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SOLVING MIXED INTEGER BILINEAR PROBLEMS USING MILP
FORMULATIONS∗

AKSHAY GUPTE† , SHABBIR AHMED†, MYUN SEOK CHEON‡ , AND SANTANU DEY†

Abstract. In this paper, we examine a mixed integer linear programming reformulation for
mixed integer bilinear problems where each bilinearterm involves the product of a nonnegative inte-
ger variable and a nonnegative continuous variable. This reformulation is obtained by first replacing
a general integer variable with its binary expansion and then using McCormick envelopes to linearize
the resulting product of continuous and binary variables. We present the convex hull of the under-
lying mixed integer linear set. The effectiveness of this reformulation and associated facet-defining
inequalities are computationally evaluated on five classes of instances.

Key words. bilinear problems, McCormick envelopes, binary expansion, cutting planes, mixed
integer programming
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1. Introduction. Consider the mixed integer bilinear program given as

(BLP1)

min x̂TQ0ŷ + fT
0 x̂+ gT0 ŷ

s.t. Ax̂+Gŷ ≤ h0

x̂TQtŷ + fT
t x̂+ gTt ŷ ≤ ht, t = 1, . . . , p,

0 ≤ x̂ ≤ â,

0 ≤ ŷ ≤ b̂, ŷ ∈ Z
n,

where Qt ∈ �m×n, ft ∈ �m, gt ∈ �n for t = 0, . . . , p, and b̂ ∈ �n
+, â ∈ �m

+ , A ∈
�q×m, G ∈ �q×n, h0 ∈ �q, ht ∈ � for t = 1, . . . , p. In the above formulation, every
bilinear term is a product of one continuous and one integer variable.

Although formulation (BLP1) may seem restrictive, it can be used to solve ap-
proximations of a general class of bilinear problems. Consider a problem which, along
with the structure of (BLP1), also has bilinearities between continuous variables.
Then, we may think of choosing a suitable subset of continuous variables that appear
in bilinear terms with other continuous variables and discretizing the variables (cf.
[10, 28]) in this chosen subset. This gives us an approximation of the form (BLP1)
for the original problem since a subset of the continuous variables is now restricted
to take only integer values.

Continuous and mixed integer bilinear problems find many applications [19, 25,
26, 30, 22, 31, 12] and have been fairly well studied in literature. A common solution
methodology is to construct polyhedral relaxations using envelopes of each bilinear
term [3] within a spatial branch-and-bound framework [16]. Tighter relaxations can
be constructed using convex envelopes of the entire bilinear function [34, 33]. There
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722 A. GUPTE, S. AHMED, M. S. CHEON, AND S. DEY

also exist specialized branch-and-bound algorithms that contract the feasible region at
each node of the search tree [37]. The reformulation linearization technique (RLT) has
been applied to the continuous bilinear problem [32] and extended to the mixed {0, 1}
problem with a bilinear objective function [1]. The branch-and-cut algorithm in [5]
uses four classes of RLT inequalities to solve a pooling problem. Convex relaxations
based on semidefinite programming have been studied [4]. Another type of relaxation
is based on Lagrangian duals [2, 15, 9]. One may also obtain piecewise linear relax-
ations by dividing the intervals of one or both of the variables in a bilinear term into
a sufficient number of pieces and constructing envelopes in each of these subintervals
[20]. Branching strategies [8] and heuristics [13] have also been developed.

The main objective of this study is to seek mixed integer linear programming
(MILP)-based solution approaches using polyhedral study of single term bilinear sets.
A MILP-based methodology can be particularly advantageous if, besides the non-
convexities of bilinear terms, the integrality constraints on variables are “hard” to
satisfy. Since considerable progress has been made in algorithms and state-of-the-art
solvers for MILP, these hard constraints can be better dealt with through a MILP
solution procedure. The proposed approach differs from previous work in that our
focus is on solving (BLP1) as a MILP, whereas the existing methods are aimed at
obtaining stronger relaxations, branching techniques, and heuristics within a spatial
branch-and-bound framework for solving (BLP1). Hence, our first step is to use binary
expansion of general integer variables to obtain an extended reformulation. Although
the use of binary expansions is known to be inefficient for general MILPs [27], in our
case, it gives us an exact MILP reformulation of (BLP1). On the contrary, the use of
McCormick envelopes [24] produces a relaxation of the single bilinear term. Binary
expansions have been proposed by [19, 18] for reformulating mixed integer bilinear
sets. Henry [21] also studied binary reformulations of discrete functions and empir-
ically compared them to other approaches. However, to the best of our knowledge,
there has been no study of the polyhedral structure of the sets arising in the context of
mixed integer bilinear programs due to such binary reformulations. Our contribution
is to obtain complete descriptions of the convex hulls of these reformulated single term
bilinear sets and use them in a branch-and-cut algorithm for solving the reformulated
MILP.

The rest of the paper is organized as follows. In section 2, we present MILP
formulations for (BLP1) and study their relative strengths. In section 3, the single
term mixed integer bilinear set is studied and facet-defining inequalities of its convex
hull are derived. In section 4, we present some computational results to demonstrate
the effectiveness of our cuts. Section 5 concludes the paper with a discussion.

We use the following notation in this paper: conv(·) denotes the convex hull of a
set, and relax(·) denotes the continuous relaxation of a set obtained by dropping the
integrality restrictions on its variables. Given a set X in the (x, y)-space, we define
Projx(X ) := {x : ∃y such that (x, y) ∈ X} as the projection of X onto the x-space.
For ease of notation, we sometimes represent a singleton {i} simply as i. �+ is the
set of nonnegative reals, and Z+ and Z++ are the set of nonnegative and positive
integers, respectively.

2. MILP formulations. Let us linearize the objective function and constraints
in (BLP1) by introducing new variables ŵij = x̂lŷj ∀l ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.
This gives us the reformulation (BLP) in an extended space. Note that in this re-
formulation we have reduced all the bilinearities to the constraints ŵlj = x̂lŷj ∀l ∈
{1, . . . ,m} and j ∈ {1, . . . , n}. In the absence of these bilinearities, the problem is a
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MIXED INTEGER BILINEAR USING MILP 723

MILP,

(BLP)

min

m∑
l=1

n∑
j=1

Q0ljŵlj + fT
0 x̂+ gT0 ŷ

s.t. Ax̂+Gŷ ≤ h0,
m∑
l=1

n∑
j=1

Qtljŵlj + fT
t x̂+ gTt ŷ ≤ ht, t = 1, . . . , p,

ŵlj = x̂lŷj , l = 1, . . . ,m, j = 1, . . . , n,
0 ≤ x̂ ≤ â,

0 ≤ ŷ ≤ b̂, ŷ ∈ Z
n.

Solving (BLP) using MILP techniques is possible only if we obtain MILP refor-
mulations of the bilinear terms. To do this, it suffices to study reformulations of each
bilinear term separately.

2.1. Reformulations of single term mixed integer bilinear set. For bounded
continuous and general integer variables x and y, respectively, and a bilinear variable
w = xy, consider the mixed integer bilinear set:

(2.1) P := {(x, y, w) ∈ �+ × Z+ ×� : w = xy, x ≤ a, y ≤ b} .

We assume that b ≥ 1 is a positive integer and a > 0 is a positive real. A standard
approach adopted for linearizing the bilinear terms is to replace each term by its
convex and concave envelopes, also called the McCormick envelopes [24]. Performing
this operation on P gives us the following set:

(2.2) M := {(x, y, w) ∈ �× Z×� : w ≥ 0, w ≤ ay, w ≤ bx, w ≥ bx+ ay − ab} .

Another idea is to use a unary or binary expansion of the integer variable y. Let z be
the new binary vector used in such an expansion. Using vi to model the product xzi
for each i, we obtain the sets

U :=

{
(x, y, w, z, v) ∈ �× Z×�× {0, 1}b ×�b : y =

b∑
i=1

izi,

b∑
i=1

zi ≤ 1, w =

b∑
i=1

ivi,

vi ≥ 0, vi ≤ azi, vi ≤ x, vi ≥ x+ azi − a ∀i ∈ {1, . . . , b}
}

(2.3)

for unary expansion and

B :=

{
(x, y, w, z, v) ∈ �× Z×�× {0, 1}k ×�k : y =

k∑
i=1

2i−1zi ≤ b, w =

k∑
i=1

2i−1vi,

vi ≥ 0, vi ≤ azi, vi ≤ x, vi ≥ x+ azi − a ∀i ∈ {1, . . . , k}
}

(2.4)

for binary expansion, where k = �log2 b	 + 1. The lower and upper bounds on x
and y are implied in each of the above three formulations. Note that for U and B,
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724 A. GUPTE, S. AHMED, M. S. CHEON, AND S. DEY

the linearization of vi = xzi is exact because zi ∈ {0, 1} ∀i. We first compare the
strengths of these sets in the following result.

