1,570 research outputs found

    A Neural-Endocrine Architecture for Foraging in Swarm Robotic Systems

    Get PDF
    Abstract This paper presents the novel use of the Neural-endocrine architecture for swarm robotic systems. We make use of a number of behaviours to give rise to emergent swarm behaviour to allow a swarm of robots to collaborate in the task of foraging. Results show that the architecture is amenable to such a task, with the swarm being able to successfully complete the required task.

    A Hormone Inspired System for On-line Adaptation in Swarm Robotic Systems

    Get PDF
    Individual robots, while providing the opportunity to develop a bespoke and specialised system, suffer in terms of performance when it comes to executing a large number of concurrent tasks. In some cases it is possible to drastically increase the speed of task execution by adding more agents to a system, however this comes at a cost. By mass producing relatively simple robots, costs can be kept low while still gaining the benefit of large scale multi-tasking. This approach sits at the core of swarm robotics. Robot swarms excel in tasks that rely heavily on their ability to multi-task, rather than applications that require bespoke actuation. Swarm suited tasks include: exploration, transportation or operation in dangerous environments. Swarms are particularly suited to hazardous environments due to the inherent expendability that comes with having multiple, decentralised agents. However, due to the variance in the environments a swarm may explore and their need to remain decentralised, a level of adaptability is required of them that can't be provided before a task begins. Methods of novel hormone-inspired robotic control are proposed in this thesis, offering solutions to these problems. These hormone inspired systems, or virtual hormones, provide an on-line method for adaptation that operates while a task is executed. These virtual hormones respond to environmental interactions. Then, through a mixture of decay and stimulant, provide values that grant contextually relevant information to individual robots. These values can then be used in decision making regarding parameters and behavioural changes. The hormone inspired systems presented in this thesis are found to be effective in mid-task adaptation, allowing robots to improve their effectiveness with minimal user interaction. It is also found that it is possible to deploy amalgamations of multiple hormone systems, controlling robots at multiple levels, enabling swarms to achieve strong, energy-efficient, performance

    Load balancing optimization in cloud computing: Applying Endocrine-particale swarm optimization

    Full text link
    © 2015 IEEE. Load balancing optimization is categorized as NP-hard problem, playing an important role in enhancing the cloud utilization. Different methods have been proposed for achieving the system load balancing in cloud environment. VM migration is one of these techniques, proposed to improve the VMs' functionality. Despite of the advantageous of VM migration, there are still some drawbacks which urged researchers to improve VM migration methods. In this paper we propose a new load balancing technique, using Endocrine algorithm which is inspired from regulation behavior of human's hormone system. Our proposed algorithm achieves system load balancing by applying self-organizing method between overloaded VMs. This technique is structured based on communications between VMs. It helps the overloaded VMs to transfer their extra tasks to another under-loaded VM by applying the enhanced feed backing approach using Particle Swarm Optimization (PSO). To evaluate our proposed algorithm, we expanded the cloud simulation tool (Cloudsim) which is developed by University of Melbourne. The simulation result proves that our proposed load balancing approach significantly decreases the timespan compared to traditional load balancing techniques. Moreover it increases the Quality Of Service (QOS) as it minimizes the VMs' downtime

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Evolvability: What Is It and How Do We Get It?

    Get PDF
    Biological organisms exhibit spectacular adaptation to their environments. However, another marvel of biology lurks behind the adaptive traits that organisms exhibit over the course of their lifespans: it is hypothesized that biological organisms also exhibit adaptation to the evolutionary process itself. That is, biological organisms are thought to possess traits that facilitate evolution. The term evolvability was coined to describe this type of adaptation. The question of evolvability has special practical relevance to computer science researchers engaged in longstanding efforts to harness evolution as an algorithm for automated design. It is hoped that a more nuanced understanding of biological evolution will translate to more powerful digital evolution techniques. This thesis presents a theoretical overview of evolvability, illustrated with examples from biology and evolutionary computing

