309 research outputs found

    New Approaches in Automation and Robotics

    Get PDF
    The book New Approaches in Automation and Robotics offers in 22 chapters a collection of recent developments in automation, robotics as well as control theory. It is dedicated to researchers in science and industry, students, and practicing engineers, who wish to update and enhance their knowledge on modern methods and innovative applications. The authors and editor of this book wish to motivate people, especially under-graduate students, to get involved with the interesting field of robotics and mechatronics. We hope that the ideas and concepts presented in this book are useful for your own work and could contribute to problem solving in similar applications as well. It is clear, however, that the wide area of automation and robotics can only be highlighted at several spots but not completely covered by a single book

    Model Based Control of Soft Robots: A Survey of the State of the Art and Open Challenges

    Full text link
    Continuum soft robots are mechanical systems entirely made of continuously deformable elements. This design solution aims to bring robots closer to invertebrate animals and soft appendices of vertebrate animals (e.g., an elephant's trunk, a monkey's tail). This work aims to introduce the control theorist perspective to this novel development in robotics. We aim to remove the barriers to entry into this field by presenting existing results and future challenges using a unified language and within a coherent framework. Indeed, the main difficulty in entering this field is the wide variability of terminology and scientific backgrounds, making it quite hard to acquire a comprehensive view on the topic. Another limiting factor is that it is not obvious where to draw a clear line between the limitations imposed by the technology not being mature yet and the challenges intrinsic to this class of robots. In this work, we argue that the intrinsic effects are the continuum or multi-body dynamics, the presence of a non-negligible elastic potential field, and the variability in sensing and actuation strategies.Comment: 69 pages, 13 figure

    Modelling & analysis of hybrid dynamic systems using a bond graph approach

    Get PDF
    Hybrid models are those containing continuous and discontinuous behaviour. In constructing dynamic systems models, it is frequently desirable to abstract rapidly changing, highly nonlinear behaviour to a discontinuity. Bond graphs lend themselves to systems modelling by being multi-disciplinary and reflecting the physics of the system. One advantage is that they can produce a mathematical model in a form that simulates quickly and efficiently. Hybrid bond graphs are a logical development which could further improve speed and efficiency. A range of hybrid bond graph forms have been proposed which are suitable for either simulation or further analysis, but not both. None have reached common usage. A Hybrid bond graph method is proposed here which is suitable for simulation as well as providing engineering insight through analysis. This new method features a distinction between structural and parametric switching. The controlled junction is used for the former, and gives rise to dynamic causality. A controlled element is developed for the latter. Dynamic causality is unconstrained so as to aid insight, and a new notation is proposed. The junction structure matrix for the hybrid bond graph features Boolean terms to reflect the controlled junctions in the graph structure. This hybrid JSM is used to generate a mixed-Boolean state equation. When storage elements are in dynamic causality, the resulting system equation is implicit. The focus of this thesis is the exploitation of the model. The implicit form enables application of matrix-rank criteria from control theory, and control properties can be seen in the structure and causal assignment. An impulsive mode may occur when storage elements are in dynamic causality, but otherwise there are no energy losses associated with commutation because this method dictates the way discontinuities are abstracted. The main contribution is therefore a Hybrid Bond Graph which reflects the physics of commutating systems and offers engineering insight through the choice of controlled elements and dynamic causality. It generates a unique, implicit, mixed-Boolean system equation, describing all modes of operation. This form is suitable for both simulation and analysis