Proposition 2.1. P = Projx,y,w(U) = Projx,y,w(B) and P ⊆ M. The set M\P
is nonempty if and only if b ≥ 2.

Proof. By construction, it follows that P ⊆ M, P ⊆ Projx,y,w(U), and P ⊆
Projx,y,w(B). We prove the reverse inclusion only for U. The proof for B is similar.
Consider any feasible point (x, y, w, z, v) ∈ U . Since y ∈ Z+, there are two cases:

1. y = 0. Then zi = 0 ∀i ∈ {1, . . . , b}, which implies that vi = 0 ∀i ∈ {1, . . . , b}.
Therefore, w = yx.

2. y > 0. Then zy = 1 and zi = 0, i ∈ {1, . . . , b} \ {y}. Therefore, vi = 0, i ∈
{1, . . . , b} \ {y} and vy = x. Hence, w = yvy = yx.

Thus, in both cases, (x, y, w) ∈ P .

For b = 1, it is straightforward to verify that M = P . For b > 1, observe that
(ab , 1, a) ∈ M \ P .

The set M is a strong relaxation of P . In particular, the convex hulls of M and P
are exactly the same and equal to the linear programming (LP) relaxation of M, i.e.,
conv(P) = conv(M) = relax(M). This follows from the earlier work on McCormick
envelopes of a bilinear term [3, 24] and observing that y ∈ {0, b} at extreme points of
relax(M). The sets U and B are the two most commonly used reformulations for P .
They both add extra, albeit a different number of, binary and continuous variables.
The remaining question is how strong the LP relaxations of U and B are. Towards
this end, we first show that the LP relaxations of U and B are generally weaker than
that of M.

Proposition 2.2.

1. relax(M) ⊆ Projx,y,w(relax(B)) with strict inclusion if and only if b �= 2γ − 1
for any positive integer γ.

2. relax(M) ⊆ Projx,y,w(relax(U)), and the inclusion is strict if and only if
b ≥ 2.

Proof. From Proposition 2.1 we have that P = Projx,y,w(B). This implies
P ⊆ Projx,y,w(relax(B)), and since Projx,y,w(relax(B)) is a convex set, we obtain
that conv(P) ⊆ Projx,y,w(relax(B)). Now, in the above discussion we argued that
relax(M) = conv(P) which implies the inclusion relax(M) ⊆ Projx,y,w(relax(B)).

Next we verify that the inclusion relax(M) ⊆ Projx,y,w(relax(B)) is strict if and
only if b �= 2γ − 1 for any γ ∈ Z+. First suppose that b �= 2γ − 1 ∀γ ∈ Z+. Recall that
k = �log2 b	+ 1. Take a point (x, y, w, z, v) constructed as follows:

zi =
1

k
, vi = azi ∀i ∈ {1, . . . , k},

y =
2k − 1

k
, w = ay, x =

a

k
.

It is easily verified that this point satisfies the linear constraints of relax(B). Since for
k ≥ 2 we have that 2k−1

k < 2k−1 ≤ b, the upper bound on y is also satisfied. Hence
this point belongs to relax(B). However, because b �= 2γ − 1 and k = �log2 b	+ 1, it
follows that b < 2k − 1. Therefore w > bx, and the chosen point does not belong to
relax(M).

Now suppose that b = 2γ−1 for some γ ∈ Z++. Since k = �log2 b	+1, we have that
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b = 2k − 1. Consider any point (x, y, w, z, v) ∈ relax(B). Since vi ≤ x ∀i ∈ {1, . . . , k},

w =

k∑
i=1

2i−1vi ≤
k∑

i=1

2i−1x

= (2k − 1)x

= bx.

Similarly, vi ≤ azi and vi ≥ x + azi − a ∀i ∈ {1, . . . , k} imply that w ≤ ay and
w ≥ bx+ ay − ab, respectively. Hence, the point (x, y, w) belongs to relax(M).

The proof for the inclusion relax(M) ⊆ Projx,y,w(relax(U)) is similar to that for
relax(M) ⊆ Projx,y,w(relax(B)). Observe that for b = 1, the two sets relax(M) and
Projx,y,w(relax(U)) are exactly the same because y = z1 and w = v1.

Now suppose that b ≥ 2 is some positive integer. Construct a point (x, y, w, z, v) ∈
relax(U) as follows:

zi =
1

b
vi = azi ∀i ∈ {1, . . . , b},

y =
b+ 1

2
, w = ay, x =

a

b
.

Thus, w = a(b+1)
2 . For b > 1, it follows that w > a = bx, and hence this point does

not belong to relax(M).

Now we compare the relaxations of B and U . We first observe that for b = 2,
the two sets B and U are almost the same except that U has an additional constraint
z1 + z2 ≤ 1, thus giving us relax(U) ⊂ relax(B). Proposition 2.2 implies that if
b = 2γ−1 for some integer γ ≥ 2, then Projx,y,w(relax(B)) = relax(M) = conv(M) ⊃
Projx,y,w(relax(U)). Hence the relaxation of B is stronger (in the original (x, y, w)-
space) than the relaxation of U . However, this dominance does not always hold true.

Proposition 2.3. Let b ≥ 3 be an integer such that b �= 2γ − 1 for any γ ∈ Z++.
Then, in general,

1. Projx,y,w(relax(B)) \ Projx,y,w(relax(U)) �= ∅,
2. Projx,y,w(relax(U)) \ Projx,y,w(relax(B)) �= ∅.

Proof. Consider the point (ε/B, b, 0), where B = 2k − 1 and ε ∈ (0, a(B − b)].
Since b �= 2γ − 1 for any γ ∈ Z++, and B = 2k − 1, it must be that b < B and
hence the choice of ε is well defined. We will first show that there exists a z ∈ [0, 1]k

such that (ε/B, b, 0, z, 0) ∈ relax(B). Equivalently, we have to show that there exists
a z ∈ [0, 1]k such that

k∑
i=1

2i−1zi = b,

0 ≤ azi ≤ a− ε

B
∀i ∈ {1, . . . , k}.
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Consider the hypercube [0, 1− ε/(aB)]k. Then,

max

{
k∑

i=1

2i−1ζi : ζ ∈ [0, 1− ε/(aB)]k

}
=

(
1− ε

aB

) k∑
i=1

2i−1

=
(
1− ε

aB

)
(2k − 1)

= B − ε

a
≥ b,

where the last inequality follows from the construction of ε. Clearly the minimum of
the expression

∑k
i=1 2

i−1ζi over [0, 1 − ε/(aB)]k is 0. Then, by continuity

of
∑k

i=1 2
i−1ζi, there must exist some ẑ ∈ [0, 1 − ε/(aB)]k such that

∑k
i=1 2

i−1ẑi
= b. Hence the point (ε/B, b, 0, ẑ, 0) ∈ relax(B) and consequently, (ε/B, b, 0) ∈
Projx,y,w(relax(B)). To show that (ε/B, b, 0) /∈ Projx,y,w(relax(U)), suppose for the
sake of contradiction that there exist some (z̄, v̄) such that (ε/B, b, 0, z̄, v̄) ∈ relax(U).
Then, w = 0 implies that v̄i = 0 ∀i = 1, . . . , b, and y = b implies that z̄b = 1. On the
other hand,

x+ az̄b − a =
ε

B
> 0

= v̄b,

a contradiction to the feasibility of (ε/B, b, 0, z̄, v̄).
Finally, we construct a point (x, y, w) ∈ Projx,y,w(relax(U))\Projx,y,w(relax(B)).

Consider a point in relax(U) such that

z̄i =
1

b
, v̄i = azi ∀i ∈ {1, . . . , b},

y =
b+ 1

2
, w = ay, x =

a

b
.