    Neuromodulatory Supervised Learning

    Get PDF

    Multi-Robot Systems: Challenges, Trends and Applications

    Get PDF
    This book is a printed edition of the Special Issue entitled “Multi-Robot Systems: Challenges, Trends, and Applications” that was published in Applied Sciences. This Special Issue collected seventeen high-quality papers that discuss the main challenges of multi-robot systems, present the trends to address these issues, and report various relevant applications. Some of the topics addressed by these papers are robot swarms, mission planning, robot teaming, machine learning, immersive technologies, search and rescue, and social robotics

    Adaptive networks for robotics and the emergence of reward anticipatory circuits

    Get PDF
    Currently the central challenge facing evolutionary robotics is to determine how best to extend the range and complexity of behaviour supported by evolved neural systems. Implicit in the work described in this thesis is the idea that this might best be achieved through devising neural circuits (tractable to evolutionary exploration) that exhibit complementary functional characteristics. We concentrate on two problem domains; locomotion and sequence learning. For locomotion we compare the use of GasNets and other adaptive networks. For sequence learning we introduce a novel connectionist model inspired by the role of dopamine in the basal ganglia (commonly interpreted as a form of reinforcement learning). This connectionist approach relies upon a new neuron model inspired by notions of energy efficient signalling. Two reward adaptive circuit variants were investigated. These were applied respectively to two learning problems; where action sequences are required to take place in a strict order, and secondly, where action sequences are robust to intermediate arbitrary states. We conclude the thesis by proposing a formal model of functional integration, encompassing locomotion and sequence learning, extending ideas proposed by W. Ross Ashby. A general model of the adaptive replicator is presented, incoporating subsystems that are tuned to continuous variation and discrete or conditional events. Comparisons are made with Ross W. Ashby's model of ultrastability and his ideas on adaptive behaviour. This model is intended to support our assertion that, GasNets (and similar networks) and reward adaptive circuits of the type presented here, are intrinsically complementary. In conclusion we present some ideas on how the co-evolution of GasNet and reward adaptive circuits might lead us to significant improvements in the synthesis of agents capable of exhibiting complex adaptive behaviour

    On microelectronic self-learning cognitive chip systems

    Get PDF
    After a brief review of machine learning techniques and applications, this Ph.D. thesis examines several approaches for implementing machine learning architectures and algorithms into hardware within our laboratory. From this interdisciplinary background support, we have motivations for novel approaches that we intend to follow as an objective of innovative hardware implementations of dynamically self-reconfigurable logic for enhanced self-adaptive, self-(re)organizing and eventually self-assembling machine learning systems, while developing this new particular area of research. And after reviewing some relevant background of robotic control methods followed by most recent advanced cognitive controllers, this Ph.D. thesis suggests that amongst many well-known ways of designing operational technologies, the design methodologies of those leading-edge high-tech devices such as cognitive chips that may well lead to intelligent machines exhibiting conscious phenomena should crucially be restricted to extremely well defined constraints. Roboticists also need those as specifications to help decide upfront on otherwise infinitely free hardware/software design details. In addition and most importantly, we propose these specifications as methodological guidelines tightly related to ethics and the nowadays well-identified workings of the human body and of its psyche

    A Bio-inspired Distributed Control Architecture: Coupled Artificial Signalling Networks

    Get PDF
    This thesis studies the applicability of computational models inspired by the structure and dynamics of signalling networks to the control of complex control problems. In particular, this thesis presents two different abstractions that aim to capture the signal processing abilities of biological cells: a stand-alone signalling network and a coupled signalling network. While the former mimics the interacting relationships amongst the components in a signalling pathway, the latter replicates the connectionism amongst signalling pathways. After initially investigating the feasibility of these models for controlling two complex numerical dynamical systems, Chirikov's standard map and the Lorenz system, this thesis explores their applicability to a difficult real world control problem, the generation of adaptive rhythmic locomotion patterns within a legged robotic system. The results highlight that the locomotive movements of a six-legged robot could be controlled in order to adapt the robot's trajectory in a range of challenging environments. In this sense, signalling networks are responsible for the robot adaptability and inter limb coordination as they self-adjust their dynamics according to the terrain's irregularities. More generally, the results of this thesis highlight the capacity of coupled signalling networks to decompose non-linear problems into smaller sub-tasks, which can then be independently solved
    • …
    corecore