1,172 research outputs found

    On the use of biased-randomized algorithms for solving non-smooth optimization problems

    Get PDF
    Soft constraints are quite common in real-life applications. For example, in freight transportation, the fleet size can be enlarged by outsourcing part of the distribution service and some deliveries to customers can be postponed as well; in inventory management, it is possible to consider stock-outs generated by unexpected demands; and in manufacturing processes and project management, it is frequent that some deadlines cannot be met due to delays in critical steps of the supply chain. However, capacity-, size-, and time-related limitations are included in many optimization problems as hard constraints, while it would be usually more realistic to consider them as soft ones, i.e., they can be violated to some extent by incurring a penalty cost. Most of the times, this penalty cost will be nonlinear and even noncontinuous, which might transform the objective function into a non-smooth one. Despite its many practical applications, non-smooth optimization problems are quite challenging, especially when the underlying optimization problem is NP-hard in nature. In this paper, we propose the use of biased-randomized algorithms as an effective methodology to cope with NP-hard and non-smooth optimization problems in many practical applications. Biased-randomized algorithms extend constructive heuristics by introducing a nonuniform randomization pattern into them. Hence, they can be used to explore promising areas of the solution space without the limitations of gradient-based approaches, which assume the existence of smooth objective functions. Moreover, biased-randomized algorithms can be easily parallelized, thus employing short computing times while exploring a large number of promising regions. This paper discusses these concepts in detail, reviews existing work in different application areas, and highlights current trends and open research lines

    Internet of Things in urban waste collection

    Get PDF
    Nowadays, the waste collection management has an important role in urban areas. This paper faces this issue and proposes the application of a metaheuristic for the optimization of a weekly schedule and routing of the waste collection activities in an urban area. Differently to several contributions in literature, fixed periodic routes are not imposed. The results significantly improve the performance of the company involved, both in terms of resources used and costs saving

    A Tabu Search algorithm for the vehicle routing problem with discrete split deliveries and pickups

    Get PDF
    The Vehicle Routing Problem with Discrete Split Deliveries and Pickups is a variant of the Vehicle Routing Problem with Split Deliveries and Pickups, in which customers’ demands are discrete in terms of batches (or orders). It exists in the practice of logistics distribution and consists of designing a least cost set of routes to serve a given set of customers while respecting constraints on the vehicles’ capacities. In this paper, its features are analyzed. A mathematical model and Tabu Search algorithm with specially designed batch combination and item creation operation are proposed. The batch combination operation is designed to avoid unnecessary travel costs, while the item creation operation effectively speeds up the search and enhances the algorithmic search ability. Computational results are provided and compared with other methods in the literature, which indicate that in most cases the proposed algorithm can find better solutions than those in the literature
    • 

    corecore