Suppose for the purpose of contradiction that there exist z and v such that (x, y, w, z, v)
∈ relax(B). Then, w − ay = 0 implies

k∑
i=1

2i−1(vi − azi) = 0.

Since vi ≤ azi ∀i ∈ {1, . . . , k}, it follows from the above equality that vi = azi and
consequently vi = azi ≤ x ∀i ∈ {1, . . . , k}. Thus,

y =

k∑
i=1

2i−1zi

≤
∑k

i=1 2
i−1x

a

≤ 2k − 1

2k−1
,

since x = a/b and b ≥ 2k−1. One can verify that (2k − 1)/2k−1 < 2, which leads
to y < 2. However, this is a contradiction because we chose y = (b + 1)/2 and
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assumed b ≥ 3. Hence we have shown that Projx,y,w(relax(U)) \ Projx,y,w(relax(B))
is nonempty.

In the two MILP reformulations U and B, the number of additional binary vari-
ables is b and �log2 b	, respectively. More binary variables for U implies more branch-
ings to be performed in a branch-and-bound algorithm and thus, possibly a higher
computational time. Hence, although the strengths of the LP relaxations of U and B
are incomparable, we do not consider the reformulation U . Our purpose, as detailed
in section 3, is to tighten relax(B) using valid inequalities.

2.2. Reformulations of (BLP). Suppose that we perform binary expansion
of integer variable ŷj ∀j ∈ {1, . . . , n} in (BLP) and use the reformulation B for each
bilinear term. For any given j, we use the same binary expansion variable ẑj for all
the bilinear variables ŵlj ∀l ∈ {1, . . . ,m}. This gives us the following extended MILP
reformulation:

(B-BLP)

min

m∑
l=1

n∑
j=1

Q0ljŵlj + fT
0 x̂+ gT0 ŷ

s.t. Ax̂+Gŷ ≤ h0,
m∑
l=1

n∑
j=1

Qtljŵlj + fT
t x̂+ gTt ŷ ≤ ht, t = 1, . . . , p,

(x̂l, ŷj, ŵlj , ẑ
j, v̂lj) ∈ Blj , l = 1, . . . ,m, j = 1, . . . , n.

Alternatively, linearizing every bilinear term in (BLP) using the set M gives us
the following MILP relaxation:

(M-BLP)

min
m∑
l=1

n∑
j=1

Q0ljŵlj + fT
0 x̂+ gT0 ŷ

s.t. Ax̂+Gŷ ≤ h0,
m∑
l=1

n∑
j=1

Qtljŵlj + fT
t x̂+ gTt ŷ ≤ ht, t = 1, . . . , p,

(x̂l, ŷj, ŵlj) ∈ Mlj , l = 1, . . . ,m, j = 1, . . . , n.

On comparing the above two formulations, we note that (M-BLP) has at most
4mn more constraints than (BLP), whereas (B-BLP) has at most (m + 1)

∑n
j=1 kj

more variables and 4m
∑n

j=1 kj more constraints than (BLP), where kj = �log2 b̂j	+1
for j = 1, . . . , n.

Let OPT (·) denote the optimum value of a problem. Since P = Projx,y,w(B), it
follows that solving (B-BLP) gives us the true optimal value of (BLP), i.e., OPT (B-BLP)
= OPT (BLP). On the contrary, because P is a strict subset of M for b ≥ 2, (M-BLP)
is a relaxation and thus OPT (M-BLP) ≤ OPT (BLP).

2.2.1. Branching strategy for solving (M-BLP). Since formulation (M-BLP)
is a relaxation of the original formulation (BLP), one way of obtaining the true op-
timum value OPT (BLP) using (M-BLP) is to branch on integer feasible solutions.
This procedure is explained next. Suppose that we are at a node in the MILP search
tree such that the solution at this node (x̂∗

l , ŷ
∗
j , ŵ

∗
lj) ∈ Mlj \ Plj , for some indices

l, j. Thus, ŷ∗j ∈ Z+, and this node provides an integer feasible solution to (M-BLP),
but ŵ∗

lj �= x̂∗
l ŷ

∗
j implies that this proposed incumbent is infeasible to (BLP). Since

the McCormick linearization Mlj of Plj is exact at the variable bounds, it must be
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that ŷ∗j ∈ (�j, μj), where �j (resp., μj) is the lower (resp., upper) bound on ŷj at
this current node. Then, we can branch on the variable ŷj using the disjunction
{ŷj ≤ ŷ∗j } ∨ {ŷj ≥ ŷ∗j + 1}. After branching on ŷj , the McCormick envelopes of
wlj = x̂lŷj in the two branches are updated using the refined bounds on ŷj. Al-
though ŷj = ŷ∗j is included in the left (ŷj ≤ ŷ∗j ) branch, one can easily verify that
(x̂∗

l , ŷ
∗
j , ŵ

∗
lj) is cut off from the left branch by the refined McCormick envelopes. An

integer feasible node to (M-BLP) is accepted as an incumbent solution to (BLP) when
|ŵ∗

lj − x̂∗
l ŷ

∗
j | ≤ ε ∀l ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, for a small enough positive ε. Hence,

at termination, we obtain an optimal solution to (BLP). To ensure numerical correct-
ness of the algorithm, the value of ε should be chosen equal to the feasibility tolerance
in the MILP solver.

It is important to observe that in this proposed branching strategy, we branch
only on the integer variables ŷj’s. Thus while solving (M-BLP), we do not branch
on the continuous variables x̂l’s as done in the spatial branch-and-bound framework
within global optimization solvers.

3. Facets of conv(B). In this section, the focus is on solving reformulation
(B-BLP). We conduct a polyhedral study of conv(B) and describe conv(P) in the
(x, y, w, z, v)-space. The aim is to use these facets as valid inequalities in a branch-
and-cut algorithm for solving problem (B-BLP).

We first provide some definitions that will be used in this section. Let

(3.1) K :=

{
z ∈ {0, 1}k :

k∑
i=1

2i−1zi ≤ b

}

be a {0, 1}-knapsack set and let

(3.2) RK :=
{
(x, z, v) ∈ �+ ×�k ×�k : z ∈ K, x ≤ a, vi = xzi ∀i ∈ {1, . . . , k}

}
.

Note that since K ⊆ {0, 1}k, the McCormick linearization of vi = xzi is exact for all
i, and hence RK can be rewritten as

RK =
{
(x, z, v) ∈ �+ ×�k ×�k : z ∈ K,

vi ≥ 0, vi ≤ azi, vi ≤ x, vi ≥ x+ azi − a ∀i ∈ {1, . . . , k}
}
.

From the definition of B in (2.4), it follows that the variables y and w are just linear
functions of z and v, respectively. Hence
(3.3)

conv(B) =
{
(x, y, w, z, v) : y =

k∑
i=1

2i−1zi, w =
k∑

i=1

2i−1vi, (x, z, v) ∈ conv(RK)

}
.

3.1. Disjunctive result. We now present a general result that helps us deter-
mine the convex hull of P . Since conv(P) = Projx,y,w(conv(B)), then (3.3) tells us
that an extended representation of conv(P) can be easily obtained once we know
conv(RK).

Let S ⊂ �k be some nonconvex set (not necessarily discrete) and define RS as

(3.4) RS :=
{
(x, z, v) ∈ �+ ×�k ×�k : z ∈ S, x ≤ a, vi = xzi ∀i ∈ {1, . . . , k}

}
.

The next proposition gives a relationship between the convex hulls of RS and S
under certain assumptions. In particular, it obtains a linear inequality description of
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conv(RS) by multiplying each linear inequality describing conv(S) by x and a − x
and replacing the product term xzi with vi.

Proposition 3.1. Assume that the convex hull of S is a polytope and let it be
characterized as conv(S) = {z : Πz ≤ π0} for some matrix Π and right-hand side π0.
Then, the convex hull of RS is a polyhedron given by

conv(RS) =

{
(x, z, v) : x ∈ [0, a], Πv − π0x ≤ 0,

Πz − 1

a
Πv +

1

a
π0x ≤ π0

}
.

(3.5)

Proof. We first claim that the convex hull of RS can be represented as the convex
hull of the union of two polyhedra. To prove this claim, we define two sets,

T0 := {(x, z, v) : z ∈ conv(S), x = 0, v = 0},
T1 := {(x, z, v) : z ∈ conv(S), x = a, vi − azi = 0, i ∈ {1, . . . , k}}.

