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Yu-Wei Wu 

TARGETED COMPUTATIONAL APPROACHES FOR MINING FUNCTIONAL 

ELEMENTS IN METAGENOMES  

Metagenomics enables the genomic study of uncultured microorganisms by directly 

extracting the genetic material from microbial communities for sequencing. Fueled by the 

rapid development of Next Generation Sequencing (NGS) technology, metagenomics 

research has been revolutionizing the field of microbiology, revealing the taxonomic and 

functional composition of many microbial communities and their impacts on almost 

every aspect of life on Earth. Analyzing metagenomes (a metagenome is the collection of 

genomic sequences of an entire microbial community) is challenging: metagenomic 

sequences are often extremely short and therefore lack genomic contexts needed for 

annotating functional elements, while whole-metagenome assemblies are often poor 

because a metagenomic dataset contains reads from many different species. Novel 

computational approaches are still needed to get the most out of the metagenomes. 

In this dissertation, I first developed a binning algorithm (AbundanceBin) for clustering 

metagenomic sequences into groups, each containing sequences from species of similar 

abundances. AbundanceBin provides accurate estimations of the abundances of the 

species in a microbial community and their genome sizes. Application of AbundanceBin 

prior to assembly results in better assemblies of metagenomes—an outcome crucial to 

downstream analyses of metagenomic datasets. 
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In addition, I designed three targeted computational approaches for assembling and 

annotating protein coding genes and other functional elements from metagenomic 

sequences. GeneStitch is an approach for gene assembly by connecting gene fragments 

scattered in different contigs into longer genes with the guidance of reference genes. I 

also developed two specialized assembly methods: the targeted-assembly method for 

assembling CRISPRs (Clustered Regularly Interspersed Short Palindromic Repeats), and 

the constrained-assembly method for retrieving chromosomal integrons. Applications of 

these methods to the Human Microbiome Project (HMP) datasets show that human 

microbiomes are extremely dynamic, reflecting the interactions between community 

members (including bacteria and viruses). 
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1. Introduction 

Analyzing metagenomic sequences remains a challenging problem due to the complex 

nature of metagenomes. Traditional sequence analysis approaches, which are designed 

specifically for single genome sequencing, may not be suitable for annotating 

metagenomes, each containing sequences sampled from many different species living in 

the same microbial community. In this thesis I introduced several different methods to 

alleviate the difficulty of analyzing metagenomic datasets, leading to improved 

metagenome assemblies and annotations of functional elements (including protein coding 

genes, CRISPR systems, and integron systems) for downstream analysis. 

1.1 Metagenomics 

Metagenomics is a science that aims to study entire collections of microbes living in the 

same environment. Also known as environmental sequencing or community sequencing, 

metagenomics is able to compensate the drawback of traditional sequencing procedure, 

where species needs to be cultured before sequencing while the majority of microbes on 

Earth are unable to grow in petri dishes [1]. The development of metagenomics therefore 

enables the study of the elusive species on Earth. The first metagenomics research 

emerged in 1998 [2], which provides a methodology to analyze the soil microbes by 

direct sequencing. Since then the microbes of many different environments have been 

studied using metagenomics approaches, including the acid mine drainage [3], ocean [4, 

5], soil [6, 7], the sludge [8], the permafrost [9], and even food (e.g., Korean kimchi) [10]. 
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Besides natural environments, animal and human bodies are also the targets of various 

metagenomic projects. For example, Turnbaugh et al. observed significant differences in 

the bacterial composition of the gut microbiomes in lean and obese mouse [11]. They 

also compared the gut microbiomes in lean and obese human twins and made similar 

discoveries [12]. To understand more about human microbiomes, a larger scale of 

sequencing effort has been made in Europe (called MetaHIT project), in which 124 

human gut samples were collected and analyzed [13]. The MetaHIT project also led to 

the discovery of three enterotypes of human gut microbiomes [14]. The Human 

Microbiome Project (HMP), initiated by the NIH Roadmap, enables the sequencing of the 

microbial communities in several human body sites (including nasal passages, oral 

cavities, skin, gastrointestinal tract, and urogenital tract) of the latest collection of 

individuals so far, in order to find the role of these microbes in human health and diseases 

[15].  

1.2 Next Generation Sequencing (NGS) 

The Next Generation Sequencing (NGS) technology [16], such as Roche/454 sequencing 

[17] or Illumine/Solexa [18], plays a very important role in metagenomics research. 

Compared to traditional Sanger sequencing technology [19], the NGS technology is able 

to yield many more reads in far less time. It also brings new opportunities. The 1000 

genome project, for example, attempts to sequence genomes from individuals around the 

world and discover all forms of human DNA polymorphism in different populations [20]. 

Another example is the Genome 10K project, which aims to obtain whole-genome 

sequences for 10,000 vertebrate species [21]. The massive sequencing effort can only be 
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achieved through NGS technology, which has sharply reduced the cost of sequencing. 

The cost per megabyte of Traditional Sanger sequencing technology is 100 times more 

than the Roche/454 sequencing technology, and the Illumina/Solexa sequencing cost is 

even lower than Roche/454 [22]. 

The advantages of NGS technology, however, come with a price: NGS sequencing reads 

are much shorter than Sanger reads: compared to up to 1000 bps per read for Sanger 

sequencing, the read length for Roche/454 is 400-500 bps and the length for 

Illumina/Solexa is ~100 bps [22]. Two problems are caused by the relatively short reads. 

The first problem is that the functional annotation for short reads is not as effective as 

longer reads; it has been shown that similarity searches of short reads (100 bps) missed 

60% to 85% of NCBI BLAST [23] homologs found by using longer reads [24]. The 

second problem is that shorter reads are much more difficult to assemble, as de novo 

assemblies constructed from short-read data are highly fragmented [25]. As a result the 

functional annotation or further analysis of the short reads and fragmented assemblies 

become much more challenging. 

1.3 Metagenome annotation 

The massive metagenomic data poses great challenges in many areas involving data 

management and data mining. Since metagenomic samples are retrieved directly from the 

environment, a metagenomic dataset usually consists of genomic sequences from many 

(hundreds or even thousands) species in a particular environment. This makes the 

analysis of metagenomic datasets very difficult because traditional methods for genome 

annotation do not work well for a mixture of sequences. Furthermore, metagenomics 
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research usually employs NGS technology, which produces short reads that are difficult 

to analyze. 

New computational tools have been developed to address the challenges raised in 

metagenomics, and most of them are trying to answer one of the two most important 

questions related to metagenomics: "who is there" and "what do they do." Briefly, the 

former question is related to deciphering the species composition of a bacteria 

community, and the latter question is regarded as understanding the functions that the 

species play individually, and as a whole. In the following two sub-chapters I will review 

some of the tools and algorithms developed for metagenomics. 

1.3.1 Who is there? 

The first question, "who is there," is often asked in most metagenomic projects. 16S 

rRNA gene profiling, or whole genome shotgun (WGS) sequencing of environmental 

DNA, can be used to study the species composition and diversity of natural bacterial 

communities. Species composition is often inferred from the resulted 16S rRNA 

fragments or shotgun sequences by similarity searches. Similarity searches, however, 

may only offer limited help in understanding the species composition due to the 

incomplete collection of sequenced bacteria or archaea: the IMG database [26] collects 

2780 bacteria genomes and 107 archaea genomes as of January 2012. On the other hand, 

composition-based binning tools are not limited by the similarities, but may only work 

for relatively long sequences. I will briefly review the two classes of computational tools 

(similarity-search based and composition-based) below. 
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Similarity-search based tools utilize searches of metagenomic sequences against a 

database of known genes/proteins, with or without phylogeny (often referred to as the 

phylotyping of metagenomic sequences). MEGAN [27] is a representative similarity-

based phylotyping tool, which applies the lowest common ancestor algorithm to assign 

sequencing reads to taxa based on BLAST results. Phylogenetic analysis of marker genes, 

including 16S rRNA genes [28], DNA polymerase genes [29], and the 31 marker genes 

defined by [30], are also applied to determine taxonomic distribution. By employing the 

marker genes, MLTreeMap [31] and AMPHORA [32], two phylogeny-based phylotyping 

tools, are developed to estimate the taxonomic distribution of metagenomes. These 

similarity-based and phylogeny-based tools suffer from a common limitation: The 

majority of the microbes are still unknown. As a result the analyses based on previous 

knowledge are very biased. 

Composition-based tools attempt to solve the problem by clustering (binning) the 

metagenomic sequences into different bins (species) without no (or little) prior 

knowledge of the species inside the metagenomes. These binning tools usually utilize 

DNA composition information (such as genome G+C content, dinucleotide or k-mer 

frequencies, and synonymous codon usage) that varies among organisms and is generally 

characteristic of evolutionary lineages [33]. The tools in this category include TETRA 

[34], MetaClust [35], CompostBin [36], TACOA [37], MetaCluster [38], and a genomic 

barcode-based method [39] . These tools usually use DNA compositions (such as 4-mer 

or 6-mer) as a signature of the species. Most composition-based tools achieve a 

reasonable performance only for long reads (at least 800 bps). This length limitation will 
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be difficult to break because of the local variation of DNA composition [33]. MetaCluster, 

which employs a different distance metric (Modified Chebychev Distance) to reduce the 

local variations for 4-mers, is able to bin reads of 500 bps; however reads with 50-150 

bps are still out of reach [38]. 

1.3.2 What do they do? 

The second question, "what do they do," is asked because we want to know the roles that 

the microbes play in the environment, which is usually achieved by assembling the 

sequencing reads and analyzing the assembled contigs. The most common de novo 

methods to assembling single-genome and metagenome datasets are based on de Bruijn 

graph [40]. However such assemblers, including EULER [40], Velvet [41], Abyss [42], 

and SOAPdenovo [43] were all designed for single-genome assembly. When applied to 

metagenomic datasets, these assemblers often result poor assemblies with short contigs. 

One of the most important reasons to prevent the assemblers from producing long contigs 

is the existence of polymorphism of common genomic regions shared by different 

genomes [44]. Such polymorphisms force the de novo assemblers to form new nodes in 

the de Bruijn graph to represent the differences. As a result, genes are usually fragmented 

into several contigs, each representing only a part of the genes. Even though specialized 

methods are proposed to better assemble metagenomic datasets, such as Genovo [45], 

MAP (Metagenomics Assembly Program) [46], or Meta-IDBA [44], the assembly results 

are still far from perfect for functional analysis. 

Specialized methods are proposed to get functional elements in metagenomes. For 

example, Ye and Tang [47] developed an ORFome assembly approach, which improved 
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the assembly of genes from metagenomic sequences by isolating reads with predicted 

ORFs and assemble them. This clearly demonstrates that specialized methods are 

required for getting specific functional elements (ORFs in this case) in metagenomic 

samples. 

1.4 Overview of proposed methods for metagenomics analysis 

In this thesis research, I developed several methods for improving the annotations of 

functional elements from metagenomics datasets. Firstly, I attempt to improve the whole 

genome assembly by binning the metagenomic datasets according to the species 

abundances before the assembly process. The species abundance differences could reduce 

the effectiveness of assembler since the assembler cannot distinguish whether a contig 

with low coverage represents a region from a rare species or it is caused by sequencing 

errors [44]. So if we cluster the species with similar abundance levels together and then 

assemble each bin separately, we can in principle improve the assembly results. The most 

challenging part for binning the species is that the species abundance levels for 

metagenomic datasets are usually unknown, which means that our binning algorithm 

needs to be un-supervised. I developed an algorithm, AbundanceBin, which is based on 

an Expectation Maximization (EM) algorithm, to solve this problem by gradually 

improving guesses of species abundances and the clustering of the reads. AbundanceBin 

is also able to approximate the species abundance levels and genome sizes, which allow 

us to take a glimpse of the species composition in the environment. By assembling the 

bins clustered by AbundanceBin separately and comparing the assembly results before 
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and after applying AbundanceBin, I discovered that application of AbundanceBin prior to 

assembly improves the assembly of metagenomes.  

To achieve better annotation of three types of functional elements, I developed three 

different targeted computational approaches, each for one type of the functional elements. 

Firstly I developed a novel method, GeneStitch, to assembling genes, the most important 

functional elements. GeneStitch is able to traverse the de Bruijn assemblies of a 

metagenomic dataset, guided by homologous genes using a network matching algorithm, 

to connect gene fragments scattered in different contigs, and form longer genes. This 

approach optimizes the utilization of de Bruijn graph representation for a metagenomic 

dataset by chaining contigs using the information from homologous genes. The idea of 

"gene-boosted assembly" was firstly employed by [48] for similar purpose (improving 

the assembly of genes) but using a different methodology (by recruiting reads using 

similarity search to close the gaps of the assembly).  This gene-boosted assembly 

approach, however, requires that the two species to be very similar (say, 99% identity); 

but such species may not always be available for assembling a dataset. GeneStitch allows 

us to use genes of more distantly related species (i.e., species of the same genus or a 

higher taxonomic level) to improve the assembly of genes in the target (meta-)genome. 

Furthermore, GeneStitch can be applied to datasets with a mixture of species, improving 

gene assembly for metagenomic sequences. 

I further designed two targeted computational methods for the discovery of two specific 

types of functional elements: CRISPRs and integrons. CRISPRs (Clustered regularly 

interspersed short palindromic repeats) together with cas genes are immunity systems of 
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bacteria against viruses and plasmids. CRISPR/Cas systems are found in most archaeal 

(~90%) and some bacterial (~40%) genomes [49-51], and the CRISPR arrays consist of 

24–47 bp direct repeats, separated by unique sequences (spacers) that are acquired from 

viral or plasmid genomes [52]. CRISPR/Cas defense pathways involve several steps, 

including integration of viral or plasmid DNA-derived spacers into the CRISPR array, 

expression of short crRNAs consisting of unique single repeat-spacer units, and 

interference with invading foreign genomes at both the DNA and RNA levels. By using a 

novel targeted assembly approach, which employs the uniqueness of direct repeat 

consensus sequence, I am able to isolate known CRISPRs as well as novel ones from 

human microbiome samples. 

Integrons are genetic elements that acquire and excise gene cassettes from their locus via 

site-specific recombination. An integron consists of a site-specific tyrosine recombinase 

(intI) gene, a primary recombination site attI immediately adjacent to the intI gene, and 

an array of captured gene cassettes encoding accessory functions [53]. Gene cassettes are 

the minimal units that can be mobilized by the integrase, with each cassette containing 

one or a very small number of genes and are separated by the recombination site attC. 

There are two types of integrons: chromosomal integrons found in chromosomes and 

mobile (resistance) integrons found on plasmids. In this research, I focus on 

chromosomal integrons. Compared to mobile integrons, which often carry only a few 

antibiotic resistance genes, chromosomal integrons usually carry far more genes of very 

diverse functions. A novel method, the constrained assembly approach, is developed for 

the discovery of integron gene cassettes from metagenomic sequences. Application of the 
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constrained assembly approach to the human microbiomes revealed a rich pool of 

integron gene cassettes associated with the Treponema denticola species (an oral 

spirochete implicated in periodontal disease). 

Note two different approaches are devised for discovering CRISPR (the targeted 

assembly approach) and integron gene cassettes (the constrained assembly approach), 

considering the difference of the structures of these two systems. As the spacers in 

CRISPR arrays are significant shorter than NGS reads, we could easily assemble 

CRISPR arrays using targeted assembly alone, by first collecting reads containing repeats 

and then assembling the reads using optimized parameters. By contrast, integron spacers 

(gene cassettes) contain 1–3 genes between the attC sites. The lengths of the integron 

spacers make it very difficult for assemblers to assemble the gene cassettes using the 

targeted assembly. Constrained assembly is proposed to overcome this limitation, and 

allows the assembly and characterization of integron gene cassettes. Both applications 

(the identification of the CRISPR arrays using the targeted assembly approach, and the 

identification of gene cassettes) demonstrate the importance of directed computational 

approaches for studies of important functional elements—which are poorly analyzed 

using generalized computational approaches (such as whole-metagenome assembly)—

and that they are essential for the analysis of metagenomic sequences.  
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2. AbundanceBin: an abundance-based binning algorithm 

The abundance differences of bacteria species in metagenomic samples have a large 

impact on the assembly results: high coverage regions can represent repeats or simply are 

sampled from genomes of the highly abundant species. We propose to solve this problem 

by binning the genomic sequences in a metagenome based on the species abundance 

levels prior to the assembly process. This method, AbundanceBin, attempts to classify the 

sequences based on the abundance information in an un-supervised manner, given that 

the species and their compositions in any metagenome are usually unknown beforehand. 

Since AbundanceBin resolves the abundance level differences of metagenomic datasets, 

which is one of the main causes for poor assembly of metagenome, we expect that the 

classification of metagenomic sequences into bins of similar abundances will improve the 

assembly results. The manuscript of this algorithm was written along with Yuzhen Ye 

and was published in [54] and [55]. 

2.1 Rationale 

In chapter one I reviewed several binning methods, most of which are based on 

composition information. However, these methods do not work very well on 

metagenomic datasets with species abundance level differences—the abundance level 

differences are very commonly seen in metagenomics (for example, the Acid Mine 

Drainage project [3] found two dominant species, accompanied by several other rarer 

species in that environment), and the difference in abundances may affect the 

classification results for DNA-composition based methods. For example, a weighted PCA 
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was adopted instead of a standard PCA in CompostBin, considering that the within-

species variance in the more abundant species might be overwhelming, compared to 

between-species variance [36]. MetaCluster also reported that the binning accuracy 

decreased when the abundance ratio increased, especially for closer species [38]. 

2.2 AbundanceBin algorithm 

The AbundanceBin algorithm is built upon an extension of the Lander-Waterman model, 

[56], which was proposed for characterizing the coverage of each nucleotide position of a 

genome using a Poisson distribution for single genome sequencing projects. We view the 

sequencing procedure in metagenomic projects as a mixture of m Poisson distributions, m 

being the number of species. The problem is to find the mean values λ1 to λm, which are 

the abundance levels of the species, of these Poisson distributions. 

2.2.1 Mixed Poisson distribution 

AbundanceBin starts by fitting the genome sequencing procedure to a Poisson 

distribution. In a random shotgun sequencing process for a single genome, the probability 

that a read starts from a certain position is 𝑁/(𝐺 − 𝐿 + 1), where N is the number of 

reads, G is the genome size, and L is the length of reads. 𝑁/(𝐺 − 𝐿 + 1) ≈ 𝑁/𝐺, given 

𝐺 ≫ 𝐿. Assume x is a read and a l-tuple  (consecutive nucleotide with length l) w belongs 

to x, The number of occurrences of w is the set of reads follows a Poisson distribution 

with parameter 𝜆 = 𝑁(𝐿 − 𝑙 + 1)/(𝐺 − 𝑙 + 1) ≈ 𝑁𝐿/𝐺  in a random sampling process 

with read length l. 
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We can also use a similar principle to fit the sampling procedure of a metagenome to a 

mixed Poisson distribution: the number of occurrences w in the set of reads follow a 

Poisson distribution with parameter 𝜆 = 𝑁(𝐿 − 𝑙 + 1)/(𝐺 − 𝑙 + 1) ≈ 𝑁𝐿/𝐺 , but G in 

this case is the total length of the genomic sequences in the metagenome. Moreover the 

reads in metagenomic datasets are from species with different abundances. If the 

abundance of species i is n, the total number of occurrences of any l-tuple w in the whole 

set of reads coming from species i should follow a Poisson distribution with parameter 

𝜆𝑖 = 𝑛𝜆, due to the additivity of Poisson distribution. So the problem of finding the 

relative abundance levels of different species is transformed to the modeling of mixed 

Poisson distribution. 

 

Figure 1. A schematic illustration of AbundanceBin pipeline. 

 

2.2.2 The binning algorithm 
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As depicted in Figure 1, the binning algorithm starts by counting l-tuples in all 

sequencing reads. Denote 𝑥 = {𝑛(𝑤𝑖)} (𝑖 ∈ [1,𝑊]), where 𝑛(𝑤𝑖) is the observed count 

of tuple i and W is the total number of possible l-tuples. Denote S as the total number of 

bins. Denote 𝑔 = {𝑔𝑖} and 𝜆 = {𝜆𝑖} (for 𝑖 ∈ [1,𝑊]), where 𝑔𝑖 and 𝜆𝑖 are the (collective) 

genome size and abundance level of bin i, respectively. Denote 𝜃 = {𝑆,𝑔, 𝜆}. Then the 

goal of the binning algorithm is to optimize the logarithm of the joint probability 

(likelihood) of obtaining a particular vector of observed l-tuple counts x and the 

parameter 𝜃, log𝑃(𝑥,𝜃). The hidden variables in the optimization problem are the bin 

identities of the l-tuples. We use an Expectation-Maximization (EM) algorithm to solve 

the optimization problem by marginalizing over the hidden variables. The EM steps are 

as follows. 

