5,653 research outputs found

    Targeted Computational Approaches for Mining Functional Elements in Metagenomes

    Get PDF
    Thesis (Ph.D.) - Indiana University, Informatics, 2012Metagenomics enables the genomic study of uncultured microorganisms by directly extracting the genetic material from microbial communities for sequencing. Fueled by the rapid development of Next Generation Sequencing (NGS) technology, metagenomics research has been revolutionizing the field of microbiology, revealing the taxonomic and functional composition of many microbial communities and their impacts on almost every aspect of life on Earth. Analyzing metagenomes (a metagenome is the collection of genomic sequences of an entire microbial community) is challenging: metagenomic sequences are often extremely short and therefore lack genomic contexts needed for annotating functional elements, while whole-metagenome assemblies are often poor because a metagenomic dataset contains reads from many different species. Novel computational approaches are still needed to get the most out of the metagenomes. In this dissertation, I first developed a binning algorithm (AbundanceBin) for clustering metagenomic sequences into groups, each containing sequences from species of similar abundances. AbundanceBin provides accurate estimations of the abundances of the species in a microbial community and their genome sizes. Application of AbundanceBin prior to assembly results in better assemblies of metagenomes--an outcome crucial to downstream analyses of metagenomic datasets. In addition, I designed three targeted computational approaches for assembling and annotating protein coding genes and other functional elements from metagenomic sequences. GeneStitch is an approach for gene assembly by connecting gene fragments scattered in different contigs into longer genes with the guidance of reference genes. I also developed two specialized assembly methods: the targeted-assembly method for assembling CRISPRs (Clustered Regularly Interspersed Short Palindromic Repeats), and the constrained-assembly method for retrieving chromosomal integrons. Applications of these methods to the Human Microbiome Project (HMP) datasets show that human microbiomes are extremely dynamic, reflecting the interactions between community members (including bacteria and viruses)

    The impact of sequence database choice on metaproteomic results in gut microbiota studies

    Get PDF
    Background: Elucidating the role of gut microbiota in physiological and pathological processes has recently emerged as a key research aim in life sciences. In this respect, metaproteomics, the study of the whole protein complement of a microbial community, can provide a unique contribution by revealing which functions are actually being expressed by specific microbial taxa. However, its wide application to gut microbiota research has been hindered by challenges in data analysis, especially related to the choice of the proper sequence databases for protein identification. Results: Here, we present a systematic investigation of variables concerning database construction and annotation and evaluate their impact on human and mouse gut metaproteomic results. We found that both publicly available and experimental metagenomic databases lead to the identification of unique peptide assortments, suggesting parallel database searches as a mean to gain more complete information. In particular, the contribution of experimental metagenomic databases was revealed to be mandatory when dealing with mouse samples. Moreover, the use of a "merged" database, containing all metagenomic sequences from the population under study, was found to be generally preferable over the use of sample-matched databases. We also observed that taxonomic and functional results are strongly database-dependent, in particular when analyzing the mouse gut microbiota. As a striking example, the Firmicutes/Bacteroidetes ratio varied up to tenfold depending on the database used. Finally, assembling reads into longer contigs provided significant advantages in terms of functional annotation yields. Conclusions: This study contributes to identify host- and database-specific biases which need to be taken into account in a metaproteomic experiment, providing meaningful insights on how to design gut microbiota studies and to perform metaproteomic data analysis. In particular, the use of multiple databases and annotation tools has to be encouraged, even though this requires appropriate bioinformatic resources

    Accurate and fast estimation of taxonomic profiles from metagenomic shotgun sequences

    Get PDF
    A major goal of metagenomics is to characterize the microbial composition of an environment. The most popular approach relies on 16S rRNA sequencing, however this approach can generate biased estimates due to differences in the copy number of the gene between even closely related organisms, and due to PCR artifacts. The taxonomic composition can also be determined from metagenomic shotgun sequencing data by matching individual reads against a database of reference sequences. One major limitation of prior computational methods used for this purpose is the use of a universal classification threshold for all genes at all taxonomic levels. We propose that better classification results can be obtained by tuning the taxonomic classifier to each matching length, reference gene, and taxonomic level. We present a novel taxonomic classifier MetaPhyler (http://metaphyler.cbcb.umd.edu), which uses phylogenetic marker genes as a taxonomic reference. Results on simulated datasets demonstrate that MetaPhyler outperforms other tools commonly used in this context (CARMA, Megan and PhymmBL). We also present interesting results by analyzing a real metagenomic dataset. We have introduced a novel taxonomic classification method for analyzing the microbial diversity from whole-metagenome shotgun sequences. Compared with previous approaches, MetaPhyler is much more accurate in estimating the phylogenetic composition. In addition, we have shown that MetaPhyler can be used to guide the discovery of novel organisms from metagenomic samples.https://doi.org/10.1186/1471-2164-12-S2-S

    Fast Identification and Removal of Sequence Contamination from Genomic and Metagenomic Datasets