By our assumption on conv(S), it follows that both T0 and T1 are polyhedra.
Claim 1. conv(RS) = conv(T0∪T1). We first verify the reverse inclusion conv(T0∪

T1) ⊆ conv(RS). Note that T0 represents the convex hull of a subset of RS obtained
by fixing x = 0 and vi = 0 ∀i. Similarly T1 is the convex hull of a subset of RS

obtained by fixing x = a and vi − azi = 0 ∀i. Hence, T0 ∪ T1 ⊆ conv(RS) implying
that conv(T0 ∪ T1) ⊆ conv(RS).

Now, consider any point (x, z, v) ∈ RS . Note that we can rewrite (x, z, v) =
(1 − x

a )(0, z, 0) +
x
a (a, z, az), where (0, z, 0) ∈ T0 and (a, z, az) ∈ T1. Hence, every

point in RS can be written as a convex combination of one point from T0 and another
point from T1. This gives us RS ⊆ conv(T0 ∪ T1) and thus the inclusion conv(RS) ⊆
conv(T0 ∪ T1). This completes the proof of Claim 1.

Since T0 and T1 are both bounded, it follows that the convex hull of T0 ∪ T1 is
closed. Disjunctive programming [6] provides the following extended formulation:

conv(T0 ∪ T1) = Projx,z,v

{
(x1, z1, v1, x2, z2, v2, x, z, v, λ) :

Πz1 ≤ π0(1− λ), x1 = 0, v1 = 0,

Πz2 ≤ π0λ, x
2 = aλ, v2 − az2 = 0,

z = z1 + z2, x = x1 + x2, v = v1 + v2,

λ ∈ [0, 1]
}
.

(3.6)

The projection onto the space of (x, z, v) variables is easily obtained by observing that
x = aλ, v = az2, and z − 1

av = z1. Now Claim 1 and projection of (3.6) give the
desired result.

Using (3.3), we obtain that conv(B) is given by conv(RK) and two linear equali-
ties. Proposition 3.1 helps us obtain conv(RK) by multiplying the linear inequalities
describing conv(K) with x and a− x.

3.2. Minimal covers of knapsack. It remains to find the convex hull of K. A
complete description of the convex hull of a knapsack set with arbitrary weights is
unknown. However, note that K is a special case of the sequential knapsack polytope
studied by Pochet and Weismantel [29], who provided a constructive procedure for
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obtaining all the exponentially many facets of a sequential knapsack polytope with
arbitrary upper bounds on variables and divisible coefficients (that are not just powers
of some natural number). The set K is a special case where the weight of each item
in the knapsack is a successively increasing power of two. We discuss its properties
below.

Consider K and note that k = �log2 b	 + 1. Hence, 2k−1 ≤ b < 2k. Now let the
binary expansion of b be given by

(3.7) b = 2i1−1 + 2i2−1 + · · ·+ 2ir−1 + 2k−1

for some r ≥ 0. Since 2k−1 ≤ b < 2k, we can assume without loss of generality
(w.l.o.g.) that the last exponent in the above equation is k− 1. Note, therefore, that
the convex hull of K is full dimensional. We use r = 0 to denote that b = 2k−1. Let
N := {1, 2, . . . , k} and define a function σ : 2N �→ �+ as follows:

(3.8) σ(C) =

{
0, C = ∅,∑

i∈C 2i−1 otherwise.

The function σ(·) is monotone in the sense that σ(C1) ≤ σ(C2) for any C1 ⊆ C2 ⊆ N .
A key observation is that

(3.9) σ(C) < σ(i∗) for any C ⊆ N and i∗ > max{i : i ∈ C}.

Definition 3.2. A sequence of positive reals {a1, a2, . . . } is said to be (weakly)
superincreasing if it satisfies

∑q
τ=1 aτ < (≤) aq+1 for q ≥ 1.

It follows from (3.9) that the weights of K form a superincreasing sequence. Lau-
rent and Sassano [23] used a previous result to construct all the nontrivial facet-
defining inequalities for a knapsack with weakly superincreasing weights. We para-
phrase their result next.

Proposition 3.3 (Theorem 2.5 and Corollary 2.6 of [23]). Consider a knapsack
K̃ := {z̃ ∈ {0, 1}n :

∑n
i=1 ãiz̃i ≤ b̃} such that {ã1, . . . , ãn} is weakly superincreasing.

Construct integers τ1, . . . , τq for some q ≥ 1, such that τq = n and

τi := max

⎧⎨
⎩h < τi+1 :

n∑
j=i+1

ãτj + ãh ≤ b

⎫⎬
⎭ , 1 ≤ i ≤ q − 1,

and the intervals Ai := {τi + 1, . . . , τi+1 − 1}, 1 ≤ i ≤ q − 1. Then,

1. the minimal covers of K are the sets

Ci,j = {j, τi+1, . . . , τq = n}, j ∈ Ai, 1 ≤ i ≤ q − 1;

2. the nontrivial facets of K are given by the minimal covering inequalities

z̃j + z̃τi+1 + · · ·+ z̃τq ≤ q − i, j ∈ Ai, 1 ≤ i ≤ q − 1.

Let C denote the set of minimal covers of K. Proposition 3.3 provides a way
of constructing elements of C. For the sake of completeness, we provide an explicit
description of C to establish its dependence on the binary expansion of the right-hand
side b.
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Proposition 3.4. Define I := {i1, . . . , ir, k}, where b is given by (3.7) and
σ(I) = b. Assume w.l.o.g. that i1 < i2 < · · · < ir < k. For any j ∈ N \ I, let
Ij := {i ∈ I : i > j}. Then,

(3.10) C =
⋃

j∈N\I

{
j, Ij

}
.

Proof. Note that if b = 2k − 1, then the knapsack inequality in (3.1) is redundant
and the set of covers is empty. Henceforth, assume that b < 2k − 1.

We first verify that elements of the form {j, Ij} define a minimal cover. Choose a
j ∈ N \I and let C = {j, Ij}. Then, σ(I) = σ(I \Ij)+σ(Ij) = σ(I \Ij)+σ(C)−2j−1.
Using (3.9), we have that σ(I \ Ij) < 2j−1. Hence, b = σ(I) < σ(C) and C is a valid
cover for the knapsack. Since 2j−1 < 2i−1 for i ∈ Ij , we have that for any q ∈ C \ j,
σ(C \ q) < σ(Ij) ≤ σ(I) = b. Finally, σ(C \ j) ≤ σ(I) ≤ b. Hence, C is a minimal
cover.

Now, let C ∈ C be a minimal cover of the knapsack. Since I is not a cover
by definition, we must have |C \ I| ≥ 1. Define c1 := max{j : j ∈ C \ I} and
T1 := {j ∈ C : j > c1}.

Claim 2. T1 = Ic1 . By definition of c1 and T1, we obtain that T1 ⊆ Ic1 . Now take
j ∈ Ic1 and suppose for the sake of contradiction that j /∈ C. Define cq := max{i ∈
C : i < j} and C

′
:= {i ∈ C : i > cq}. By definition of cq and by the assumption that

j /∈ C, it must be that C
′
= {i ∈ C : i > j}. Also, C ′ ⊆ C and hence by definition of

c1, we have C
′ ⊆ I. Then C

′ ⊆ C ∩ I and

b = σ(I)

≥ σ(j) + σ(C
′
) since j ∪ C

′ ⊆ I

> σ({i ∈ C : i < j}) + σ(C
′
) due to (3.9)

= σ(C).

Hence C is not a cover, a contradiction. This implies j ∈ C and since j > c1, it must
be that j ∈ T1. Hence, Ic1 ⊆ T1 and finishes the proof of our claim.

By the above claim it follows that {c1, Ic1} ⊆ C. Since {c1, Ic1} is a cover, by
minimality of C, we obtain that C = {c1, Ic1}.

Example 1. Let b = 38 = 22−1 +23−1 +26−1. Hence, I = {2, 3, 6}. Then, the set
of minimal covers is {(1, 2, 3, 6), (4, 6), (5, 6)}.

