137 research outputs found

    A Makeover for the Captured Lecture: Applying Multimedia Learning Principles to Lecture Video

    Get PDF
    Making video recordings of large classroom lectures and putting them online is increasingly common in distance and blended learning courses. However, the best way to use lecture video is not well understood. Using long streams of one-way communication is not consistent with best practices in online learning. During lectures, students assume a largely passive role. They think faster than instructors speak, so boredom and daydreaming are common. Yet, when complex or novel ideas are presented, students may have inadequate time to encode, organize, and integrate the input with prior experience. Especially for students with low prior knowledge of the subject being discussed, the lecture is a cognitive and affective roller coaster ride that works at cross purposes with learning. Viewing a lecture that was recorded at an earlier time adds the element of temporal distance from the learning event, and changes the student’s role from participant to spectator. The present study investigated whether learning could be increased and perceptions of difficulty reduced when a captured lecture received a “makeover” before being put online. The makeover consisted of 1) editing the lecture video in accordance with the cognitive theory of multimedia learning; 2) processing the video using best practices for audio/video production; and 3) increasing the video playback speed. The research design for the study was quasiexperimental. The independent variable was captured lecture form (edited or unedited). The dependent variables were learning results for recognition and recall, and perceptions of difficulty. Data analysis employed independent-samples t-tests, multivariate analysis of variance (MANOVA), and repeated-measures MANOVA. Conclusions were that the editing protocol made no significant difference in learning gains for recognition or recall, and did not significantly affect perceptions of difficulty. However, editing did result in a 39% reduction in the length of the lecture, raising the possibility that such a makeover might allow for faster learning when lecture video is used

    Utilizing Online Activity Data to Improve Face-to-Face Collaborative Learning in Technology-Enhanced Learning Environments

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 융합과학기술대학원 융합과학부(디지털정보융합전공), 2019. 2. Rhee, Wonjong .We live in a flood of information and face more and more complex problems that are difficult to be solved by a single individual. Collaboration with others is necessary to solve these problems. In educational practice, this leads to more attention on collaborative learning. Collaborative learning is a problem-solving process where students learn and work together with other peers to accomplish shared tasks. Through this group-based learning, students can develop collaborative problem-solving skills and improve the core competencies such as communication skills. However, there are many issues for collaborative learning to succeed, especially in a face-to-face learning environment. For example, group formation, the first step to design successful collaborative learning, requires a lot of time and effort. In addition, it is difficult for a small number of instructors to manage a large number of student groups when trying to monitor and support their learning process. These issues can amount hindrance to the effectiveness of face-to-face collaborative learning. The purpose of this dissertation is to enhance the effectiveness of face-to-face collaborative learning with online activity data. First, online activity data is explored to find whether it can capture relevant student characteristics for group formation. If meaningful characteristics can be captured from the data, the entire group formation process can be performed more efficiently because the task can be automated. Second, learning analytics dashboards are implemented to provide adaptive support during a class. The dashboards system would monitor each group's collaboration status by utilizing online activity data that is collected during class in real-time, and provide adaptive feedback according to the status. Lastly, a predictive model is built to detect at-risk groups by utilizing the online activity data. The model is trained based on various features that represent important learning behaviors of a collaboration group. The results reveal that online activity data can be utilized to address some of the issues we have in face-to-face collaborative learning. Student characteristics captured from the online activity data determined important group characteristics that significantly influenced group achievement. This indicates that student groups can be formed efficiently by utilizing the online activity data. In addition, the adaptive support provided by learning analytics dashboards significantly improved group process as well as achievement. Because the data allowed the dashboards system to monitor current learning status, appropriate feedback could be provided accordingly. This led to an improvement of both learning process and outcome. Finally, the predictive model could detect at-risk groups with high accuracy during the class. The random forest algorithm revealed important learning behaviors of a collaboration group that instructors should pay more attention to. The findings indicate that the online activity data can be utilized to address practical issues of face-to-face collaborative learning and to improve the group-based learning where the data is available. Based on the investigation results, this dissertation makes contributions to learning analytics research and face-to-face collaborative learning in technology-enhanced learning environments. First, it can provide a concrete case study and a guide for future research that may take a learning analytics approach and utilize student activity data. Second, it adds a research endeavor to address challenges in face-to-face collaborative learning, which can lead to substantial enhancement of learning in educational practice. Third, it suggests interdisciplinary problem-solving approaches that can be applied to the real classroom context where online activity data is increasingly available with advanced technologies.Abstract i Chapter 1. Introduction 1 1.1. Motivation 1 1.2. Research questions 4 1.3. Organization 6 Chapter 2. Background 8 2.1. Learning analytics 8 2.2. Collaborative learning 22 2.3. Technology-enhanced learning environment 27 Chapter 3. Heterogeneous group formation with online activity data 35 3.1. Student characteristics for heterogeneous group formation 36 3.2. Method 41 3.3. Results 51 3.4. Discussion 59 3.5. Summary 64 Chapter 4. Real-time dashboard for adaptive feedback in face-to-face CSCL 67 4.1. Theoretical background 70 4.2. Dashboard characteristics 81 4.3. Evaluation of the dashboard 94 4.4. Discussion 107 4.5. Summary 114 Chapter 5. Real-time detection of at-risk groups in face-to-face CSCL 118 5.1. Important learning behaviors of group in collaborative argumentation 118 5.2. Method 120 5.3. Model performance and influential features 125 5.4. Discussion 129 5.5. Summary 132 Chapter 6. Conclusion 134 Bibliography 140Docto