    Get PDF
    High-throughput sequencing technologies have strongly impacted microbiology, providing a rapid and cost-effective way of generating draft genomes and exploring microbial diversity. However, sequences obtained from impure nucleic acid preparations may contain DNA from sources other than the sample. Those sequence contaminations are a serious concern to the quality of the data used for downstream analysis, causing misassembly of sequence contigs and erroneous conclusions. Therefore, the removal of sequence contaminants is a necessary and required step for all sequencing projects. We developed DeconSeq, a robust framework for the rapid, automated identification and removal of sequence contamination in longer-read datasets (150 bp mean read length). DeconSeq is publicly available as standalone and web-based versions. The results can be exported for subsequent analysis, and the databases used for the web-based version are automatically updated on a regular basis. DeconSeq categorizes possible contamination sequences, eliminates redundant hits with higher similarity to non-contaminant genomes, and provides graphical visualizations of the alignment results and classifications. Using DeconSeq, we conducted an analysis of possible human DNA contamination in 202 previously published microbial and viral metagenomes and found possible contamination in 145 (72%) metagenomes with as high as 64% contaminating sequences. This new framework allows scientists to automatically detect and efficiently remove unwanted sequence contamination from their datasets while eliminating critical limitations of current methods. DeconSeq's web interface is simple and user-friendly. The standalone version allows offline analysis and integration into existing data processing pipelines. DeconSeq's results reveal whether the sequencing experiment has succeeded, whether the correct sample was sequenced, and whether the sample contains any sequence contamination from DNA preparation or host. In addition, the analysis of 202 metagenomes demonstrated significant contamination of the non-human associated metagenomes, suggesting that this method is appropriate for screening all metagenomes. DeconSeq is available at http://deconseq.sourceforge.net/

    DUDE-Seq: Fast, Flexible, and Robust Denoising for Targeted Amplicon Sequencing

    Full text link
    We consider the correction of errors from nucleotide sequences produced by next-generation targeted amplicon sequencing. The next-generation sequencing (NGS) platforms can provide a great deal of sequencing data thanks to their high throughput, but the associated error rates often tend to be high. Denoising in high-throughput sequencing has thus become a crucial process for boosting the reliability of downstream analyses. Our methodology, named DUDE-Seq, is derived from a general setting of reconstructing finite-valued source data corrupted by a discrete memoryless channel and effectively corrects substitution and homopolymer indel errors, the two major types of sequencing errors in most high-throughput targeted amplicon sequencing platforms. Our experimental studies with real and simulated datasets suggest that the proposed DUDE-Seq not only outperforms existing alternatives in terms of error-correction capability and time efficiency, but also boosts the reliability of downstream analyses. Further, the flexibility of DUDE-Seq enables its robust application to different sequencing platforms and analysis pipelines by simple updates of the noise model. DUDE-Seq is available at http://data.snu.ac.kr/pub/dude-seq

    RawHash: Enabling Fast and Accurate Real-Time Analysis of Raw Nanopore Signals for Large Genomes

    Full text link
    Nanopore sequencers generate electrical raw signals in real-time while sequencing long genomic strands. These raw signals can be analyzed as they are generated, providing an opportunity for real-time genome analysis. An important feature of nanopore sequencing, Read Until, can eject strands from sequencers without fully sequencing them, which provides opportunities to computationally reduce the sequencing time and cost. However, existing works utilizing Read Until either 1) require powerful computational resources that may not be available for portable sequencers or 2) lack scalability for large genomes, rendering them inaccurate or ineffective. We propose RawHash, the first mechanism that can accurately and efficiently perform real-time analysis of nanopore raw signals for large genomes using a hash-based similarity search. To enable this, RawHash ensures the signals corresponding to the same DNA content lead to the same hash value, regardless of the slight variations in these signals. RawHash achieves an accurate hash-based similarity search via an effective quantization of the raw signals such that signals corresponding to the same DNA content have the same quantized value and, subsequently, the same hash value. We evaluate RawHash on three applications: 1) read mapping, 2) relative abundance estimation, and 3) contamination analysis. Our evaluations show that RawHash is the only tool that can provide high accuracy and high throughput for analyzing large genomes in real-time. When compared to the state-of-the-art techniques, UNCALLED and Sigmap, RawHash provides 1) 25.8x and 3.4x better average throughput and 2) an average speedup of 32.1x and 2.1x in the mapping time, respectively. Source code is available at https://github.com/CMU-SAFARI/RawHash

    Extensive diversity and rapid turnover of phage defense repertoires in cheese-associated bacterial communities.