From Propositions 3.1, 3.3, and 3.4, and (3.3), we obtain the convex hull of B.
Corollary 3.5.

conv(B) =
{
(x, y, w, z, v) : y =

k∑
i=1

2i−1zi, w =

k∑
i=1

2i−1vi,

vj +
∑
i∈Ij

vi − |Ij |x ≤ 0, j ∈ N \ I,

zj −
1

a
vj +

∑
i∈Ij

(
zi −

1

a
vi

)
+

|Ij |
a

x ≤ |Ij |, j ∈ N \ I,

vi ≥ 0, vi ≤ azi, vi ≤ x, vi ≥ x+ azi − a, i = 1, . . . , k

}
.

(3.11)

For the sake of completeness, we next address two closely related cases.
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Remark 1. Let y be a semi-integer, i.e., y ∈ {0} ∪ {b′ , b′ + 1, . . . , b} for some

positive integers b′, b. Rewriting y = b
′
z0 +

∑k
i=1 2

i−1zi yields

(3.12) S ′
=

{
z ∈ {0, 1}k+1 :

k∑
i=1

2i−1zi ≤ b− b
′
, zi ≤ z0 ∀i ∈ {1, . . . , k}

}
,

where y ∈ {b′ , b′+1, . . . , b} if and only if z0 = 1. LetK′
= {z ∈ {0, 1}k :

∑k
i=1 2

i−1zi ≤
b− b

′} and let its convex hull, which can be obtained from Proposition 3.3, be repre-
sented as conv(K′

) = {z ∈ �k : Πz ≤ π0}. Observe that S ′
= (K′ ×{1})∪{0}. Thus,

conv(S ′
) = conv(conv(K′ × {1}) ∪ {0}) = conv({z ∈ �k+1 : Πz ≤ π0, z0 = 1} ∪ {0}).

Disjunctive programming provides an extended formulation that can be easily pro-
jected to obtain the identity conv(S ′

) = {z ∈ �k+1 : Πz ≤ π0z0}. Applying Proposi-
tion 3.1 gives the convex hull of the corresponding mixed semi-integer bilinear set.

Remark 2. Suppose that in the binary expansion knapsack defined in (3.1), some

powers of two are missing. Thus K′
:= {z ∈ {0, 1}k′

:
∑k′

t=1 2
it−1zt ≤ b}, where

{i1, i2, . . . , ik′} =: I ′ ⊆ {1, 2, . . . , k} such that ik′ = k. The knapsack weights still
form a superincreasing sequence, and K′

is a subset of K obtained by restricting zi =
0 ∀i /∈ I ′

. Since for every i /∈ I ′
, zi = 0 is a face of the 0\1 polytope conv(K), it follows

that conv(K′
) is given by fixing zi = 0 ∀i /∈ I ′

in the minimal covering inequalities
defining conv(K). Thus if we add all the covering inequalities of Proposition 3.3 as
cutting planes at the root node of a branch-and-cut algorithm for solving (B-BLP),
then we cannot obtain any nontrivial cover cuts corresponding to knapsack K at nodes
below the root node.

4. Computational results. In this section we report computational results on
several test instances. Given a mixed integer bilinear problem, we solved it using the
open source nonconvex MINLP solver Couenne 0.3 [7]. Our goal is to test whether
these bilinear problems can be solved efficiently using the MILP formulations (M-BLP)
and (B-BLP) from section 2. We used CPLEX 12.1 as the MILP solver. Since CPLEX

is a sophisticated commercial MILP solver whereas Couenne is a relatively new open
source MINLP solver, we cannot and do not wish to draw conclusions regarding the
performance of the spatial branch-and-bound algorithm. Instead, our aim is to show
that the proposed MILP approach is a viable alternative on certain classes of problems.

To ensure numerical consistency between Couenne and CPLEX, we used the follow-
ing algorithmic parameters: feasibility tolerance = 10−6, integrality tolera-
nce = 10−5, relative optimality gap = 0.01%, absolute optimality gap =

10−4. Additionally, for CPLEX, we set Threads = 1 to enforce single threaded com-
puting. All other options were set to default values for the respective solver. Our
assumption of nonnegative lower bounds on variables is without any loss of generality
since we translated every variable with a nonzero lower bound so that the formulation
conforms to (BLP1).

For the MILP relaxation (M-BLP), we employed branching on integer solutions,
as discussed towards the end of section 2. While branching at any fractional or in-
teger node of the branch-and-bound tree, updated McCormick envelopes were added
for each bilinear term corresponding to the branching variable, using the local bounds
on the variables at this particular node. This is a standard technique used by global
optimization solvers. In our preliminary computations, this technique performed bet-
ter than updating the envelopes only when we branch on integer nodes. The variable
selection rule for the branching strategy of section 2.2.1 was based on a maximum
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violated bilinear term, whereas for fractional nodes we used the branches proposed
by CPLEX. By solving the relaxation (M-BLP) as a MILP without branching on con-
tinuous variables, we have adopted a traditional branch-and-bound solution strategy
to test whether branching on integer nodes in the original space can outperform the
spatial branch-and-bound algorithm of Couenne or the extended binary MILP refor-
mulation (B-BLP).

While solving reformulation (B-BLP), the general integer variables ŷj ∀j ∈ {1, . . . , n}
were substituted out in order to reduce the problem size and to ensure that branching
is performed solely on the binary variables. One approach was to solve this refor-
mulation using default branch-and-cut options for CPLEX. In the second approach,
we added all the inequalities defining conv(Blj) ∀l ∈ {1, . . . ,m}, j ∈ {1, . . . , n} (see
(3.11)) to the user cut pool of CPLEX along with default branch-and-cut options. In
our preliminary computations, we also tested the following idea: retaining integer
variables ŷj for all j, and whenever CPLEX chooses some ŷj as a branching variable,
adding cover inequalities corresponding to the refined bound on ŷj as local cuts at
this node. However, we found no performance gain with this approach.

We test five classes of instances MINLPLIB, Bundling, MIPLIB, BoxQP, and
Disjoint. The experiments were carried out on a Linux machine with kernel 2.6.18
running on a 64-bit x86 processor and 32GB of RAM. The time limit was one hour
barring a few instances from MINLPLIB and MIPLIB. Tables 4.1–4.11 highlight compar-
isons between four solution approaches—Couenne, (M-BLP), (B-BLP) + Cuts, and
(B-BLP). We report the number of nodes (Nds) processed by the branch-and-bound
algorithm and the running time (T) in seconds. A * indicates the instance was not
solved to optimality within the time limit. For the binary expansion reformulation,
we also report the total number of cover inequalities that were separated by CPLEX

(Cuts) and the % root gap closed (Rgp-cl) by adding our cuts with CPLEX cuts over
adding only CPLEX cuts.

For an instance I not solved to optimality within the desired time limit, we solved
the formulation (BLP) using Couenne for a long period of time (24 hours). The best
feasible solution value after 24 hours1 is recorded as OPTI . The performance of the
four proposed approaches is compared using two types of % optimality gaps. The
first one measures the quality of ξrelaxI (A), the best relaxation bound due to method
A and is given by

(4.1) μI(A) = 100×
∣∣∣∣1− ξrelaxI (A)

OPTI

∣∣∣∣ .
Thus, μI(A) denotes how close method A was to solving I to optimality. The second
metric is the % optimality gap of the best feasible solution found by A (denoted as
ξI(A)) and is given by

(4.2) ωI(A) = 100×
∣∣∣∣1− ξI(A)

OPTI

∣∣∣∣ .
An optimality gap of (–) means no integer feasible solution was found by the algorithm
within the time limit. For our test instances, we observed OPTI �= 0.

1In particular, OPTI is the best solution value compared across (a) any of the MILPs solved for
one hour and (b) value returned by Couenne after 24 hours.
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734 A. GUPTE, S. AHMED, M. S. CHEON, AND S. DEY

Performance profiles. The various performance metrics, such as the number
of nodes, solution time, optimality gaps, number of user cuts, etc., are reported in-
dividually for each test instance from MINLPLIB and MIPLIB, whereas average values
are reported for the remaining three instance classes. We also plot performance pro-
files [14] of solved and unsolved instances2 from each of the three classes3 Bundling,
BoxQP, and Disjoint. For each instance class, we compare the solution times from
the four approaches Couenne, (M-BLP), (B-BLP) + Cuts, and (B-BLP) on the subset
of instances solved within one hour. Let TI(A) denote the CPU time in seconds for
solving instance I with method A and let ηI(A) be a relative metric calculated as

ηI(A) =
TI(A) − minA TI(A)

maxA TI(A) − minA TI(A)
∈ [0, 1].

