in (4.16) for (4.19), the paper [8] can be used to model weakly super-decreasing knapsack problems

having κ1 = 0.

4.5 Computational Experience

Given an optimization problem containing bounded integer variables, the question arises as

to whether the explicit algebraic characterization of conv(P3(x,y)) afforded by (4.8) can improve
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computational efficiency. Specifically, when a base-2 expansion of a bounded integer variable is

performed, do the inequality restrictions of (4.4) included within (4.8) in the form of S assist

in reducing the number of nodes explored within an enumerative strategy beyond that of simply

enforcing x ≤ u? The work of [17] convincingly argues that binary expansions of bounded integer

variables should not be used in practice unless special techniques are employed. The purpose of

our computations is not to assess the merits of binary expansions, but rather to investigate the

usefulness of including these type inequalities within such representations.

The inequalities defining S do not serve to tighten the continuous relaxation of an integer

programming problem, but they can help expedite an enumerative strategy. Given an integer variable

x satisfying ` ≤ x ≤ u, the sets P3(x,y) with y substituted for λ in (4.3) and conv(P3(x,y)) of (4.8)

both allow x to satisfy ` ≤ x ≤ u, so that the relaxation relative to x is the same. However, given

a fixed value of x, the additional inequalities of (4.8) can restrict the permissible realizations of

y, thereby curtailing a binary search over y. Consider, for example, some x having u − ` = 2m−1

for an integer m ≥ 2. Then the continuous relaxation of (4.3) with y substituted for λ and with

m = dlog2ne in (4.3), since m = dlog2(2m−1 + 1)e = dlog2(u − ` + 1)e = dlog2ne as n = u − ` + 1,

enforces

x = `+

m∑
j=1

2m−jyj , x ≤ u, y ∈ [0, 1]m. (4.21)

The associated vector α has a 1 in the first position and zeros elsewhere so the inequalities defining

S of (4.8) replace the restriction x ≤ u of (4.21) with the m− 1 constraints

y1 + yj ≤ 1 ∀ j = 2, . . . ,m. (4.22)

Now, if x = u, all yj can be fractional within (4.21); for example (4.21) permits yj = 2m−1

2m−1 for all

j = 1, . . . ,m. But the inclusion of (4.22) forces y1 = 1 and yj = 0 for j = 2, . . . ,m in this case.

Alternatively, for any j 6= 1, fixing yj = 1 restricts y1 = 0 within (4.22) but not within (4.21).
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We conduct our tests on a bounded, mixed-integer knapsack problem of the form:

MIKP : Minimize

p∑
i=1

xi + (pU)r

subject to

p∑
i=1

(2xi) + r = pU − 1

0 ≤ xi ≤ U ∀ i = 1, . . . , p

xi integer ∀ i = 1, . . . , p

r ≥ 0.

Here, there are p integer variables xi, all having lower bounds of 0 and upper bounds given by the

same positive integer U. There is a single continuous variable r that serves as a nonnegative slack on

the knapsack constraint. This problem was chosen because it is challenging for enumerative schemes,

not permitting r = 0 when pU is even.

Given that pU is even, optimal solutions (x∗, r∗) to MIKP and its continuous relaxation,

say MIKP, are readily available. Relative to MIKP, when p is even, set any p
2 − 1 variables x∗i to U ,

set a single x∗i to U − 1, set the remaining x∗i to 0, and fix r∗ = 1. When p is odd so that U must

be even, set any p − 1 variables x∗i to U
2 , set the remaining variable x∗i to U

2 − 1, and fix r∗ = 1.

In either case, the objective function value is 3
2pU − 1. For MIKP, an optimal solution (x′, r′) has

x′i = pU−1
2p for all i, r′ = 0, and objective value 1

2 (pU − 1).

We reformulate MIKP as a mixed-binary program using the set P3(x,λ) of (4.3) with y

substituted for λ in the following manner. For each integer variable xi, we associate a distinct

yi ∈ {0, 1}dlog2(U+1)e, since n = U +1 within (4.3), and let yij denote entry j of yi. Then we perform

a base-2 expansion on each xi with ` = 0 to obtain the following, where BKP1 represents our first
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mixed-binary knapsack problem formulation:

BKP1 : Minimize

p∑
i=1

xi + (pU)r

subject to

p∑
i=1

(2xi) + r = pU − 1

xi =

dlog2(U+1)e∑
j=1

2dlog2(U+1)e−jyij ∀ i = 1, . . . , p

xi ≤ U ∀ i = 1, . . . , p (4.23)

yi ∈ {0, 1}m ∀ i = 1, . . . , p

r ≥ 0.

