212 research outputs found

    Inverse Problems with Poisson noise: Primal and Primal-Dual Splitting

    Get PDF
    In this paper, we propose two algorithms for solving linear inverse problems when the observations are corrupted by Poisson noise. A proper data fidelity term (log-likelihood) is introduced to reflect the Poisson statistics of the noise. On the other hand, as a prior, the images to restore are assumed to be positive and sparsely represented in a dictionary of waveforms. Piecing together the data fidelity and the prior terms, the solution to the inverse problem is cast as the minimization of a non-smooth convex functional. We establish the well-posedness of the optimization problem, characterize the corresponding minimizers, and solve it by means of primal and primal-dual proximal splitting algorithms originating from the field of non-smooth convex optimization theory. Experimental results on deconvolution and comparison to prior methods are also reported

    Activity Identification and Local Linear Convergence of Douglas--Rachford/ADMM under Partial Smoothness

    Full text link
    Convex optimization has become ubiquitous in most quantitative disciplines of science, including variational image processing. Proximal splitting algorithms are becoming popular to solve such structured convex optimization problems. Within this class of algorithms, Douglas--Rachford (DR) and alternating direction method of multipliers (ADMM) are designed to minimize the sum of two proper lower semi-continuous convex functions whose proximity operators are easy to compute. The goal of this work is to understand the local convergence behaviour of DR (resp. ADMM) when the involved functions (resp. their Legendre-Fenchel conjugates) are moreover partly smooth. More precisely, when both of the two functions (resp. their conjugates) are partly smooth relative to their respective manifolds, we show that DR (resp. ADMM) identifies these manifolds in finite time. Moreover, when these manifolds are affine or linear, we prove that DR/ADMM is locally linearly convergent. When JJ and GG are locally polyhedral, we show that the optimal convergence radius is given in terms of the cosine of the Friedrichs angle between the tangent spaces of the identified manifolds. This is illustrated by several concrete examples and supported by numerical experiments.Comment: 17 pages, 1 figure, published in the proceedings of the Fifth International Conference on Scale Space and Variational Methods in Computer Visio

    Linear inverse problems with noise: primal and primal-dual splitting

    Get PDF
    In this paper, we propose two algorithms for solving linear inverse problems when the observations are corrupted by noise. A proper data fidelity term (log-likelihood) is introduced to reflect the statistics of the noise (e.g. Gaussian, Poisson). On the other hand, as a prior, the images to restore are assumed to be positive and sparsely represented in a dictionary of waveforms. Piecing together the data fidelity and the prior terms, the solution to the inverse problem is cast as the minimization of a non-smooth convex functional. We establish the well-posedness of the optimization problem, characterize the corresponding minimizers, and solve it by means of primal and primal-dual proximal splitting algorithms originating from the field of non-smooth convex optimization theory. Experimental results on deconvolution, inpainting and denoising with some comparison to prior methods are also reported

    A proximal iteration for deconvolving Poisson noisy images using sparse representations

    Get PDF
    We propose an image deconvolution algorithm when the data is contaminated by Poisson noise. The image to restore is assumed to be sparsely represented in a dictionary of waveforms such as the wavelet or curvelet transforms. Our key contributions are: First, we handle the Poisson noise properly by using the Anscombe variance stabilizing transform leading to a {\it non-linear} degradation equation with additive Gaussian noise. Second, the deconvolution problem is formulated as the minimization of a convex functional with a data-fidelity term reflecting the noise properties, and a non-smooth sparsity-promoting penalties over the image representation coefficients (e.g. â„“1\ell_1-norm). Third, a fast iterative backward-forward splitting algorithm is proposed to solve the minimization problem. We derive existence and uniqueness conditions of the solution, and establish convergence of the iterative algorithm. Finally, a GCV-based model selection procedure is proposed to objectively select the regularization parameter. Experimental results are carried out to show the striking benefits gained from taking into account the Poisson statistics of the noise. These results also suggest that using sparse-domain regularization may be tractable in many deconvolution applications with Poisson noise such as astronomy and microscopy

    Reflection methods for user-friendly submodular optimization

    Get PDF
    Recently, it has become evident that submodularity naturally captures widely occurring concepts in machine learning, signal processing and computer vision. Consequently, there is need for efficient optimization procedures for submodular functions, especially for minimization problems. While general submodular minimization is challenging, we propose a new method that exploits existing decomposability of submodular functions. In contrast to previous approaches, our method is neither approximate, nor impractical, nor does it need any cumbersome parameter tuning. Moreover, it is easy to implement and parallelize. A key component of our method is a formulation of the discrete submodular minimization problem as a continuous best approximation problem that is solved through a sequence of reflections, and its solution can be easily thresholded to obtain an optimal discrete solution. This method solves both the continuous and discrete formulations of the problem, and therefore has applications in learning, inference, and reconstruction. In our experiments, we illustrate the benefits of our method on two image segmentation tasks.Comment: Neural Information Processing Systems (NIPS), \'Etats-Unis (2013
    • …
    corecore