289 research outputs found

    Automatic Spatiotemporal Analysis of Cardiac Image Series

    Get PDF
    RÉSUMÉ À ce jour, les maladies cardiovasculaires demeurent au premier rang des principales causes de dĂ©cĂšs en AmĂ©rique du Nord. Chez l’adulte et au sein de populations de plus en plus jeunes, la soi-disant Ă©pidĂ©mie d’obĂ©sitĂ© entraĂźnĂ©e par certaines habitudes de vie tels que la mauvaise alimentation, le manque d’exercice et le tabagisme est lourde de consĂ©quences pour les personnes affectĂ©es, mais aussi sur le systĂšme de santĂ©. La principale cause de morbiditĂ© et de mortalitĂ© chez ces patients est l’athĂ©rosclĂ©rose, une accumulation de plaque Ă  l’intĂ©rieur des vaisseaux sanguins Ă  hautes pressions telles que les artĂšres coronaires. Les lĂ©sions athĂ©rosclĂ©rotiques peuvent entraĂźner l’ischĂ©mie en bloquant la circulation sanguine et/ou en provoquant une thrombose. Cela mĂšne souvent Ă  de graves consĂ©quences telles qu’un infarctus. Outre les problĂšmes liĂ©s Ă  la stĂ©nose, les parois artĂ©rielles des rĂ©gions criblĂ©es de plaque augmentent la rigiditĂ© des parois vasculaires, ce qui peut aggraver la condition du patient. Dans la population pĂ©diatrique, la pathologie cardiovasculaire acquise la plus frĂ©quente est la maladie de Kawasaki. Il s’agit d’une vasculite aigĂŒe pouvant affecter l’intĂ©gritĂ© structurale des parois des artĂšres coronaires et mener Ă  la formation d’anĂ©vrismes. Dans certains cas, ceux-ci entravent l’hĂ©modynamie artĂ©rielle en engendrant une perfusion myocardique insuffisante et en activant la formation de thromboses. Le diagnostic de ces deux maladies coronariennes sont traditionnellement effectuĂ©s Ă  l’aide d’angiographies par fluoroscopie. Pendant ces examens paracliniques, plusieurs centaines de projections radiographiques sont acquises en sĂ©ries suite Ă  l’infusion artĂ©rielle d’un agent de contraste. Ces images rĂ©vĂšlent la lumiĂšre des vaisseaux sanguins et la prĂ©sence de lĂ©sions potentiellement pathologiques, s’il y a lieu. Parce que les sĂ©ries acquises contiennent de l’information trĂšs dynamique en termes de mouvement du patient volontaire et involontaire (ex. battements cardiaques, respiration et dĂ©placement d’organes), le clinicien base gĂ©nĂ©ralement son interprĂ©tation sur une seule image angiographique oĂč des mesures gĂ©omĂ©triques sont effectuĂ©es manuellement ou semi-automatiquement par un technicien en radiologie. Bien que l’angiographie par fluoroscopie soit frĂ©quemment utilisĂ© partout dans le monde et souvent considĂ©rĂ© comme l’outil de diagnostic “gold-standard” pour de nombreuses maladies vasculaires, la nature bidimensionnelle de cette modalitĂ© d’imagerie est malheureusement trĂšs limitante en termes de spĂ©cification gĂ©omĂ©trique des diffĂ©rentes rĂ©gions pathologiques. En effet, la structure tridimensionnelle des stĂ©noses et des anĂ©vrismes ne peut pas ĂȘtre pleinement apprĂ©ciĂ©e en 2D car les caractĂ©ristiques observĂ©es varient selon la configuration angulaire de l’imageur. De plus, la prĂ©sence de lĂ©sions affectant les artĂšres coronaires peut ne pas reflĂ©ter la vĂ©ritable santĂ© du myocarde, car des mĂ©canismes compensatoires naturels (ex. vaisseaux----------ABSTRACT Cardiovascular disease continues to be the leading cause of death in North America. In adult and, alarmingly, ever younger populations, the so-called obesity epidemic largely driven by lifestyle factors that include poor diet, lack of exercise and smoking, incurs enormous stresses on the healthcare system. The primary cause of serious morbidity and mortality for these patients is atherosclerosis, the build up of plaque inside high pressure vessels like the coronary arteries. These lesions can lead to ischemic disease and may progress to precarious blood flow blockage or thrombosis, often with infarction or other severe consequences. Besides the stenosis-related outcomes, the arterial walls of plaque-ridden regions manifest increased stiffness, which may exacerbate negative patient prognosis. In pediatric populations, the most prevalent acquired cardiovascular pathology is Kawasaki disease. This acute vasculitis may affect the structural integrity of coronary artery walls and progress to aneurysmal lesions. These can hinder the blood flow’s hemodynamics, leading to inadequate downstream perfusion, and may activate thrombus formation which may lead to precarious prognosis. Diagnosing these two prominent coronary artery diseases is traditionally performed using fluoroscopic angiography. Several hundred serial x-ray projections are acquired during selective arterial infusion of a radiodense contrast agent, which reveals the vessels’ luminal area and possible pathological lesions. The acquired series contain highly dynamic information on voluntary and involuntary patient movement: respiration, organ displacement and heartbeat, for example. Current clinical analysis is largely limited to a single angiographic image where geometrical measures will be performed manually or semi-automatically by a radiological technician. Although widely used around the world and generally considered the gold-standard diagnosis tool for many vascular diseases, the two-dimensional nature of this imaging modality is limiting in terms of specifying the geometry of various pathological regions. Indeed, the 3D structures of stenotic or aneurysmal lesions may not be fully appreciated in 2D because their observable features are dependent on the angular configuration of the imaging gantry. Furthermore, the presence of lesions in the coronary arteries may not reflect the true health of the myocardium, as natural compensatory mechanisms may obviate the need for further intervention. In light of this, cardiac magnetic resonance perfusion imaging is increasingly gaining attention and clinical implementation, as it offers a direct assessment of myocardial tissue viability following infarction or suspected coronary artery disease. This type of modality is plagued, however, by motion similar to that present in fluoroscopic imaging. This issue predisposes clinicians to laborious manual intervention in order to align anatomical structures in sequential perfusion frames, thus hindering automation o

