3,544 research outputs found

    An investigation into the cloud manufacturing based approach towards global high value manufacturing for smes

    Get PDF
    Considering the high labour costs and intensive competitions in the global market, improving the effective deployment of innovative design and manufacturing and utilisation of all existing technical information, for the full life cycle of the product, is essential and much needed for manufacturing Small and Medium sized Enterprises (SMEs) in particular. Cloud Manufacturing , as a powerful tool supported with ‘big data’, will likely enable SMEs to move towards using dynamic scalability and ‘free’ available data resources in a virtual manner and to provide solution-based, value-added, digital-driven manufacturing service over the Internet. The research presented in this paper aims to develop a cloud manufacturing based approach towards value-added, knowledge/solution driven manufacturing for SMEs, where there are many constraints in engaging responsive high value manufacturing. The paper will present the framework, architecture and key moderator technologies for implementing cloud manufacturing and the associated application perspectives. The paper concludes with further discussion on the potential and application of the approach

    Survey on Additive Manufacturing, Cloud 3D Printing and Services

    Full text link
    Cloud Manufacturing (CM) is the concept of using manufacturing resources in a service oriented way over the Internet. Recent developments in Additive Manufacturing (AM) are making it possible to utilise resources ad-hoc as replacement for traditional manufacturing resources in case of spontaneous problems in the established manufacturing processes. In order to be of use in these scenarios the AM resources must adhere to a strict principle of transparency and service composition in adherence to the Cloud Computing (CC) paradigm. With this review we provide an overview over CM, AM and relevant domains as well as present the historical development of scientific research in these fields, starting from 2002. Part of this work is also a meta-review on the domain to further detail its development and structure

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    A framework for smart production-logistics systems based on CPS and industrial IoT

    Get PDF
    Industrial Internet of Things (IIoT) has received increasing attention from both academia and industry. However, several challenges including excessively long waiting time and a serious waste of energy still exist in the IIoT-based integration between production and logistics in job shops. To address these challenges, a framework depicting the mechanism and methodology of smart production-logistics systems is proposed to implement intelligent modeling of key manufacturing resources and investigate self-organizing configuration mechanisms. A data-driven model based on analytical target cascading is developed to implement the self-organizing configuration. A case study based on a Chinese engine manufacturer is presented to validate the feasibility and evaluate the performance of the proposed framework and the developed method. The results show that the manufacturing time and the energy consumption are reduced and the computing time is reasonable. This paper potentially enables manufacturers to deploy IIoT-based applications and improve the efficiency of production-logistics systems

    Machine Learning Algorithms in Cloud Manufacturing - A Review

    Get PDF
    Cloud computing has advanced significantly in terms of storage, QoS, online service availability, and integration with conventional business models and procedures. The traditional manufacturing firm becomes Cloud Manufacturing when Cloud Services are integrated into the present production process. The capabilities of Cloud Manufacturing are enhanced by Machine Learning. A lot of machine learning algorithms provide the user with the desired outcomes. The main objectives are to learn more about the architecture and analysis of Cloud Manufacturing frameworks and the role that machine learning algorithms play in cloud computing in general and Cloud Manufacturing specifically. Machine learning techniques like SVM, Genetic Algorithm, Ant Colony Optimisation techniques, and variants are employed in a cloud environment

    From Computer Integrated Manufacturing to Cloud Manufacturing

    Get PDF
    Until not much time ago, Computer Integrated Manufacturing (CIM) was considered as a key philosophy to increase the capability and quality of production, increase the ability to produce according to the diverse customer requirements, as well as decrease of delivery times, while retaining the revenues in a highly competitive global market. However, in the last two decades, the CIM philosophy has lost importance. With the advent of communications and application developments to promote the interaction of different actors in manufacturing enterprises, other philosophies have emerged. One of them is Cloud Manufacturing (CM) that is supported by the latest advances in communications, computing and applications developments. According to Wu et al. (2013) CM is "a customer-centric manufacturing model that exploits on-demand access to a shared collection of diversified and distributed manufacturing resources to form temporary, reconfigurable production lines which enhance efficiency, reduce product lifecycle costs, and allow for optimal resource loading in response to variable-demand customer generated tasking". This paper analyses similarities and differences between the concepts of CIM and CM. In addition, the work shows the current state of the concepts and their potential and limitations for the future.Sociedad Argentina de Informática e Investigación Operativ

    From Computer Integrated Manufacturing to Cloud Manufacturing

    Get PDF
    Until not much time ago, Computer Integrated Manufacturing (CIM) was considered as a key philosophy to increase the capability and quality of production, increase the ability to produce according to the diverse customer requirements, as well as decrease of delivery times, while retaining the revenues in a highly competitive global market. However, in the last two decades, the CIM philosophy has lost importance. With the advent of communications and application developments to promote the interaction of different actors in manufacturing enterprises, other philosophies have emerged. One of them is Cloud Manufacturing (CM) that is supported by the latest advances in communications, computing and applications developments. According to Wu et al. (2013) CM is "a customer-centric manufacturing model that exploits on-demand access to a shared collection of diversified and distributed manufacturing resources to form temporary, reconfigurable production lines which enhance efficiency, reduce product lifecycle costs, and allow for optimal resource loading in response to variable-demand customer generated tasking". This paper analyses similarities and differences between the concepts of CIM and CM. In addition, the work shows the current state of the concepts and their potential and limitations for the future.Sociedad Argentina de Informática e Investigación Operativ

    Cooperation platform for distributed manufacturing

    Get PDF
    The aim of the paper is to analyse contemporary trends in distributed manufacturing (DM) research and to present a concept to develop and test some task allocation, planning and scheduling algorithms for DM network organisations. Some concepts to identify key factor criteria and reasoning policies and rules for production/manufacturing decision support system are also undertaken. And finally, an aim is to draw a proposal for a development of a prototype decision support system with necessary communication and knowledge oriented modules to be implemented in an example of dynamic, DM and logistics network structure, particularly for very popular dynamic cluster forms in Poland. The developed concept of the organization of a multi-entity DM network will enable business-effective use of the system, supporting manufacturing decision making, consulting and offering information services in the control centre (the so-called Competence Centre) by constructing virtual reality and access to services in a distributed network of cloud computing type. Integration of the whole system into one information system will enable analysis and network resource optimization of manufacturing and logistics processes, new analytical functions, reduction of delays in the manufacturing system, management of changes and risks, and visualization of the current state of the DM system

    Ecosystem-inspired enterprise modelling framework for collaborative and networked manufacturing systems

    Get PDF
    Rapid changes in the open manufacturing environment are imminent due to the increase of customer demand, global competition, and digital fusion. This has exponentially increased both complexity and uncertainty in the manufacturing landscape, creating serious challenges for competitive enterprises. For enterprises to remain competitive, analysing manufacturing activities and designing systems to address emergent needs, in a timely and efficient manner, is understood to be crucial. However, existing analysis and design approaches adopt a narrow diagnostic focus on either managerial or engineering aspects and neglect to consider the holistic complex behaviour of enterprises in a collaborative manufacturing network (CMN). It has been suggested that reflecting upon ecosystem theory may bring a better understanding of how to analyse the CMN. The research presented in this paper draws on a theoretical discussion with aim to demonstrate a facilitating approach to those analysis and design tasks. This approach was later operationalised using enterprise modelling (EM) techniques in a novel, developed framework that enhanced systematic analysis, design, and business-IT alignment. It is expected that this research view is opening a new field of investigation
    • …
    corecore