    Get PDF
    BACKGROUND Phages are key drivers of genomic diversity in bacterial populations as they impose strong selective pressure on the evolution of bacterial defense mechanisms across closely related strains. The pan-immunity model suggests that such diversity is maintained because the effective immune system of a bacterial species is the one distributed across all strains present in the community. However, only few studies have analyzed the distribution of bacterial defense systems at the community-level, mostly focusing on CRISPR and comparing samples from complex environments. Here, we studied 2778 bacterial genomes and 188 metagenomes from cheese-associated communities, which are dominated by a few bacterial taxa and occur in relatively stable environments. RESULTS We corroborate previous laboratory findings that in cheese-associated communities nearly identical strains contain diverse and highly variable arsenals of innate and adaptive (i.e., CRISPR-Cas) immunity systems suggesting rapid turnover. CRISPR spacer abundance correlated with the abundance of matching target sequences across the metagenomes providing evidence that the identified defense repertoires are functional and under selection. While these characteristics align with the pan-immunity model, the detected CRISPR spacers only covered a subset of the phages previously identified in cheese, providing evidence that CRISPR does not enable complete immunity against all phages, and that the innate immune mechanisms may have complementary roles. CONCLUSIONS Our findings show that the evolution of bacterial defense mechanisms is a highly dynamic process and highlight that experimentally tractable, low complexity communities such as those found in cheese, can help to understand ecological and molecular processes underlying phage-defense system relationships. These findings can have implications for the design of robust synthetic communities used in biotechnology and the food industry. Video Abstract

    Computational Metagenomics: Network, Classification and Assembly

    Get PDF
    Due to the rapid advance of DNA sequencing technologies in recent 10 years, large amounts of short DNA reads can be obtained quickly and cheaply. For example, a single Illumina HiSeq machine can produce several terabytes of data sets within a week. Metagenomics is a new scientific field that involves the analysis of genomic DNA sequences obtained directly from the environment, enabling studies of novel microbial systems. Metagenomics was made possible from high-throughput sequencing technologies. The analysis of the resulting data requires sophisticated computational analyses and data mining. In clinical settings, a fundamental goal of metagenomics is to help people diagnose and cure disease in clinical settings. One major bottleneck so far is how to analyze the huge noisy data sets quickly and precisely. My PhD research focuses on developing algorithms and tools to tackle these challenging and interesting computational problems. From the functional perspective, a metagenomic sample can be represented as a weighted metabolic network, in which the nodes are molecules, edges are enzymes encoded by genes, and the weights can be considered as the number of organisms providing the functions. One goal of functional comparison between metagenomic samples is to find differentially abundant metabolic subnetworks between two groups under comparison. We have developed a statistical network analysis tool - MetaPath, which uses a greedy search algorithm to find maximum weight subnetwork and a nonparametric permutation test to measure the statistical significance. Unlike previous approaches, MetaPath explicitly searches for significant subnetwork in the global network, enabling us to detect signatures at a finer level. In addition, we developed statistical methods that take into account the topology of the network when testing the significance of the subnetworks. Another computational problem involves classifying anonymous DNA sequences obtained from metagenomic samples. There are several challenges here: (1) The classification labels follow a hierarchical tree structure, in which the leaves are most specific, and the internal nodes are more general. How can we classify novel sequences that do not belong to leaf categories (species) but belong to internal groups (e.g., phylum)? (2) For each classification how can we compute a confidence score, such that the users have a tradeoff between sensitivity and specificity? (3) How can we analyze billions of data items quickly? We have developed a novel hierarchical classifier (MetaPhyler) for the classification of anonymous DNA reads. Through simulation, MetaPhyler models the distribution of pairwise similarities within different hierarchical groups with nonparametric density estimation. The confidence score is computed by the ratio of likelihood function. For a query DNA sequence with arbitrary length, its similarity can be calculated through linear approximation. Through benchmark comparison, we have shown that MetaPhyler is significantly faster and more accurate than previous tools. DNA sequencing machines can only produce very short strings (e.g., 100bp) relative to the size of a genome (e.g., a typical bacterial genome is 5Mbp). One of the most challenging computational tasks is the assembly of millions of short reads into longer contigs, which are used as the basis of subsequent computational analyses. In this project, we have developed a comparative metagenomic assembler (MetaCompass), which utilizes the genomes that have already been sequenced previously, and produces long contigs through read mapping (alignment) and assembly. Given the availability of thousands of existing bacteria genomes, for a particular sample, MetaCompass first chooses a best subset as reference based on the taxonomic composition. Then, the reads are aligned against these genomes using MUMmer-map or Bowtie2. Afterwards, we use a greedy algorithm of the minimum set-covering problem to build long contigs, and the consensus sequences are computed by the majority rule. We also propose an iterative approach to improve the performance. Finally, MetaCompass has been successfully evaluated and tested on over 20 terabytes of metagenomic data sets generated from the Human Microbiome Project. In addition, to facilitate the identification and characterization of antibiotic resistance genes, we have created Antibiotic Resistance Genes Database (ARDB), which provides a centralized compendium of information on antibiotic resistance. Furthermore, we have applied our tools to the analysis of a novel oral microbiome data set, and have discovered interesting functional mechanisms and ecological changes underlying the transition from health to periodontal disease of human mouth at a system level
    corecore