5,086 research outputs found

    Multi-objective design optimization framework for structural health monitoring

    Get PDF
    The purpose of this dissertation is to demonstrate the ability to design health monitoring systems from a systematic perspective and how, with proper sensor and actuator placement, damage occurring in a structure can be detected and tracked. To this end, a design optimization was performed to determine the best locations to excite the structure and to collect data while using the minimum number of sensors. The type of sensors used in this design optimization was uni-axis accelerometers. It should be noted that the design techniques presented here are not limited to accelerometers. Instead, they allow for any type of sensor (thermal, strain, electromagnetic, etc.) and will find the optimal locations with respect to defined objective functions (sensitivity, cost, etc.). The use of model-based optimization techniques for the design of the monitoring system is driven by the desire to obtain the best performance possible from the system given what is known about the system prior to implementation. The use of a model is more systematic than human judgment and is able to take far more into account by using information about the dynamical response of a system than even an experienced structural engineer. It is understood in the context of structural modeling that no model is 100\% accurate and that any designs produced using model-based techniques should be tolerant to modeling errors. Demonstrations performed in the past have shown that poorly placed sensors can be very insensitive to damage development. To perform the optimization, a multi-objective genetic algorithm (GA) was employed. The objectives of the optimization were to be highly sensitive to damage occurring in potential “hot spots” while also maintaining the ability to detect damage occurring elsewhere in the structure and maintaining robustness to modeling errors. Two other objectives were to minimize the number of sensors and actuators used. The optimization only considered placing accelerometers, but it could have considered different type of sensors (i.e. strain, magneto-restrictive) or any combination thereof

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Design Space Exploration and Resource Management of Multi/Many-Core Systems

    Get PDF
    The increasing demand of processing a higher number of applications and related data on computing platforms has resulted in reliance on multi-/many-core chips as they facilitate parallel processing. However, there is a desire for these platforms to be energy-efficient and reliable, and they need to perform secure computations for the interest of the whole community. This book provides perspectives on the aforementioned aspects from leading researchers in terms of state-of-the-art contributions and upcoming trends

    A Survey of Fault-Tolerance Techniques for Embedded Systems from the Perspective of Power, Energy, and Thermal Issues

    Get PDF
    The relentless technology scaling has provided a significant increase in processor performance, but on the other hand, it has led to adverse impacts on system reliability. In particular, technology scaling increases the processor susceptibility to radiation-induced transient faults. Moreover, technology scaling with the discontinuation of Dennard scaling increases the power densities, thereby temperatures, on the chip. High temperature, in turn, accelerates transistor aging mechanisms, which may ultimately lead to permanent faults on the chip. To assure a reliable system operation, despite these potential reliability concerns, fault-tolerance techniques have emerged. Specifically, fault-tolerance techniques employ some kind of redundancies to satisfy specific reliability requirements. However, the integration of fault-tolerance techniques into real-time embedded systems complicates preserving timing constraints. As a remedy, many task mapping/scheduling policies have been proposed to consider the integration of fault-tolerance techniques and enforce both timing and reliability guarantees for real-time embedded systems. More advanced techniques aim additionally at minimizing power and energy while at the same time satisfying timing and reliability constraints. Recently, some scheduling techniques have started to tackle a new challenge, which is the temperature increase induced by employing fault-tolerance techniques. These emerging techniques aim at satisfying temperature constraints besides timing and reliability constraints. This paper provides an in-depth survey of the emerging research efforts that exploit fault-tolerance techniques while considering timing, power/energy, and temperature from the real-time embedded systems’ design perspective. In particular, the task mapping/scheduling policies for fault-tolerance real-time embedded systems are reviewed and classified according to their considered goals and constraints. Moreover, the employed fault-tolerance techniques, application models, and hardware models are considered as additional dimensions of the presented classification. Lastly, this survey gives deep insights into the main achievements and shortcomings of the existing approaches and highlights the most promising ones

    Climbing Up Cloud Nine: Performance Enhancement Techniques for Cloud Computing Environments