1. Initialize the total number of bins S, their (collective) genome size 𝑔𝑖 , and 

abundance level 𝜆𝑖  for 𝑖 = 1,2,⋯ , 𝑆. We tested various initialization conditions 

and decide to set the abundance levels to the multiples of 10 (e.g., 1, 10, 20, 30, 

40 for five bins) and set the genome sizes to 1,000,000 for all bins. 

2. Calculate the probability that the l-tuple 𝑤𝑗 (𝑗 = 1,2,⋯ ,𝑊; W is the total number 

of possible l-tuples) coming from ith species given its count 𝑛�𝑤𝑗�. The equation 

can be derived as follows. 
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Pr �𝑤𝑗 ∈ 𝑠𝑖�𝑛�𝑤𝑗�� =
𝑃𝑟�𝑛�𝑤𝑗�|𝑤𝑗 ∈ 𝑠𝑖�𝑃𝑟�𝑤𝑗 ∈ 𝑠𝑖�

𝑃𝑟 �𝑛�𝑤𝑗��

=
𝑃𝑟�𝑛�𝑤𝑗�|𝑤𝑗 ∈ 𝑠𝑖�𝑃𝑟�𝑤𝑗 ∈ 𝑠𝑖�

∑ 𝑃𝑟�𝑛�𝑤𝑗� ∈ 𝑠𝑚|𝑤𝑗 ∈ 𝑠𝑚�𝑃𝑟�𝑤𝑗 ∈ 𝑠𝑚�𝑆
𝑚=1

=
𝑃𝑟�𝑛�𝑤𝑗�|𝑤𝑗 ∈ 𝑠𝑖� ∙

𝑔𝑖
𝐺

∑ 𝑃𝑟�𝑛�𝑤𝑗� ∈ 𝑠𝑚|𝑤𝑗 ∈ 𝑠𝑚� ∙
𝑔𝑚
𝐺

𝑆
𝑚=1

=

𝜆𝑖
𝑛�𝑤𝑗�∙𝑒−𝜆𝑖

𝑛�𝑤𝑗�!
∙ 𝑔𝑖

∑ 𝜆𝑚
𝑛�𝑤𝑗�∙𝑒−𝜆𝑚

𝑛�𝑤𝑗�!
∙ 𝑔𝑚𝑆

𝑚=1

=
𝑔𝑖

∑ ��𝜆𝑚
𝜆𝑖
�
𝑛�𝑤𝑗�

∙ 𝑒𝜆𝑖−𝜆𝑚 ∙ 𝑔𝑚�𝑆
𝑚=1

=
𝑔𝑖

∑ 𝑔𝑚 �
𝜆𝑚
𝜆𝑖
�
𝑛�𝑤𝑗�

𝑒(𝜆𝑖−𝜆𝑚)𝑠
𝑚=1

 

where 𝑃𝑟�𝑤𝑗 ∈ 𝑠𝑖� = 𝑔𝑖
𝐺

 is the prior probability that word j is from species i, 

and G is the total length of genomic sequences obtained in the metagenomic 

dataset. The last equation is the result of applying the probability mass function 

of Poisson distribution into the probability function. 

3. Calculate the new values for each 𝑔𝑖 and 𝜆𝑖 

𝑔𝑖 = �𝑃�𝑤𝑗 ∈ 𝑠𝑖|𝑛�𝑤𝑗��
𝑊

𝑗=1

 

𝜆𝑖 =
∑ 𝑛�𝑤𝑗�𝑃 �𝑤𝑗 ∈ 𝑠𝑖|𝑛�𝑤𝑗��𝑊
𝑗=1

𝑔𝑖
 

4. Iterate step 2 and 3 until the parameters converge or the number of runs exceeds a 

maximum number of runs. The convergence of parameters is defined as 
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∀𝜆𝑖 ��
𝜆𝑖
𝑡+1

𝜆𝑖
𝑡 �� < 10−5 and ∀𝑔𝑖 ��

𝑔𝑖
𝑡+1

𝑔𝑖
𝑡 �� < 10−5 

where 𝜆𝑖
(𝑡)  and 𝜆𝑖

(𝑡)  represent the abundance level and genome length of bin i at 

iteration t respectively. 

Once the EM algorithm converges, we can estimate the probability of a read assigned to a 

bin by the majority rule based on its l-tuple binning results, which is 

𝑃(𝑟𝑘 ∈ 𝑠𝑖) =
∏ 𝑃 �𝑤𝑗 ∈ 𝑠𝑖|𝑛�𝑤𝑗��𝑤𝑗∈𝑟𝑘

∑ ∏ 𝑃 �𝑤𝑗 ∈ 𝑠𝑖|𝑛�𝑤𝑗��𝑤𝑗∈𝑟𝑘𝑠𝑖∈𝑆

 

where 𝑟𝑘 is a given read, 𝑤𝑗 is the l-tuple that belong to 𝑟𝑘, and 𝑠𝑖 is any bin. A read will 

be assigned to the bin with the highest probability among all bins. A read remains 

unassigned if the highest probability is < 50%. 

2.2.3 Lower- and upper-limit of l-tuple count 

AbundanceBin is able to classify the reads into different bins by using the EM algorithm 

to extract l-tuples and estimate their abundance levels. However, sequencing errors and 

vector sequences will affect the counting of the l-tuples, which may further have an 

influence on the accuracy of the binning results. A lower- and upper-limit for l-tuple 

counts is applied as additional parameters when we approximate 𝜆𝑖  and 𝑔𝑖  using 

AbundanceBin. The lower-limit is introduced to deal with sequencing errors, and the 

upper-limit is introduced to handle l-tuples with extremely high counts, such as those 

from vector sequences or repeats of high copy numbers—this phenomenon has already 

been utilized for vector sequence removal, as described in [57]. Let the lower-limit be 
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Blower and the upper-limit be Bupper. Then the formula for calculating 𝜆𝑖 and 𝑔𝑖 is modified 

to 

𝑔𝑖 = �𝑃�𝑤𝑗 ∈ 𝑠𝑖|𝑛�𝑤𝑗��
𝑊

𝑗=1

,∀𝑛�𝑤𝑗� > 𝑏𝑙𝑜𝑤𝑒𝑟 ∧ 𝑛�𝑤𝑗� < 𝐵𝑢𝑝𝑝𝑒𝑟 

𝜆𝑖 =
∑ 𝑛�𝑤𝑗�𝑃 �𝑤𝑗 ∈ 𝑠𝑖|𝑛�𝑤𝑗��𝑊
𝑗=1

𝑔𝑖
,∀𝑛�𝑤𝑗� > 𝑏𝑙𝑜𝑤𝑒𝑟 ∧ 𝑛�𝑤𝑗� < 𝐵𝑢𝑝𝑝𝑒𝑟 

2.2.4 Detecting the number of bins automatically 

The above algorithm, like most un-supervised clustering (binning) algorithms, requires 

that the number of bins to be assigned before the algorithm can be applied. It may not be 

realistic, however, since we usually don't know how many species are there in a 

metagenome. We proposed a recursive binning approach to find the number of bins 

automatically. This approach is motivated by the observation that reads from genomes 

with higher abundance levels are better classified than reads from genomes with lower 

abundance levels. As indicated in Figure 2, the recursive approach starts by binning any 

dataset into two bins, and further splitting each bin into two bins in a top-down manner. 

The procedure continues if 1) the predicted abundance values of two bins differ 

signicantly, i.e., �𝜆𝑖 − 𝜆𝑗� min�𝜆𝑖 , 𝜆𝑗�� ≥ 1 2⁄ ; 2) the predicted genome sizes are larger 

than a certain threshold (currently set to 400,000, considering that the smallest genomes 

of living organisms yet found are about 500,000 bps—Nanoarchaeum equitans has a 

genome of 490,885 bps, and Mycoplasma genitalium has a genome of 580,073 bps); and 

3) the number of reads associated with each bin is larger than a certain threshold 

proportion (3%) of the total number of reads classified in the parent bin. The recursion 
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stops when the abundance levels predicted by two bins are too close or that the reads 

assigned to one of the bins are too few—both conditions imply that the bin consists of 

reads mostly from species of similar abundance levels that they cannot be further 

separated. 

 

Figure 2. The recursive binning approach used to automatically 

determine the number of bins. 

 

2.2.5 Combination of AbundanceBin and MetaCluster 

Short reads sampled from species of similar abundances will be classified into the same 

bin by AbundanceBin. Therefore, these reads can only be further classified into different 

bins by other binning approaches that utilize species-specific patterns, such as DNA 

compositions. We combine AbundanceBin and MetaCluster, one of the most recently 

developed DNA composition-based binning approaches, as follows. Given a 

metagenomic dataset, AbundanceBin is first used to classify reads into different bins 
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(abundance bins), and then MetaCluster is used to further classify reads in each 

abundance bin into species bins, each containing reads sampled from a species. We 

expect that such a two-step approach may achieve higher binning accuracy than using 

composition-based methods alone, because composition-based methods are less likely to 

be affected by the different abundance levels of the reads when the reads are classified 

into different abundance bins in advance. Note in MetaCluster the desired number of bins 

needs to be defined by prior knowledge, which limits the practical application of our 

integrated approach. But our proof-of-concept experiments show that AbundanceBin can 

be used to improve the composition-based binning of reads, especially when the reads are 

short. 

2.3 Results and evaluations of AbundanceBin 

AbundanceBin was tested on several datasets, including simulated and real ones, to 

evaluate its performances. The simulated datasets were generated using MetaSim 

software [58] with short and very short sequence lengths (400-75 bps). Sequencing errors 

were also introduced in some of the datasets for benchmarking. The results show that 

AbundanceBin gives both accurate classification of reads to different bins and precise 

estimation of the abundances—as well as the genome sizes—in each bin. Note that since 

these parameters are usually unknown in real metagenomic datasets, we focus on 

synthetic datasets for benchmarking. AbundanceBin was also applied to the actual AMD 

dataset, revealing a relatively clear picture of the complexity of the microbial community 

in that environment, consistent with the analysis reported in [3]. 
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2.3.1 Tests of abundance differences and the length of l-tuples 

A series of experiments is conducted to test the abundance ranges of species required for 

accurate binning of reads. The result is demonstrated in Figure 3. Figure 3(a) shows the 

binning results for simulated short reads sampled from two genomes (Mycoplasma 

genitalium G37 and Buchnera aphidicola str. BP) at abundance ratios, 4:1, 3:1, 2.5:1, 2:1, 

1.5:1, and 1:1 (with 50,000 simulated reads of ~400 bases for each setting). The 

classification error rate is low if the abundance ratio is 2.0 (0.1% and 4.7% for ratio 4:1 

and 2:1, respectively), but rises dramatically when the abundance ratio drops to 1.5:1 (the 

error rate is 20.6% for abundance ratio 1.5:1). The results suggest that the abundance 

ratio needs to reach at least 2:1 for a good classification by AbundanceBin. In addition, 

different lengths of l-tuples are tested on several test cases, including three two-genome 

cases (one case with species differ in phylum level and the other two cases with species 

differ in species level) and one three-genome case with species differ in phylum level. 

The averaged error rates are shown in Figure 3(b). The results show that when l drops to 

16, the binning performance dropped significantly. The performance improves gradually 

when l increases to 20. Considering the performance on the tested cases, we choose to 

use l = 20 for the following experiments. 
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Figure 3. Benchmark results of abundance differences and l-tuple 

lengths. (a) The classification error rates for classifying reads sampled 

from two genomes versus their abundance differences, and (b) the error 

rates for different l-tuple lengths. These error rates are averaged from 

four test cases, including three two-genome cases (one test case with 

species differ in phylum level and the other two test cases with species 

differ in species level) and one three-genome case. 

 

2.3.2 Binning results of AbundanceBin on synthetic datasets 

The results of several synthetic datasets of short reads are summarized in Table 1. Overall 

AbundaneBin achieves very low error rates for two genomes even under cases that the 

sequencing reads are very short (75 bps) or that there are errors in the reads (simulated 

dataset A, C, and E in Table 1). The estimation of genome sizes and genome abundance 

levels are also very accurate. On the other hand the error rates for binning three genomes 

are slightly higher (simulated dataset B, D, and F in Table 1). We observe that most of 

the errors occur in the least abundant bin; but most reads from species with higher 

abundance levels are correctly classified. The reason may be that reads sampled from 

higher abundant species fit better to the mixed Poisson distribution than those with lower 
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abundant species—species with lower abundance levels are very difficult to deal with, 

since the reads sampled from such species are easily diluted among all reads. But 

AbundanceBin is still able to classify the reads from species of higher abundances 

correctly for all the tested synthetic metagenomic datasets, including one with reads 

sampled from 6 different genomes (see Table 2). Note that we also list the normalized 

error rate for comparison purpose, which is proposed in [36] to estimate the error rate for 

each bin separately. But we argue that the normalized error rate may not be suitable for 

datasets with abundance differences since the species with lower abundance levels is very 

difficult to bin well. 

I would like to emphasize here that AbundanceBin can bin reads as short as 75 bases with 

reasonable classification error rates, as shown in Table 1. As I discussed in previous 

chapter, binning of very short reads, such as 75 bases, is extremely difficult and cannot be 

achieved by any of the existing composition based binning approaches, due to the 

substantial variation in DNA composition within a single genome. AbundanceBin will 

also give an estimation of the genome size for each bin. As shown in Table 1, for most of 

the tested cases, the estimated genome sizes are very close to the real ones. Note that 

AbundanceBin will classify reads from different species of similar abundances into a 

single bin. In this case, the predicted genome size for that bin is actually the sum of the 

genome sizes of the species classified into that bin. 
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Table 1. Tests of AbundanceBin on synthetic metagenomic datasets (A-D without sequencing errors, and 

E-F with sequencing errorsa) 

ID Speb Lenc Total 

reads 

Bin Abundance Genome size Error rate 

(%) Real Predicted Real Predicted 

A 2 400 

bp 

50,000 1 27.23 26.27 580,076 570,859 0.10 

(0.20d) 2 6.83 6.49 615,980 614,605 

B 3 400 

bp 

50,000 1 24.64 23.78 580,076 568,549 3.10 

(6.64) 2 6.13 6.02 615,980 517,110 

3 1.80 2.39 1,072,950 941,425 

C 2 75 bp 200,000 1 20.47 15.66 580,076 562,584 0.64 

(1.07) 2 5.08 3.92 615,980 608,401 

D 3 75 bp 200,000 1 27.60 20.93 580,076 565,859 6.18 

(11.74) 2 6.93 5.99 615,980 368,836 

3 2.07 2.43 1,072,950 1,100,309 

E 2 297 

bp 

50,000 1 20.21 11.63 580,076 521,168 1.12 

(0.99) 2 5.07 3.01 615,980 945,435 

F 3 297 

bp 

150,000 1 55.48 30.58 580,076 559,395 8.20 

(11.41) 2 13.98 9.60 615,980 341,290 

3 3.50 2.72 1,072,950 3,064,199 
a: The average sequencing error rate introduced is 3%, higher than the error rate of recent 454 machines (e.g., the 

accuracy rate reported in [59] is 99.5%). A 3% sequencing error can reduce the l-tuple counts by about half (i.e., about 

1 − 0.9720 = 0.46 of expected 20-mers without sequencing errors), which makes accurate estimation of abundance 

and genome size difficult. b: The number of species used in simulating each metagenomic dataset. The genomes used in 

these tests are Mycoplasma genitalium G37, Buchnera aphidicola str. BP, and Chlamydia muridarum Nigg. The first 

two genomes are used for the 2 species cases. c: The average length of the simulated reads. d: Normalized error rates, 

which calculates the error rate for each bin separately and then take an average of all error rates. 
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AbundanceBin also works well on binning closely related species (closely related species 

often have similar genomes, and therefore it is often very difficult to separate reads 

sampled from closely related species). For the synthetic metagenomic datasets we tested, 

most reads from species that differ at only the species level can still be classified into 

correct bins with very low error rates. For examples, for two datasets, the error rates for 

binning with AbundanceBin are 0.96% and 0.68% for the dataset simulated from the 

genomes of Corynebacterium efficiens YS-314 and Corynebacterium glutamicum ATCC 

13032, and the dataset simulated from the genomes of Helicobacter hepaticus ATCC 

51449 and Helicobacter pylori 26695 (both sets of genomes only differ at the species 

level), respectively. These results demonstrate the ability of AbundanceBin to separate 

short reads from closely related species, even if the species are of the same genus. The 

only limitation is that AbundanceBin cannot separate reads from two different strains of 

the same species, but the separation of reads from different strains still remains to be a 

very difficult scientific problem, and to the best of my knowledge no effective algorithm 

exists for this task. 

2.3.3 Binning results of AbundanceBin on datasets with sequencing errors 

As mentioned in Methods, AbundanceBin can be configured to ignore l-tuples that only 

appear once to deal with sequencing errors, considering that those l-tuples are likely to be 

contributed by reads with sequencing errors and that the chance of having reads with 

sequencing errors at the same position will be extremely low. This may exclude some 

genuine l-tuples, but test results reveal that AbundanceBin achieves even better 

performance if all l-tuples of count 1 are discarded for classifying reads with sequencing 
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errors (data not shown). AbundanceBin achieves slightly worse classification of reads 

when reads contain sequencing errors, as compared to the classification of simulated 

reads without sequencing errors (see cases E and F in Table 1). This is expected, given 

that many spurious l-tuples are generated with a 454 sequencing error model. For 

example, 12,901,691 20-tuples can be found in a dataset of simulated reads from two 

genomes with sequencing errors (case E in Table 1), 5 times more than the case without 

error models (2,370,720). 

2.3.4 Estimation of the bin numbers 

The recursive approach that we developed was used to determine the bin numbers 

automatically. Evaluations reveal that overall the performances of the recursive binning 

approach are comparable to the cases with pre-defined bin numbers for test cases from 

two to six genomes, as shown in Table 2. Overall the performances of the recursive 

binning approach are comparable to the cases with predefined bin numbers. Figure 4 

depicts the recursive binning results of the classification for one of the synthetic 

metagenomic datasets (which has reads sampled from 6 genomes) into 6 bins of different 

abundances (with classification error rate = 3.73%), starting with a bin that includes all 

the reads and ending with 6 bins, each having reads correctly assigned to them. It is 

interesting that the recursive binning approach achieves even better performance for 

some cases. A simple explanation to this observation is that the recursive binning strategy 

may create bigger abundance differences, especially at the beginning of the binning 

process, and AbundanceBin works better at separating reads from species with greater 
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abundance differences (see Figure 3(a)). We note again that the high abundant bins are 

classified relatively well. The majority of errors occur in low abundant bins. 

Table 2. Comparison of binning performance using the recursive binning approach ("Recursive") versus the 

binning performance when the total number of bins is given ("Predefined") 

Test cases Error rate (normalized error rate) 

Predefined Recursive 

3 genomes (no error model; 400 bp) 3.10% (6.64%) 3.24% (7.47%) 

3 genomes (no error model; 75 bp) 6.18% 

(11.74%) 

4.84% (9.31%) 

3 genomes (454 error model, ~3% error rate; 297 

bp) 

8.21% 

(11.41%) 

2.29% (4.21%) 

4 genomes (no error model; 400bp) 1.12% (5.16%) 2.96% (6.96%) 

6 genomes (no error model; 400bp) 2.50% (9.23%) 3.73% 

(13.07%) 
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Figure 4. The recursive binning of a read dataset into 6 bins of different 

abundances. Each box represents a bin with the numbers indicating the 

abundance of the reads classified to that bin; e.g., the bin on the top has 

all the reads, which will be divided into two bins, one with reads of 

abundances 1.5, 4, 8 and 64, and the other bin with reads of abundances 

32 and 64. 

 

2.3.5 Binning of Acid Mine Drainage (AMD) dataset 

AbundanceBin was also tested on a simulated and real Acid Mine Drainage (AMD) 

metagenomic dataset. The AMD microbial community was reported to consist of two 

species of high abundance and three other less abundant species [3]. With the difference 

of two abundance levels in this environment, it is expected that the algorithm could 

classify the AMD dataset into two bins.  

We first applied AbundanceBin to a synthetic AMD dataset, which we have correct 

answers to compare with. The synthetic AMD dataset contains 150,000 reads from five 
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genomes, with abundances 4:4:1:1:1. The length of reads is 400bp in average. The 

recursive binning approach automatically classified the reads into two bins with an error 

rate of 1.03% (see Figure 5(a)). Note here that each bin has reads sampled from multiple 

species. A read is considered to be classified correctly if it is classified into the bin of the 

correct abundance. The binning accuracy dropped only slightly (with an error rate of 

2.25%) for the synthetic AMD dataset when sequencing errors are introduced into the 

dataset. 

