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a b s t r a c t

Minimum cost network design/dimensioning problemswhere feasibility has to be ensured
w.r.t. a given (possibly infinite) set of scenarios of requirements form an important subclass
of robust LP problems with right-hand side uncertainty. Such problems arise in many
practical contexts such as Telecommunications, logistic networks, power distribution
networks, etc. Though some evidence of the computational difficulty of such problems can
be found in the literature, no formal NP-hardness proof was available up to now. In the
present paper, this pending complexity issue is settled for all robust network optimization
problems featuring polyhedral demand uncertainty, both for the single-commodity and
multicommodity case, even if the corresponding deterministic versions are polynomially
solvable as regular (continuous) linear programs. A new family of polynomially solvable
instances is also discussed.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The deterministic optimum link capacity expansion problem for a given network to satisfy a given set of point-to-point
requirements, assuming that existing capacity is not sufficient to meet all the requirements, arises in connection withmany
applications such as telecommunication networks (see e.g. [18,19]), power networks (see e.g. [17]) or logistic networks (see
e.g. [18,20]).
In the simple basic case where the cost of installing extra capacity on each arc is linear, and there is no additional

restriction on how to route the flows corresponding to the various source–sink pairs, this problem can be formulated as
minimum cost single-commodity or multicommodity network flow problems. For the single-commodity case, numerous
efficient combinatorial (i.e. graph-based)minimumcost flowalgorithmshave beendescribed in the literature (see e.g. [1]). In
themulticommodity case those algorithms are not applicable, but efficient linear programming techniques taking advantage
of the underlying network flow structures are available (see e.g. [1]).
In the present paper, we consider nondeterministic versions of such problems, which correspond to the case where the

various flow requirements to be satisfied are subject to uncertainty.More specifically, wewill consider the case of polyhedral
uncertainty, i.e. the case where the uncertainty set for requirements is a given (bounded) polyhedron in RK

+
(K denotes the

number of point-to-point requirements, and for each individual requirement k ∈ [1, K ], s(k) and t(k) denote the origin and
destination nodes respectively).
However, let us insist on the fact that the class of network optimization problems addressed here is restricted to problems

which are expressible as regular (continuous) linear programs in their deterministic version (i.e. in the case of a single
scenario of requirements) and, as such, solvable in polynomial time. Consequently network optimization problems such as
those featuring nonconvex and/or discontinuous link cost functions, or including complicating constraints of various types
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(e.g. imposing amaximum number of routes for each point-to-point requirement) which are already provably hard to solve,
even in their deterministic versions, are out of the scope or our study. Our purpose here is mainly to show that considering
polyhedral demand uncertainty alone is responsible for switching from P to NP-hard complexity status. Basic references on
robust optimization are [5–8,12,14].
Robust versions of single-commodity and/or multicommodity network flow problems under demand uncertainty have

been addressed by several authors, including [2,4,13,15,24–27].
Atamtürk & Zhang [2] investigate a class of 2-stage robust network flowproblemswith demand uncertainty inwhich two

types of design variables are considered, corresponding to a partition (A, B) of the arc set of the network into two subsets.
The capacities of the arcs in A are the first-stage decision variables (‘‘here and now’’ decisions), the flows on the arcs in B are
the second-stage variables (‘‘wait-and-see’’ decisions).
It is shown that a linear description of the polyhedron of feasible solutions in the space of first-stage variables can be

obtained via projection (close in spirit to Benders partitioning [3]), resulting in a large scale linear system for which the
separation subproblem is NP-hard for various polyhedral uncertainty sets for requirements. Such complexity results for the
separation problem indeed strongly suggest that the corresponding robust network design problems (concerning both the
single-commodity and the multicommodity case) are computationally difficult, however they do not constitute a formal
direct proof of NP-hardness for these problems.
Ordoñez and Zhao [24] investigate minimum cost capacity expansion problems (for both single-commodity and