    Automatic Spatiotemporal Analysis of Cardiac Image Series

    Get PDF
    RÉSUMÉ À ce jour, les maladies cardiovasculaires demeurent au premier rang des principales causes de dĂ©cĂšs en AmĂ©rique du Nord. Chez l’adulte et au sein de populations de plus en plus jeunes, la soi-disant Ă©pidĂ©mie d’obĂ©sitĂ© entraĂźnĂ©e par certaines habitudes de vie tels que la mauvaise alimentation, le manque d’exercice et le tabagisme est lourde de consĂ©quences pour les personnes affectĂ©es, mais aussi sur le systĂšme de santĂ©. La principale cause de morbiditĂ© et de mortalitĂ© chez ces patients est l’athĂ©rosclĂ©rose, une accumulation de plaque Ă  l’intĂ©rieur des vaisseaux sanguins Ă  hautes pressions telles que les artĂšres coronaires. Les lĂ©sions athĂ©rosclĂ©rotiques peuvent entraĂźner l’ischĂ©mie en bloquant la circulation sanguine et/ou en provoquant une thrombose. Cela mĂšne souvent Ă  de graves consĂ©quences telles qu’un infarctus. Outre les problĂšmes liĂ©s Ă  la stĂ©nose, les parois artĂ©rielles des rĂ©gions criblĂ©es de plaque augmentent la rigiditĂ© des parois vasculaires, ce qui peut aggraver la condition du patient. Dans la population pĂ©diatrique, la pathologie cardiovasculaire acquise la plus frĂ©quente est la maladie de Kawasaki. Il s’agit d’une vasculite aigĂŒe pouvant affecter l’intĂ©gritĂ© structurale des parois des artĂšres coronaires et mener Ă  la formation d’anĂ©vrismes. Dans certains cas, ceux-ci entravent l’hĂ©modynamie artĂ©rielle en engendrant une perfusion myocardique insuffisante et en activant la formation de thromboses. Le diagnostic de ces deux maladies coronariennes sont traditionnellement effectuĂ©s Ă  l’aide d’angiographies par fluoroscopie. Pendant ces examens paracliniques, plusieurs centaines de projections radiographiques sont acquises en sĂ©ries suite Ă  l’infusion artĂ©rielle d’un agent de contraste. Ces images rĂ©vĂšlent la lumiĂšre des vaisseaux sanguins et la prĂ©sence de lĂ©sions potentiellement pathologiques, s’il y a lieu. Parce que les sĂ©ries acquises contiennent de l’information trĂšs dynamique en termes de mouvement du patient volontaire et involontaire (ex. battements cardiaques, respiration et dĂ©placement d’organes), le clinicien base gĂ©nĂ©ralement son interprĂ©tation sur une seule image angiographique oĂč des mesures gĂ©omĂ©triques sont effectuĂ©es manuellement ou semi-automatiquement par un technicien en radiologie. Bien que l’angiographie par fluoroscopie soit frĂ©quemment utilisĂ© partout dans le monde et souvent considĂ©rĂ© comme l’outil de diagnostic “gold-standard” pour de nombreuses maladies vasculaires, la nature bidimensionnelle de cette modalitĂ© d’imagerie est malheureusement trĂšs limitante en termes de spĂ©cification gĂ©omĂ©trique des diffĂ©rentes rĂ©gions pathologiques. En effet, la structure tridimensionnelle des stĂ©noses et des anĂ©vrismes ne peut pas ĂȘtre pleinement apprĂ©ciĂ©e en 2D car les caractĂ©ristiques observĂ©es varient selon la configuration angulaire de l’imageur. De plus, la prĂ©sence de lĂ©sions affectant les artĂšres coronaires peut ne pas reflĂ©ter la vĂ©ritable santĂ© du myocarde, car des mĂ©canismes compensatoires naturels (ex. vaisseaux----------ABSTRACT Cardiovascular disease continues to be the leading cause of death in North America. In adult and, alarmingly, ever younger populations, the so-called obesity epidemic largely driven by lifestyle factors that include poor diet, lack of exercise and smoking, incurs enormous stresses on the healthcare system. The primary cause of serious morbidity and mortality for these patients is atherosclerosis, the