Next we applied AbundanceBin to reads from the actual AMD dataset (downloaded from 

NCBI trace archive; 13696_environmental_sequence.007). It successfully classified these 

reads into exactly two bins (one of high abundance and one of low abundance) using the 

recursive binning approach (see Figure 5(b)). Note the reads in this dataset have vector 

sequences, which result in a very small number of l-tuples of extremely high abundance 

(the highest count is 50,720). Two approaches were employed to avoid the influences of 

the vector sequences: 1) we used the Figaro software package[57] to trim the vector 

sequences, and 2) we set an upper-limit for the count of all l-tuples, ignoring l-tuples with 

counts larger than the upper-limit (200 by default). We also downloaded the sequences of 

5 scaffolds of the 5 partial genomes assembled from the AMD dataset, so that we can 

estimate the classification accuracy of AbundanceBin. The classification error rate of the 

AMD sequences is ~14.38%. Note this error rate only gives us a rough estimation of the 

classification accuracy, since only 58% of the AMD reads can be mapped back to the 

assembled scaffolds based on similarity searches by BLAST—we mapped a read to a 

scaffold if the read matches the scaffold with BLAST E-value cutoff set to 1e-50, 
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sequence similarity greater than or equal to 95%, and a matched length of at least 70% of 

the read length. We emphasize that AbundanceBin achieved a much better classification 

(with an error rate of 1.03%) for the synthetic AMD reads, for which we have correct 

answers to compare with. 

 

Figure 5. The binning results for a simulated (a), and the actual (b) 

AMD datasets. The histogram shows the total number of reads from 

different genomes classified to each bin. 

 

2.3.6 Combination of AbundanceBin and composition-based binning 
approaches 

AbundanceBin can achieve accurate binning of very short metagenomic reads by 

utilizing abundance differences of the source species of the reads as shown above. 

However, it cannot be used to separate reads sampled from species of similar abundances. 

On the other hand, the performance of composition-based binning approaches drops for 

binning reads with abundance differences. We combine AbundanceBin (an abundance-

based binning approach) and MetaCluster (a composition-based binning approach) so that 
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reads of different abundances can first be separated and then reads of similar abundances 

can be further classified. We apply this methodology to both the synthetic and real AMD 

datasets. As shown in Figure 6, the classification results of this combined approach are 

better than those of MetaCluster. For the synthetic AMD dataset with 400bp reads, the 

error rate of the combined approach is 4.72%, much lower than 26.82% by using 

MetaCluster alone. Similar trend also exists for the real AMD dataset: the error rate of the 

combined approach (21.76%) is lower than that of MetaCluster (51.15%). 

 

Figure 6. Comparison of error rates of applying AbundanceBin and 

MetaCluster and applying MetaCluster alone. The datasets include four 

synthetic AMD datasets and the real AMD dataset. 

 

Current composition-based approaches cannot classify very short reads. To test to what 

extent AbundantBin can help composition-based methods for binning, we simulated 

AMD datasets with different read lengths ranging from 75 bp to 400 bp. The binning 
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results are demonstrated in Figure 6. The classification error rates for the combined 

approach in all test cases are significantly better than MetaCluster. The majority of errors 

are caused by the inability of MetaCluster to separate very short sequences (due to the 

local variation of DNA composition patterns). Overall these results demonstrate that a 

better binning can be achieved to separate metagenomic reads by combining orthogonal 

information, the abundance differences of the source species and their different 

composition patterns. 

2.3.7 Assembly after binning 

Finally, to test whether AbundanceBin helps assembly, we assembled the reads in each 

bin separately and put the assembly results together using SOAPdenovo [43]. The 

assembly results for all bins in one dataset are merged together in order to compare them 

with the assembly without applying AbundanceBin. We use three different metrics (N50, 

average contig length, and maximum contig length) to compare the assembly results of 

the simulated and real AMD datasets. The result is shown in Table 3. We found that the 

N50 and the average contig length are increased for both simulated and real AMD 

datasets: the N50 increases from 18,286 to 19,567, and the average contig length 

increases from 2,078 to 2,193. On the other hand the maximum contig length increases in 

the simulated AMD dataset but decreases in the real AMD dataset. These results suggest 

that AbundanceBin could in principle improve the assembly as long as most reads are 

classified correctly. The decrease of the maximum lengths of the real AMD dataset may 

be caused by misclassification of reads contributing to the longest contig in real 

metagenomic dataset, which resulted in a break of the longest contig, as indicated in 
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Figure 5(B); but we still see improvements of N50 and average contig length, indicating 

that in average the contigs assembled after binning are longer and better. More 

comprehensive tests and probably adjustments of the parameters involved in the 

AbundanceBin algorithm and the following assembly of reads in each bin are needed to 

improve the utilization of AbundanceBin in improving metagenome-assembly.  

Table 3. Comparison of assembly results before and after applying AbundanceBin. 

Dataset Before or after 

AbundanceBin 

N50 Average 

contig 

len 

Max 

contig len 

Simulated AMD 

dataset 

Before 18,286 2,078 177,320 

After 19,567 2,193 373,400 

Real AMD dataset Before 884 411 35,797 

After 897 449 19,818 

 

2.4 Discussion 

We have shown that the abundance-based algorithm for binning has the ability to classify 

short reads from species with different abundances. Our approach has two unique 

features. First, our method is "unsupervised" (i.e., it doesn't require any prior knowledge 

for the binning). Second, our method is especially suitable for short reads, as long as the 

length of reads exceeds the length of the l-tuple (e.g., 20). AbundanceBin can in principle 

be applied to any metagenomic sequences acquired by current NGS, without human 

interpretation. 
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Since the initialization conditions of the EM algorithm could have an impact on the 

convergence, various initialization conditions were tested and we finally decide to set the 

abundance levels to the multiples of 10 and the genome sizes to 1,000,000 for all species. 

The advantage of this setting is that the abundance differences are big enough so that 

each bin will converge to the correct direction. This setting works well for all datasets 

that we tested, including synthetic datasets and real datasets. 

We implemented a simple strategy—excluding l-tuples that are counted only once from 

the abundance estimation—to handle sequencing errors. Tests have showed that 

AbundanceBin achieved better classification if all l-tuples of single count are discarded 

for the test cases that contain sequencing errors. One potential problem of discarding l-

tuples of low counts is that some genuine l-tuples will be discarded as well, which results 

in a lower abundance estimation and a worse prediction of genome sizes, especially for 

the species with low abundance, as shown in Table 1. But we argue that AbundanceBin 

can still capture the relative abundances of different bins correctly, which is more 

important than the absolute values. Another potential problem is that reads from low 

abundant genomes may not be classified when sequencing errors are introduced in the 

reads. For example, the number of unclassified reads in a two-genome case 

(metagenomic dataset E in Table 1) is 12, and 389 in a three-genome case (metagenomic 

dataset F in Table 1). All unclassified reads in both cases belong to the least abundant 

species, indicating that the abundance values greatly affect the predicted results, 

especially when sequencing errors are present. We expect that both problems will 

become less problematic as sequencing coverage is increased, which is possible with 
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massive throughput NGS techniques. As for the abundance ratio required for successful 

classification, we find that the ratio should be at least 2:1 to obtain an acceptable result. 

The required ratio, of course, is also affected by several other factors, such as the actual 

abundance level, the average length of reads, and the sequencing error rate. The tests 

were intentionally conducted on well-classified datasets, which allow us to follow 

changes in classification error resulting from abundance differences. Still, other factors 

besides the abundance ratio must also be considered. 

AbundanceBin runs fast, and all the tests shown in the paper were completed within an 

hour (using single CPU on Intel(R) Xeon(R)@2.00GHz) with moderate memory usage. 

For example, binning of the synthetic metagenomic dataset A (see Table 1) requires 

100MB memory and takes less than two minutes; binning of dataset B requires 150MB 

memory and also takes less than two minutes. Even for larger dataset such as the 

synthetic AMD dataset, which contains 150,000 reads, the binning process needs only 

300MB memory and takes about seven minutes. Therefore AbundanceBin requires only 

modest amount of memory unless it is dealing with very large datasets. 

Since AbundanceBin employs a unique feature—species abundance levels—to achieve 

binning of reads, it can be used to assist other tools to analyze metagenomic datasets. To 

demonstrate this usage, we combine the power of AbundanceBin and MetaCluster to 

separate datasets with species abundance differences. We apply this methodology on the 

synthetic and the real AMD dataset, and the results are satisfactory: the error rates of this 

combined approach are much lower than those of MetaCluster for both tests. These 

results confirm our hypothesis that, by separating the whole dataset into several sub-
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dataset, each contains reads with similar abundance level, the composition-based 

approach can be applied to each sub-dataset, without being influenced by the differences 

in abundance levels. There are several potential strategies for determining the number of 

bins for MetaCluster. For example, the dataset can be analyzed by using phylogenetic 

marker genes for assessing the total number of species as in [30]. We can also test 

different clustering algorithms that can automatically determine the total number of 

clusters [34-38]. Our tests show that by integrating different information, we may 

improve binning accuracy. We further apply AbundanceBin to separate reads into bins of 

different abundances (coverages), prior to the assembly of metagenomic sequences. The 

results show that we are able to improve the quality of genome assembly, even when the 

binning error rate is slightly higher (real AMD dataset in Table 3). By achieving higher 

binning accuracy and combining AbundanceBin with other composition-based binning 

algorithms, we hope that we can further improve the assembly quality by using this novel 

approach. 
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3. GeneStitch: A Network Matching Algorithm to Gene 

Assembly 

Genes are the basic functional units of a genome and therefore a metagenome. 

Annotations of genes encoded by a metagenome are important for revealing the 

functional roles that the microorganisms play as a whole community. For example, the 

genes retrieved from different depths of the ocean show different distribution 

composition of functionalities, implying that some genes may be specific to only certain 

depth levels [60]. However, genes in metagenome assemblies are usually too fragmented 

to be analyzed as a whole. The algorithm, GeneStitch, was developed to get longer genes 

from metagenomic assemblies. This manuscript is written along with Mina Rho, Thomas 

Doak, and Yuzhen Ye, and will appear in [61]. 

3.1 Rationale 

The reason that genes in metagenomic assemblies are very fragmented is that most de 

Bruijn graph-based assemblers usually produce very tangled graph, especially when 

sequencing errors exist. This greatly impedes the formation of long contigs, because the 

branches cannot be resolved. Moreover, k-mers from different regions or even from 

different species may be connected together, which further complicates the structure of 

the de Bruijn graph. As a result, many short contigs will be reported, which are often 

insufficient for downstream analysis, such as ab initio gene prediction in these short 

contigs [62], or homology searches of the contigs [24]. For instance, the MetaHIT 
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consortium only considered contigs of length > 500 bp, which represented only 42.7% of 

the sequencing reads [13]. 

Salzberg and colleagues proposed a gene-boosted assembly approach to improve 

assembly quality, which used proteins from reference genomes to recruit sequencing 

reads to fill in the gaps between contigs [48]. Combining this approach with several other 

strategies, they successfully produced 76 contigs from 8,627,900 33-bp reads obtained 

from P. aeruginosa PAb1, with the largest contig being 512,638 bps. They also 

demonstrated that most of the genes in a newly sequenced bacterial strain can be 

assembled using the genome of another strain of the same species as the reference, using 

gene-boosted assembly. This approach, however, was only applied to single genome 

assembly problems. Metagenome assembly is more difficult, because of the presence of 

homologous genes from multiple species in the same community that may behave like 

repeats for assemblers. Hence, the success of the approach relies on the utilization of a 

closely related genome (e.g., the genome of the same species but a different strain), 

which may not be available in metagenomics, which aims to study un-cultured microbial 

species in natural habitats. 

GeneStitch, an algorithm based on a network-matching algorithm, is developed to infer 

gene paths (sequences of contigs), each of which represents a gene or a gene fragment, in 

the tangled de Bruijn graph resulted from de novo assembly of metagenomic reads. Given 

a reference gene sequence, GeneStitch searches for a path in the de Bruijn graph that is 

most similar to the given reference gene. Assuming that the gene paths found by 

GeneStitch consist of reads most likely sampled from a real gene, we can assemble genes 
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in a metagenomic dataset by using known homologous genes as references. When prior 

knowledge of the species composition and gene contents of the sequenced metagenome is 

unavailable, we can use as many reference gene sequences as possible (e.g. the entire set 

of genes from all available microbial genomes) to guide the inference of gene paths.  

One challenge of inferring gene paths is the separation of very similar genes in a 

metagenome. The gene paths inferred from GeneStitch may overlap substantially with 

each other, because homologous genes will share identical regions.  Instead of attempting 

to separate these individual genes (with the risk of introducing misassemblies), we 

propose to merge these paths into gene graphs, each of which is a subgraph of the de 

Bruijn graph that contains reads from the same gene family (homologous genes).  We 

argue that such gene graphs may be considered as single units for downstream analysis of 

metagenomes, for example, for functional predictions by similarity search. 

3.2 GeneStitch algorithm 

The inference of gene paths from a de Bruijn graph can be formulated as a problem of 

aligning the graph against a set of reference genes, aiming to derive—in the graph—paths 

of sequence blocks (or contigs) that are most similar to the reference genes; each path 

represents a gene or a gene fragment that contains shorter gene fragments. 

Computationally, this problem is equivalent to the network matching algorithm, which is 

used to find the best alignment between a graph and a sequence, or between two graphs, 

and has been applied on computational biology, such as the spliced alignment algorithm 

for gene prediction considers all potential exon predictions [63] or protein sequence 

alignment considering all potential secondary structure prediction [64]. The network 
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matching problem can be solved efficiently by a dynamic programming algorithm that 

searches for the set of connected blocks with the highest similarity to the reference 

sequence, without exploring all possible paths through the blocks (which would be 

exponential in the number of blocks). 

3.2.1 Network matching algorithm for gene assembly 

Consider a set of contigs (𝐶1,⋯ ,𝐶𝑛) and a de Bruijn graph G1, in which each node 

represents a contig, and a directed edge is connected between two nodes if these two 

contigs share 𝑘 − 1 nucleotides (k is a pre-defined number, e.g., k = 30). Our goal is to 

find the optimal local alignment between the contigs (sequence blocks) and a reference 

sequence 𝑇 = 𝑡1 ⋯ 𝑡𝑚, as illustrated in Figure 7. 

 

Figure 7. Alignment between a de Bruijn graph and a reference 

sequence. Blocks in the de Bruijn graph represent nodes, and black 

arrowheads are the directed edges connecting nodes that overlaps by k-

1 mers. Typically an assembler based on de Bruijn graph will report the 

nodes as contigs. Red arrowheads constitute that path of the nodes that 

best aligns to the reference sequence derived from the network 

matching algorithm. 

 

                                                 
1 Throughout this chapter, we consider the de Bruijn graph in which each simple path (a maximal directed path in the graph, in that all 
internal vertices have one incoming and one outgoing edge) is collapsed into a single node. 
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The network matching problem can be solved using a dynamic programming algorithm in 

polynomial time. Let 𝑆(𝑖, 𝑗,𝑘) be the optimal alignment score between all possible paths 

ending at position i of contig k in the input de Bruijn graph and the prefix ending at 

position j (i.e., 𝑡1𝑡2 ⋯ 𝑡𝑗) of the input reference sequence. For each contig 𝐶𝑘, we denote 

its first letter as 𝑓𝑖𝑟𝑠𝑡(𝑘), and its last letter as 𝑙𝑎𝑠𝑡(𝑘). A path in the de Bruijn graph can 

start from any contig and contain at least one contig, but must strictly follow the de 

Bruijn graph structure, where two contigs 𝐶𝑙 and 𝐶𝑘 can be connected only if a directed 

edge goes from 𝐶𝑙  to 𝐶𝑘  (denoted by 𝐶𝑙 → 𝐶𝑘 ). Let 𝐸(𝑘) = {𝑙:𝐶𝑙 → 𝐶𝑘} be the set of 

contigs that are connected to contig k by a directed edge. Our network matching 

algorithm first computes a dynamic programming matrix to record the optimal alignment 

scores for1 ≤ 𝑖 ≤ 𝑙𝑎𝑠𝑡(𝑘), 1 ≤ 𝑗 ≤ 𝑚, and 1 ≤ 𝑘 ≤ 𝑛 (n is the total number of contigs). 

𝑆(𝑖, 𝑗,𝑘) can be computed recursively as 

𝑆(𝑖, 𝑗, 𝑘) = max

⎩
⎪
⎨

⎪
⎧ 𝑆(𝑖 − 1, 𝑗 − 1, 𝑘) + 𝑔(𝑖𝑘, 𝑗) 𝑖𝑓 𝑖 ≠ 1

max
𝑙∈𝐸(𝑘)

𝑆(𝑙𝑎𝑠𝑡(𝑙), 𝑗 − 1, 𝑙) + 𝑔(𝑖𝑘 , 𝑗) 𝑖𝑓 𝑖 = 1

𝐼(𝑖, 𝑗,𝑘)
𝐷(𝑖, 𝑗,𝑘)

 

where 𝑖 = 1 indicates it is the first nucleotide in contig k, and 𝑔(𝑖𝑘 , 𝑗) is the scoring 

function of matching the nucleotide at position i in contig k and the nucleotide at position 

j of the input reference sequence: 𝑔(𝑖𝑘, 𝑗) = ∆𝑚𝑎𝑡𝑐ℎ if the two nucleotides are the same; 

otherwise 𝑔(𝑖𝑘 , 𝑗) = ∆𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ (∆𝑚𝑎𝑡𝑐ℎ and ∆𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ are two preset parameters). 

𝐼(𝑖, 𝑗,𝑘)  and 𝐷(𝑖, 𝑗,𝑘)  are the optimal alignment scores between the paths of the de 

Bruijn graph (ending at position i in contig k) and the prefix of input reference sequence 



 
 

41 
 

 
 

(ending at position j), ending with insertion and deletion in the alignment, respectively. 

The recursive definitions of 𝐼(𝑖, 𝑗, 𝑘) and 𝐷(𝑖, 𝑗, 𝑘) are as follows: 

𝐼(𝑖, 𝑗, 𝑘) = max

⎩
⎪
⎨

⎪
⎧

𝑆(𝑖 − 1, 𝑗,𝑘) + ∆𝑔_𝑜𝑝𝑒𝑛 𝑖𝑓 𝑖 ≠ 1
𝐼(𝑖 − 1, 𝑗, 𝑘) + ∆𝑔_𝑒𝑥𝑡 𝑖𝑓 𝑖 ≠ 1

max
𝑙∈𝐸(𝑘)

𝑆(𝑙𝑎𝑠𝑡(𝑙), 𝑗, 𝑙) + ∆𝑔_𝑜𝑝𝑒𝑛 𝑖𝑓 𝑖 = 1

max
𝑙∈𝐸(𝑘)

𝐼(𝑙𝑎𝑠𝑡(𝑙), 𝑗, 𝑙) + ∆𝑔_𝑒𝑥𝑡 𝑖𝑓 𝑖 = 1

 

𝐷(𝑖, 𝑗, 𝑘) = 𝑚𝑎𝑥 �𝑆
(𝑖, 𝑗 − 1,𝑘) + ∆𝑔_𝑜𝑝𝑒𝑛
𝐼(𝑖, 𝑗 − 1, 𝑘) + ∆𝑔_𝑒𝑥𝑡  

where ∆𝑔_𝑜𝑝𝑒𝑛 and ∆𝑔_𝑒𝑥𝑡 are affine penalties [65] for opening and extending gaps, 

respectively. 

The dynamic programming matrix is initialized as 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑆(𝑖, 0,𝑘) = 0
𝑆(0, 𝑗,𝑘) = 0
𝐼(𝑖, 0,𝑘) = 0
𝐼(0, 𝑗,𝑘) = 0
𝐷(𝑖, 0,𝑘) = 0
𝐷(0, 𝑗,𝑘) = 0

 

for all i,j, and k. 

Once we are done filling in the matrix, we will use a traceback procedure to find the best 

alignment between the de Bruijn graph and the reference sequence. We first find the 

maximum score in the dynamic programming matrix and then trace back from that 

corresponding cell until reach 0 to find the path of the contigs (which we call a gene path) 

that leads to the best alignment. We also retrieve the gene sequence by concatenating the 

nucleotide sequences of the contigs in the path. Note that since two nodes connected by 
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an edge in a de Bruijn graph are overlapped by 𝑘 − 1 nucleotides, we need to exclude 

one redundant copy of the 𝑘 − 1 nucleotide sequences when retrieving the gene sequence. 

