1,906 research outputs found

    Electrode coverage optimization for piezoelectric energy harvesting from tip excitation

    No full text
    Piezoelectric energy harvesting using cantilever-type structures has been extensively investigated due to its potential application in providing power supplies for wireless sensor networks, but the low output power has been a bottleneck for its further commercialization. To improve the power conversion capability, a piezoelectric beam with different electrode coverage ratios is studied theoretically and experimentally in this paper. A distributed-parameter theoretical model is established for a bimorph piezoelectric beam with the consideration of the electrode coverage area. The impact of the electrode coverage on the capacitance, the output power and the optimal load resistance are analyzed, showing that the piezoelectric beam has the best performance with an electrode coverage of 66.1%. An experimental study was then carried out to validate the theoretical results using a piezoelectric beam fabricated with segmented electrodes. The experimental results fit well with the theoretical model. A 12% improvement on the Root-Mean-Square (RMS) output power was achieved with the optimized electrode converge ratio (66.1%). This work provides a simple approach to utilizing piezoelectric beams in a more efficient way

    Simulation and performance analysis of self-powered piezoelectric energy harvesting system for low power applications

    Get PDF
    Energy harvesting is a process of extracting energy from surrounding environments. The extracted energy is stored in the supply power for various applications like wearable, wireless sensor, and internet of thing (IoT) applications. The electricity generation using conventional approaches is very costly and causes more pollution in the environmental surroundings. In this manuscript, an energy-efficient, self-powered battery-less piezoelectric-based energy harvester (PE-EH) system is modeled using maximum power point tracking (MPPT) module. The MPPT is used to track the optimal voltage generated by the piezoelectric (PE) sensor and stored across the capacitor. The proposed PE system is self-operated without additional microarchitecture to harvest the Power. The experimental simulation results for the overall PE-EH systems are analyzed for different frequency ranges with variable input source vibrations. The optimal voltage storage across the storing capacitor varies from 1.12 to 1.6 V. The PE-EH system can harvest power up to 86 µW without using any voltage source and is suitable for low-power applications. The proposed PE-EH module is compared with the existing similar EH system with better improvement in harvested power

    Toward Small-Scale Wind Energy Harvesting: Design, Enhancement, Performance Comparison, and Applicability

    Full text link
    © 2017 Liya Zhao and Yaowen Yang. The concept of harvesting ambient energy as an alternative power supply for electronic systems like remote sensors to avoid replacement of depleted batteries has been enthusiastically investigated over the past few years. Wind energy is a potential power source which is ubiquitous in both indoor and outdoor environments. The increasing research interests have resulted in numerous techniques on small-scale wind energy harvesting, and a rigorous and quantitative comparison is necessary to provide the academic community a guideline. This paper reviews the recent advances on various wind power harvesting techniques ranging between cm-scaled wind turbines and windmills, harvesters based on aeroelasticities, and those based on turbulence and other types of working principles, mainly from a quantitative perspective. The merits, weaknesses, and applicability of different prototypes are discussed in detail. Also, efficiency enhancing methods are summarized from two aspects, that is, structural modification aspect and interface circuit improvement aspect. Studies on integrating wind energy harvesters with wireless sensors for potential practical uses are also reviewed. The purpose of this paper is to provide useful guidance to researchers from various disciplines interested in small-scale wind energy harvesting and help them build a quantitative understanding of this technique

    Toward Small-Scale Wind Energy Harvesting: Design, Enhancement, Performance Comparison, and Applicability

    Get PDF

    A micro electromagnetic generator for vibration energy harvesting

    No full text
    Vibration energy harvesting is receiving a considerable amount of interest as a means for powering wireless sensor nodes. This paper presents a small (component volume 0.1 cm3, practical volume 0.15 cm3) electromagnetic generator utilizing discrete components and optimized for a low ambient vibration level based upon real application data. The generator uses four magnets arranged on an etched cantilever with a wound coil located within the moving magnetic field. Magnet size and coil properties were optimized, with the final device producing 46 µW in a resistive load of 4 k? from just 0.59 m s-2 acceleration levels at its resonant frequency of 52 Hz. A voltage of 428 mVrms was obtained from the generator with a 2300 turn coil which has proved sufficient for subsequent rectification and voltage step-up circuitry. The generator delivers 30% of the power supplied from the environment to useful electrical power in the load. This generator compares very favourably with other demonstrated examples in the literature, both in terms of normalized power density and efficiency

    A Cold-Startup SSHI Rectifier for Piezoelectric Energy Harvesters with Increased Open-Circuit Voltage

    Get PDF
    Piezoelectric vibration energy harvesting has drawn much research interest over the last decade towards the goal of enabling self-sustained wireless sensor nodes. In order to make use of the harvested energy, interface circuits are needed to rectify and manage the energy. Among all active interface circuits, SSHI (synchronized switch harvesting on inductor) and SECE (synchronous electric charge extraction) are widely employed due to their high energy efficiencies. However, the cold-startup issue still remains since an interface circuit needs a stable DC supply and the whole system is completely out of charge at the beginning of implementations or after a certain period of time without input vibration excitation. In this paper, a new cold-startup SSHI interface circuit is presented, which dynamically increases the open-circuit voltage generated from the piezoelectric transducer (PT) in cold-state to start the system under much lower excitation levels. The proposed circuit is designed and fabricated in a 0.18 um CMOS process and experimentally validated together with a custom MEMS (microelectromechanical systems) harvester, which is designed with split electrodes to work with the proposed power extraction circuit. The experiments were performed to start the system from the cold state under variable excitation levels. The results show that the proposed system lowers the required excitation level by at least 50% in order to perform a cold-startup. This aids restarting of the energy harvesting system under low excitation levels each time it enters the cold state

    Power Management Electronics

    No full text
    Accepted versio

    Energy harvesting from the nonlinear oscillations of magnetic levitation

    Get PDF
    This paper investigates the design and analysis of a novel energy harvesting device that uses magnetic levitation to produce an oscillator with a tunable resonance. The governing equations for the mechanical and electrical domains are derived to show the designed system reduces to the form of a Duffing oscillator under both static and dynamic loads. Thus, nonlinear analyses are required to investigate the energy harvesting potential of this prototypical nonlinear system. Theoretical investigations are followed by a series of experimental tests that validate the response predictions. The motivating hypothesis for the current work was that nonlinear phenomenon could be exploited to improve the effectiveness of energy harvesting devices
    corecore