28 research outputs found

    Application of an Open Source Spreadsheet Solver in Single Depot Routing Problem

    Get PDF
    The VRP has been broadly developed with additional feature such as deliveries, selective pickups time windows. This paper presents the application of an open source spreadsheet solver in single depot routing problem. This study focuses on Fast Moving Consumer Goods (FMCG) Company as a case study. The objective of this research is to minimize the distance travel. This research begins by collecting data from a respective FMCG Company. An FMCG company based in Jakarta, Indonesia provides drinking water packaged in the gallon. This FMCG Company has two distributions characteristic. Head office distribution was used in this case study due to highest internally rejected by the company such as un-routed order, no visit, not enough time to visit and transportation issue. Based on computational results, overall solutions to delivered 214 gallons to 26 customers having total distance traveled 56.76 km, total driving time 2 hour and 49 minutes, the total driver working time 7 hours and 57 minutes. Total savings of distances traveled between current route and the proposed solutions using open source spreadsheet solver is 7.25 km. As a result, by using open source spreadsheet solver in single depot routing problem can be implemented in FMCG Company

    Rancang Bangun Transportasi Logistik Kakao Agroindustri Coklat Kabupaten Pidie Jaya Provinsi Aceh

    Get PDF
    Factual problems of the cocoa bean agroindustry at Pidie Jaya District, Aceh Province were large distances between farmers and processor, thus determining the shortest part route, backhaul location and quality risk becomes critically to the assess. The objective this research are to determine shortest route based on the location of suppliers, back location, and risk quality recommendations. Requirement of shortest part route solved by Algorithm Djisktra, Backhaul location with MPE and Risk management quality by Multi Expert Multi Criteria Decision Making, aggregation criteria with OWA. The result of the study shows that the shortest distance suppliers Aceh Timur District was 282km, Aceh Utara District 116km, Bireuen District 57km, Pidie District 24km and Aceh Tenggara District 391km. Backhaul location sat Aceh Tengah District with a value of MPE(6533). Alternative of quality risk management were direct fermentation, improvement of transport facilities and container with a high rating criteria, thus the agroindustry has to focus on this dimension

    Application of an Open Source Spreadsheet Solver in Single Depot Routing Problem

    Get PDF

    SOLUCIÓN DEL MDVRP USANDO EL ALGORITMO DE BÚSQUEDA LOCAL ITERADA

    Get PDF
    En este artículo se propone una metodología para resolver el problema de ruteo considerando múltiples depósitos (MDVRP).  El modelo contempla situaciones con y sin restricción de distancia.  En el proceso de búsqueda se aceptan soluciones infactibles por sobrecarga en vehículos, depósitos y longitud de ruta, las cuales son llevadas como penalidades en la función objetivo.  Para su solución es implementado el algoritmo de Búsqueda Local Iterada (Iterated Local Search).  En la construcción de la solución inicial se usan heurísticas basadas en técnicas de clusterización.  La metodología es verificada usando casos de prueba de la literatura, los resultados obtenidos y tiempos de cómputo son comparados con los registros existentes

    A Column Generation for the Heterogeneous Fixed Fleet Open Vehicle Routing Problem