We note that GeneStitch does not explicitly consider the cycles that may be found in de 

Bruijn graphs, in order to employ an efficient dynamic programming algorithm to solve 

the network matching problem: GeneStitch will traverse (randomly) through one of the 

cyclic paths (if present). In our tests, GeneStitch rarely encounters such cases, as gene 

sequences typically don't contain repeats. 

3.2.2 Speedup of GeneStitch 

The algorithm for GeneStitch described above aligns the reference sequence against the 

entire de Bruijn graph. The amount of time required for this process is linearly correlated 

to the number of nodes (representing contigs) in the graph and the lengths of the contigs. 

Accordingly, we implement two strategies to speed up the network matching procedure, 

given that a single gene will only span a small portion of the graph. 

The first strategy is to employ a similarity-based approach to constrain the search space 

in the de Bruijn graph for each reference gene sequence. First, we use BLAST to search 

all nodes (i.e., contigs) of the de Bruijn graph against the reference sequences with a 

relatively-high E-value cutoff (currently set to 0.1). For each reference sequence, the 

node with the best alignment score will be used as the starting node to recruit more 

inbound and outbound nodes with BLAST hits. Considering that short contigs may be 

missed by the similarity search process [24], we allow the recruiting process to extend an 

additional N layers of inbound and outbound nodes without BLAST hits (N is set to 5). 

This process is repeated until no more nodes can be recruited. The included nodes (and 
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the edges that connect them) —instead of the whole graph—then serve as the input graph 

for the network matching process. 

The second strategy is to exclude intact genes found in the input contigs. We use 

FragGeneScan [66] to predict fragmented genes as well as intact genes in all contigs, and 

then remove intact genes (defined as the predicted gene fragments that do not include the 

first or the last nucleotide of any contig) from the contigs prior to the network matching 

process, retaining only fragmented genes and intergenic regions adjacent to them. This 

pre-processing step greatly speeds the network-matching process. 

3.2.3 Construction of gene graphs 

Gene paths—each representing a (fragmented) gene—inferred from a de Bruijn graph 

using homologous reference genes by the network matching algorithm described above 

may overlap with each other. These paths can be merged into a gene graph that 

represents a collection of homologous genes in a compact fashion.  

To make sure that we generate gene graphs that consist of only homologous genes, three 

empirical criteria are applied when finding gene paths in the de Bruijn graph:  a) the 

optimal score of the alignment between the gene path and the reference gene is ≥ 50 

(score threshold), b) the identity of the alignment is ≥ 60% (identify threshold), and c) 

the alignment covers at least 40% of the length of the reference sequence (gene coverage 

threshold). The identity threshold is set to 60%, since genes may not be very similar at 

the nucleotide level, especially if the reference genes are obtained from not-so-closely-

related species. Two gene paths sharing at least one contig are merged into a gene graph 

if the reference sequences used to infer the gene paths are highly similar (i.e., with 
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identity ≥ 70%). We will further compare the merged gene graphs with other gene paths 

or gene graphs and merge them if they contain genes inferred from very similar reference 

genes. This merging process is performed between any two gene graphs until all pairs of 

graphs have been checked. Once the merging is completed, we will select—for each gene 

graph—its composite gene path with the highest network-matching alignment score as its 

representative sequence. 

3.2.4 Extention of the gene graphs 

The network matching algorithm and the subsequent merging steps may leave out gene 

segments from the constructed gene graphs that are not sufficiently similar to the 

reference sequences. To make gene graphs complete, we will extend each gene graph by 

recruiting the inbound and outbound nodes of its contigs if they share similarities with the 

contigs already included in the graph. This process is repeated until no more nodes can be 

added. The algorithm is given as follows. 

for all contigs in gene graph P do 
  \\Check inbound nodes 
  Listed = inbound nodes ∈ P 
  Not Listed = inbound nodes ∉ P 
  for each node m1 ∈ Not Listed do 
    if identity(m1, any node ∈ Listed) > Identity Threshold 
then 
      Add the node into the gene graph 
    end if 
  end for 
 
  \\Check outbound nodes 
  Listed = outbound nodes ∈ P 
  Not Listed = outbound nodes ∉ P 
  for each node m2 ∈ Not Listed do 
    if identity(m2, any node ∈ Listed) > Identity Threshold 
then 
      Add the node into the gene graph 
    end if 
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  end for 
end for 

 

Currently we set the identity threshold to 70% so that only very similar inbound and 

outbound contigs will be recruited into the gene graph. 

3.2.5 Datasets and tools used in evaluation 

We implemented our algorithm in C++ and tested our program (named GeneStitch) on 

simulated datasets for a single genome and a dataset for an artificial microbial 

community.  

We produced three test datasets of sequencing depths 6X, 13X, and 20X from the 

Escherichia coli str. K-12 substr. MG1655 genome (NC_000913) using Metasim 

software [58]. We used the 80bp error model downloaded from the Metasim website to 

simulate Illumina reads of 80bp with a 1% error rate. Genes from the Escherichia coli HS 

(NC_009800), Escherichia fergusonni (NC_011740), and Salmonella enterica 

(NC_003198) were used as the references for GeneStitch.   

The community dataset comprises sequencing reads obtained from an artificial microbial 

community with ten mixed lab-cultured species [67]. The main reason we chose this 

dataset (of 454 sequencing reads) as our test case is that we can directly evaluate the 

quality of the assembled genes because the genes and genomes of the species in the 

community are already known. Among the 10 species, nine are either bacterial or 

archaeal, and one is a eukaryotic species (Saccharomyces cerevisiae S288C). We use 

genes from nine species as the reference gene sets, which are different at the species level 
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(or higher level if species level is not available) compared to the bacteria or archaea 

species in the mock dataset. Table 4 lists the species we chose. We do not test on the 

eukaryotic genome because eukaryotic genes contain an intron-exon structure that our 

method is not currently designed for. To check for misassembly, we map assembled 

genes against the source genomes, using bwasw, provided by the BWA package [68]. A 

gene is considered to be misassembled if it cannot be mapped, or maps to two or more 

locations in the genomes. 

Table 4. The list of species contained in the mock dataset, and corresponding species used as references in 

GeneStitch. 

Species in mock dataset Reference species 

NC_002662 

Lactococcus lactis subsp. lactis Il1403 

NC_012984 

Lactobacillus plantarum JDM1 (genus)a 

NC_008527 

Lactococcus lactis subsp. cremoris SK11 

NC_014724 

Lactobacillus amylovorus GRL 1112 (order) 

NC_008525 

Pediococcus pentosaceus ATCC 25745 

NC_008529 

Lactobacillus delbrueckii subsp. bulgaricus ATCC 

BAA-365 (family) 

NC 010999 

Lactobacillus casei BL23 

NC_014106 

Lactobacillus crispatus ST1 (genus) 

NC_008497 

Lactobacillus brevis ATCC 367 

NC_009513 

Lactobacillus reuteri DSM 20016 (genus) 

NC 008700 

Shewanella amazonensis SB2B 

NC_014012 

Shewanella violacea DSS12 (genus) 

NC_008095 

Myxococcus xanthus DK 1622 

NC_011891 

Anaeromyxobacter dehalogenans 2CP-1 (family) 

NC_008578 

Acidothermus cellulolyticus 11B 

NC_014666 

Frankia sp. EuI1c (order) 

NC_002607 

Halobacterium sp. NRC-1 

NC_013967 

Haloferax volcanii DS2 (family) 
a: The taxonomic ranks in the parentheses indicate the lowest common taxonomy level shared between the reference 

species and the species in the mock dataset. 
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3.3 Evaluations of GeneStitch 

3.3.1 GeneStitch improves gene assembly 

We first test our algorithm on datasets simulated from only one genome (E. coli K-12) to 

show that reference genes from closely-related (E. coli HS and E. fergusonni) or more 

distantly-related species (S. enterica) can be used to improve gene assembly. We evaluate 

the performance of GeneStitch by both gene coverage, and the number of complete genes 

assembled. The gene coverage is defined as the average percentage of the annotated 

genes (in length) that are covered by the assemblies (e.g., gene coverage of 100% means 

that full-length genes are assembled). An assembled gene is considered complete if it 

covers at least 90% of the actual gene, sharing at least 98% sequence identity. 

The results are summarized in Table 5. Since GeneStitch is designed for assembling 

fragmented genes, we isolate the fragmented genes from the contigs either from the initial 

assembly, or after various GeneStitch treatments, and calculate the gene coverage for 

them (the statistics of all genes are also given). For all datasets, GeneStitch significantly 

improves the completeness of assembled genes as compared to initial assembly's genes 

(with higher gene coverage), and the number of complete genes, especially for the 

datasets with lower sequencing depths (6X or 13X). For example, for the dataset with 

13X sequencing depth, SOAPdenovo alone assembled 2320 complete genes, and 

GeneStitch assembled 1097 more (i.e., a 47% improvement). Improvement is also 

observed, although less significant, for the dataset with 20X sequencing depth (which can 

already be assembled fairly well by SOAPdenovo with a gene coverage—for all genes in 
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contigs—of 81%). These results demonstrate the ability of GeneStitch to link fragmented 

genes together and form longer genes. 

Table 5. A summary of the GeneStitch results for E.coli K-12 at 6X, 13X, and 20X sequencing depths. 

Sequencing 

depth 

Reference Genes/fragmentsa Gene 

coverageb 

Complete 

genesc 

Complete 

gene ratiod 

Misassembly 

rate 

6X 

-e 13947 (14149)f 26% (28%)f 572 14% - 

E. coli HS 5343 62% +461 25%g 0.3% 

E. fergusonni 4473 62% +384 23%g 0.5% 

S. enterica 3917 62% +330 22%g 0.2% 

13X 

-e 6642 (9158)f 33% (50%)f 2320 56% - 

E. coli HS 4189 77% +1097 82%g 0.2% 

E. fergusonni 3495 77% +974 79%g 0.3% 

S. enterica 3038 77% +858 77%g 0.1% 

20X 

-e 1904 (3491)f 45% (81%)f 3264 79% - 

E. coli HS 1628 83% +448 90%g 0.4% 

E. fergusonni 1276 83% +401 88%g 0.3% 

S. enterica 1068 83% +345 87%g 0.6% 
a: This column specifies the number of gene fragments in assembled contigs (the first row for each section) or the 

number of genes assembled by GeneStitch. b: Gene coverage reflects the completeness of assembled genes; a small 

value indicates that assembled genes are highly fragmented. c: This column lists the assembled genes or genes in 

contigs (the first row for each section) that are complete or almost complete (at least 90% of the entire length) as 

compared to the real genes. Additional complete gene numbers assembled by GeneStitch are highlighted by a ‘+’ sign. 
d: This column lists the ratio of completely assembled genes versus all annotated genes in the E. coli K-12 genome. e: 

This row lists the assembly results before applying GeneStitch. f: The two numbers indicate the statistics of fragmented 

genes and all genes (within parentheses) in contigs. See text for details. g: The ratio is calculated over all complete 

genes, including the ones assembled by SOAPdenovo and GeneStitch. 

 

Another observation is that the improvement introduced by GeneStitch decreases with the 

taxonomic distances of the reference species, which is not surprising. Our tests, however, 

show that even when using distantly related species (e.g, S. enterica) as references, 

GeneStitch improved the quality of gene assembly. Overall these results demonstrate the 
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power of GeneStitch, in which fragmented genes split into different contigs are 

assembled into longer gene fragments even if we use reference species of different genera 

(e.g., target species E.coli K-12 vs reference S. enterica). 

We also examined the potential for misassembly in the assembled gene sequences by 

mapping the assembled genes against the E. coli K-12 genome. The proportions of 

misassembled sequences are very low for all three test datasets, indicating that 

GeneStitch introduces few misassemblies into single genome assemblies. 

3.3.2 GeneStitch successfully identifies genes in a metagenomic dataset 

We next tested GeneStitch with the artificial community dataset. Since the sequencing 

depth of the 454 dataset is not very high (2.86X) and contains a eukaryote organism, we 

also simulated a dataset with higher depth (9X) that included only the prokaryotic species 

from the dataset. Results are shown in Figure 8. Similar to the single genome cases, the 

gene coverage ratio for both the simulated and real metagenomic datasets increases 

(shown in Figure 8(A)), suggesting that GeneStitch is capable of assembling longer genes 

from the metagenomes. An intriguing observation is that even though there are fewer 

genes assembled from the real sequence dataset (8,283 genes) as compared to the 

simulated dataset (22,331 genes), the gene coverage ratio of the assembled genes in the 

real dataset is actually higher after treatment with GeneStitch (71% vs 52%). 
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Figure 8. Improvement of gene assembly by GeneStitch for the 

simulated and real community datasets, as evaluated by gene coverage 

(A) and the number of complete genes (B). 

 

The number of complete genes, as demonstrated in Figure 8(B), also suggests that 

GeneStitch has the ability to produce complete genes from metagenomes. Besides the 

already complete genes in the contigs, GeneStitch is able to build 1,212 and 1,656 more 

complete genes from gene fragments. From the real dataset, GeneStitch assembled more 

than five times more complete genes than those in contigs! The reason that the number of 

complete genes assembled for the simulated dataset is less than that for the real dataset is 

that many complete genes are already well assembled for the simulated data due to its 

higher sequencing depth. On the other hand, the genes in the real dataset are mostly 

fragmented and are then recovered using GeneStitch. Nevertheless, the number of 

assembled genes for the simulated dataset (22,331 genes) is still higher than the real 

dataset (8,283), suggesting that higher sequencing depth is still needed for ideal gene 

assemblies. 
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The misassembly rates for the genes assembled from the metagenomes are higher than 

those for single genomes. In total, 1,109 genes (4.97%) and 165 genes (1.99%) are 

probably misassembled for the simulated and real dataset, respectively. Further analysis 

reveals that the majority of these genes (832 out of 1,109 genes for simulated dataset and 

37 out of 165 genes for real dataset) can be mapped to exactly two homologous genes in 

the community: for example, an assembled gene may consist of segments from two 

homologous genes and produce a chimeric sequence. Considering that these cases are 

sometimes unavoidable for metagenome assembly (and we call them "minor" 

misassembles), especially when very similar genes from different species exist in the 

sample (there are two strains of Lactococcus lactis, namely L. lactis cremoris IL1403 and 

L. lactis cremoris SK11, exist in the mock dataset), the "severely" misassembly rate is 

only 1.24% and 1.55% for the simulated and real datasets. 

Below we present two cases from the real community dataset, to demonstrate how we 

find the gene graph from the assembled de Bruijn graph. 

3.3.3 Example gene graph #1 

The first example demonstrates how a gene path can be inferred from a connected 

component in the de Bruijn graph with 17 nodes. Only one gene annotated as beta 

glucosidase, YP_812362 from the species Lactobacillus delbrueckii subsp. bulgaricus 

ATCC BAA-365, passes the threshold values and is detected in this example. The result 

is shown in Figure 9: the path with similarity to the reference gene contains seven nodes; 

no nodes can be further recruited into this connected graph, thus only seven nodes 
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(contigs) covered by the path represent the gene graph, and the sequences in this path 

constitute the representative gene for this gene graph. 

 

Figure 9. An example demonstrating the inference of a gene path from 

a connected component in the de Bruijn graph. The reference gene 

recruited by BLAST in this example is YP_812362. (A) In total, 17 

nodes are present in this connected component. (B) The path found by 

GeneStitch using the reference gene. (C) The gene path. 

 

3.3.4 Example gene graph #2 

This example demonstrates how we infer gene graphs by merging paths (or gene graphs). 

Figure 10(A) shows a connected component of the de Bruijn graph. Two reference genes, 

YP_003601430  from Lactobacillus amylovorus GRL 1112 and YP_004031707 from 
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Lactobacillus crispatus ST1, can be recruited as reference genes to this graph. The 

identity between these two genes is 76%. From Figure 10(B) one can observe that the 

paths are very similar—only one branching node is different. Since the identity of the two 

reference genes is higher than the threshold (default 70%; see section 3.2.3) and the two 

graphs are overlapping, these two graphs are merged into one gene graph, as shown in 

Figure 10(C). The first assembled sequence, which has a higher score value (as well as a 

higher identity), is selected as the representative gene for this gene graph. 

 

Figure 10. An example demonstrating the construction of a gene graph 

by merging gene paths. (A) Only 19 nodes are shown in this figure for 

clarity (the actual component is larger). (B) Two paths are found by 

GeneStitch, using YP_003601430 and YP_004031707 as the reference 

genes. (C) The two paths are merged into a gene graph. 
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3.4 GeneStitchPro: using protein level similarity for matching 

The network matching algorithm used in GeneStitch aims to optimize the chaining of 

contigs by aligning the network of contigs and reference genes at the nucleotide level. 

Considering that protein sequences are typically more conserved as compared to 

nucleotide sequences for protein-coding genes among related species, we extended the 

network matching algorithm to consider the similarity between the network of contigs 

and the reference gene at protein level, enabling the utilization of more distant homologs 

as reference genes. After testing the modified algorithm, which is named GeneStitchPro, 

we found that the algorithm works significantly better than the original GeneStitch, 

especially when the reference species are only distantly-related to the actual species in 

the dataset. 

3.4.1 GeneStitchPro Algorithm 

The workflow of GeneStitchPro is similar to the original GeneStitch. The key difference 

is that we now match the contigs against amino acid sequences instead of nucleotide 

sequences. By using the codon table for bacteria (Table 11 of the genetic codes collected 

in http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c) to translate 

nucleotide triplets into corresponding amino acids in the mapping process on the fly, we 

can calculate the optimal alignment score 𝑆(𝑖, 𝑗, 𝑘) between all possible paths ending at 

position i of contig k in the input de Bruijn graph and the prefix ending at position j (i.e., 

𝑡1𝑡2 ⋯ 𝑡𝑗 ) of the input reference protein sequence shown in Appendix 2. Briefly, 

GeneStitchPro tries to convert nucleotide triplets into amino acids and then compare the 

amino acid sequences using pre-defined amino acid substitution matrix. Note that this 

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c
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method is very different to the old school method, which translates all contigs into six-

frame amino acid sequences and compare the sequences against the references. The main 

reason is that the traditional method cannot consider the combination of cross-border 

contigs, in which one codon may start at one contig and end at another. Similar to 

GeneStitch, GeneStitchPro utilizes a dynamic programming approach to calculate all 

combinations in linear time in order to find the nucleotide sequences whose translations 

are most similar to the reference amino acid sequences. 

3.4.2 Evaluation of GeneStitchPro 

We compare the GeneStitchPro results, including the one-genome dataset and the mock 

dataset, against the results of GeneStitch, in order to demonstrate that GeneStitchPro is 

more effective when the reference sequences are more distantly related. For the one 

genome case, the E. coli K-12 datasets (with 6X, 13X, and 20X sequencing depths) are 

used again to find the genes. Besides the three reference species (E. coli HS, E. 

fergusonni, and S. enterica), we added one more reference species, P. aeruginosa, which 

only shares the same class with E. coli K-12 in phylogeny, to find the genes. The results 

clearly indicate that GeneStitchPro works much better than GeneStitch, especially in the 

cases where S. enterica and P. aeruginosa are served as reference species. We again 

evaluate the results in terms of gene coverage and the number of complete genes. The 

results are shown in Figure 11. One could observe that the gene coverage, as shown in 

Figure 11(A), shows that GeneStitchPro slightly outperforms GeneStitch, especially 

when the reference species is distantly related (S. enterica and P. aeruginosa). On the 

other hand, GeneStitchPro is apparently much better than GeneStitch at getting complete 
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genes, as shown in Figure 11(B). For example, in the 13X dataset, GeneStitchPro 

assembled 751 complete genes, which is almost four times more than that from 

GeneStitch when we use P. aeruginosa as reference species. Similar results can also be 

observed in 6X and 20 X datasets. The results clearly indicate that GeneStitchPro is very 

powerful in assembling genes using distantly-related species as references. 

 

Figure 11. Comparing the performances of GeneStitch and 

GeneStitchPro. (A) The average gene converage of the three one-

genome datasets with 6X, 13X, and 20X sequencing depths. (B) The 

number of complete genes of the three datasets. 

 

We also tested GeneStitchPro on the simulated and real mock dataset and again found 

that GeneStitchPro performs better than GeneStitch in both average gene coverage and 
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the number of complete genes. The results are shown in Figure 12. One can observe that 

GeneStitchPro indeed outperforms GeneStitch in every aspect. For example, 

GeneStitchPro retrieves 2997 complete genes in simulated mock dataset, which is more 

than twice as compared to GeneStitch. Similar improvements can also be observed in real 

mock dataset. These results again exemplify the function of GeneStitchPro, which 

compares the contigs against amino acid sequences. 