multicommodity cases) under demand and travel time uncertainty. Both conic uncertainty sets and polyhedral uncertainty
sets are considered. Apart from a number of polynomial special cases (discussed into details in the paper) it is shown
that in the general case, the problem can be reduced to minimizing a convex function Φ of the design variables y (the
vector of additional capacities on the arcs), but computing Φ(y) for any given y requires maximizing a convex function,
an a priori difficult problem. Again, this strongly suggests that the robust network design problems considered in [24]
are computationally difficult, but cannot be considered as a formal NP-hardness proof. Other similar robust network
optimization models featuring demand uncertainty have been investigated in [25,26] where the authors mention the
computational difficulties inducedby the structural nonconvexity andnon-smoothness present in the problems, butwithout
providing any formal NP-hardness proof.
The present paper is organized as follows.
In Section 2, we show strong NP-hardness of robust feasibility testing even for a restricted subclass of single-source

single-commodity flow problems with polyhedral demand uncertainty. Complexity issues concerning robust min-cost
capacity expansion problems are discussed in Section 3, and, again, strong NP-hardness is shown even for a restricted
subclass of single-source single-commodity flow problems. A whole subclass of polynomially solvable robust capacity
expansion problems is proposed in Section 4. As a typical example, the special case of planar graphs with some special
type of knapsack-constrained uncertainty sets is shown to belong to this subclass.
Let us stress upon the fact that, in what follows, only directed network models are considered, but it should be clear

that this is not restrictive since any undirected network model can easily be reformulated as a directed one. Also it is worth
pointing out that all the problems investigated in the present paper are special instances of the more general class R-LP-
RHSU-PU of robust linear programming problems under right-hand side uncertainty, see e.g. [21]. Thus the NP-hardness
results to be presented below can be viewed as a confirmation of NP-hardness of this general class, already derived as a
consequence of the results in [22] and further investigated in [23].

2. The issue of feasibility testing and complexity results

In this section we consider the basic question of testing feasibility of a given capacitated network under polyhedral
demand uncertainty. This class of problems will be denoted R-FCNP-PU (FCNP standing for ‘‘robust feasible capacitated
network problem’’, and PU standing for ‘‘polyhedral uncertainty’’).
Note that the class R-FCNP-PU naturally decomposes into two subclasses depending on whether the requirements

correspond to a single-commodity flow or to a multicommodity flow. Any instance is specified by a directed graph together
with known capacities on the arcs, and a polyhedronD ⊂ RK

+
representing the uncertainty set for various given point-to-

point requirements d1, d2, . . . , dK . The question to be answered iswhether the given capacities on the network are sufficient
to guarantee the existence of a feasible flow for any (d1, d2, . . . , dK ) ∈ D .
In this section it will be shown that problems in R-FCNP-PU are strongly NP-hard by proving strong NP-hardness

of the restricted subclass (denoted R-FSSCNP-KCU) corresponding to the single-commodity single-source case and to an
uncertainty polyhedron in 1− 1 correspondence with the solution set of a (continuous) knapsack problem. More precisely,
an instance of R-FSSCNP-KCU (FSSCNP stands for ‘‘Feasible Single-Source CNP’’ and KCU stands for ‘‘Knapsack-Constrained
Uncertainty’’) is a decision problem defined as follows:
Given:
• a capacitated network [G, c]where G is a directed graph with node set X (|X | = n), arc set U and c = (cu)u∈U the vector
of arc capacities;
• a single source node s ∈ X with unlimited availability, the n− 1 nodes in T = X \ {s} being sink nodes;
• for each sink node j ∈ T , a nominal requirement d̄j and a worst-case requirement d̂j = d̄j + δj (where δj > 0);
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• the right-hand side θ̄ ∈]0, n−1[ of the (continuous) knapsack constraint defining the uncertainty setD for requirements:

D =

{
d ∈ Rn−1+ /dj = d̄j + θjδj; 0 ≤ θj ≤ 1,∀j ∈ T ;

∑
j∈T
θj ≤ θ̄

}
. (1)