Any point (ΩT , βT ) on the CPU time performance profile for method A indicates
that ηI(A) was at most ΩT for a fraction βT of the solved instances. Thus, the point
(0, βT ) implies that a βT fraction of instances were solved quickest by A. For the
subset of unsolved instances after one hour, we compare the performance profiles of
the best feasible solutions obtained with the different methods. Let ξI(A) be the best
solution value for instance I using method A. The relative metric θI(A) ∈ [0, 1] is
defined as

θI(A) =
ξI(A) − minA ξI(A)

maxA ξI(A) − minA ξI(A)
for minimization,

θI(A) =
maxA ξI(A) − ξI(A)

maxA ξI(A) − minA ξI(A)
for maximization.

Any point (Ωval, βval) on the solution value performance profile for method A implies
that θI(A) was at most Ωval for a fraction βval of the unsolved instances. Thus, the
point (0, βval) implies that A found the best solution on βval fraction of unsolved
instances.

While comparing performance profiles, the most effective method is the one whose
profile is the topmost left corner. More details on performance profiling can be found
in [14].

4.1. General mixed integer bilinear problems. This set of instances con-
tains problems formulated as (BLP1) where bilinear terms are present in both the
objective function and constraints. We divide the set of instances into two subcate-
gories depending on the source of the test problems.

4.1.1. MINLPLIB. We chose 14 instances from this test library [11] that have
bilinearities between continuous and integer variables, such as xy, or between two
integer variables, such as y1y2. Note that for a bilinear term y1y2 where yi ∈ Z+, i =
1, 2, the result of Proposition 3.1 carries through. Instances lop97ic and lop97icx

are not considered because of their large size. Instances tln2–tloss are the bilinear
version of the cutting stock problem, where the number of rolls produced by each
cutting pattern is also an integer variable.

2An instance is marked solved if it was solved within one hour by any of the four methods;
otherwise it is marked unsolved.

3We do not plot performance profiles for MINLPLIB and MIPLIB since individual metrics are re-
ported for these two instance classes.
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MIXED INTEGER BILINEAR USING MILP 735

Table 4.1

Test instances from MINLPLIB.

Instance Couenne M-BLP B-BLP + Cuts B-BLP
Nds T Nds T Nds T Cuts Rgp-cl Nds T

ex1263a 1121 2 2366 1 635 1 0 0 640 1
ex1264a 940 1 2762 1 519 1 0 0 519 1
ex1265a 197 3 995 1 378 1 0 0 378 1
ex1266a 61 1 562 1 10 1 0 0 10 1
prob02 0 0 170 1 12 1 0 0 12 0
prob03 0 0 4 1 0 0 1 5% 0 0
tln2 2 0 12 1 183 0 0 0 183 0
tln4 47384 55 98770 118 4401 4 17 0 4576 4
tln5 496377 * 306394 * 12662 17 0 0 12662 18
tln6 421402 * 242486 * 56130 87 102 0 65514 93
tln7 316152 * 684937 * 1249707 * 36 0 1728487 *
tln12 96500 * 50618 * 134823 * 132 0 180712 *
tloss 537 3 877 1 84 1 0 0 84 1
tltr 371 1 144 1 214 1 11 2% 181 1

Table 4.2

% optimality gaps for test instances from MINLPLIB.

Instance Couenne M-BLP B-BLP + Cuts B-BLP
μI ωI μI ωI μI ωI μI ωI

tln5 42% 2% 43% 3% 0 0 0 0
tln6 54% 0% 69% 1% 0 0 0 0
tln7 75% 17% 75% 6% 34% 0 1% 0
tln12 82% – 103% – 80% 2% 80% 4%

From Table 4.1 we observe that the bilinear cutting stock instances tln4–tln12
are perhaps the most difficult ones from this set of instances. On these five instances,
the binary reformulation, with or without our cuts, has done better than both envelope
relaxation (M-BLP) and solving with Couenne. In particular, for tln4, the nodes and
time taken by binary MILP was substantially less than for the other two, whereas
tln5 and tln6 were solved within the time limit by binary MILP (with some help
from cuts on tln6). The time limit was set to 15 minutes for tln7 and tln12, since
we did not observe any notable improvements for longer time periods. Although tln7

and tln12 remained unsolved by all four methods, the optimality gap at termination
was higher for the first two methods as seen in Table 4.2.

4.1.2. Product Bundling. The product bundling problem addressed in [17] can
be defined as follows: let P be a set of products and let C be a set of customers.
The variable xp ∈ Z+ represents the number of units of product p in a bundle, and
yc ∈ Z+ represents the number of bundles bought by customer c. The objective is to
maximize

∑
c∈C

∑
p∈P xpyc, which is the total number of products bought, subject

to the demand constraint xpyc ≤ Dcp ∀c ∈ C, p ∈ P . Here, Dcp ∈ Z+ and not all
Dcp are zero. Thus, the formulation is

(Bundling) max

⎧⎨
⎩
∑
c∈C

∑
p∈P

xpyc : xpyc ≤ Dcp, xp, yc ∈ Z+ ∀c, p

⎫⎬
⎭ .

We first obtain valid upper bounds on the variables.
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736 A. GUPTE, S. AHMED, M. S. CHEON, AND S. DEY

Proposition 4.1. The variables x and y in (Bundling) can be upper bounded as

xp ≤ μx
p := max{Dcp : c ∈ C}, p ∈ P,

yc ≤ μy
c := max{Dcp : p ∈ P}, c ∈ C.

Proof. First consider the following observation.
Claim 3. OPT (Bundling) ≥ 1. Since not all Dcp are zero and Dcp ∈ Z+ ∀c, p,

there must be exist some c ∈ C, p ∈ P such that Dcp ≥ 1. Set xp = yc = 1 and all
other variables zero. This is a feasible solution with objective value 1.

We now show that any optimal solution (x∗, y∗) to (Bundling) must satisfy x∗ ≤
μx and y∗ ≤ μy. Suppose that x∗

p > μx
p for some p ∈ P . This implies that y∗c = 0 ∀c ∈

C since every feasible point must satisfy xpyc ≤ Dcp ∀c. Hence, the optimal value
must be zero, which is a contradiction to our first claim. We can similarly address
the case y∗c > μy

c for some c ∈ C. Hence, μx and μy are valid upper bounds that are
not violated by any point from the set of optimal solutions.

Our first problem set of this type consists of 54 instances, created using the
random generator of [17]. Half of these are for |C| = 10, |P | = 30 and the other
half for |C| = 20, |P | = 50. For each problem size, we considered ρ ∈ {0.2, 0.5, 0.8}
and λ ∈ {30, 100, 200}, where Dcp = 0 with probability ρ and if Dcp > 0, then
Dcp ∼ Poisson(λ). For each combination of ρ and λ, three instances were created.
Note that a bilinear term wcp = xpyc exists only if Dcp > 0. Otherwise xp = 0∨ yc =
0. This disjunction is modeled as a bigM constraint using extra binary variables
for (M-BLP), whereas for (B-BLP), the condition wcp = 0 is incorporated in the
McCormick linearization. As λ increases, the set of integer feasible solutions increases,
and as ρ decreases, the demand matrix becomes more dense, giving rise to more
bilinear terms.

In Tables 4.3 and 4.4, we present average values over the 27 random instances
for each problem size. We report the average values for our metrics—number of
nodes, time taken (sec.), number of user cuts added, and % root gap closed, where
the averages are taken over instances in each subgroup. For each method A, we also
provide

1. number of instances (# solved) solved to optimality by A,
2. number of instances (# fastest optimal) for which A found an optimality

certificate in the shortest amount of time.
Since there exist some instances that are not solved to optimality by any of the
formulations, we also report the following metrics calculated over the instances that
were not solved with any of the four methods:

3. number of instances (# best feasible) on which the best feasible solution was
found,

4. average value of μI over unsolved instances,
5. average value of ωI over unsolved instances.

From Tables 4.3 and 4.4 we observe that Couenne solved the largest number of
instances in one hour. However, among the unsolved problems, the best feasible
solutions obtained from binary reformulation helped produce strong lower bounds on
the problem. This can be concluded by comparing the optimality gaps ωI for the
four different methods. In Table 4.3, (M-BLP) was able to produce the best feasible
solution on the largest number of instances (10). However, the relative quality of
these solutions, denoted by ωI , was less than that for (B-BLP) (with and without
cuts), implying that the solutions obtained with the binary reformulation model were
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Table 4.3

Product Bundling for |C| = 10, |P | = 30. 27 random instances.