The second mixed-binary form of MIKP, denoted BKP2, is obtained by replacing the p

inequalities of (4.23) with the pm0 inequalities of (4.4), where there are m0 such inequalities for

each xi. Here, we let m = dlog2(U + 1)e so that, as before, the vector α ∈ {0, 1}m is defined in

terms of the scalar u − ` = U to satisfy
∑m
j=1 2m−jαj = U. Then we again have M ≡ {1, . . . ,m},

M0 = {i ∈ M : αi = 0}, M1 = {i ∈ M : αi = 1}, and m0 = |M0| with m1 = |M1|. Consequently,

BKP2 is BKP1 with (4.23) replaced by

yij ≤
∑
k∈M1
k<j

(1− yik) ∀ (i, j), i = 1, . . . , p, j ∈M0. (4.24)

The computational tests were designed to compare the relative merits of BKP1 and BKP2.

Instances with various values for U and p were submitted to ILOG CPLEX 11.0 on a Sun V440

workstation with 16 GB of RAM and four 1.6 GHz CPU’s running Solaris 10. The presolve option

in CPLEX was turned off to more accurately assess the utility of (4.24).

Fifty-one different test problems were attempted, with the parameter U successively in-

creased. The results are summarized in Table 1. The table is arranged in seven columns, with the

first providing the problem number, the second and third stating the input parameters U and p

respectively, the fourth and fifth respectively giving the CPU execution times in seconds and the

number of nodes explored in the binary search for BKP1, and the last two giving this same infor-

mation for BKP2. All problems were assigned a time limit of 10000 CPU seconds, with a − used to
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denote that this limit was exceeded. For comparative purposes, when Problem MIKP was directly

submitted to CPLEX, every instance was solved within .01 CPU seconds.

Table 1 reinforces the findings of [17], that binary expansions of bounded integer variables

should not be used in practice unless special techniques are employed. It also suggests that BKP2

is preferable to BKP1 for most problem instances. For 46 of the 51 problems tested (20, 23, 29, 30,

and 45 being the exceptions), BKP2 performed at least as well as BKP1 in terms of both CPU times

and the number of nodes explored. The extra constraints (4.24) present in BKP2 typically allowed

for a reduction in the number of nodes explored. For the 31 test cases that both formulations solved

to optimality and expended at least one CPU second, BKP2 reduced the effort required by BKP1

by, on average, 59% in terms of CPU execution times and 60% in terms of the number of nodes

explored. As would be expected, instances involving larger numbers of variables p could be solved

when smaller upper bounds U were used.

Interestingly, the values of U led to different forms of contraints of the type (4.24), reflecting

different computational results. We considered no U for which U + 1 is a power of 2 since no

constraints would be present in (4.24), and BKP2 would reduce to BKP1. For those cases in which

U is a power of 2, inequalities (4.24) are of the type (4.22), which tend to restrict branching in the

enumerative tree. However, when U + 2 is a power of 2, then inequalities (4.24) become

yim ≤
m−1∑
k=1

(1− yik) ∀ i = 1, . . . , p,

which are relatively weak. This variation in the strength of cuts might help explain why Problems

36 and 37 with U = 30 required longer running times using BKP2 than Problems 40 and 41,

respectively, for this same form when U = 32. The same logic holds for Problems 45 and 48 with

BKP2.

These results are preliminary, but tend to suggest that the additional cuts (4.24) of BKP2

are useful when conducting base-2 expansions of integer variables. Depending on the problem of

concern, a strategic implementation may serve to expedite an enumerative search and lead to more

efficient solution strategies.
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Problem Parameters BKP1 BKP2
Number U p Time Nodes Time Nodes