    New Updates in E-Learning

    Get PDF
    This book presents state-of-the-art educational technologies and teaching methodologies and discusses future educational philosophies in support of the global academic society. New Updates in E-Learning is a collection of chapters addressing important issues related to effective utilization of the Internet and Cloud Computing, virtual robotics, and real-life application of hybrid educational environments to enhance student learning regardless of geographical location or other constraints. Over ten chapters, the book discusses the current and future evolution of educational technologies and methodologies and the best academic practices in support of providing high-quality education at all academic levels

    7th International Conference on Higher Education Advances (HEAd'21)

    Full text link
    Information and communication technologies together with new teaching paradigms are reshaping the learning environment.The International Conference on Higher Education Advances (HEAd) aims to become a forum for researchers and practitioners to exchange ideas, experiences,opinions and research results relating to the preparation of students and the organization of educational systems.Doménech I De Soria, J.; Merello Giménez, P.; Poza Plaza, EDL. (2021). 7th International Conference on Higher Education Advances (HEAd'21). Editorial Universitat Politècnica de València. https://doi.org/10.4995/HEAD21.2021.13621EDITORIA

    Multimedia Development of English Vocabulary Learning in Primary School

    Get PDF
    In this paper, we describe a prototype of web-based intelligent handwriting education system for autonomous learning of Bengali characters. Bengali language is used by more than 211 million people of India and Bangladesh. Due to the socio-economical limitation, all of the population does not have the chance to go to school. This research project was aimed to develop an intelligent Bengali handwriting education system. As an intelligent tutor, the system can automatically check the handwriting errors, such as stroke production errors, stroke sequence errors, stroke relationship errors and immediately provide a feedback to the students to correct themselves. Our proposed system can be accessed from smartphone or iPhone that allows students to do practice their Bengali handwriting at anytime and anywhere. Bengali is a multi-stroke input characters with extremely long cursive shaped where it has stroke order variability and stroke direction variability. Due to this structural limitation, recognition speed is a crucial issue to apply traditional online handwriting recognition algorithm for Bengali language learning. In this work, we have adopted hierarchical recognition approach to improve the recognition speed that makes our system adaptable for web-based language learning. We applied writing speed free recognition methodology together with hierarchical recognition algorithm. It ensured the learning of all aged population, especially for children and older national. The experimental results showed that our proposed hierarchical recognition algorithm can provide higher accuracy than traditional multi-stroke recognition algorithm with more writing variability
    corecore