Couenne M-BLP B-BLP B-BLP
+ Cuts

Average Nds 388824 735621 349335 383832
Average T (sec.) 2103 2409 2787 2736
Average Cuts – – 517 –
Average % Rgp-cl – – 0.5% –
# solved 13 9 9 8
# fastest optimal 10 4 0 0
# best feasible 1 10 2 4
Average μI 63% 12% 203% 204%
Average ωI 14% 5% 2.6% 2.9%

Table 4.4

Product Bundling for |C| = 20, |P | = 50. 27 random instances.

Couenne M-BLP B-BLP B-BLP
+ Cuts

Average Nds 99790 241450 221272 181680
Average T (sec.) 2776 3600 3600 3600
Average Cuts – – 1245 –
Average % Rgp-cl – – 0.1% –
# solved 8 0 0 0
# fastest optimal 8 0 0 0
# best feasible 0 0 10 9
Average μI 243% 225% 545% 536%
Average ωI 55% 26% 9.8% 10.3%

either the best or almost always very close to being the best. For the larger problem
sizes in Table 4.4, a similar reasoning holds for the ωI values along with the fact
that now the best feasible solutions were obtained solely by one of the two binary
models. On the relaxation side, it seems that although a large number of our cover
cuts were separated, they were not effective in closing the root gap. In fact, most
of our user cuts were separated deeper in the branch-and-cut tree suggesting that
the default cuts added by CPLEX at root node were themselves quite strong on these
instances. Equation (M-BLP) has the lowest average termination gap μI and for this
set of instances, our proposed branching strategy performed fairly well, possibly due
to a not too large interval width of the general integers.

The second set of product bundling problems consists of five instances from a
real food company, as used in [17]. These are referred to as the watts instances,
reported in Tables 4.5 and 4.6. For these five instances, we clearly see that the
binary reformulation is superior, in terms of both μI and ωI and the solved instances.
Although our cuts were not effective at the root node, they were helpful in expediting
the solve of three out of the five instances, especially 10 x 60d, whose solution time
was more than halved. On the contrary, for 9 x 60 and 10 x 60, a lot of user cuts were
separated below the root node, which potentially led to slowdown of CPLEX and hence
a higher termination gap than (B-BLP) without cuts.

The performance profiles are plotted in Figure 4.1. The maximum number of in-
stances were solved to optimality within one hour by Couenne. The profile of Couenne
is most dominant in Figure 4.1(a), implying that our MILP formulations are not ef-
ficient in solving these instances. However, on the unsolved instances, we observe that
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Table 4.5

The watts instances for Product Bundling.

Instance Couenne M-BLP B-BLP + Cuts B-BLP
Nds T Nds T Nds T Cuts Rgp-cl Nds T

5x41 305800 * 1217175 * 25893 141 18 0 33762 176
5x41m 1044023 * 1301411 * 23323 166 23 0 16426 226
9x60 120260 * 319347 * 55277 * 745 0 86562 *
10x60 97180 * 239071 * 74913 * 805 0 69911 *
10x60d 112030 * 291302 * 31753 808 234 0 60945 1902

Table 4.6

% optimality gaps for watts instances.

Instance Couenne M-BLP B-BLP + Cuts B-BLP
μI ωI μI ωI μI ωI μI ωI

5x41 31% 7% 101% 24% 0 0 0 0
5x41m 6% 0 194% 25% 0 0 0 0
9x60 339% 21% 57% 58% 111% 0 65% 0
10x60 231% 24% 39% 60% 77% 0 59% 0
10x60d 142% 17% 38% 46% 0 0 0 0

(a) CPU times for 24 solved instances. (b) Feasible solutions for 35 unsolved instances.

Fig. 4.1. Performance profiles for 59 Product Bundling problems.

(B-BLP) with and without cuts provided the best quality solutions. The two profiles
corresponding to (B-BLP) seem to be evenly matched in terms of the feasible solution
qualities.

4.2. Nonconvex objective function with linear constraints.

4.2.1. MIPLIB. We chose MILP instances from MIPLIB 2003 and modified the
objective function to a bilinear function. Thus, the feasible region for these instances
is a polyhedron, and all nonconvexities appear in the objective. For general MILPs,
only those eight instances with less than 1000 integer and 1000 continuous variables
were selected, and the objective was

(4.3) max

n∑
i=1

yi(xi + xi+1 + xi+2).

D
ow

nl
oa

de
d 

03
/0

2/
20

 to
 1

29
.2

15
.1

04
.2

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MIXED INTEGER BILINEAR USING MILP 739

Here xi and yi are bounded continuous and integer variables, respectively, and the
indexing of these variables is as determined by CPLEX after importing the .mps input
file for the MIPLIB instance. The summation in (4.3) is taken only over those variables
which were either originally bounded or whose LP-based bounds (maximizing and
minimizing each variable over the LP relaxation of the feasible set) were finite.4

Table 4.7

General MILP test instances from MIPLIB.

Instance Couenne M-BLP B-BLP + Cuts B-BLP
Nds T Nds T Nds T Cuts Rgp-cl Nds T

arki001 1497 * 47635 * 50233 * 131 7% 20457 *
noswot 98018 * 213037 * 4398 5 0 0 4398 5
gesa2 46 124 0 1 0 1 0 0 0 1
gesa2-o 261 * 54322 * 69 3 782 99% 36644 *
rout 87613 * 44 1 50 1 5 0 31 1
timtab1 37294 * 291471 * 311058 * 63 7% 339376 *
timtab2 48624 * 136749 * 133526 * 136 6% 138606 *
roll3000 3 * 42147 * 28678 461 28 1% 27649 496

Table 4.8

% optimality gaps for test instances from MIPLIB. gesa2 is excluded from this table since it is
solved by all four methods.

Instance Couenne M-BLP B-BLP + Cuts B-BLP
μI ωI μI ωI μI ωI μI ωI

arki001 19% – 21% 8% 4% 0.3% 7% 0
noswot 6% 20% 46% 27% 0 0 0 0
gesa2-o 6% – 1% 0 0 0 0 0
rout 0 5% 0 0 0 0 0 0
timtab1 38% 10% 15% 7% 9% 0 10% 0.2%
timtab2 39% – 31% 11% 28% 0 29% 0.1%
rol3000 65% – 92% 63% 0 0 0 0

Test results are provided in Tables 4.7 and 4.8. Only three out of the total eight
instances remained unsolved for B-BLP + Cuts, least among all four methods. For
arki001, timtab1, and timtab2, our cuts seemed helpful in closing some gap at the
root node. For gesa2-o, our cuts helped solve the problem very quickly. Observe that
for arki001, gesa2-o, timtab2, and roll3000, Couenne was unable to find a integer
feasible solution within the time limit and, in fact, could process only three nodes for
roll3000, likely because of the large number of general integers in this instance. On
these same four instances, our cuts either were able to solve the binary reformulation
or could reduce the optimality gap.

4.2.2. BoxQP. Here we consider box constrained nonconvex quadratic problem

(Integer BoxQP)
min 1

2 x̂
TQx̂+ fT

0 x̂

s.t. x̂ ∈ [0, â] ∩ Z
n
+.

4The indexing of integer and continuous variables is maintained separately and depends on the
order in which they are read from the .mps file. We first drop the {0, 1} variables. Then we generate
LP-based bounds on the remaining variables and subsequently drop the unbounded variables. With
this final ordering, there are n integer variables and m continuous variables. Each integer variable
yi is matched with three continuous variables xi, xi+1, xi+2. If n > m, then we simply loop over
the indexing of continuous variables.

D
ow

nl
oa

de
d 

03
/0

2/
20

 to
 1

29
.2

15
.1

04
.2

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

740 A. GUPTE, S. AHMED, M. S. CHEON, AND S. DEY

Introducing a new continuous variable y = Qx, we can rewrite the above problem
with a bilinear objective and linear constraints as

(Bilinear Integer BoxQP)

min 1
2 x̂

T ŷ + fT
0 x̂

s.t. ŷ = Qx̂,
ŷLi ≤ ŷi ≤ ŷUi , i = 1, . . . , n,
x̂ ∈ [0, â] ∩ Z

n
+,

where ŷLi :=
∑

j : qij<0 qij âj and ŷUi :=
∑

j : qij>0 qij âj for i = 1, . . . , n. In this
transformed problem, every bilinear term ŵi = x̂iŷi, i = 1, . . . , n, is a product between
a bounded integer variable and a bounded continuous variable and hence conforms to
the assumptions of this paper.