Question (Q): Is the given capacitated network feasible for any d ∈ D ?
Let us observe that the above definition of R-FSSCNP-KCU is general enough to include caseswhere the set T of sink nodes

is only a strict subset of X \ {s}; indeed, if j ∈ X \ {s} is not a sink node it is enough to set d̄j = δj = 0 in the above general
model.
Also we note that knapsack-constrained uncertainty sets typically correspond to the uncertainty model investigated

by Bertsimas and Sim [7,8], though in a quite different context: indeed their approach concerns robust LP (or MILP)
problems with row-wise uncertainty, whereas we address here LP problems with right-hand side uncertainty (a special
case of columnwise uncertainty). The big difference in structure between row-wise uncertainty and RHS uncertainty when
polyhedral uncertainty sets are considered was already pointed out in [22,23]. This difference becomes obvious just by
observing that for continuous LP’s the robust counterpart is polynomially solvable in the former case, and strongly NP-hard
in the latter case.
We now prove:

Proposition 1. Problem R-FSSCNP-KCU is strongly NP-hard.
Proof. The proof is based on a reduction from the problem R-MAX-FLOW-KCU (see [22]) which consists in determining a
maximum s−t flow value in a capacitated networkwith uncertain arc capacities and uncertainty set in 1−1 correspondence
with the solution set of a continuous knapsack problem (KCU stands for ‘‘knapsack-constrained uncertainty set’’). An
instance of R-MAXFLOW-KCU is specified as follows.
A directed graph G = [V ,U] is given together with s ∈ V , t ∈ V two distinguished vertices, and a target valueW for a

s − t flow. Moreover, associated with each arc u = (i, j) ∈ U , there are two real numbers c̄u ≥ 0 and εu (0 ≤ εu ≤ c̄u), c̄u
being interpreted as the nominal capacity, and c̄u−εu ≥ 0 as the reduced (or ‘‘worst-case’’) capacity. Finally, the uncertainty
set for capacities is defined as:

C =

{
c ∈ RU

+
/cu = c̄u − θuεu,∀u ∈ U; θu ∈ [0, 1],∀u ∈ U;

∑
u∈U

θu ≤ θ̄

}
where 0 < θ̄ < |U| is a given constant.
The question is then: is the maximum s− t flow value≥ W for all c ∈ C ?
Problem R-MAXFLOW-KCU has been shown to be strongly NP-hard in [22] based on a reduction of MIN-CUT-INTO-

BOUNDED-SETS (see [10], page 210). Indeed, looking carefully at the proof given in [22], strong NP-hardness is observed
to hold even for the subclass R-MAXFLOW-KCU’ of R-MAXFLOW-KCU for which the only arcs having εu > 0 are those in
ω+(s) = {(s, j)/(s, j) ∈ U}, and εu = ε > 0, ∀u ∈ ω+(s) (uniform capacity reduction). Also, U does not contain the direct
arc (s, t).
So let us consider an arbitrary instance of R- MAXFLOW-KCU’ on G = [V ,U] with uncertainty set for capacities of the

arcs in ω+(s):

C ′ =

{
c ∈ R|ω

+(s)|
+ /cu = c̄u − θuε,∀u ∈ ω+(s); θu ∈ [0, 1],∀u ∈ ω+(s);

∑
u∈ω+(s)

θu ≤ θ̄

}
and θ̄ ∈]0,

∣∣ω+(s)∣∣ [. The question to be answered is whether for any c ∈ C ′ there exists a feasible s − t flow with value
≥ W in G.
We show that this problem can be reduced to an instance of R-FSSCNP-KCU on the capacitated graph [G, c̄] (i.e. graph G

with each arc u ∈ U having capacity c̄u). To achieve this, we specify the uncertain demands at the various nodes j ∈ V \ {s}
as follows. For any j ∈ Γ +(s) = {j/(s, j) ∈ U}we take the nominal requirement d̄j = 0 and worst-case requirement δj = ε.
For j = t we consider the nominal requirement d̄t = W , and worst-case requirementW (so, δt = 0 in that case).
The uncertainty set for requirements is defined as