1 4 4 0.01 43 0.01 33
2 4 8 0.42 4377 0.13 1100
3 4 12 28.00 269167 2.16 19948
4 4 16 531.64 4444014 26.22 223212
5 4 20 − − 545.55 41337
6 6 4 0.02 116 0.01 30
7 6 8 3.72 37691 0.78 9597
8 6 12 170.67 1472287 132.44 1178809
9 6 16 − − 7862.82 48148528
10 8 4 0.06 541 0.02 151
11 8 8 19.39 199539 6.95 56926
12 8 10 6915.05 65745383 99.18 717965
13 8 12 9358.48 82868619 670.32 5695074
14 10 4 0.10 1002 0.02 206
15 10 8 74.97 759959 6.74 58498
16 10 10 2116.99 20067301 96.78 746016
17 10 12 − − 3140.55 22424458
18 13 4 0.12 1450 0.05 528
19 13 8 928.03 9055811 400.08 4815216
20 13 10 6374.92 59452931 − −
21 14 4 0.15 1696 0.04 517
22 14 7 55.17 537771 15.87 188863
23 14 8 293.77 2983979 285.24 3218810
24 14 10 5566.94 46418657 1874.48 19637668
25 16 4 0.34 3996 0.19 1801
26 16 6 15.30 151067 8.81 70574
27 16 8 531.25 4836820 387.15 3020196
28 16 10 − − − −
29 20 4 0.20 2679 0.30 3695
30 20 6 24.81 299121 56.25 625597
31 20 8 3314.68 39278278 2418.43 23714696
32 25 4 0.96 11283 0.53 6770
33 25 6 190.15 2097275 28.28 329260
34 25 8 − − 8868.03 92084251
35 30 4 1.44 17090 0.31 4066
36 30 5 15.57 180195 8.96 114146
37 30 6 807.36 8833755 151.82 1508086
38 30 7 7593.46 76698740 1872.03 21405569
39 32 4 1.86 23378 0.49 5666
40 32 5 35.48 472612 4.36 47655
41 32 6 455.27 4054616 85.23 709202
42 32 7 8418.81 101731770 2689.05 25110337
43 62 4 9.54 111537 2.19 29674
44 62 5 196.33 2413475 75.97 949121
45 62 6 4660.84 44019164 5039.48 46042359
46 64 4 23.41 241704 2.99 34543
47 64 5 943.29 11402642 97.05 975373
48 64 6 − − 3875.00 31454104
49 128 4 74.12 794381 42.71 429435
50 128 5 8578.16 101187915 1975.86 17545861
51 256 4 617.30 6162856 234.17 2006200

Table 4.1: Computational comparisons.
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4.6 Conclusions

Whereas base-2 expansions of bounded integer variables are classical in discrete optimiza-

tion, and whereas tight polyhedral outer-approximations of 0-1 linear programs are widely-recognized

as being a key ingredient for improved solution techniques, these two concepts have not been com-

bined to motivate convex hull (ideal) representations of such expansions. Given an integer variable,

this chapter provides an ideal form in the original variable space by explicitly describing the addi-

tional inequalities needed to capture the convex hull. The representation requires at most dlog2ne−1

minimal-cover type inequalities, where n is the number of permissible realizations of the discrete

variable.

Our arguments are based on a lexicographic ordering of binary vectors. Given such a

vector, the convex hull of the set of binary vectors that is lexicographically less than or equal to this

chosen vector is presented using minimal cover inequalities. This convex hull form is then related to

base-2 expansions, allowing us to model bounded integer variables. A similar description gives the

convex hull for the set of vectors that is lexicographically greater than or equal to a given binary

vector. We combine these results to characterize the convex hull of the set of binary vectors that

is lexicographically bounded between two binary vectors, using a combination of minimal cover and

set covering restrictions. This characterization leads to the ideal representation of binary knapsack

polytopes having weakly super-decreasing coefficients, where the knapsack constraint can have both

lower and upper bounds, and serves to extend earlier work that addresses only upper bounds.

Preliminary computations suggest that the additional inequalities needed to describe the

convex hull forms of base-2 expansions are useful within an enumerative setting. That is, these

additional inequalities tend to reduce the number of nodes explored in a binary search tree compared

to a standard base-2 expansion, and thereby lessen the overall effort. Computational results on

mixed-integer knapsack problems exhibited, on average, a 59% reduction in CPU times and a 60%

reduction in the number of nodes explored. The utility of these cuts appears to depend on the

number of permissible realizations of the integer variable. On the one extreme, when the number of

realizations is a power of 2, no inequalities are generated since the convex hull is already available.

On the other extreme, significant strength is obtained when the number of realizations is one greater

than a power of 2. More extensive tests are needed to determine the types and structures of problems

for which these cuts will be most effective.
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