    Convex Formulation of Controller Synthesis for Piecewise-Affine Systems

    Get PDF
    This thesis is divided into three main parts. The contribution of the first part is to present a controller synthesis method to stabilize piecewise-affine (PWA) slab systems based on invariant sets. Inspired by the theory of sliding modes, sufficient stabilization conditions are cast as a set of Linear Matrix Inequalities (LMIs) by proper choice of an invariant set which is a target sliding surface. The method has two steps: the design of the attractive sliding surface and the design of the controller parameters. While previous approaches to PWA controller synthesis are cast as Bilinear Matrix Inequalities (BMIs) that can, in some cases, be relaxed to LMIs at the cost of adding conservatism, the proposed method leads naturally to a convex formulation. Furthermore, the LMIs obtained in this work have lower dimension when compared to other methods because the dimension of the closed-loop state space is reduced. In the second part of the thesis, it is further shown that the proposed approach is less conservative than other approaches. In other words, it will be shown that for every solution of the LMIs resulting from previous approaches, there exists a solution for the LMIs obtained from the proposed method. Furthermore, it will be shown that while previous convex controller synthesis methods have no solutions to their LMIs for some examples of PWA systems, the approach proposed in this thesis yields a solution for these examples. The contribution of the last part of this thesis is to formulate the PWA time-delay synthesis problem as a set of LMIs. In order to do so, we first define a sliding surface, then control laws are designed to approach the specified sliding surface and ensure that the trajectories will remain on that surface. Then, using Lyapunov-Krasovskii functionals, sufficient conditions for exponential stability of the resulting reduced order system will be obtained. Several applications such as pitch damping of a helicopter (2nd order system), rover path following example (3rd order system) and active flutter suppression (4th order system) along with some other numerical examples are included to demonstrate the effectiveness of the approaches

    Design of a pressure control system with dead band and time delay

    Get PDF
    This paper investigates the control of pressure in a hydraulic circuit containing a dead band and a time varying delay. The dead band is considered as a linear term and a perturbation. A sliding mode controller is designed. Stability conditions are established by making use of Lyapunov Krasovskii functionals, non-perfect time delay estimation is studied and a condition for the effect of uncertainties on the dead zone on stability is derived. Also the effect of different LMI formulations on conservativeness is studied. The control law is tested in practice

    Indirect adaptive higher-order sliding-mode control using the certainty-equivalence principle

    Get PDF
    Seit den 50er Jahren werden große Anstrengungen unternommen, Algorithmen zu entwickeln, welche in der Lage sind Unsicherheiten und Störungen in Regelkreisen zu kompensieren. Früh wurden hierzu adaptive Verfahren, die eine kontinuierliche Anpassung der Reglerparameter vornehmen, genutzt, um die Stabilisierung zu ermöglichen. Die fortlaufende Modifikation der Parameter sorgt dabei dafür, dass strukturelle Änderungen im Systemmodell sich nicht auf die Regelgüte auswirken. Eine deutlich andere Herangehensweise wird durch strukturvariable Systeme, insbesondere die sogenannte Sliding-Mode Regelung, verfolgt. Hierbei wird ein sehr schnell schaltendes Stellsignal für die Kompensation auftretender Störungen und Modellunsicherheiten so genutzt, dass bereits ohne besonderes Vorwissen über die Störeinflüsse eine beachtliche Regelgüte erreicht werden kann. Die vorliegende Arbeit befasst sich mit dem Thema, diese beiden sehr unterschiedlichen Strategien miteinander zu verbinden und dabei die Vorteile der ursprünglichen Umsetzung zu erhalten. So benötigen Sliding-Mode Verfahren generell nur wenige Informationen über die Störung, zeigen jedoch Defizite bei Unsicherheiten, die vom Systemzustand abhängen. Auf der anderen Seite können adaptive Regelungen sehr gut parametrische Unsicherheiten kompensieren, wohingegen unmodellierte Störungen zu einer verschlechterten Regelgüte führen. Ziel dieser Arbeit ist es daher, eine kombinierte Entwurfsmethodik zu entwickeln, welche die verfügbaren Informationen über die Störeinflüsse bestmöglich ausnutzt. Hierbei wird insbesondere Wert auf einen theoretisch fundierten Stabilitätsnachweis gelegt, welcher erst durch Erkenntnisse der letzten Jahre im Bereich der Lyapunov-Theorie im Zusammenhang mit Sliding-Mode ermöglicht wurde. Anhand der gestellten Anforderungen werden Regelalgorithmen entworfen, die eine Kombination von Sliding-Mode Reglern höherer Ordnung und adaptiven Verfahren darstellen. Neben den theoretischen Betrachtungen werden die Vorteile des Verfahrens auch anhand von Simulationsbeispielen und eines Laborversuchs nachgewiesen. Es zeigt sich hierbei, dass die vorgeschlagenen Algorithmen eine Verbesserung hinsichtlich der Regelgüte als auch der Robustheit gegenüber den konventionellen Verfahren erzielen.Since the late 50s, huge efforts have been made to improve the control algorithms that are capable of compensating for uncertainties and disturbances. Adaptive controllers that adjust their parameters continuously have been used from the beginning to solve this task. This adaptation of the controller allows to maintain a constant performance even under changing conditions. A different idea is proposed by variable structure systems, in particular by the so-called sliding-mode control. The idea is to employ a very fast switching signal to compensate for disturbances or uncertainties. This thesis deals with a combination of these two rather different approaches while preserving the advantages of each method. The design of a sliding-mode controller normally does not demand sophisticated knowledge about the disturbance, while the controller's robustness against state-dependent uncertainties might be poor. On the other hand, adaptive controllers are well suited to compensate for parametric uncertainties while unstructured influence may result in a degraded performance. Hence, the objective of this work is to design sliding-mode controllers that use as much information about the uncertainty as possible and exploit this knowledge in the design. An important point is that the design procedure is based on a rigorous proof of the stability of the combined approach. Only recent results on Lyapunov theory in the field of sliding-mode made this analysis possible. It is shown that the Lyapunov function of the nominal sliding-mode controller has a direct impact on the adaptation law. Therefore, this Lyapunov function has to meet certain conditions in order to allow a proper implementation of the proposed algorithms. The main contributions of this thesis are sliding-mode controllers, extended by an adaptive part using the certainty-equivalence principle. It is shown that the combination of both approaches results in a novel controller design that is able to solve a control task even in the presence of different classes of uncertainties. In addition to the theoretical analysis, the advantages of the proposed method are demonstrated in a selection of simulation examples and on a laboratory test-bench. The experiments show that the proposed control algorithm delivers better performance in regard to chattering and robustness compared to classical sliding-mode controllers