 

Figure 12. Comparison of the improvements of gene assembly by 

GeneStitch and GeneStitchPro for the simulated and real community 

datasets, as evaluated by gene coverage (A) and the number of 

complete genes (B). 

 

3.5 Discussion 

We present GeneStitch, which is based on a network matching algorithm, for inferring 

gene paths and gene graphs from the tangled de Bruijn graphs that result from assembly 

of metagenomic sequences. If we have prior knowledge of the taxonomic composition of 

a metagenomic dataset (e.g., through 16S rRNA gene profiling [69]), or taxonomic 

analysis using shotgun sequences [70]), we can use genes from the most closely related 

species available as references for GeneStitch, considering that GeneStitch benefits more 
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by using the most similar gene sequences as the reference. However, in principle, we can 

use a general dataset of genes (e.g, microbial genes in the NCBI NR (non-redundant) 

dataset) as reference genes in GeneStitch, if we have no prior knowledge of the 

taxonomic composition of a metagenomic sample. 

For all tests that we performed, the application of GeneStitch greatly improves the 

assembly of genes, resulting in complete or nearly complete genes. The assembly of 

complete gene sequences is important because traditional metagenome sequencing 

projects are largely limited by the length of contigs and scaffolds, and small contigs are 

often difficult (if not possible) to use for subsequent functional analysis. We believe that 

our approach will increase the amount of information that can be gleaned from past and 

future genome and metagenome projects, by providing longer genes for analysis. We note 

that GeneStitch is able to improve the gene assembly even when only distantly related 

species are available as references, and when sequence depth is modest. This capability is 

especially important because sequenced bacterial or archaeal genomes are still limited 

and very closely-related species (such as different strain of the same species) are not 

always available. GeneStitch greatly broadens the choice of reference species for gene 

annotation in metagenomic assemblies. 

Our approach can be conceived as a gene predictor that works with de Bruijn graphs for 

assembly, instead of linear sequences. In this sense, GeneStitch is fundamentally different 

from current gene predictors including FragGeneScan [66] and GLIMMER [71]. Note 

that gene paths are fundamentally different from the directed acyclic graphs used to 

represent exons (as nodes) and their connectivity (the edges) in predictors for eukaryotic 
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genes [72]. We have also proposed a novel concept, the gene graph, to represent a 

collection of homologous genes in a metagenomic dataset. A gene graph may not include 

all similar (or homologous) genes in a metagenomic dataset, because we set the identity 

threshold to a relatively high value (e.g. 70%) in the process of constructing gene graphs. 

But it is not our goal to build comprehensive gene graphs; instead, we want to assemble 

metagenomic sequences into separate genes as long as we have strong evidence the 

assembled genes contain no misassemblies. We note that GeneStitch cannot help with the 

assembly of novel genes that lack similarity with known genes. 

Although the gene graph is used to represent the cases where gene paths overlap with 

each other—a non-conventional way of representing genes—we argue that gene graphs 

can be considered as single units for downstream functional analysis of metagenomes. 

For example, we can attempt to get all real genes from the gene graphs by walking all 

potential paths in the gene graphs and select those supported by reads. This approach is 

used by the Trinity assembler to find all spliced isoforms and transcripts of recently 

duplicated genes from transcriptomes [73]. Another application would be functional 

prediction:  we can search an unknown gene against all gene graphs and determine which 

gene graph is most similar to this gene, in order to determine its function. 

To further improve the performance of gene assembly using more distantly-related 

reference species, we devised GeneStitchPro, which aligns the contigs against the amino 

acid sequences since the protein sequences are more conserved than nucleotide sequences. 

Also based on a modified network matching algorithm, GeneStitchPro is capable of 

assembling more complete genes. For example, when we use P. aeruginosa as reference 
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species, which only shares the same class of the target species, GeneStitchPro is able to 

assemble more than three times of complete genes as compared to GeneStitch. This and 

other examples clearly demonstrate the power of using amino acid sequences as 

references to retrieve more intact genes.  

Notably, other strategies have been used to improve metagenome assembly, for examples: 

by merging assemblies from different assemblers or using the same assembler but with 

various parameter settings [74]; by recruiting reads to fill in gaps between contigs using 

tblastn searches against reference genes as in the gene-boosted assembly approach [48]; 

and by assembling potential protein-coding reads at the peptide level as in the ORFome 

assembly approach [47]. GeneStitch and GeneStitchPro utilize similarity between the 

genes included in a metagenomic dataset and reference genes available in a novel way, 

and uses the matches between the de Bruijn graph assembly and the reference genes to 

improve the gene assembly. In principle, GeneStitch (or GeneStitchPro) and other 

strategies to improve assembly can be combined to further improve the assembly of 

metagenomes. 

3.6 Future improvements 

We proposed gene graphs to represent collections of gene families, in which each gene 

graph represents a family of genes after applying GeneStitch or GeneStitchPro and other 

steps described above; however it is still very challenging to retrieve the actual gene 

sequences from the gene graph. We propose to apply the idea described in [73] to find 

actual gene sequences de novo. Briefly, Grabherr and colleagues attempt to assemble full-

length transcriptome sequences from RNA-Seq data without a reference genome. Their 
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assembler, Trinity, checks the support of the connection joints between contigs by reads 

information. The connection of two contigs are said to be "supported" if the joint is 

covered by reads. By using a similar idea, we could in principle find the de facto 

connection joints for each gene graph and construct genes using this information. 
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4. Targeted assembly approach to CRISPR discovery 

CRISPR/Cas systems are a widespread class class of adaptive immunity systems, which 

bacteria and archaea mobilize against foreign DNA, including phage and conjugative 

plasmids [52, 75]. CRISPR elements, however, are very difficult to be extracted from any 

metagenome. We devised a targeted assembly approach to get the CRISPR arrays 

(regions in CRISPR/Cas systems that contain arrays of repeats and spacers between the 

repeats) from metagenomes. Moreover we also analyzed the array content to compare the 

differences between the metagenomes. This manuscript was written along with Mina Rho, 

Haixu Tang, Thomas Doak, and Yuzhen Ye and was published in [76]. 

4.1 Rationale 

The CRISPR systems are found in most archaeal (~90%) and bacteria (~40%) genomes 

[49-51]. The CRISPR array consists of 24-47 bp direct repeats, separated by unique 

sequences (spacers) that are acquired from viral or plasmid genomes [77]. Figure 13 

illustrates the structure and function of the CRISPR/Cas system. This system works as 

follows: when foreign DNAs invade, the CRISPR RNAs (crRNAs), which are used to 

silence foreign nucleic acids in a sequence-specific manner, are expressed and used to 

interfere with invading genomes at both the DNA and RNA levels, by mechanisms that 

are not fully understood yet [78-80]. 
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Figure 13. (A) Illustration of CRISPR/Cas system. The direct repeats 

are represented by black diamonds. (B) The CRISPR/Cas system 

samples spacers from the invading viruses or plasmids and store the 

sequence in the array. (C) When the same viruses or plasmids invade 

again, the CRISPR array will be transcribed, and specific CRISPR 

spacer will bind to and interfere with the invading sequences. This 

figure is adapted from [75] and [81]. 

 

CRISPR loci can change very rapidly as a result of the interaction between viruses 

(plasmids) and bacteria: several metagenomic studies investigating host-virus dynamics 

has shown that CRISPR loci evolve in response to viral predation and that CRISPR 

spacer content and sequential order provide both historically and geographically insights 

[82-85]—especially, epidemiology. A recent study of streptococcal CRISPRs from 

human saliva using the conserved streptococcal repeat sequence for priming revealed 

substantial spacer sequence diversity within and between subjects over time [86], which 
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reflected the dynamics of infectious agents in the human mouth. With the release of more 

than 700 metagenomic datasets from the Human Microbiome Project [15], we can 

explore the distribution and diversity of many more CRISPRs as well as discover new 

ones across different body sites. 

Whole genome assembly may be the most common way to get any functional elements 

from any sequencing dataset, including CRISPRs; however it is very difficult to assemble 

metagenomic reads into contigs containing CRISPRs because of their repetitive structure. 

All existing tools, including CRISPRFinder [87], CRT [88], PILER-CR [89], and CRISPI 

[90], are also able to identity CRISPRs only in the contig levels. Therefore we need a 

specialized assembly method to get more complete CRISPRs from metagenomes. 

Targeted assembly approach, a variant of the ORFome assembly approach [47], is used to 

collect all reads with CRISPR repeats and assemble these reads into CRISPR contigs. 

This approach is also extended to novel CRISPRs or new CRISPR variants, which are not 

seen in the reference genomes, in order to get a more comprehensive identification of the 

CRISPR systems across the human samples. 

4.2 Assembly of CRISPR arrays 

4.2.1 Extraction of CRISPR repeats 

The targeted assembly of CRISPRs starts from the identification of CRISPR repeats. The 

repeats are identified using both de novo method and similarity-based method. The de 

novo method, metaCRT, is modified from CRT [88], which first detecting repeats that are 

separated by a similar distance and then check other CRISPR specific requirements (e.g. 

the spacer needs to be non-repeating and of similar sizes). The similarity-based method, 
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CRISPRAlign, on the other hand, identifies CRISPRs in a target sequence that contains 

repeats similar to a given query CRISPR. CRISPRAlign works by first detecting CRISPR 

repeats in the target sequence (and its reverse complement) that are similar enough to 

query CRISPR and then check other requirements as in metaCRT. 

By using metaCRT and CRISPRAlign, we prepared a list of known CRISPR repeats 

(identified from complete/draft bacterial genomes in the IMG database [26]) as well as 

novel CRISPR repeats (identified from the whole-genome assemblies (PGA) of the HMP 

database). Known CRISPRs were first identified from the bacterial genomes (or drafts) 

collected in the IMG dataset (version 3.3) [91], using metaCRT. We then selected a 

subset of the identified CRISPRs that meet the following requirements: direct repeats are 

of length 24–40 bps; there are a minimum of 4 copies of the direct repeats; and the 

individual repeats differ by at most one nucleotide from the repeat consensus sequence, 

on average. The parameters were chosen to minimize false CRISPRs, considering that a 

CRISPR array typically contains 27 repeats, with an average repeat length of 32 base 

pairs [88]. We only kept CRISPRs that can be found in at least one of the whole-

metagenome assemblies, using CRISPRAlign. We further reduced the number of 

candidate CRISPRs by only keeping those that share at most 90% sequence identity 

along their repeats by CD-HIT [92], as there are CRISPRs that share very similar repeats, 

and our targeted assembly strategy can recover the CRISPRs with slight repeat 

differences. To avoid including a repeat and its reverse complete (metaCRT does not 

consider the orientation for the repeats) in the non-redundant list, we included reverse 

complement sequences of the CRISPR repeats in the clustering process. Therefore, a 
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repeat would be classified into two clusters by CD-HIT (the reverse complete of the 

repeat would be classified into a different cluster), one of which was removed to reduce 

redundancy. After clustering we collect a set of non-redundant CRISPR repeats, 

including 64 known and 86 novel ones, for further assembly of the CRISPR contigs. The 

detailed information for these CRISPRs (repeat sequences, and their resources) is 

provided in Supplementary Table 1 of [76]. 

4.2.2 Targeted Assembly approach 

To assemble the CRISPR contigs, the collected non-redundant CRISPR repeats are used 

to search against the sequencing reads using BLASTN, in order to collect the reads that 

are similar to the repeat sequence, as shown in Figure 14. In order to make the similarity 

search tolerant to sequencing errors and genomic variations that are observed among the 

multiple copies of a CRISPR repeat (in one CRISPR locus or between different CRISPR 

loci), we allowed three mismatches over the entire CRISPR repeat sequence: we retained 

only the reads that are aligned with the entire CRISPR repeat sequence with a maximum 

of three mismatches. With these reads containing CRISPR repeat sequences, we ran 

SOAPdenovo [43] with k-mers of 45 bps, which are sufficiently long to assemble reads 

with the repetitive sequences found in CRISPRs. In general, whole-metagenome contigs 

are assembled using shorter k-mers (for example, 21-23 bps in MetaHit [13] and 25 bps 

in HMP project [15]), as longer k-mers often fragment assemblies into shorter contigs. 

After the CRISPR contigs are assembled, the exact boundaries of the repeats and the 

spacers are predicted using CRISPRAlign. 
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Figure 14. A diagram of the targeted assembly approach for CRISPRs 

 

4.2.3 Datasets used in CRISPR identification 

The targeted-assembly approach was applied on the dataset Human Microbiome Illumina 

WGS Reads (HMIGWS) Build 1.0 available at http://hmpdacc.org/HMIWGS, and the 

whole-metagenome assemblies from the HMP consortium (http://www.hmpdacc.org/). 

4.3 Results and evaluations 

We identified and selected 64 known CRISPRs—including the streptococcal CRISPR—

from complete (or draft) bacterial genomes and 86 novel CRISPRs from the 751 HMP 

whole-metagenome assemblies using metaCRT and CRISPRAlign. In order to test the 

effectiveness of the targeted-assembly approach, short reads from six reference genomes 

(Azospirillum B510, Streptococcus mutans NN2025, Deferribacter desulfuricans SSM1, 

http://hmpdacc.org/HMIWGS
http://www.hmpdacc.org/
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Dehalococcoides GT, Erwinia amylovora ATCC 49946, and Escherichia coli K12 

MG1655) are simulated using MetaSim software. We then apply our method to assemble 

the 10 known CRISPRs in the genome. All 54 contigs assembled by the targeted-

assembly approach match perfectly to known CRISPRs in the reference genome, 

suggesting that our approach is quite effective and precise in getting CRISPRs from 

sequencing reads. 

4.3.1 Targeted assembly approach improves the characterization of CRISPRs 

We first apply this approach on Human Microbiome Project (HMP) datasets to identify 

the 64 known CRISPRs and find that this approach greatly improves the detection of 

CRISPR elements, as illustrated in Table 6. Two improvements are achieved using our 

approach. First, the targeted assembly approach identifies known CRISPRs in more 

human microbiome datasets, as compared to the annotation of CRISPRs using whole-

metagenome assemblies. Second, targeted assembly resulted in longer CRISPR arrays, 

from which we can extract many more diverse spacers for analyzing the evolution of the 

CRISPRs and other purposes. Below we discuss several examples to show the 

effectiveness of the targeted assembly approach in identification of known CRISPRs. 

The first example is the CRISPR Smuta36, which is conserved in streptococcal species 

such as Streptococcus mutans [86] and can be find only in 38 out of 751 datasets using 

contigs from whole genome assembly. By using the targeted-assembly approach, 

however, we are able to find this CRISPR in 386 datasets, which is ten times more than 

using the whole genome assembly and is consistent with the distribution of Streptococcus 

across body sites, as shown in Table 6. Most of the 386 datasets are from oral samples: 
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120 out of 128 supragingival plaques (94%), 128 out of 135 tongue dorsum samples 

(95%), and 97 out of 121 buccal mucosa samples (80%). On the other hand, CRISPR 

SmutaL36 was only found in a small proportion of samples from other body locations, 

where streptococcus rarely exists. 

The other two examples listed in Table 6 include GhaemL36 and SRS018394L37. 

CRISPR GhaemL36 was initially identified from the genome of Gemella haemolysans 

ATCC 10379 using metaCRT. Targeted assembly further identified instances of this 

CRISPR in 258 oral-associated samples. The longest contig—of 3121 bases—was 

assembled from the SRS019071 dataset. This CRISPR array has even more repeats (48 

repeats; i.e., 47 spacers) than the CRISPR array in the Gemella haemolysans reference 

genome, which has 29 repeats. CRISPR SRS018394L37 (currently not yet associated 

with a host genome) was initially identified from the whole-metagenome assembly of 

SRS018394, but targeted assembly reveals the presence of this CRISPR in 238 oral-

associated microbiomes. The contig that was assembled in SRS049389 is the longest one 

(2014 bps), which contains 25 spacers. 
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Table 6. Comparison of CRISPR identification using whole-metagenome assembly and targeted assembly.  

CRISPR Sample datasets 

Whole-

metagenome 

assembly 

 Targeted assembly 

Spacers 

(max) 

Spacers 

(total) 
 

Short 

reads 

Spacers 

(max) 

Spacers 

(total) 

SmutaL36 

(386 a vs 38 b) 

SRS017025 

(plaque) 

1 c 1 d  1078 e 26  76 

SRS011086 

(tongue) 

1 2  4018 24 78 

GhaemL36 

(257 versus 9) 

SRS019071 

(tongue) 

0 0  1718 47 21 

 SRS014124 

(tongue) 

3 3  490 21 58 

SRS018394L37 

(238 versus 39) 

SRS049389 

(tongue) 

0 0  5778 25 492 

 SRS049318 

(plaque) 

1 1  1463 38 134 

a: the total number of samples that have streptococcal CRISPRs identified if using targeted assembly, and b if using 

whole-metagenome assembly; c: the total number of spacers found in the longest CRISPR locus found in the given 

dataset; d: the total number of spacers found in all contigs assembled from the given dataset; e: the total number of 

sequences that contain the repeats of a given CRISPR, i.e., the recruited reads used for targeted assembly. 

 

4.3.2 Novel CRISPRs are identified in human microbiome samples 

Besides known CRISPRs, novel CRISPRs are also discovered to fuel further targeted 

assemblies. By using the program metaCRT, which we modified from CRT, we find the 

CRISPR loci based on their structure patterns. Overall we found 80 novel CRISPR loci in 
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metagenomic samples. Table 7 lists a few examples of the novel CRISPRs that we 

identified. See Supplementary table 1 of [76] for the detailed list. 

Table 7. Selected novel CRISPR loci. 

CRISPR ID HMP sample ID 

Consensus sequence of the CRISPR repeats 

SRS012279L38 SRS012279 (dataset from a tongue dorsum sample) 

TATAAAAGAAGAGAATCCAGTAGAATAAGGATTGAAAC 

SRS018394L37 SRS018394 (dataset from a supragingival plaque sample) 

GTATTGAAGGTCATCCATTTATAACAAGGTTTAAAAC 

SRS023604L36 SRS023604 (dataset from a posterior fornix sample) 

GTTTGAGAGTAGTGTAATTTATGAAGGTACTAAAAC 

 

Below we discuss two examples of two novel CRISPRs. The first example, CRISPR 

SRS012279L38, was identified from a whole-metagenome assembly contig of dataset 

SRS012279 (derived from a tongue dorsum sample; see Figure 15(A)). The identified 

CRISPR contig has 6 copies of a 38-bp, and BLASTX search of this contig against the nr 

protein database revealed proteins next to the CRISPR array that are similar to cas genes 

from other genomes, including Leptotrichia buccalis DSM 1135 (NC_013192, an 

anaerobic, gram-negative species, which is a constituent of normal oral flora [93] and 

Fusobacterium mortiferum ATCC 9817 (see Figure 15(B)). In addition, similarity 

searches revealed a single identical copy of this repeat in the genome of Leptotrichia 

buccalis DSM 1135 (from 1166729 to 1166764; de novo CRISPR prediction shows that 

this genome has several CRISPR arrays, including an array that has 84 copies of a 29-bp 

repeat, but none of the CRISPRs have the same repeat sequence as SRS012279L38). All 
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evidence (similar cas genes, and an identical region in the genome) suggest that the 

SRS012279L38 CRISPR we found in the human microbiomes could have evolved from 

Leptotrichia buccalis or a related species. 

 

Figure 15. A potentially novel CRISPR array identified in a contig 

(9848 bases) from sample SRS012279. This CRISPR array has 6 

copies of the repeat (repeat sequences shown in red font and spacer 

shown in blue (A). (B) shows our annotation of this contig, in which 

the CRISPR array is highlighted in red. The annotations are based on 

BLAST search results; for example, the predicted CRISPR-associated 

Cas1 is similar to the Cas1 protein identified in Leptotrichia buccalis C-

1013-b (accession ID: YP_003163976), with 60% sequence identify 

and 80% sequence similarity. 
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Targeted assembly of this novel CRISPR (SRS012279L38) in HMP datasets resulted in 

278 contigs from 97 datasets, confirming the presence of this CRISPR in human 

microbiomes. In particular, the CRISPR fragments (407 bps) identified from the whole-

metagenome assembly of SRS012279 were assembled into a longer CRISPR contig (890 

bps) by targeted assembly. A total of 14 unique but related repeat sequences were 

identified from 278 CRISPR contigs, and two of them (which differ at 3 positions) are 

dominant, constituting 71% of the repeats in the CRISPR contigs. Notably, all the repeats 

could be clustered into a single consensus sequence with an identity threshold of 88%. By 

contrast, the spacer sequences are very diverse across different samples. For example, we 

obtained a total of 352 unique spacer sequences, which were clustered into 342 consensus 

sequences with an identity threshold of 80%. Among 352 unique spacers, 114 spacer 

sequences were shared by multiple samples—a single spacer was shared by at most eight 

samples. 