D =

d ∈ R|
Γ+(s)|+1
+ /dj = θjε,∀j ∈ Γ +(s), dt = W , θj ∈ [0, 1]∀j ∈ Γ +(s),

∑
j∈Γ+(s)

θj ≤ θ̄

 .
Now, the fact that the answer to the above-defined instance of R-FSSCNP-KCU provides the right answer to the instance

of R-MAXFLOW-KCU follows from the fact that [G, c̄] is feasible for d if and only if there exists in G a s− t flow of value≥ W
compatible with the capacities c̄sj − dj for all j ∈ Γ +(s). This completes the proof. �

As an immediate consequence of the above we can state the following:

Corollary 1. R-FCNP-PU is strongly NP-hard in the single-commodity flow version as well as in the multicommodity flow version.
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3. Complexity of robust Min-Cost capacity expansion problems

Robust minimum cost capacity expansion problems arise when the answer to the feasibility question addressed in the
previous section is negative, i.e.when the existing capacities on the various links of the network are not sufficient formeeting
all possible requirements d in the uncertainty setD . Then extra capacity has to be added on some (possibly all) links of the
network, the problem being to determine where and howmuch extra capacity should be installed in order to minimize the
corresponding cost.
As already mentioned, we assume that the cost of installing an amount xu of extra capacity on link u ∈ U is linear of the

form γuxu, where γu > 0 is a given unit cost coefficient. This class of robust minimum cost capacity expansion problems
with polyhedral uncertainty set D will be denoted R-CEP-PU. The subclass formed by instances for which the uncertainty
setD is in 1 − 1 correspondence with the solution set of a (continuous) knapsack problem will be denoted R-CEP-KCU. In
the special case involving single-commodity and single-source network flows, the subclasses corresponding to R-CEP-PU
and R-CEP-KCU will be denoted R-SSCEP-PU and R-SSCEP-KCU respectively.
An instance of R-CEP-PU is obtained by specifying a directed graph G = [X,U], a list of source–sink pairs, and an

uncertainty polyhedronD for requirements. Let F(G,D) denote the set of all robust feasible capacity assignments, in other
words for all y ∈ F(G,D) the capacitated network [G, y] is feasible for all d ∈ D . Given existing capacities c = (cu)u∈U ∈ RU

+

on the arcs and an arc cost vector γ = (γu)u∈U ∈ RU
+
, the robust minimum cost capacity expansion problem can be stated

as:

P(G,D)


Minimize

∑
u∈U

γuxu

subject to:
c + x ∈ F(G,D)
x ≥ 0.

Note that if D is a bounded polyhedron, it has a finite set of extreme points ext(D) =
{
d(1), d(2), . . . , d(P)

}
then the

above problem can be formulated as a (possibly large scale) linear program. This stems from the fact that y ∈ F(G,D) if
an only if the capacitated network [G, y] is feasible for each d(p) ∈ ext(D), and it is standard that the latter condition can
be expressed as a linear equality/inequality system in both the single-commodity and multicommodity case. However the
number of extreme points can grow exponentially large with K (dimension of the vector of demands) making the solution
of the linear program P(G,D) computationally difficult.
The following result confirms this analysis and settles the complexity status of the various classes of robust min-cost

capacity expansion problems.

Proposition 2. R-SSCEP-KCU is strongly NP-hard.

Proof. It proceeds by exhibiting a reduction from R-FSSCNP-KCU which is strongly NP-hard (Proposition 1). Consider any
instance of the latter problem specified by a capacitated directed graph [G, c] and a knapsack-constrained uncertainty set
D for requirements w.r.t. a given list of K source–sink pairs assuming that all have a common source. From this we can
readily build an instance of R-SSCEP-KCU where we set γu = 1 for all u ∈ U , so that the objective function merely consists
in minimizing

∑
u∈U xu, the total extra capacity to be installed in order to satisfy the feasibility condition:

c + x ∈ F(G,D), x ≥ 0.