    Time-Delay Systems

    Get PDF
    Time delay is very often encountered in various technical systems, such as electric, pneumatic and hydraulic networks, chemical processes, long transmission lines, robotics, etc. The existence of pure time lag, regardless if it is present in the control or/and the state, may cause undesirable system transient response, or even instability. Consequently, the problem of controllability, observability, robustness, optimization, adaptive control, pole placement and particularly stability and robustness stabilization for this class of systems, has been one of the main interests for many scientists and researchers during the last five decades

    Hybrid modeling and control of mechatronic systems using a piecewise affine dynamics approach

    Get PDF
    This thesis investigates the topic of modeling and control of PWA systems based on two experimental cases of an electrical and hydraulic nature with varying complexity that were also built, instrumented and evaluated. A full-order model has been created for both systems, including all dominant system dynamics and non-linearities. The unknown parameters and characteristics have been identi ed via an extensive parameter identi cation. In the following, the non-linear characteristics are linearized at several points, resulting in PWA models for each respective setup. Regarding the closed loop control of the generated models and corresponding experimental setups, a linear control structure comprised of integral error, feed-forward and state-feedback control has been used. Additionally, the hydraulic setup has been controlled in an autonomous hybrid position/force control mode, resulting in a switched system with each mode's dynamics being de ned by the previously derived PWA-based model in combination with the control structure and respective mode-dependent controller gains. The autonomous switch between control modes has been de ned by a switching event capable of consistently switching between modes in a deterministic manner despite the noise-a icted measurements. Several methods were used to obtain suitable controller gains, including optimization routines and pole placement. Validation of the system's fast and accurate response was obtained through simulations and experimental evaluation. The controlled system's local stability was proven for regions in state-space associated with operational points by using pole-zero analysis. The stability of the hybrid control approach was proven by using multiple Lyapunov functions for the investigated test scenarios.publishedVersio

    Robust control of a hydraulically actuated friction damper for vehicle applications

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN043678 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    • …
    corecore