The second example is CRISPR SRS023604L36, initially identified in a whole-

metagenome assembly contig of dataset SRS023604 (derived from posterior fornix), 

which has 5 copies of a 36 bp. Our targeted assembly of this CRISPR across all HMP 

metagenomic datasets revealed further instances of this CRISPR in several other datasets, 

including two from stool, and two from posterior fornix. Moreover, the CRISPR contig 

was assembled into a longer contig of 778 bps containing 12 copies of the CRISPR repeat. 

BLAST search of the CRISPR repeat against the nr database did not reveal any 

significant hits. 
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In most cases we have tested, targeted assembly dramatically improves the identification 

of both known or novel CRISPRs in the HMP datasets: for 142 CRISPRs (out of 150), 

targeted assembly resulted in CRISPR identification in more HMP samples as compared 

to using whole-metagenome assemblies, and for 36 CRISPRs, targeted assembly 

identified instances of the corresponding CRISPR in at least 10 times more datasets. See 

Supplementary Table 1 in [76] for more details. It suggests that specifically designed 

assembly approaches, such as the targeted assembly approach for CRISPR assembly 

presented here, are important for the characterization of functionally important repetitive 

elements that otherwise may be poorly assembled in a whole-metagenome assembly 

(which tends to be confused by repeats), and such a comprehensive identification is 

important for achieving an unbiased distribution of these functional elements across 

different body sites among individuals. 

4.3.3 Diverse distribution of CRISPRs across human body sites and individuals 

Overall, the distributions of CRISPRs are largely body-site specific (see Figure 16; the 

name of CRISPR and the number of samples in which the CRISPR was found are listed 

in Supplementary Table 2 of [76]). For example, CRISPRs AhydrL30 and BcoprL32 are 

only found in stool samples (see Table 8). Exceptions include two CRISPRs that were 

found from both a significant number of gut- and oral-associated samples: 

Neis_t014_L28 were found in 51 gut samples and 92 oral-associated samples; FalocL36 

identified from Filifactor alocis ATCC 35896 were found in 63 gut samples and 72 oral-

associated samples, including 50 tongue dorsum samples (see Table 8). 
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Figure 16. Distribution of CRISPRs across body sites. In this figure, x-

axis represents 150 CRISPRs and y-axis represents the total number of 

samples in which instances of each of the CRISPR are found. Note that 

there are roughly one third as many stool samples as oral samples, 

probably explaining the apparently smaller number of CRISPRs in the 

gut microbiome. 

 

Table 8. Distribution of selected CRISPRs across body sites. 

CRISPR 

anterior 

nares 

(94) 

stool 

(148) 

oral 
posterior 

fornix 

(61) 

Skin 

buccal 

mucosa 

(121) 

Supra-
gingival 
plaque 
(128) 

tongue 

dorsum 

(135) 

L-a 

(9) 

R-a 

(18) 

SmutaL36 11 4 97 120 128 0 0 1 

AhydrL30 0 53 0 0 0 0 0 0 

BcoprL32 0 65 0 0 0 0 0 0 

FalocL36 0 63 1 18 50 0 0 0 

Neis_t014_L28 0 51 15 58 15 0 0 0 

Neis_t014_L36 0 0 37 66 82 0 0 0 

PacneL29 1 0 0 0 0 0 4 7 
a: L: L-Retroauricular crease; R: R-Retroauricular crease. Note that not all body sites are listed in this table. 
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The first 50 CRISPRs shown in Figure 16 are mainly found in stool samples. AshahL36, 

which was initially identified from Alistipes shahii WAL 8301, was found in more than 

half of gut-related samples (96 out of 147 samples). On the other hand, 99 CRISPRs are 

mainly found in oral samples, in particular, tongue dorsum, supragingival plaque, and 

buccal mucosa. We found 5 CRISPRs that exist in more than half of the oral-associated 

samples (out of 417): SmutaL36, KoralL32 from Kingella oralis ATCC 51147, 

Veil_sp3_1_44_L36 and Veil_sp3_1_44_L35 from Veillonella sp. 3_1_44, and SoralL35 

from Streptococcus oralis ATTC 35037. 4 CRISPRs are mostly found in vaginal samples 

(AlactL29, LjensL36, LjassL36, and LcrisL29). 1 CRISPR is skin-specific (PacneL29), 

found mainly in skin samples, such as the retroauricular crease. 

4.3.4 The CRISPR spacers are very diverse 

The CRISPRs that we identified in human microbiome samples (with 751 samples from 

104 healthy individuals) shows substantial sequence diversity in their spacers among 

subjects. The CRISPRs that we identified in human microbiomes exhibited substantial 

sequence diversity in their spacers among subjects. Targeted assembly of the 

streptococcal CRISPRs (SmutaL36) in HMP datasets resulted in a total of 15,662 spacers 

identified from 386 samples, among which 7,815 were unique spacers (clustering of the 

spacers at 80% identify resulted in a non-redundant collection of 7,436 sequences). See 

Supplementary Fig. 2 in [76] for the sharing of the spacers in streptococcal CRISPRs 

among all individuals, which shows several large clusters of spacers that are shared by 

multiple individuals (for clarity, we only keep spacers that were shared by more than 
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eight samples in this figure). In particular, the most common spacer is shared by 25 

individuals (in 32 samples). 

More importantly, we could check the sharing of CRISPR spacers across different body 

sites and sub-body sites (e.g., multiple oral sites) using HMP datasets (Pride et al. 

examined streptococcal CRISPRs in saliva samples from 4 individuals [86]). Figure 17 

shows the space sharing among 6 selected individuals, each of whom has multiple 

samples with identified streptococcal CRISPRs from multiple body sites. By examining 

the distribution of the spacers across samples, we observed that samples re-sampled from 

the same individual and oral site shared the most spacers, different oral sites from the 

same individual shared significantly fewer, while different individuals had almost no 

common spacers, indicating the impact of subtle niche differences and histories on the 

evolution of CRISPRs. Our observation is largely consistent with the conclusion from 

Pride et al. [86]. But our study showed that different samples from the same oral site of 

the same person, even samples collected many months apart, could still share a 

significant number of spacers (e.g., the supragingival plaque samples from individual 1 in 

visit 1 and visit 2, with 238 days between the two visits, and the tongue dorsum samples 

from individual 5 in visit 1 and visit 3, with 336 days between the two visits; as shown in 

Figure 17). Our study also showed that although the different oral sites of the same 

individual share similar spacers, this sharing (e.g., between the supragingival plaque 

sample and the buccal mucosa sample for individual 1) is minimal, as compared to the 

spacer sharing between samples collected in different visits but from the same oral site 

(e.g., between the supragingival plaque samples from visit 1 and visit 2 for individual 1). 
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Finally, our study shows that the spacer turnover varies among individuals—for the 6 

selected individuals, individual 3 shows significantly higher turnover of the spacers 

between visits, as compared to other individuals. 

 

Figure 17. Sharing of streptococcal spacers among samples from 6 

individuals. In this map, rows are the 761 spacers (clustered at 98% 

identify) identified in one or more of these 6 individuals, and the 

columns are samples (e.g., Stool_v1_p1 means a sample from stool of 

individual 1, in visit 1; tongue_v2_p1 indicates dataset from tongue, 

individual 1, in visit 2).  Buccal stands for buccal mucosa, and 

SupraPlaque stands for supragingival plaque. The red lines indicate the 

presence of spacers in each of the samples. Multiple lines in the same 

row represent a spacer that is shared by multiple samples. 
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4.4 Discussion 

We have applied a targeted assembly approach to CRISPR identification, to characterize 

CRISPRs across body sites in different individuals. Our studies show that an effective 

approach—such as our targeted assembly approach—is important for a comprehensive 

(thus less biased) estimation of the distribution of CRISPRs across body sites and 

individuals, and their dynamics. Note that in this study, we only focused on CRISPRs 

identified in eubacterial genomes, since archaea are rare in human microbiomes. Also for 

the sake of simplicity, we derived a non-redundant list of CRISPRs based on the 

similarity of the CRISPR repeats, and detailed targeted assembly was only applied to the 

non-redundant CRISPRs.  

Although many CRISPR arrays will be missed by whole-metagenome assembly, we 

show that whole-metagenome assemblies are useful for finding novel CRISPRs (as de 

novo prediction of CRISPRs relies on sequence features of CRISPRs that do not exist in 

short reads). Once seeding CRISPRs are identified from whole-metagenome assemblies, 

we can go back to the original short read datasets, and pursue a comprehensive 

characterization of the CRISPRs, using the targeted assembly approach. Also, we did not 

fully utilize the presence of cas genes for identification of novel CRISPRs in our study, 

since in many cases we could identify arrays of repeats, but not their associated cas genes. 

A future direction is to combine targeted assembly of CRISPRs and whole-metagenome 

assembly, aiming to achieve even better assembly of functional elements that contain 

repetitive regions. 
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While the immediate utility of this study is to provide more complete inventories of 

CRISPR loci in human microbiomes, and indicate the usefulness of CRISPR repeats as 

phylogenetic markers, we look forward to being able to utilize the spacer sequences to 

understand human and human microbiome biology better, utilizing the metadata 

associated with the HMP datasets. This awaits more complete sampling of individuals 

over time, and of known relationships; and a far better characterization of bacteriophage 

and other selfish genetic elements in the human biome (our inventory of spacers is a 

standard against which phage and plasmid collections can be judged). 
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5. Constrained Assembly Approach to the Discovery of 

Integron Gene Cassettes 

The targeted assembly approach that we discussed in chapter four is very effective in 

assembling CRISPR arrays, which consist of spacer sequences bounded by direct repeats. 

This approach is effective since the CRISPR spacer sequences are usually very short. For 

example, the average length of spacers detected in 51 complete Escherichia and 

Salmonella genomes is ~32 bps [94]. For elements with longer spacer regions such as 

integrons, however, the targeted assembly approach can no longer generate complete 

spacer contigs. To assemble the integron sequences, we designed another approach 

named constrained assembly approach to assemble this and other similar elements. This 

manuscript was written along with Mina Rho, Thomas Doak, and Yuzhen Ye, and was 

published in [95]. 

5.1 Rationale 

Integrons are genetic elements that acquire and excise gene cassettes from their locus via 

site-specific recombination. The first integron, which is discovered in 1980s as the source 

of antibiotic resistant determinants [96], has been named resistant integron, or mobile 

integron, as they are often found in plasmids or associated with transposons. Another 

type of integron, the chromosomal integrons, were discovered in 1998 from examination 

of Vibrio cholerae genome [97]. Although they have similar structures, the two types of 

integrons (mobile integrons and chromosomal integrons) have different evolutionary 

histories, and differ in that the mobile integrons usually carry relatively few genes 
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(predominantly antibiotic genes) while chromosomal integrons often carry far more genes 

of very diverse functions [98]. 

Integron consist of: a site-specific tyrosine recombinase (intI) gene, the primary 

recombination site attI immediately adjacent to the intI gene, and an array of captured 

gene cassettes encoding accessory functions [53]. Gene cassettes are the minimal units 

that can be mobilized by the integrase, with each cassette containing one or a very small 

number of genes [99] and are separated by a recombination site attC. Aggregation of 

different gene cassettes results in variable gene cassette arrays. The number of gene 

cassettes in integrons can reach several hundred; for example, the total length of the gene 

cassette pool from merely five Vibrio chromosomal integrons is equivalent to a small 

genome [100]. 

PCR with degenerate primers targeting the conserved regions of attC sites has recovered 

novel integrase genes and hundreds of diverse gene cassettes from various environments, 

including soil, sediment, biomass, or water habitats [101-103]. Rowe-Magnus et al. 

employed a three-plasmid genetic strategy to recover integron genes, using the integrase 

to bind integron attC sites [100]. These methods, which utilized the conserved nature of 

integron recombination sites, revealed a very dynamic integron gene repertoire and 

suggested that the gene cassette pool is likely to be limitless [104], while at the same time 

we do not know of work identifying the sources of integron genes. 

A different approach, the constrained assembly approach, is designed to discovering 

chromosomal integrons in human-associated microbial communities, using shotgun 

metagenomic sequences of the human microbiomes. Human bodies are complex 
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ecological systems, in which various microbial organisms and viruses interact with each 

other, and with human hosts. The MetaHit project has established a human gut microbial 

gene catalogue [13], and defined three enterotypes of human gut microbiomes [14]. The 

Human Microbiome Project (HMP) [15] has resulted in > 700 datasets of shotgun 

metagenomic sequence (http://www.hmpdacc.org/), from which we can learn the 

compositions and functions of human-associated microbial communities. 

Our approach to integron discovery builds upon two novel computational methods: a 

targeted assembly approach for identifying the attC sites associated with chromosomal 

integrons (the repeats) in reads; and a constrained assembly approach for identifying the 

gene cassettes, which first greedily retrieves potential paths in the de Bruijn graph [40, 

105] for a metagenomic dataset, constrained to contigs containing the attC sites, and then 

selects the paths that most likely represent cassette genes. We will demonstrate that such 

specialized computational tools are important for a comprehensive characterization of 

metagenomic functional elements that contain repeats (such as the attC sites in the 

integron gene cassettes), as these repetitive regions are extremely difficult to assemble 

using a whole-metagenome assembly strategy. 

In this study we focus on the identification and characterization of integrons associated 

with Treponema species implicated in periodontal disease [106, 107] in the HMP datasets, 

using our integron discovery system. T. denticola genome contains a chromosomal 

integron with 45 gene cassettes [99], and it was the only human-associated bacterial 

species that harbors chromosomal integrons [53]. We also discover that the draft 

assemblies of two HMP reference genomes: T. vincentii and T. phagedenis 

http://www.hmpdacc.org/
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(http://www.hmpdacc.org/HMRGD/) contain integron attC sites similar to T. denticola 

and possibly harbor integrons. We do not find integrons in other Treponema species, 

including T. pallidum SS14 uid58977 [108], T. pallidum Nichols uid57585 [109], T. 

primitia ZAS-2, and T. azotonutricium ZAS-9 [110]. From the HMP datasets we identify 

826 integron gene cassettes that are related to the Treponema species, providing a gene 

cassette pool with 598 non-redundant genes. With these newly identified gene cassettes, 

we are able to compare the gene cassettes from different human subjects, and study the 

dynamics of the integron gene cassettes in their natural environments (i.e., human bodies), 

providing a first survey of integron-containing Treponema species and their integrons in a 

normal human population. 

5.2 Assembly of integron gene cassettes 

5.2.1 Selecting representative repeat sequences for Treponema denticola 
chromosomal integrons 

Eight distinct sequences were selected to represent the integron attC repeats in the T. 

denticola genome (the complete genomes of the other two integron-containing 

Treponema species, T. vincentii and T. phagedenis, are not available), given that not all 

the repeats are identical (see Figure 18). The pairwise sequence similarity between these 

eight sequences ranges from 77% to 44%, and all the attC sites in T. denticola can be 

aligned to at least one of the representative sequences with > 85% sequence identify. 

Once the representative sequences are selected, we are able to identify new attC sites 

using similarity searches, instead of looking for features of integron recombination sites 

http://www.hmpdacc.org/HMRGD/
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as in [103]. One advantage of using similarity searches is that we can recover degenerate 

sites that may lack some typical characteristics of integron recombination sites. 

 

Figure 18. (A) The NJ-tree of the eight representative sequences of the 

T. denticola chromosomal integron recombination sites. The sequences 

are named by the starting position of the sites in the genome. The 

multiple alignment was prepared using ClustalW [111], and the NJ-tree 

was prepared using the jalview tool [112]. (B) The predicted structure 

of one of the representative sequences, attC1870410, which has the 

typical structure of an integron recombination site, with two stems and 

one conserved unpaired G. The structure was predicted by RNAscf 
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[113], software that performs simultaneous alignment and folding of 

RNAs, using the eight representative sequences as input. 

 

5.2.2 Targeted assembly approach to identify integron attC sites 

The targeted assembly approach was developed to characterize CRISPR arrays from 

shotgun metagenomic sequences [76] and was employed here to identify and assemble 

the integron attC sites.  

1. Searching for reads that contain attC sites (with identity > 70% and covering 

> 50% of at least one of the representative attC sequences) using BLAST [23]. 

For paired-end reads, if one of a pair qualifies, both reads for the pair are 

included. 

2. Assembling the retrieved short reads using SOAPdenovo [43]. We used k-

mers of 31 bp, which were sufficiently long to assemble reads with the 

repetitive sequences found in the integrons; by contrast, whole-metagenome 

assembly generally uses shorter k-mers (for example, 21-23 bps in MetaHit 

[13] and 25 bps in HMP project [15]). 

5.2.3 Constrained assembly approach to retrieve integron gene cassettes 

A second approach, constrained assembly, was used to assemble integron gene cassettes 

from metagenomic shotgun reads. Since integron cassettes consist of genes that are much 

longer than the read length (~100 bp for the current Illumina technology), and the attC 

sites behave like repeats that confuse (meta-)genome assemblers, it is extremely difficult 

to obtain gene sequences using either a whole-genome-assembly method, or the targeted-
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assembly approach (which is good for assembly of repeats, but does not assemble very 

far beyond the repeats). As the integron cassettes are bounded by two attC repeats, we 

took advantage of this structure and devised a novel way to retrieve the cassette genes by 

traversing in the assembly graph, constrained by the edges (contigs) that contain the attC 

sites. To avoid introducing artificial integron genes, we further applied several criteria to 

select paths that are most likely to present genuine gene cassettes. The constrained 

assembly approach consists of the following steps (see Figure 19):  

1. Assembling all shotgun reads in a metagenomic sequence dataset—along with the 

contigs constructed by the targeted assembly approach, which may contain more 

complete attC sites as compared to shotgun reads—using SOAPdenovo [43] with 

k=39 (see below for the selection of k-mer parameter using simulated datasets), 

producing both contigs and the assembly graph (a de Bruijn graph) [40] (see 

Figure 19(B)).  

2. Searching for attC sites in contigs using BLAST (with an identity threshold of 

70% and coverage threshold of 50%), and tagging contigs with attC sites to be 

used as constraints to constrain the next step. 

3. Extracting paths that start from one tagged contig and end at another tagged 

contig using a depth-first search algorithm, and assembling the sequences for each 

path; the maximum length from one integron attC site to another attC site is set to 

5000 bp (see Figure 19(C)). 

4. Checking the support of each assembled sequence by mapping the reads and read 

pairs onto the assembled sequences using BWA [68]. We consider that a traverse 
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between two contigs is valid if the flanking regions of the connection (of l bp at 

both sides; l is set to 15) are supported by at least one read or read pair, and an 

assembled sequence is considered to be supported only if all the traverses 

involved are supported by reads (see Figure 19(D)).  

5. Predicting the genes in each assembled sequence using FragGeneScan [66], with 

error model turned off. We require that the maximum gene number between any 

two integron attC sites is 3, considering that most integron cassettes contain 1-3 

genes [99] (see Figure 19(E)). 
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Figure 19. A diagram of the constrained assembly of integron gene 

cassettes. 

 

5.2.4 Validation of constrained assembly using simulation 

We simulated three metagenomic datasets by sampling reads at different coverage (10X, 

20X and 31X) from nine Treponema genomes (or genome drafts) using MetaSim [58] 
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with the Illumina 80bp error model of error rate ~1% provided by the authors 

(http://ab.inf.uni-tuebingen.de/software/metasim/errormodel-80bp.mconf). The species 

include: T. denticola ATTC 35405 (NC_002967), T. azotonutricium ZAS-9 

(NC_015577), T. primitia ZAS-2 (NC_015578), T. pallidum subsp. pallidum SS14 

(NC_010741), T. pallidum subsp. pallidum str. Nichols (NC_000919), T. succinifaciens 

DSM 2489 (NC_015385), T. denticola str. F0402 (downloaded from 

http://www.broadinstitute.org/), T. vincentii (http://hmpdacc.org), and T. phagedenis 

(http://hmpdacc.org). We tested different k-mer parameters for the constrained assembly 

approach using these simulated datasets, and the results show that k=39 resulted in the 

most integron genes for all the datasets, as illustrated in Figure 20. The 31X dataset 

contains 4,499,532 paired-end reads and 500,468 singleton reads. 73 integron genes were 

identified from this dataset by our constrained assembly approach: 37 genes from T. 

denticola ATCC 35405, 27 genes from T. denticola str. F0402, seven genes from T. 

vincentii, and two genes from T. phagedenis. We mapped these genes back to the 

genomes and confirmed that 1) all the genes were correctly assembled (error rate is 0%), 

and 2) all the genes were mapped to the big integron, or the degenerate, small integron 

region in the genomes. In addition, we did not find any genes in the Treponema species 

that do not harbor integrons. All suggest that our constrained approach is reliable even 

when reads from closely related species are present. 

http://ab.inf.uni-tuebingen.de/software/metasim/errormodel-80bp.mconf
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Figure 20. The number of integron genes discovered using different k-

mer settings. The x-axis lists the k-mers, while the y-axis shows the 

total number of genes assembled. We generated three datasets of 

different coverage (10X, 20X, 31X) and applied our constrained 

assembly method to these datasets. Lines indicate the gene numbers 

found, and dashed-lines are the number of genes that are identified 

solely at the contig level (i.e. genes on the contigs that are bounded 

between two integron recombination sites). 