build up of plaque inside high pressure vessels like the coronary arteries. These lesions can lead to ischemic disease and may progress to precarious blood flow blockage or thrombosis, often with infarction or other severe consequences. Besides the stenosis-related outcomes, the arterial walls of plaque-ridden regions manifest increased stiffness, which may exacerbate negative patient prognosis. In pediatric populations, the most prevalent acquired cardiovascular pathology is Kawasaki disease. This acute vasculitis may affect the structural integrity of coronary artery walls and progress to aneurysmal lesions. These can hinder the blood flow’s hemodynamics, leading to inadequate downstream perfusion, and may activate thrombus formation which may lead to precarious prognosis. Diagnosing these two prominent coronary artery diseases is traditionally performed using fluoroscopic angiography. Several hundred serial x-ray projections are acquired during selective arterial infusion of a radiodense contrast agent, which reveals the vessels’ luminal area and possible pathological lesions. The acquired series contain highly dynamic information on voluntary and involuntary patient movement: respiration, organ displacement and heartbeat, for example. Current clinical analysis is largely limited to a single angiographic image where geometrical measures will be performed manually or semi-automatically by a radiological technician. Although widely used around the world and generally considered the gold-standard diagnosis tool for many vascular diseases, the two-dimensional nature of this imaging modality is limiting in terms of specifying the geometry of various pathological regions. Indeed, the 3D structures of stenotic or aneurysmal lesions may not be fully appreciated in 2D because their observable features are dependent on the angular configuration of the imaging gantry. Furthermore, the presence of lesions in the coronary arteries may not reflect the true health of the myocardium, as natural compensatory mechanisms may obviate the need for further intervention. In light of this, cardiac magnetic resonance perfusion imaging is increasingly gaining attention and clinical implementation, as it offers a direct assessment of myocardial tissue viability following infarction or suspected coronary artery disease. This type of modality is plagued, however, by motion similar to that present in fluoroscopic imaging. This issue predisposes clinicians to laborious manual intervention in order to align anatomical structures in sequential perfusion frames, thus hindering automation o

    Feasibility of using Lodox to perform digital subtraction angiography

    Get PDF
    Bibliography: leaves 150-157.Many cases in trauma involve vessel imaging to determine integrity and the origin of lesions or blockages. Digital subtraction angiography (DSA) is a tool used to improve the clarity of the vessels being imaged for better and easier decision making in diagnostics and planning. Lodox, a low dose x-ray system developed by Debex (Pty) Ltd, a subsidiary of de Beers, was designed specifically for the trauma environment. It therefore follows that, if possible, a function so readily used in trauma, such as DSA, should be added to the imaging repertoire of an x-ray system designed for use in this environment. In this dissertation the feasibility of using Lodox to perform DSA is therefore explored. In doing so, the requirements of a trauma unit and the theory behind DSA were researched so as to obtain a better understanding into what would be required