    Get PDF
    [EN] This paper addressed the heterogeneous fixed fleet open vehicle routing problem (HFFOVRP), in which the vehicles are not required to return to the depot after completing a service. In this new problem, the demands of customers are fulfilled by a heterogeneous fixed fleet of vehicles having various capacities, fixed costs and variable costs. This problem is an important variant of the open vehicle routing problem (OVRP) and can cover more practical situations in transportation and logistics. Since this problem belongs to NP-hard Problems, An approach based on column generation (CG) is applied to solve the HFFOVRP. A tight integer programming model is presented and the linear programming relaxation of which is solved by the CG technique. Since there have been no existing benchmarks, this study generated 19 test problems and the results of the proposed CG algorithm is compared to the results of exact algorithm. Computational experience confirms that the proposed algorithm can provide better solutions within a comparatively shorter period of time.Yousefikhoshbakht, M.; Dolatnejad, A. (2017). A Column Generation for the Heterogeneous Fixed Fleet Open Vehicle Routing Problem. International Journal of Production Management and Engineering. 5(2):55-71. doi:10.4995/ijpme.2017.5916SWORD557152Aleman, R. E., & Hill, R. R. (2010). A tabu search with vocabulary building approach for the vehicle routing problem with split demands. International Journal of Metaheuristics, 1(1), 55. doi:10.1504/ijmheur.2010.033123Anbuudayasankar, S. P., Ganesh, K., Lenny Koh, S. C., & Ducq, Y. (2012). Modified savings heuristics and genetic algorithm for bi-objective vehicle routing problem with forced backhauls. Expert Systems with Applications, 39(3), 2296-2305. doi:10.1016/j.eswa.2011.08.009Brandão, J. (2009). A deterministic tabu search algorithm for the fleet size and mix vehicle routing problem. European Journal of Operational Research, 195(3), 716-728. doi:10.1016/j.ejor.2007.05.059Çatay, B. (2010). A new saving-based ant algorithm for the Vehicle Routing Problem with Simultaneous Pickup and Delivery. Expert Systems with Applications, 37(10), 6809-6817. doi:10.1016/j.eswa.2010.03.045Dantzig, G. B., & Ramser, J. H. (1959). The Truck Dispatching Problem. Management Science, 6(1), 80-91. doi:10.1287/mnsc.6.1.80Gendreau, M., Guertin, F., Potvin, J.-Y., & Séguin, R. (2006). Neighborhood search heuristics for a dynamic vehicle dispatching problem with pick-ups and deliveries. Transportation Research Part C: Emerging Technologies, 14(3), 157-174. doi:10.1016/j.trc.2006.03.002Gendreau, M., Laporte, G., Musaraganyi, C., & Taillard, É. D. (1999). A tabu search heuristic for the heterogeneous fleet vehicle routing problem. Computers & Operations Research, 26(12), 1153-1173. doi:10.1016/s0305-0548(98)00100-2Lei, H., Laporte, G., & Guo, B. (2011). The capacitated vehicle routing problem with stochastic demands and time windows. Computers & Operations Research, 38(12), 1775-1783. doi:10.1016/j.cor.2011.02.007Li, X., Leung, S. C. H., & Tian, P. (2012). A multistart adaptive memory-based tabu search algorithm for the heterogeneous fixed fleet open vehicle routing problem. Expert Systems with Applications, 39(1), 365-374. doi:10.1016/j.eswa.2011.07.025Li, X., Tian, P., & Aneja, Y. P. (2010). An adaptive memory programming metaheuristic for the heterogeneous fixed fleet vehicle routing problem. Transportation Research Part E: Logistics and Transportation Review, 46(6), 1111-1127. doi:10.1016/j.tre.2010.02.004Penna, P. H. V., Subramanian, A., & Ochi, L. S. (2011). An Iterated Local Search heuristic for the Heterogeneous Fleet Vehicle Routing Problem. Journal of Heuristics, 19(2), 201-232. doi:10.1007/s10732-011-9186-ySaadati Eskandari, Z., YousefiKhoshbakht, M. (2012). Solving the Vehicle Routing Problem by an Effective Reactive Bone Route Algorithm, Transportation Research Journal, 1(2), 51-69.Subramanian, A., Drummond, L. M. A., Bentes, C., Ochi, L. S., & Farias, R. (2010). A parallel heuristic for the Vehicle Routing Problem with Simultaneous Pickup and Delivery. Computers & Operations Research, 37(11), 1899-1911. doi:10.1016/j.cor.2009.10.011Syslo, M., Deo, N., Kowalik, J. (1983). Discrete Optimization Algorithms with Pascal Programs, Prentice Hall.Taillard, E. D. (1999). A heuristic column generation method for the heterogeneous fleet VRP, RAIRO Operations Research, 33, 1-14. https://doi.org/10.1051/ro:1999101Tarantilis, C. D., & Kiranoudis, C. T. (2007). A flexible adaptive memory-based algorithm for real-life transportation operations: Two case studies from dairy and construction sector. European Journal of Operational Research, 179(3), 806-822. doi:10.1016/j.ejor.2005.03.059Wang, H.-F., & Chen, Y.-Y. (2012). A genetic algorithm for the simultaneous delivery and pickup problems with time window. Computers & Industrial Engineering, 62(1), 84-95. doi:10.1016/j.cie.2011.08.018Yousefikhoshbakht, M., Didehvar, F., & Rahmati, F. (2013). Solving the heterogeneous fixed fleet open vehicle routing problem by a combined metaheuristic algorithm. International Journal of Production Research, 52(9), 2565-2575. doi:10.1080/00207543.2013.855337Yousefikhoshbakht, M., & Khorram, E. (2012). Solving the vehicle routing problem by a hybrid meta-heuristic algorithm. Journal of Industrial Engineering International, 8(1). doi:10.1186/2251-712x-8-1