 

5.2.5 Functional annotation of identified gene cassettes 

We downloaded all protein sequences from the eggNOG v2.0 database [114], and 

retrieved the sequences with COG annotation [115]. MUSCLE [116] was used to 

generate a multiple alignment for each COG family, and the HMM builder from the 

HMMER3 package [117] was then applied to build a HMM for each COG. HMMER 

searches (by hmmscan from the HMMER3 package) were used to annotate the predicted 

integron gene cassettes, with an E-value cutoff of 0.001. For a gene with COG hits, we 
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recorded the best non-overlapped results, so that if a gene encodes multiple domains with 

distinct functions, all the functions will be reported. 

5.2.6 Identification of potential source species of gene cassettes 

We used MEGAN [27] to identify the possible source species of the identified gene 

cassettes. We searched the genes against the NCBI NR database (as of September 2011) 

using BLASTP and applied the MEGAN software to analyze the similarity search results. 

Since the average length of the genes is 506 bp, we set the minimum score threshold to 

100, as suggested by MEGAN’s authors for longer reads.  

5.2.7 The HMP datasets 

We used the Human Microbiome Illumina WGS Reads (HMIGWS) Build 1.0, and the 

whole-metagenome assemblies (PGAs) from the HMP consortium 

(http://www.hmpdacc.org/). There are 757 total metagenomic samples from 103 subjects 

(individuals). The reference genomes were also downloaded from this website. 

5.3 Results and evaluations 

5.3.1 The T. denticola integron attC sites are unique to Treponema species 

BLAST searches using the eight representative attC sequences against the NCBI 

nucleotide collection (NT) and the genome database (chromosomes) with default settings 

only hit Treponema genomes. Using an identity threshold of 70% and coverage threshold 

of 50%, 64 attC sites were found in the T. denticola ATCC 35405 genome, of which 45 

are located within the chromosomal integron (1,817,049-1,874,294) identified by [99]. 

We also found two additional attC sites downstream of the integron region, suggesting 

http://www.hmpdacc.org/


 
 

93 
 

 
 

that the integron may be even larger and contain more genes. The attC site located 

immediately downstream of the previously-reported integron location is more 

degenerative (barely passes the coverage threshold), but the site further downstream is 

more complete, and we believe these two attC sites are genuine. In addition, we found 7 

attC sites outside the big integron region (for example, there is an attC site located 

between 300,167 and 300,227, which shares 98% sequential identify with the attC site 

within the integron array between 1,870,410 and 1,870,474). Furthermore a degraded IntI 

gene exists between 302,289 and 302,350, suggesting that a degraded, small integron 

may exist in this region of the genome. We also discovered integron sequences in T. 

denticola F0402 (sequence downloaded from http://www.broadinstitute.org/). While the 

integrase genes (intI) are very similar between these two strains (with 95% identity), the 

integron gene cassettes are quite different—only ten integron genes are shared between 

these two strains, as shown in Figure 21. 

 

http://www.broadinstitute.org/
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Figure 21. Mapping result of Treponema denticola F0402 contig 

ADEC01000014 to the T. denticola ATCC 35405 genome. This plot is 

generated using RankVISTA web service [118]. 
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Instances of the T. denticola attC sites were also found in the draft assemblies of two 

human microbiome reference genomes (as of July 2011): T. vencentii ATCC 35580 and T. 

phagedenis F0421. A total of 16 attC sites were found in five contigs of T. vencentii 

ATCC 35580, and 6 attC sites were found in three contigs of T. phagedenis F0421. We 

further checked the T. vencentii and T. phagedenis genomes for features indicative of 

integrons. In both genomes, there are gene cassettes flanked by attC sequences: we 

identified one gene in a T. phagedenis contig, and 12 genes from three contigs of T. 

vincentii. One of the T. vincentii contigs exhibits a very clear integron structure, as shown 

in Figure 22. None of the 12 genes identified in T. vincentii share significant similarity 

with the integron genes of the T. denticola integron, suggesting that the gene cassettes of 

the two integron loci have undergone substantial changes since these two species 

diverged. We also searched the T. vencentii and T. phagedenis genomes using the T. 

denticola intI gene and detected a significant (sequence similarity=86%) and long intI 

(953 bp) gene on the T. vincentii contig ACYH1000073, which is demonstrated in Figure 

22. Together with the recombination sites and the gene cassettes, this region contains all 

elements required for an integron. 

 

Figure 22. The predicted integron recombination sites and genes in the 

contig ACYH1000073 of T. vincentii. Triangles are recombination sites, 

rectangles represent the integron genes, and the oval is the IntI gene. 

We use solid rectangles to represent the genes that pass our integron 
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gene discovery threshold, and dashed rectangles are open reading 

frames that do not meet the criteria. 

 

5.3.2 Detecting the existence of the integron-containing Treponema species in 
human samples 

We identified integron attC sites in 300 of >700 HMP samples, using targeted assembly. 

The body sites that have identified integrons are summarized in Table 9. Most samples 

with integrons are oral-related (including hard palate, supragingival plaque, saliva, 

tongue dorsum, subgingival plaque, throat, buccal mucosa, and attached/keratinized 

gingiva sites), whereas non-oral samples, including stool and vagina, do not contain 

integron attC recombination sites (repeats). It suggests that a high proportion of oral 

samples contain the Treponema species implicated in dental diseases, implying that these 

pathogens are ubiquitous among people. The existence of Treponema species implicated 

in dental diseases in most normal human individuals (though of low abundances) is also 

supported by mapping the sequencing reads onto the available compete genomes (or 

drafts) of the three integron-containing Treponema species (T. denticola, T. vincentii, and 

T. phagedenis) (See mapping results in Figure 23). We found only rare samples from 

nose (anterior nares) and ear (retroauricular crease) with integron repeats. 
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Table 9. Summary of the HMP samples with identified T. denticola integron attC sites. 

Location Samples with 

attC sites 

Total number of 

samples 

% of samples 

with attC sites 

Hard palate 1 1 100% 

Supragingival plaque 98 128 77% 

Saliva 5 5 100% 

Tongue dorsum 109 136 80% 

Vaginal introitus 0 3 0% 

Stool 0 150 0% 

Mid vagina 0 2 0% 

Subgingival plaque 8 8 100% 

Throat 6 7 86% 

Posterior fornix 0 62 0% 

Anterior nares 2 94 2% 

Buccal mucosa 60 122 49% 

R Retroauricular crease 2 18 11% 

L Retroauricular crease 0 9 0% 

Palatine Tonsils 6 6 100% 

Attached/Keratinized 

gingiva 

3 6 50% 
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Figure 23. Comparison of the average abundances of the three integron-

containing Treponema species in the HMP samples of different 

categories: samples with assembled integron genes (shown in blue), 

samples with detectable recombination sites (but no integron genes are 

assembled; shown in red), and samples without recombination sites 

detected (in green). The abundances in each HMP sample were 

estimated by mapping paired-end shotgun sequences of the HMP 

datasets onto the genomes (or genome drafts), by BWA [68]. Both 

reads in a pair are counted if at least one read maps to the genomes. 

Reads that map to common regions of genomes from different species 

are considered for all corresponding species in the estimation of the 

abundances. This chart confirms the existence of these Treponema 

species in the HMP datasets, with T. denticola and T.vincintii being 

more abundant in the samples. The mapping results are consistent with 

the results of the identification of attC sites and the integron gene 

cassettes: the samples with integron gene cassettes identified have the 

most T. denticola and T. vincintii, and the samples without 

recombination sites identified have the lowest presence of these species. 

This figure also suggests that the integron genes we identified are more 

likely to be from T. denticola and T. vincintii. 
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The 300 samples containing attC sites resulted in 85 out of 103 individuals having an 

identified infection of Treponema species (82.5%; between 1 and 15 samples per 

individual). This number is consistent with a previous report that disease associated with 

T. denticola occurs in 80% of adults, at some time in their lives [107]. 

We checked the size of each oral sample (as measured by the total bases), and found that 

oral samples with identified integron attC sites are significantly larger than samples 

without attC sites (Welch’s t-test, Z=4.63, degree of freedom=230, p<0.001). This is 

expected; as the Treponema species implicated in dental disease are not abundant in oral 

sites of healthy individuals (see Figure 23), and will be difficult to detect when 

sequencing is shallow. Thus the 80% prevalence may be a conservative estimate. 

5.3.3 Detecting integron genes in HMP whole-metagenome assembly 

We first identified integrons in the contigs from the whole-metagenome assemblies of 

human metagenomes by looking for genes flanked by attC sites. 741 attC sites were 

detected in the whole-metagenome assemblies, but most contigs carry only one attC site. 

As a result, we only found 66 non-redundant (at 97% identify cutoff) genes from 25 

samples: 17 are from supragingival plaque, six are from tongue dorsum, and two samples 

are from subgingival plaque. The sample distribution shows that we can indeed find 

integron genes associated with Treponema species (and hence demonstrate the existence 

of these oral pathogens) in mouth-related samples.  

Figure 24 shows an example from contig SRS049318_LANL_scaffold_118938, with two 

attC sites at 176-226 and 817-877 bps. FragGeneScan predicted one protein-coding gene 

between the two sites, and similarity search of this predicted protein against the NCBI 
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NR database revealed similarity to a hypothetical protein in the T. denticola genome; and 

to a HNH nuclease domain (SUPERFAMILY ID, cl00083) [119]. HNH endonuclease 

features 11 conserved residues, and all are conserved in the predicted protein. 

 

Figure 24. Annotation of a contig from sample SRS022602 

(SRS022602_Baylor_scaffold_118781) of 3131 bp. Red diamonds 

indicate the two repeats identified in this contig with similarity to the 

attC sites in the T. denticola chromosomal integron, and the three gray 

boxes indicate the predicted genes. The first gene (1-407) shares 46% 

sequence identify and 66% similarity along 97% of the gene with a 

protein (YP_001868417.1) from the Nostoc punctiforme PCC 73102 

genome (a nitrogen-fixing cyanobacterium). The second gene (503-

1639) shares 31% identify (53% similarity) along 99% of the gene with 

a protein (ADE86468.1) from Rhodobacter capsulatus SB 1003 (a 

purple, nonsulfur photosynthetic bacterium). The third gene (1743-

3131) shares 24% identify and 45% similarity, covering 88% of the 

gene, with a protein (ZP_04160697.1) from Bacillus mycoides Rock3-

17 (a Gram-positive, non-motile soil bacterium); this gene also shares 

24% sequence identify and 46% similarity (covering 65% of the gene) 

with a protein (YP_002158281.1, Nuclease-related domain family 

protein, NERD) from Vibrio fischeri MJ11 [120]. 

 

  

http://www.ncbi.nlm.nih.gov/protein/197336839?report=genbank&log$=prottop&blast_rank=19&RID=UGWKUS6T01N


 
 

101 
 

 
 

5.3.4 Using constrained assembly approach to detect more integron gene 
cassettes in HMP samples 

Using the whole-metagenome assemblies, we were able to retrieve only 66 integron-

associated genes (see above). Application of our constrained assembly approach to the 

HMP data sets led to the identification of 794 genes in 47 samples. After combining both 

predictions and keeping only unique genes for each sample, we derived a total of 826 

unique genes (598 97% non-redundant). The detailed comparison between the results 

generated by the constrained assembly approach and that obtained from the whole 

metagenome assembly is listed in Table 10, which shows that the constrained assembly 

approach is able to discover far more genes for most of the individual HMP samples. The 

distribution of sample locations and the number of genes in each location are listed in 

Table 11. We identified genes in 24 supragingival plaque samples, 19 tongue dorsum 

samples, and 4 subgingival samples. The proportion of samples with gene cassettes 

identified using the constrained assembly approach is still low—compared with samples 

with identified attC sites (300)—due to the low abundance of the Treponema species in 

many samples (see Figure 23). But we can still utilize the attC sites (taking advantage of 

the multiple copies of the attC sites) to identify T. denticola or related species in those 

samples, demonstrating the power of using unique repeats to trace rare species. We note 

that mapping shotgun sequences onto the known reference genomes (or drafts) of 

Treponema species can be used to identify the existence of these species in the HMP 

samples, but such a mapping cannot be effectively used to identify the integron gene 

cassettes due to the dynamic nature of the integron genes (e.g., the two T. denticola 

strains only share 10 cassette genes; see above).    



 
 

102 
 

 
 

Table 10. Identified integron gene numbers for each sample using constrained 

assembly approach (CONST) and whole metagenome assembly (WHOLE). 

Sample-ID CONST WHOLE  Sample-ID CONST WHOLE 

SRS011115 13 0  SRS022602 8 1 

SRS011126 12 0  SRS023595 66 3 

SRS011152 2 1  SRS024441 32 1 

SRS011255 0 2  SRS024561 0 1 

SRS013533 28 1  SRS042643 29 0 

SRS013705 17 2  SRS045313 3 0 

SRS013836 2 0  SRS047113 8 1 

SRS013950 36 1  SRS047634 11 0 

SRS014470 4 0  SRS049318 42 8 

SRS014476 37 7  SRS049389 18 0 

SRS014477 42 0  SRS050244 5 0 

SRS014573 45 0  SRS050669 1 0 

SRS014578 8 8  SRS051930 12 1 

SRS014691 5 0  SRS055378 8 5 

SRS015215 19 11  SRS055401 2 0 

SRS015434 17 0  SRS057205 1 0 

SRS016331 64 0  SRS058053 2 1 

SRS017209 10 1  SRS058808 18 0 

SRS017227 0 5  SRS062544 20 1 

SRS017691 2 0  SRS063215 0 5 

SRS018157 13 0  SRS063603 51 6 

SRS018739 43 4  SRS063932 11 9 

SRS019029 3 0  SRS063999 4 0 

SRS019071 1 0  SRS064774 2 0 

SRS022143 2 0  SRS075404 12 0 

SRS022149 35 1     
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Table 11. Breakdown of the samples that have identified T. denticola integron gene 

cassettes into body locations.  

 # of samples # of genes # of genes 
without COG hits 

Supragingival 
plaque 

24 457 252 

Tongue dorsum 19 283 203 

Subgingival plaque 4 86 46 
 

Similarly, among the 300 samples with detected attC sites, the samples with gene 

cassettes assembled by constrained assembly were significantly larger than those with no 

identified genes (Welch's t-test, Z=4.42, degree of freedom=68, p<0.001). This can also 

explain why we did not find gene cassettes in samples from buccal mocusa—the buccal 

mocusa samples are significantly smaller than other oral datasets (Welch's t-test, Z=25.28, 

degree of freedom=388, p<<0.001), partially caused by a large contamination of human 

DNAs in the buccal mocusa samples. 

5.3.5 The majority of integron gene cassettes are of unknown function 

We annotated the predicted cassette genes using similarity-searches. Among the 826 

genes, 501 cannot be assigned to a COG family (see Table 11): ~60% are un-assigned. Of 

the remaining genes, ~60% are assigned to COG categories R (general function 

prediction only) and S (function unknown). Combining these two categories, 85% of the 

826 genes are of unknown function: the proportion is even higher than reported for other 

integrons (it was reported that 75% of the cassette pool associated with Vibrionales 

genomes corresponds to genes with undefined functions [53, 98]). 
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To analyze genes with identified functions, we clustered the genes within each location 

(at 97% identity) to see how many genes are unique to distinct locations. The functional 

category L (replication, recombination, and repair) is the majority among all functional 

categories (25%); genes associated with category D (cell cycle control, cell division, 

chromosome partitioning), K (transcription), N (cell motility), and T (signal transduction 

mechanisms) are also elevated among all functional categories, with 12%, 11%, 13%, and 

13% of the genes with known functions, respectively, as shown in Table 12. Integron 

genes with these functions have been reported previously: for example, category L and 

category T are among the most prevalent functions reported by [53]. Genes in other 

categories, such as genes predicted to be part of the toxin/antitoxin system in category D, 

DNA-methyltransferase in category K, and methyl-accepting chemotaxis protein in 

category N, were also reported by [53]. This again demonstrates that our results are 

consistent with the previous findings of gene functions encoded by chromosomal 

integrons. 
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Table 12. The COG functional category distributions of the integron gene cassettes identified in 

different human body locations. 

COG Functional Categories1 Supragingival 
plaque 

Tongue 
dorsum 

Subgingival 
plaque 

[C] Energy production and conversion 1 0 0 

[D] Cell cycle control, cell division, 
chromosome parititioning 

8 (11)2 3 1 

[E] Amino acid transport and metabolism 2 (4) 1 0 

[F] Nucleotide transport and metabolism 1 0 0 

[G] Carbohydrate transport and metabolism 1 0 4 

[H] Coenzyme transport and metabolism 1 1 (8) 0 

[I] Lipid transport and metabolism 1 (3) 0 0 

[J] Translation, ribosomal structure and 
biogenesis 

3 0 1 

[K] Transcription 9 4 1 

[L] Replication, recombination and repair 10 (12) 10 (14) 5 (6) 

[M] Cell wall/membrane/envelope biogenesis 3 (4) 2 (3) 0 

[N] Cell motility 8 (10) 2 (5) 1 

[O] Posttranslational modification, protein 
turnover, chaperones 

0 1 0 

[P] Inorganic ion transport and metabolism 0 1 0 

[R] General function prediction only 45 (67) 13 (14) 7 (8) 

[S] Function unknown 59 (72) 18 (21) 14 (15) 

[T] Signal transduction mechanisms 6 (10) 3 2 (3) 

[U] Intracellular trafficking, secretion, and 
vesicular transport 

2 (3) 1 0 

[V] Defense mechanisms 2 3 (4) 1 
1: the functional categories (including [A] RNA processing and modification, [B] Chromatin structure and 

dynamics, [Q] Secondary metabolites biosynthesis, transport and catabolism, [W] Extracellular structures, 

[Y] Nuclear structure, and [Z] Cytoskeleton) that have no gene cassettes are not listed in the table.  

2: Number of genes is obtained by clustering the genes at a 97% identity threshold for each functional 

category within each location. Numbers within parentheses indicate the number of genes before clustering. 

 



 
 

106 
 

 
 

We further compared the predicted genes found in the HMP datasets against the genes in 

the T. denticola chromosomal integron (located at 1,817,049-1,874,294 on NC_002967, 

as reported by [99]) using BLAST with an E-value cutoff of 0.001. We found that of the 

826 genes, 192 (23%) hit to the genome’s integron genes. We also found that of the 70 

integron genes identified in the T. denticola genome, 39 (56%) genes had homologs in 

the 826 genes retrieved from the human samples. In other words, about 44% of integron 

genes in the complete genome were missing from our broad survey of human samples. 

This clearly demonstrates that the T. denticola integron is undergoing an active process of 

cassette insertion and excision. 

5.3.6 Tracing origins of integron gene cassettes 

To infer the potential origins of the integron gene cassettes associated with Treponema 
species, we applied MEGAN [27] to analyze all the gene cassettes identified in the HMP 
samples. The MEGAN taxonomic assignments of the gene cassettes are summarized in 
Figure 25. A total of 365 (44%) genes cannot be assigned to any taxon. Among the genes 
(461) assigned to a taxon, 152 (18%) are assigned to T. denticola (at the specie level), 47 
(6%) genes are assigned to T. vincentii, and 262 genes are likely originated from other 
species: 117 (14%) genes from other spirochete species, and 145 (17%) genes from non-
spirochete species.   
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Table 13 lists the detailed list of candidate donor species, and the annotations of the 

potential donor genes in these species. Here we show two examples: the first example is 

14 genes assigned to the order Clostridia, which was first discovered in soil, but also 

appears in human microbiomes [121, 122]; and the other example is 25 genes assigned to 

Spirochaeta caldaria, a thermophilic bacterium [123]. 

 

Figure 25. Taxonomic assignments of the integron genes by MEGAN. 