    The computation of blood flow waveforms from digital X-ray angiographic data

    Get PDF
    This thesis investigates a novel technique for the quantitative measurement of pulsatile blood flow waveforms and mean blood flow rates using digital X-ray angiographic data. Blood flow waveforms were determined following an intra-arterial injection of contrast material. Instantaneous blood velocities were estimated by generating a 'parametric image' from dynamic X-ray angiographic images in which the image grey-level represented contrast material concentration as a function of time and true distance in three dimensions along a vessel segment. Adjacent concentration-distance profiles in the parametric image of iodine concentration versus distance and time were shifted along the vessel axis until a match occurred. A match was defined as the point where the mean sum of the squares of the differences between the two profiles was a minimum. The distance translated per frame interval gave the instantaneous contrast material bolus velocity. The technique initially was validated using synthetic data from a computer simulation of angiographic data which included the effect of pulsatile blood flow and X-ray quantum noise. The data were generated for a range of vessels from 2 mm to 6 mm in diameter. Different injection techniques and their effects on the accuracy of blood flow measurements were studied. Validation of the technique was performed using an experimental phantom of blood circulation, consisting of a pump, flexible plastic tubing, the tubular probe of an electromagnetic flowmeter and a solenoid to simulate a pulsatile flow waveform which included reverse flow. The technique was validated for both two- and three-dimensional representations of the blood vessel, for various flow rates and calibre sizes. The effects of various physical factors were studied, including the distance between injection and imaging sites and the length of artery analysed. Finally, this method was applied to clinical data from femoral arteries and arteries in the head and neck

    Radiofrequency catheter ablation in atrial arrhythmias : insight into pre-procedural evaluation and procedural guidance

    Get PDF
    Radiofrequency catheter ablation (RFCA) has become an important treatment option in the management of supraventricular arrhythmias such as atrioventricular (nodal) re-entry tachycardia, atrial tachycardia, atrial flutter and atrial fibrillation (AF). Particularly in the management of AF the number of RFCA procedures performed is growing rapidly. Three-dimensional electroanatomical mapping combined with non-invasive imaging is currently a state of the art technique to guide RFCA for complex arrhythmias such as AF ablation, providing information on anatomical landmarks and arrhythmogenic substrate with higher accuracy and with less radiation exposure than fluoroscopy or conventional catheter based mapping. Importantly, accurate characterization of the arrhythmogenic substrate and the underlying mechanisms of the arrhythmia as well as visualization of anatomical landmarks are pivotal to optimize the results of RFCA. Comprehensive pre-procedural evaluation may help to identify the appropriate substrate as well as to identify patients with a high likelihood to benefit from a RFCA procedure.Bayer Healthcare Pharmaceuticals, Biosense Webster, MSD, Toshiba medical systems and ABN-AMROUBL - phd migration 201

    Review of Journal of Cardiovascular Magnetic Resonance 2011

    Get PDF

    Review of Journal of Cardiovascular Magnetic Resonance 2015

    Get PDF
    There were 116 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2015, which is a 14 % increase on the 102 articles published in 2014. The quality of the submissions continues to increase. The 2015 JCMR Impact Factor (which is published in June 2016) rose to 5.75 from 4.72 for 2014 (as published in June 2015), which is the highest impact factor ever recorded for JCMR. The 2015 impact factor means that the JCMR papers that were published in 2013 and 2014 were cited on average 5.75 times in 2015. The impact factor undergoes natural variation according to citation rates of papers in the 2 years following publication, and is significantly influenced by highly cited papers such as official reports. However, the progress of the journal's impact over the last 5 years has been impressive. Our acceptance rate is <25 % and has been falling because the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. For this reason, the Editors have felt that it is useful once per calendar year to summarize the papers for the readership into broad areas of interest or theme, so that areas of interest can be reviewed in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality papers to JCMR for publication

    Role of computed tomography and magnetic resonance imaging in patients with cardiovascular disease