    Get PDF
    With the transformation of cloud computing technologies from an attractive trend to a business reality, the need is more pressing than ever for efficient cloud service management tools and techniques. As cloud technologies continue to mature, the service model, resource allocation methodologies, energy efficiency models and general service management schemes are not yet saturated. The burden of making this all tick perfectly falls on cloud providers. Surely, economy of scale revenues and leveraging existing infrastructure and giant workforce are there as positives, but it is far from straightforward operation from that point. Performance and service delivery will still depend on the providers’ algorithms and policies which affect all operational areas. With that in mind, this thesis tackles a set of the more critical challenges faced by cloud providers with the purpose of enhancing cloud service performance and saving on providers’ cost. This is done by exploring innovative resource allocation techniques and developing novel tools and methodologies in the context of cloud resource management, power efficiency, high availability and solution evaluation. Optimal and suboptimal solutions to the resource allocation problem in cloud data centers from both the computational and the network sides are proposed. Next, a deep dive into the energy efficiency challenge in cloud data centers is presented. Consolidation-based and non-consolidation-based solutions containing a novel dynamic virtual machine idleness prediction technique are proposed and evaluated. An investigation of the problem of simulating cloud environments follows. Available simulation solutions are comprehensively evaluated and a novel design framework for cloud simulators covering multiple variations of the problem is presented. Moreover, the challenge of evaluating cloud resource management solutions performance in terms of high availability is addressed. An extensive framework is introduced to design high availability-aware cloud simulators and a prominent cloud simulator (GreenCloud) is extended to implement it. Finally, real cloud application scenarios evaluation is demonstrated using the new tool. The primary argument made in this thesis is that the proposed resource allocation and simulation techniques can serve as basis for effective solutions that mitigate performance and cost challenges faced by cloud providers pertaining to resource utilization, energy efficiency, and client satisfaction

    Thermal Aware Design Automation of the Electronic Control System for Autonomous Vehicles

    Get PDF
    The autonomous vehicle (AV) technology, due to its tremendous social and economical benefits, is transforming the entire world in the coming decades. However, significant technical challenges still need to be overcome until AVs can be safely, reliably, and massively deployed. Temperature plays a key role in the safety and reliability of an AV, not only because a vehicle is subjected to extreme operating temperatures but also because the increasing computations demand more powerful IC chips, which can lead to higher operating temperature and large thermal gradient. In particular, as the underpinning technology for AV, artificial intelligence (AI) requires substantially increased computation and memory resources, which have been growing exponentially through recent years and further exacerbated the thermal problems. High operating temperature and large thermal gradient can reduce the performance, degrade the reliability, and even cause an IC to fail catastrophically. We believe that dealing with thermal issues must be coupled closely in the design phase of the AVs’ electronic control system (ECS). To this end, first, we study how to map vehicle applications to ECS with heterogeneous architecture to satisfy peak temperature constraints and optimize latency and system-level reliability. We present a mathematical programming model to bound the peak temperature for the ECS. We also develop an approach based on the genetic algorithm to bound the peak temperature under varying execution time scenarios and optimize the system-level reliability of the ECS. We present several computationally efficient techniques for system-level mean-time-to-failure (MTTF) computation, which show several orders-of-magnitude speed-up over the state-of-the-art method. Second, we focus on studying the thermal impacts of AI techniques. Specifically, we study how the thermal impacts for the memory bit flipping can affect the prediction accuracy of a deep neural network (DNN). We develop a neuron-level analytical sensitivity estimation framework to quantify this impact and study its effectiveness with popular DNN architectures. Third, we study the problem of incorporating thermal impacts into mapping the parameters for DNN neurons to memory banks to improve prediction accuracy. Based on our developed sensitivity metric, we develop a bin-packing-based approach to map DNN neuron parameters to memory banks with different temperature profiles. We also study the problem of identifying the optimal temperature profiles for memory systems that can minimize the thermal impacts. We show that the thermal aware mapping of DNN neuron parameters on memory banks can significantly improve the prediction accuracy at a high-temperature range than the thermal ignorant for state-of-the-art DNNs
    • …
    corecore