The numbers following clade names are the number of genes assigned 

to that taxonomic rank, not including the genes assigned to the taxa 

below that rank (for example, there are 63 genes assigned to T. 

denticola species, 49 genes assigned to strain ATCC 35405, and 40 

genes assigned to strain F0402; in total, 138 genes can be assigned to 

the T. denticola species). 
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Table 13. Functions of genes related to species other than T. denticola or T. vincentii 

Species Gene functions Number of 
genes1 

Bacillales   
 Hydrolase 2 (3) 
 Hypothetical 2 (3) 
Bacteroidetes   
 Hypothetical 5 (6) 
 DNA-cytosine 

methyltranferase 
1 (1) 

Clostridiales   
 Hypothetical 3 (4) 
 D-alanine-D-alanine ligase 1 (2) 
 Type II restriction enzyme 

HphI 
1 (1) 

 Acetyltransferase (GNAT) 
family 

1 (1) 

 Toxon-antitoxin system, 
antitoxin component, XRE 
family 

1 (1) 

 Hydrolase, NUDIX family 1 (1) 
 Toxon-antitoxin system, 

toxin component, Txe/Yoe 
family 

1 (1) 

 ABC transporter, ATP-
binding protein 

1 (2) 

 Toxon-antitoxin system, 
toxin component, RelE 
family 

1 (1) 

Flavobacteriaceae   
 Hypothetical 

transmembrane protein 
1 (3) 

 Hypothetical 1 (1) 
 FRG domain protein 1 (1) 
Gammaproteobacteria   
 Hypothetical membrane 

protein 
1 (3) 

 Type II restriction enzyme 1 (1) 
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BanI 
 DNA (cytosine-5-)-

methyltransferase 
1 (1) 

 Hypothetical 7 (7) 
Kosmotoga olearia   
 Methyltransferase type 11 1 (8) 
Ricinus communis   
 Hypothetical protein 1 (10) 
Spirochaeta caldaria DSM 
7334 

  

 toxin-antitoxin system, 
toxin component, PIN 
family 
(PilT domain) 

1 (4) 

 Prevent-host-death family 1 (1) 
 Hypothetical 4 (20) 
Treponema phagedenis F0421   
 Restriction endonuclease 3 (3) 
 Hypothetical 4 (4) 
Treponema succinifaciens 
DSM 2489 

  

 XRE family transcriptional 
regulator 

1 (1) 

 Plasmid maintenance 
system killer 

1 (1) 

 hypothetical 8 (13) 
 Transcriptional modulator 

of MazE/toxin, MazF 
1 (5) 

1: The numbers indicate the unique gene numbers by clustering the genes using a 97% identity threshold. Number of 

genes before clustering is shown within parentheses. 

 

5.3.7 Most integron genes are unique to samples and individuals 

In order to characterize the cassette genes shared among different samples, we clustered 

genes from different samples using CD-HIT [92], with an identity cutoff of 70% at the 
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amino acid level and then mapped the clustered genes to samples. Figure 26 clearly 

shows that gene sharing among samples is minimal. Most of the genes uniquely belong to 

only one sample—only 84 genes are shared between exactly two samples and 63 genes 

are shared among three or more samples. This finding is consistent with the findings from 

[124] that integron genes from 12 Vibrio isolates share only a very small number (< 10%) 

of genes. The HMP cohort contains individuals who were sampled at multiple body sites 

and visits, enabling us to compare the sharing of the integron cassette genes within and 

across individuals. The list of samples from the same individual is detailed in Table 14. 

We calculated the proportion of shared genes between any two samples and found that 

samples from the same individual tend to share more genes than samples from different 

individuals: the average proportion of gene shared between samples from the same 

individual is 13%, and the average proportion of genes shared between samples from 

different individuals is slightly lower: 8%. Note again that the result is consistent with the 

report that Vibrio isolates share < 10% of their integron genes. Our results indicate that 

even within an individual, there is strong population subdivision between Treponema 

species collected at different sites. 

The functions of the shared genes also vary, and the majority of them are still of 

unknown function: for the 84 genes shared between two samples, 56 genes cannot be 

assigned to any COG function, and 19 are assigned to unknown function (category R or 

S). Similarly, for the 63 genes shared by three or more samples, 30 genes do not hit to 

any COG function and 17 genes hit to unknown functions. Overall, the percentage of 

shared genes with an unknown function is 83%. This number is similar to the proportion 
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for all 826 genes. Furthermore, the number of genes in category L (replication, 

recombination, and repair) is again the highest among all categories with known 

functions. These numbers hint that the genes shared among two or more samples are 

sampled from all integron genes, without any preference for genes of certain functions. 
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Table 14. List of samples with predicted integron genes that 

belong to the same individuals. 

Individual 
ID Sample IDs 

158499257 SRS022602,SRS011152 

159571453 SRS024441,SRS013836 

763577454 SRS014477,SRS014476,SRS014470 

764143897 SRS015215,SRS051930 

160158126 SRS047634,SRS018157 

675950834 SRS050244,SRS055401 

638754422 SRS022149,SRS022143 

159814214 SRS047113,SRS050669,SRS017209 

764083206 SRS019071,SRS015434 

763961826 SRS014691,SRS019029 

158479027 SRS011126,SRS011115 

763840445 SRS063999,SRS014578,SRS014573 

765701615 SRS058808,SRS049389 
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Figure 26. Sharing of gene cassettes among the samples. In this map, 

columns are the samples and rows are the genes found in the integron 

gene cassettes, clustered at 70% sequence identify at the amino acid 

level (by CD-HIT). A red cell means that the corresponding gene exists 

in the corresponding sample. The naming convention for the samples is 

SRS-ID_individual-ID_female/male_body-site_location. Note some 

samples are from the same individual (with the same individual-ID). 
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5.4 Discussion 

To assemble integron gene cassettes, we designed a novel method to trace the de Bruijn 

assembly graph and then extract sequences bounded by contigs that contain attC sites. 

Assembly approaches based on de Bruijn graphs typically report the sequences of the 

edges (i.e., contigs) while discarding the connections between contigs embedded in the 

graph—the ambiguous connections between contigs may be difficult to resolve if no 

further information can be applied [25]. Our novel constrained assembly approach to 

integron gene cassettes enables us to traverse between the contigs in the de Bruijn graph 

by applying further information learned from the integron structures. The effect is 

enormous, as we obtained 826 genes de novo using this approach, compared to only 66 

genes in the whole-metagenome assembly contigs. 

Our integron gene discovery pipeline includes two validation steps (step 4 and step 5): 

only genes encoded by the sequences that are supported by reads mapping (step 4) and 

contain 1-3 genes (step 5) will be reported as candidate integron genes. For the HMP 

datasets, only 22% of sequences passed the first validation process, and 56% genes 

passed the second. We did not observe any misassembled integron genes when we 

applied the pipeline to the simulated datasets. We cannot completely exclude the 

possibility of having misassemblies in the real HMP datasets, considering that the 

prediction of the integron genes may be affected by reads from unknown species. Also 

our method may miss some integron genes due to the heterogeneity of attC sites of the 

Treponema species in the real samples.  
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Our targeted assembly and constrained assembly approaches can in principle be applied 

to any metagenome containing integron system. Given the attC sites, we are able to 

detect species with the corresponding integrons and generate integron gene cassettes. For 

example, the coral-mucus-associated Vibrio integrons [124] can be used to detect this 

coral pathogen in ocean samples, such as the Sargasso Sea metagenomic samples [5]. By 

analyzing integron genes we can help to understand how this species evolves and co-

exists with coral. We can also analyze genes from different sites (or depths) of the ocean 

and understand how bacteria in these sites interact with the outer environment. Even if 

species with integrons are of low abundance, we can still detect their existence in 

metagenomic samples, as in the case of T. denticola. 

Note that our targeted assembly (used in this work to characterize the integron attC sites) 

was developed to characterize CRISPR arrays in metagenomic samples, as described in 

Chapter 4 and in [76]. CRISPR/Cas systems are a widespread class of adaptive immunity 

systems that bacteria and archaea mobilize against foreign nucleic acids; the CRISPR 

arrays contain repeats, and short spacers that are likely derived from viral genomes or 

plasmids. Because the spacers in CRISPR arrays are significantly shorter than Illumina 

reads, we could easily assemble CRISPR arrays using targeted assembly alone, by first 

collecting reads containing repeats and then assembling the reads using optimized 

parameters. By contrast, integron spacers (cassettes) contain 1–3 genes between the attC 

sites, so it is hard to assemble the gene cassettes using targeted assembly alone. The 

constrained assembly approach was developed to overcome this limitation, and allows the 

assembly and characterization of integron gene cassettes. Both applications (the 
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identification of the CRISPR arrays using the targeted assembly approach, and the 

identification of integron gene cassettes) demonstrate the importance of directed 

computational approaches for studies of important functional elements—which are 

poorly analyzed using generalized computational approaches (such as whole-

metagenome assembly)—and that they are essential for the analysis of metagenomic 

sequences. 
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6. Research Summary 

In this thesis I developed several different methods to improve the mining and annotation 

of functional elements in metagenomic datasets. Since the discovery of functional 

elements usually starts from whole (meta-)genome assemblies, my first attempt was to 

improve metagenome assemblies by first binning metagenomic datasets, to separate reads 

sampled from species of different abundances. I developed AbundanceBin, which 

pioneered the abundance-based binning approaches and can be used alone to reveal the 

structure of a microbial community, or combined with assemblers to improve 

metagenome assemblies. 

More specialized methods were also developed, each for a type of functional elements to 

complement the approach to whole metagenome assembly. The first type of functional 

elements that we focused is genes. I developed GeneStitch, which is based on a network 

matching algorithm, to improve gene assembly from metagenomic sequences. GeneStitch 

is able to connect and assemble genes scattered in many different contigs into longer and 

more complete ones with the help of reference genes. Tests of GeneStitch revealed that it 

is capable of generating more complete genes or longer genes on top of the metagenomic 

assembly results. Such an improvement is important, as it has been shown that short gene 

fragments are difficult to annotate.  

Besides genes, I also developed methods to improve the characterization of two more 

special types of functional elements (CRISPRs and integrons) from metagenomic 

sequences. CRISPRs play an important role in the immune system of bacteria and 
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archaea. The targeted assembly method that I developed is very effective in retrieving 

CRISPRs from metagenomic sequences, which allows us to draw a more comprehensive 

picture of the CRISPR systems in bacteria and their dynamics in human microbiomes. As 

important agents of bacterial evolution, integrons are genetic elements capable of 

acquiring, rearranging and expressing genes contained in gene cassettes, bounded by 

direct repeats. The constrained assembly approach that I developed targets integron genes, 

utilizing the fact that integron genes are bounded by direct repeats. Application of the 

integron discovery system to the HMP datasets significantly enriched the gene pool of 

chromosomal integrons. Both applications (the identification of the CRISPR arrays using 

the targeted assembly approach, and the identification of integron gene cassettes) 

demonstrate the importance of directed computational approaches for studies of 

important functional elements and that they are essential for the analysis of metagenomic 

sequences. 
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7. Appendix 

The symbols are exactly the same as those defined in section 3.2.1 Network matching algorithm for gene assembly. Let 𝑆(𝑖, 𝑗,𝑘) be 

the optimal alignment score between all possible paths ending at position i of contig k in the input de Bruijn graph and the prefix 

ending at position j (i.e., 𝑡1𝑡2 ⋯ 𝑡𝑗) of the input reference sequence. For each contig 𝐶𝑘, we denote its first letter as 𝑓𝑖𝑟𝑠𝑡(𝑘), and its 

last letter as 𝑙𝑎𝑠𝑡(𝑘). The network matching algorithm computes a dynamic programming matrix to record the optimal alignment 

scores for1 ≤ 𝑖 ≤ 𝑙𝑎𝑠𝑡(𝑘), 1 ≤ 𝑗 ≤ 𝑚, and 1 ≤ 𝑘 ≤ 𝑛 (n is the total number of contigs). 𝑆(𝑖, 𝑗,𝑘) can be computed recursively as 

𝑆(𝑖, 𝑗, 𝑘)

= 𝑚𝑎𝑥

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧
𝑆(𝑖 − 3, 𝑗 − 1, 𝑘) + 𝑠𝑖𝑚(𝑎𝑎([𝑖 − 2, 𝑘], [𝑖 − 1, 𝑘], [𝑖, 𝑘]), 𝑗) , 𝑖𝑓 𝑖 > 3

max
𝑙 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 𝑘

𝑆(𝑙𝑎𝑠𝑡(𝑙), 𝑗 − 1, 𝑙) + 𝑠𝑖𝑚(𝑎𝑎([1, 𝑘], [2, 𝑘], [3, 𝑘]), 𝑗) , 𝑖𝑓 𝑖 = 3

max
𝑙 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 𝑘

�
𝑆(𝑙𝑎𝑠𝑡(𝑙) − 1, 𝑗 − 1, 𝑙) + 𝑠𝑖𝑚(𝑎𝑎([𝑙𝑎𝑠𝑡(𝑙), 𝑙], [1, 𝑘], [2, 𝑘]), 𝑗) , 𝑖𝑓 𝑙𝑎𝑠𝑡(𝑙) > 1

max
𝑚 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 𝑙

{𝑆(𝑙𝑎𝑠𝑡(𝑚), 𝑗 − 1,𝑚) + 𝑠𝑖𝑚(𝑎𝑎([1, 𝑙], [1, 𝑘], [2, 𝑘]), 𝑗) , 𝑖𝑓 𝑙𝑎𝑠𝑡(𝑙) = 1� , 𝑖𝑓 𝑖 = 2

max
𝑙 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 𝑘

⎩
⎪
⎨

⎪
⎧
𝑆(𝑙𝑎𝑠𝑡(𝑙) − 2, 𝑗 − 1, 𝑙) + 𝑠𝑖𝑚(𝑎𝑎([𝑙𝑎𝑠𝑡(𝑙) − 1, 𝑙], [𝑙𝑎𝑠𝑡(𝑙), 𝑙], [1, 𝑘]), 𝑗) , 𝑖𝑓 𝑙𝑎𝑠𝑡(𝑙) > 2

max
𝑚 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 𝑙

𝑆(𝑙𝑎𝑠𝑡(𝑚), 𝑗 − 1,𝑚) + 𝑠𝑖𝑚(𝑎𝑎([1, 𝑙], [2, 𝑙], [1, 𝑘]), 𝑗) , 𝑖𝑓 𝑙𝑎𝑠𝑡(𝑙) = 2

max
𝑚 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 𝑙

�
𝑆(𝑙𝑎𝑠𝑡(𝑚) − 1, 𝑗 − 1,𝑚) + 𝑠𝑖𝑚(𝑎𝑎([𝑙𝑎𝑠𝑡(𝑚),𝑚], [1, 𝑙], [1,𝑘]), 𝑗) , 𝑖𝑓 𝑙𝑎𝑠𝑡(𝑚) > 1

max
𝑛 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 𝑚

𝑆(𝑙𝑎𝑠𝑡(𝑛), 𝑗 − 1,𝑛) + 𝑠𝑖𝑚(𝑎𝑎([𝑙𝑎𝑠𝑡[𝑚],𝑚], [1, 𝑙], [1, 𝑘]), 𝑗) , 𝑖𝑓 𝑙𝑎𝑠𝑡(𝑚) = 1� , 𝑖𝑓 𝑙𝑎𝑠𝑡(𝑙) = 1
⎭
⎪
⎬

⎪
⎫

, 𝑖𝑓 𝑖 = 1

𝐼(𝑖, 𝑗, 𝑘)

𝐷(𝑖, 𝑗, 𝑘)
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where 𝑖 is used to indicates the position of nucleotide in contig k. The symbol 𝑎𝑎([𝑖,𝑝], [𝑗, 𝑞], [𝑘, 𝑟]) represents the translated amino 

acid from the codon triplet, which is composed of nucleotide at position i of contig p, nucleotide at position j of contig q, and 

nucleotide at position k of contig r; 𝑠𝑖𝑚(𝑚,𝑛) indicates the BLOSUM62 score between amino acid m and n. 𝐼(𝑖, 𝑗,𝑘) and 𝐷(𝑖, 𝑗,𝑘) 

are the optimal alignment scores between the paths of the de Bruijn graph (ending at position i in contig k) and the prefix of input 

reference sequence (ending at position j), ending with insertion and deletion in the alignment, respectively. The recursive definitions 

of 𝐼(𝑖, 𝑗,𝑘) and 𝐷(𝑖, 𝑗, 𝑘) are as follows: 

𝐼(𝑖, 𝑗, 𝑘) = 𝑚𝑎𝑥

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧
𝑆(𝑖 − 3, 𝑗, 𝑘) + ∆𝑔_𝑜𝑝𝑒𝑛
𝐼(𝑖 − 3, 𝑗, 𝑘) + ∆𝑔_𝑒𝑥𝑡 , 𝑖𝑓 𝑖 > 3

max
𝑙 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 𝑘

�𝑆
(𝑙𝑎𝑠𝑡(𝑙), 𝑗, 𝑙) + ∆𝑔_𝑜𝑝𝑒𝑛
𝐼(𝑙𝑎𝑠𝑡(𝑙), 𝑗, 𝑙) + ∆𝑔_𝑒𝑥𝑡 � , 𝑖𝑓 𝑖 = 3

max
𝑙 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 𝑘

⎩
⎨

⎧
𝑆(𝑙𝑎𝑠𝑡(𝑙) − 1, 𝑗, 𝑙) + ∆𝑔_𝑜𝑝𝑒𝑛
𝐼(𝑙𝑎𝑠𝑡(𝑙) − 1, 𝑗, 𝑙) + ∆𝑔_𝑒𝑥𝑡 , 𝑖𝑓 𝑙𝑎𝑠𝑡(𝑙) > 1

max
𝑚 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 𝑙

�𝑆
(𝑙𝑎𝑠𝑡(𝑚), 𝑗,𝑚) + ∆𝑔_𝑜𝑝𝑒𝑛
𝐼(𝑙𝑎𝑠𝑡(𝑚), 𝑗,𝑚) + ∆𝑔_𝑒𝑥𝑡 � , 𝑖𝑓 𝑙𝑎𝑠𝑡(𝑙) = 1⎭

⎬

⎫
, 𝑖𝑓 𝑖 = 2

max
𝑙 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 𝑘

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
𝑆(𝑙𝑎𝑠𝑡(𝑙) − 2, 𝑗, 𝑙) + ∆𝑔_𝑜𝑝𝑒𝑛
𝐼(𝑙𝑎𝑠𝑡(𝑙) − 2, 𝑗, 𝑙) + ∆𝑔_𝑒𝑥𝑡 , 𝑖𝑓 𝑙𝑎𝑠𝑡(𝑙) > 2

max
𝑚 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 𝑙

�𝑆
(𝑙𝑎𝑠𝑡(𝑚), 𝑗,𝑚) + ∆𝑔_𝑜𝑝𝑒𝑛
𝐼(𝑙𝑎𝑠𝑡(𝑚), 𝑗,𝑚) + ∆𝑔_𝑒𝑥𝑡 � , 𝑖𝑓 𝑙𝑎𝑠𝑡(𝑙) = 2

max
𝑚 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 𝑙

⎩
⎨

⎧
𝑆(𝑙𝑎𝑠𝑡(𝑚) − 1, 𝑗,𝑚) + ∆𝑔_𝑜𝑝𝑒𝑛
𝐼(𝑙𝑎𝑠𝑡(𝑚) − 1, 𝑗,𝑚) + ∆𝑔_𝑒𝑥𝑡 , 𝑖𝑓 𝑙𝑎𝑠𝑡(𝑚) > 1

max
𝑛 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 𝑚

�𝑆
(𝑙𝑎𝑠𝑡(𝑛), 𝑗,𝑛) + ∆𝑔_𝑜𝑝𝑒𝑛
𝐼(𝑙𝑎𝑠𝑡(𝑛), 𝑗,𝑛) + ∆𝑔_𝑒𝑥𝑡 � , 𝑖𝑓 𝑙𝑎𝑠𝑡(𝑚) = 1⎭

⎬

⎫
, 𝑖𝑓 𝑙𝑎𝑠𝑡(𝑙) = 1

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

, 𝑖𝑓 𝑖 = 1
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𝐷(𝑖, 𝑗, 𝑘) = 𝑚𝑎𝑥 �
𝑆(𝑖, 𝑗 − 1, 𝑘) + ∆𝑔_𝑜𝑝𝑒𝑛

𝐷(𝑖, 𝑗 − 1, 𝑘) + ∆𝑔_𝑒𝑥𝑡
 

where ∆𝑔_𝑜𝑝𝑒𝑛 and ∆𝑔_𝑒𝑥𝑡 are affine penalties [65] for opening and extending gaps, respectively. 
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