    Get PDF
    Background: Although there have been recent advances, cardiovascular disease remains the commonest cause of premature death in the United Kingdom. There is a need to develop safe non-invasive techniques to aid the diagnosis and treatment of patients with cardiovascular disease.Objectives: The aims of this thesis are: (i) to establish whether coronary artery calcification can be measured reproducibly by helical computed tomography; (ii) to establish the effect of lipid lowering therapy on the progression of coronary calcification; (iii) to determine whether multidetector computed tomography can predict graft patency in patients who have undergone coronary artery bypass grafting; and (iv), to investigate the role of magnetic resonance imaging to assess plaque characteristics following acute carotid plaque rupture.Methods: In 16 patients, coronary artery calcification was assessed twice within 4 weeks by helical computed tomography. As part of a randomised controlled trial, patients received atorvastatin 80 mg daily or matching placebo, and had coronary calcification assessed annually. Fifty patients with previous coronary artery bypass surgery who were listed for diagnostic coronary angiography underwent contrast enhanced computed tomography angiography using a 16-slice multidetector computed tomography scanner. Finally, 15 patients with recent symptoms and signs of an acute transient ischaemic attack, amaurosis fugax or stroke underwent magnetic resonance angiography of the carotid arteries using dedicated surface coils. Plaque volume, regional plaque densities and neovascularisation were determined before and after gadolinium enhancement.Results: Quantification of coronary artery calcification demonstrated good reproducibility in patients with scores > 100 AU. Despite reducing systemic inflammation and halving serum low-density lipoprotein cholesterol concentrations, atorvastatin therapy did not affect the rate of progression of coronary artery calcification. Computed tomography angiography was found to be highly specific for the detection of graft patency. Assessment of plaque characteristics by magnetic resonance scanning in patients with recent acute carotid plaque was feasible and reproducible.Conclusions: Coronary artery calcium scores can be determined in a reproducible manner. Although they correlate well with the presence of atherosclerosis and predict future coronary risk. there is little role for monitoring progression of coronary artery calcification in order to assess the response to lipid lowering therapy. Computed tomography can be used reliably to predict graft patency in patients who have undergone coronary artery bypass grafting, and is an acceptable non-invasive alternative to invasive coronary angiography. Magnetic resonance imaging techniques ' can be employed in a feasible, timely and reproducible manner to detect plaque characteristics associated with acute atherothrombotic disease

    Characterization, prevalence, and risk factors of spontaneous and experimental atherosclerosis and vascular imaging in psittaciformes

    Get PDF
    Atherosclerosis is a degenerative and inflammatory vascular disease characterized by the accumulation of inflammatory cells, lipids, calcium, and formation of large fibrofatty lesions within the intima of arteries resulting in the disorganization of the arterial wall and stenosis of the lumen. Despite the importance of atherosclerosis in psittacine cardiology, there are few pathologic, clinical, and experimental investigations in psittaciformes. In order to expand the knowledge on psittacine atherosclerosis and provide fundamental observational information for future research, a series of studies was conducted on psittaciformes: 1) psittacine atherosclerotic lesions were characterized and categorized based on histopathology, histochemistry, transmission (TEM), and scanning electron microscopy (SEM) of 63 arterial samples, 2) the prevalence of clinically significant atherosclerotic lesions and the influence of several epidemiological variables were investigated in a multi-center case-control study on 7683 psittaciformes, 3) a diet-induced experimental model of atherosclerosis was developed and characterized in Quaker parrots (Myiopsitta monachus), and 4) a computed-tomography angiographic (CTA) protocol was developed and standardized to image the arterial lumen in Hispaniolan Amazon parrots (Amazona ventralis). Seven lesion types could be described in psittaciformes, which were similar to the human classification system. Digital image analysis, TEM, and SEM helped to further describe the lesions and refine the classification system. Atherosclerosis prevalence significantly increased with age, female sex, and the genera Psittacus, Amazona, and Nymphicus. Mild associations with reproductive, hepatic diseases, and myocardial fibrosis were also evidenced. Experimental induction of atherosclerosis with dietary 1% cholesterol lead to significant lesions within 2 months in Quaker parrots. An increase in arterial and plasma cholesterol and LDL was also documented. Reference limits for arterial luminal diameter of Hispaniolan Amazon parrots were determined by CTA and measurements revealed high intraobserver and interobserver agreement. In conclusion, psittacine atherosclerotic lesions displayed distinctive features that allowed the development of an effective classification system. The prevalence of advanced lesions (type IV-VI) was associated with several risk factors: age, female sex, and three psittacine genera. The Quaker parrot was found to be a suitable experimental model for psittacine atherosclerosis and dyslipidemia. Finally CTA was determined to be safe, reliable, and of potential diagnostic value in parrots for diagnosing stenotic atherosclerotic lesions
    • 

    corecore