Now it is easily seen that the answer to the instance of R-FSSCNP-KCU is YES if and only if the above instance of R-SSCEP-
KCU has optimal solution value 0, and this completes the proof. �

As an immediate consequence of Proposition 2 we get:

Corollary 2. R-SSCEP-PU and R-CEP-PU are strongly NP-hard.

4. Polynomial special cases

Various polynomial special cases for robust min-cost capacity expansion problems under uncertain demand have been
suggested in the literature. An obvious situation for which R-CEP-PU instances are practically tractable (in both the single-
commodity and multicommodity case) is when the uncertainty polytope D has a number of extreme points bounded by
a fixed (and not too big) constant. An example of this for the multicommodity case can be found in [4]. Other polynomial
special cases involving uncertainty polytopes for requirements defined as intervals, or products of intervals, are discussed
in [24]. Also wemention the special case of arborescences with knapsack-constrained uncertainty sets which is shown to be
polynomially solvable in [2]. In this section, we first state a fairly general sufficient condition for polynomial solvability of
instances of R-CEP-PU. Nextwe exhibit a newpolynomial special case of R-SSCEP-KCU satisfying this condition and involving
planar graphs.
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Let [G, c] be a given directed capacitated graph and a list of K source–sink pairs s(k), t(k) with corresponding demands
d1, d2, . . . , dK (we only consider the most general case of a multicommodity flow model, while observing that the whole
discussion to follow remains valid for the single-commodity flow case).
A classical necessary and sufficient condition for feasibility of a given capacity assignment y = (yu)u∈U is that the

following inequality (called: metric inequality) holds:∑
u∈U

λuyu −
K∑
k=1

µkdk ≥ 0 (2)

for all (λ, µ) ∈ R, the (finite) set of extreme rays of the cone Γ defined by the linear inequality system:
µk ≤

∑
u∈π

λu, ∀k, ∀π ∈ Pk

λu ≥ 0, ∀u ∈ U
µk ≥ 0, ∀k = 1, . . . , K

where, ∀k, Pk denotes the set of elementary s(k)− t(k) paths in the graph.
Note that in the single-commodity case, condition (2) can be shown to reduce to Gale’s theorem [9]; in this case, the

extreme rays inR are exactly those 0− 1 vectors corresponding to the various cuts in the graph. Also we mention that, in
the case of undirected networks, the set R of extreme rays corresponds to the extreme points of the so-called semi-metric
polytope (see e.g. [16]).
In the context of a robust capacity expansion problem, where the demand vector d = (d1, d2, . . . , dK ) can be arbitrarily

taken in a given uncertainty polytopeD , a necessary and sufficient condition for a given capacity assignment y to be robust
feasible is therefore that:∑

u∈U

λuyu ≥ ρ∗(µ) = Max
d∈D

{
K∑
k=1

µkdk

}
(3)

for all (λ, µ) ∈ R.
In view of this, the robust minimum cost capacity expansion problem R-CEP-PU can be reformulated as the (large scale)

linear program:

(LP)



Minimize
∑
u∈U

γuxu

subject to:
c + x = y∑

λuyu ≥ ρ∗(µ) ∀(λ, µ) ∈ R

x ≥ 0.

Now we introduce the following general condition (C):

(C)



given any capacity assignment y ∈ RU
+
, checking

whether (3) holds for any(λ, µ) ∈ R, or
exhibiting

(
λ̄, µ̄

)
∈ R such that∑

u∈U

λ̄uyu < ρ∗ (µ̄)

can be carried out in polynomial time.

Then we can state:

Proposition 3. Under condition (C), the linear programming formulation (LP) of R-CEP-PU can be solved to optimality in
polynomial time.