The test instances for our computational experiments were obtained from the
54 random instances of [35], where the authors studied [0, 1] constrained noncon-
vex QPs. The value of n, i.e., the number of variables in (Integer BoxQP), lies in
{20, 30, 40, 50, 60} for these instances. For every instance of [0, 1] box QP, we gener-
ated values of integral upper bounds âi uniformly at random between 10 and 100 for
all i. Then after a suitable scaling of the coefficient matrix and cost vector with these
upper bounds, we obtain an instance for (Integer BoxQP).

The results of our experiment are summarized in Table 4.9. The second column
in Table 4.9 corresponds to the solution of the the reformulated bilinear problem
(Bilinear Integer BoxQP) with Couenne. Of the unsolved instances, the average values
of ωI are lowest for the two binary formulations, indicating that good quality solutions
are obtained by solving the MILP formulation. Our cuts close around 41% of the root
gap, which translates into lower termination gap μI (43% < 66%) and helps CPLEX

spend more time in obtaining good feasible solutions for the largest number of unsolved
instances (41 out of 52).

Table 4.9

54 instances of (Integer BoxQP) where Couenne is solved as (Bilinear Integer BoxQP).

Couenne M-BLP B-BLP B-BLP
+ Cuts

Average Nds 850670 222470 433045 1056528
Average T (sec.) 3501 3600 3491 3588
Average Cuts – – 113 –
Average % Rgp-cl – – 41% –
# solved 2 0 2 1
# fastest optimal 2 0 0 0
# best feasible 7 1 41 34
Average μI 31% 68% 43% 66%
Average ωI 1.6% 9% 0.23% 0.18%

Only two out of 54 instances were solved by any of the four methods. The
performance profile of feasible solutions for the 52 unsolved instances is plotted in
Figure 4.2. As discussed before, user cuts obtain best quality feasible solution on
80% of the instances. The solutions obtained from the binary formulation (B-BLP)
(with and without cuts) are superior to both Couenne and (M-BLP). The addition
of our cuts significantly reduces the root gap and the optimality gap μI (cf. Table
4.9) but does not seem to vastly improve the quality of solutions obtained upon
termination. This is perhaps to be expected since user cuts typically do not improve
the performance of primal heuristics in Cplex. Thus, our cuts seem to be doing their
primary job of obtaining better relaxation bounds.
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Fig. 4.2. Performance profile of feasible solutions for 52 unsolved instances of BoxQP problems.

4.2.3. Disjoint bilinear problems. One hundred random instances of dis-
joint bilinear problems were created using the instance generator of [36]. These test
instances have a bilinear objective function, and the feasible region is defined by a
Cartesian product of two polyhedra, one in x-space and another in y-space. The y
variables are restricted to be integer.

(Disjoint BLP)

min x̂TQ0ŷ + fT
0 x̂+ gT0 ŷ

s.t. x̂ ∈ X := {x̂ ∈ �2κ2 : Ax̂ ≤ ha},
ŷ ∈ Y := {ŷ ∈ Z

κ1+κ2 : Bŷ ≤ hb}.

The values δ = 2 and ρ = 0 were used while generating components of matrices A
and B, and the final values of Q0, f0, g0, A,B, ha, hb were obtained using randomized
Householder matrices, the seed for which was set equal to instanceid×κ1×κ2. A more
detailed description of the instance generator can be found in [36]. The parameters κ1

and κ2 control the size of the problem. The total number of variables and constraints
in (Disjoint BLP) is equal to κ1 + 3κ2 and 2κ1 + 4κ2, respectively. LP-based bounds
are generated for each variable, and any unbounded variable is given an artificial upper
(lower) bound of 100 (−100). The instances are divided into two subgroups: half of
them were generated with κ1 = 2, κ2 = 4 and the other half with κ1 = 3, κ2 = 5.

In Table 4.10, all of the methods, except (M-BLP), were able to solve all 50

Table 4.10

Disjoint bilinear instances: κ1 = 2, κ2 = 4. Fifty random instances.

Couenne M-BLP B-BLP B-BLP
+ Cuts

Average Nds 24289 78414 44322 44090
Average T (sec.) 45 3351 24 23
Average Cuts – – 96 –
Average % Rgp-cl – – 34% –
# solved 50 6 50 50
# fastest optimal 12 0 30 16
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Table 4.11

Disjoint bilinear instances: κ1 = 3, κ2 = 5. Fifty random instances.

Couenne M-BLP B-BLP B-BLP
+ Cuts

Average Nds 1144272 51190 1686068 1855911
Average T (sec.) 3424 3605 2565 2773
Average Cuts – – 172 –
Average % Rgp-cl – – 33% –
# solved 8 0 21 16
# fastest optimal 3 0 14 8
# best feasible 6 0 19 16
Average μI 2.11% 22% 2.21% 2.91%
Average ωI 0.039% 0.261% 0.013% 0.016%

(a) CPU times for 75 solved instances. (b) Feasible solutions for 25 unsolved instances.

Fig. 4.3. Performance profiles for 100 disjoint bilinear problems. The metrics for (M-BLP)
are not plotted since they were poor in comparison to the other three methods.

instances to optimality. The binary formulation with user cuts was fastest on 60% (30
out of 50) of the instances. This was primarily because the minimal cover inequalities
closed about 34% of the root gap. Couenne was fastest on only 24% (12 out of 50) of
the instances. Note that there exist some instances on which more than one method
solved in shortest time.

The instances in Table 4.11 are larger in size due to the higher values of κ1 and
κ2. Once again, the binary formulation with user cuts solved the largest number
of instances to optimality (21 out of 50) and also in shortest time (14 out of 21).
The root gap closed by our cuts was about 33%. The binary formulation (both with
and without cuts) produced the best feasible solution on most of the 25 instances that
remained unsolved after one hour. Good quality feasible solutions were obtained after
one hour by (B-BLP) with user cuts since the average ωI = 0.013% was the least for
this approach. User cuts reduced the average value of μI to 2.21%, which was close
to the average μI of 2.11% obtained from Couenne.

The performance profiles are plotted in Figure 4.3. As seen in Tables 4.10 and
4.11, the performance of (M-BLP) is quite bad and is hence not plotted. From Figure
4.3(a) we see that our user cuts helped solved the largest fraction of instances (about
60%) in the shortest amount of time. Equation (B-BLP) + user cuts obtains the best
feasible solutions on about 65% of the unsolved instances in Figure 4.3(b). From both

D
ow

nl
oa

de
d 

03
/0

2/
20

 to
 1

29
.2

15
.1

04
.2

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MIXED INTEGER BILINEAR USING MILP 743

of these plots we observe that our user cuts provide the most dominant performance
profile.

5. Conclusion. In this study, we presented a MILP reformulation (B-BLP) for
the mixed integer bilinear problem (BLP). The idea behind constructing the refor-
mulation was to use binary expansion of general integer variables. We investigated
this reformulation by conducting a polyhedral study in the extended space. The set
of interest turned out to be a special case of the sequential knapsack polytope. A
polynomial size description was provided for the convex hull of this set using a previ-
ous result on minimal covers of superincreasing knapsacks. We implemented our cuts
on five sets of instances and compared their performance against (i) a MINLP solver
for problem (BLP), and (ii) a branching scheme within a MILP solver for relaxation
(M-BLP).

Our experiments suggest that the cuts were more effective for test instances with
a bilinear objective function and linear constraints. Even if our cuts were not always
successful in closing a significant amount of the root gap on general bilinear problems,
they often helped branch-and-cut search deeper down the tree. The results lend
credence to our primary motivation for this study: that on a certain class of problems,
adopting a MILP solution procedure for solving mixed integer bilinear problems can be
beneficial. Finally, we emphasize that the cuts derived in this paper are by no means
exhaustive and one may seek to derive additional valid inequalities by exploiting
the structure of binary expansion within the constraints of a particular problem,
thus potentially expanding the usefulness of this MILP approach to a wider class of
problems.
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