    A matheuristic approach for the Pollution-Routing Problem

    Full text link
    This paper deals with the Pollution-Routing Problem (PRP), a Vehicle Routing Problem (VRP) with environmental considerations, recently introduced in the literature by [Bektas and Laporte (2011), Transport. Res. B-Meth. 45 (8), 1232-1250]. The objective is to minimize operational and environmental costs while respecting capacity constraints and service time windows. Costs are based on driver wages and fuel consumption, which depends on many factors, such as travel distance and vehicle load. The vehicle speeds are considered as decision variables. They complement routing decisions, impacting the total cost, the travel time between locations, and thus the set of feasible routes. We propose a method which combines a local search-based metaheuristic with an integer programming approach over a set covering formulation and a recursive speed-optimization algorithm. This hybridization enables to integrate more tightly route and speed decisions. Moreover, two other "green" VRP variants, the Fuel Consumption VRP (FCVRP) and the Energy Minimizing VRP (EMVRP), are addressed. The proposed method compares very favorably with previous algorithms from the literature and many new improved solutions are reported.Comment: Working Paper -- UFPB, 26 page

    Revisión de la literatura del problema de ruteo de vehículos en un contexto de transporte verde

    Get PDF
    In the efficient management of the supply chain the optimal management of transport of consumables and finished products appears. The costs associated with transport have direct impact on the final value consumers must pay, which in addition to requiring competitive products also demand that they are generated in environmentally friendly organizations. Aware of this reality, this document is intended to be a starting point for Master’s and Doctoral degree students who want to work in a line of research recently proposed: green routing. The state of the art of the vehicle routing problem is presented in this paper, listing its variants, models and methodologies for solution. Furthermore, the proposed interaction between variants of classical routing problems and environmental effects of its operations, known in the literature as Green- VRP is presented. The goal is to generate a discussion in which mathematical models and solution strategies that can be applied within organizations that consider within their objectives an efficient and sustainable operation are posed.En el gerenciamiento eficiente de la cadena de suministro aparece la gestión óptima del transporte de insumos y productos terminados. Los costos asociados al transporte tienen impacto directo sobre el valor final que deben pagar los consumidores, que además de requerir productos competitivos también exigen que los mismos sean generados en organizaciones amigables con el medioambiente. Consientes de esa realidad este documento pretende ser un punto de partida para estudiantes de maestría y doctorado que quieran trabajar en una línea de investigación propuesta recientemente: el ruteo verde. En este trabajo se muestra un estado del arte del problema de ruteo de vehículos, enumerando sus variantes, modelos y metodologías de solución. Además, se presenta la interacción que se ha propuesto entre variantes clásicas de los problemas de ruteo y los efectos ambientales de su operación, denominados en la literatura como Green-VRP. El objetivo es generar una discusión donde se planteen modelos matemáticos y estrategias de solución que puedan ser aplicadas en organizaciones que consideren dentro de sus objetivos una operación eficiente y sustentable
    corecore