Proof. Condition (C) amounts to assuming polynomial solvability of the separation subproblem for the polyhedron of robust
feasible capacity assignments defined by (3). From the well-known result by Grötschel et al. [11] stating equivalence (w.r.t.
complexity) between separation and optimization, we can conclude that when (C) holds, (LP) can be solved in polynomial
time. �

We now show that condition (C) holds for a special subclass of R-SSCEP-KCU defined as follows:
The graph G under consideration is planar, there is a single-source node s, a set of sink nodes T (s 6∈ T ) and the graph G′

deduced from G by adding an extra node t (representing a super-sink) and |T | arcs of the form (j, t) for all j ∈ T is planar too.
In addition to this, a single-commodity flow model is assumed, with knapsack-constrained uncertainty set for

requirements defined as:

D =

{
d ∈ RT

+
/dj = d̄j + θjδ,∀j ∈ T ; θj ∈ [0, 1],∀j ∈ T ;

∑
j∈T

θj ≤ θ̄

}
(4)
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for given integer θ̄ ∈]0, |T |[. (thus, the difference betweennominal andworst-case requirement is equal to the same constant
δ > 0 for all j ∈ T ). The above special subclass of problems will be denoted R-SSCEP-KCU*.

Proposition 4. R-SSCEP-KCU* is in P.

Proof. First we observe that an equivalent instance of R-SSCEP-KCU* is obtained by replacing D with D ′, the polytope
deduced fromD by replacing in (4) the condition

∑
j∈T θj ≤ θ̄ with

∑
j∈T θj = θ̄ . So in what follows, it is not restrictive to

assume that the uncertainty set isD ′. As a consequence, we note that, for all d ∈ D ′, the total demand
∑
j∈T dj is equal to a

constant, namely D̄ =
∑
j∈T d̄j + θ̄ δ.

Now, it is well-known that, for any d ∈ D ′, the feasibility problem onGwith arc capacities yu (u ∈ U) can be transformed
into a maximum s − t flow problem on the graph G′, when each arc (j, t) is assigned an upper capacity bound equal to dj.
Then the problem is feasible if and only if the maximum s− t flow value on G′ is equal to

∑
j∈T dj.

Now suppose that d is uncertain and belongs to the uncertainty set D ′. In the above transformation into a maximum
s− t flow problem on G′, uncertain demands induce uncertain capacities on the various arcs (j, t), (∀j ∈ T ). More precisely
assign to each arc (j, t) a nominal capacity d̄j + δ and a reduced capacity d̄j, and consider the following uncertainty set for
capacities:

C ′ =

{
cjt ∈ RT

+
/cjt = d̄j + δ − αjδ,∀j ∈ T ;αj ∈ [0, 1],∀j ∈ T ;

∑
j∈T

αj = ᾱ = |T | − θ̄

}
. (5)

Then the robust feasibility problem for R-SSCEP-KCU* turns out to be reformulated as testing whether the maximum robust
s−t flow value on G′ with uncertainty setC ′ for the capacities of the arcs (j, t) (j ∈ T ) is equal to D̄ =

∑
j∈T d̄j+ θ̄ δ (formore

details on robust maximum flow under uncertain capacities see [22]). Since G′ is planar, we can use the polynomial-time
algorithm described in [22] to solve this problem in polynomial timeO

(
ᾱm′ log2m′

)
where ᾱ = |T |− θ̄ andm′ = |U|+ |T |

is the number of arcs ofG′. Moreover, in case infeasibility is detected, the algorithm exhibits an s−t cut inG′withworst-case
capacity strictly less than D̄, which corresponds to one of the extreme rays of the coneR. So condition (C) is satisfied in this
case and the polynomial-time solvability of R-SSCEP-KCU* follows. �

5. Conclusion

Robust minimum cost single-commodity or multicommodity network design problems under uncertain customer
requirements are key to many practical applications. We have investigated here various complexity issues related to such
problems, including a direct proof of NP-hardness, not only for the general case, but also for some fairly restricted cases (such
as R-SSCEP-KCU, i.e. for single-source single-commodity models with knapsack-constrained uncertainty set). A new class of
polynomially solvable instances on planar networks has also been exhibited. Clearly, identifying further polynomial special
cases would be an interesting direction for future research. For more general (NP-hard) cases, strong MIP formulations,
possibly leading to practically efficient Branch-and-Bound-based exact solution procedures, would certainly be worth
investigating.
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